• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

definition of data analysis in research process

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

AI-Based Services in Market Research

AI-Based Services Buying Guide for Market Research (based on ESOMAR’s 20 Questions) 

May 20, 2024

data information vs insight

Data Information vs Insight: Essential differences

May 14, 2024

pricing analytics software

Pricing Analytics Software: Optimize Your Pricing Strategy

May 13, 2024

relationship marketing

Relationship Marketing: What It Is, Examples & Top 7 Benefits

May 8, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

A Step-by-Step Guide to the Data Analysis Process

Like any scientific discipline, data analysis follows a rigorous step-by-step process. Each stage requires different skills and know-how. To get meaningful insights, though, it’s important to understand the process as a whole. An underlying framework is invaluable for producing results that stand up to scrutiny.

In this post, we’ll explore the main steps in the data analysis process. This will cover how to define your goal, collect data, and carry out an analysis. Where applicable, we’ll also use examples and highlight a few tools to make the journey easier. When you’re done, you’ll have a much better understanding of the basics. This will help you tweak the process to fit your own needs.

Here are the steps we’ll take you through:

  • Defining the question
  • Collecting the data
  • Cleaning the data
  • Analyzing the data
  • Sharing your results
  • Embracing failure

On popular request, we’ve also developed a video based on this article. Scroll further along this article to watch that.

Ready? Let’s get started with step one.

1. Step one: Defining the question

The first step in any data analysis process is to define your objective. In data analytics jargon, this is sometimes called the ‘problem statement’.

Defining your objective means coming up with a hypothesis and figuring how to test it. Start by asking: What business problem am I trying to solve? While this might sound straightforward, it can be trickier than it seems. For instance, your organization’s senior management might pose an issue, such as: “Why are we losing customers?” It’s possible, though, that this doesn’t get to the core of the problem. A data analyst’s job is to understand the business and its goals in enough depth that they can frame the problem the right way.

Let’s say you work for a fictional company called TopNotch Learning. TopNotch creates custom training software for its clients. While it is excellent at securing new clients, it has much lower repeat business. As such, your question might not be, “Why are we losing customers?” but, “Which factors are negatively impacting the customer experience?” or better yet: “How can we boost customer retention while minimizing costs?”

Now you’ve defined a problem, you need to determine which sources of data will best help you solve it. This is where your business acumen comes in again. For instance, perhaps you’ve noticed that the sales process for new clients is very slick, but that the production team is inefficient. Knowing this, you could hypothesize that the sales process wins lots of new clients, but the subsequent customer experience is lacking. Could this be why customers don’t come back? Which sources of data will help you answer this question?

Tools to help define your objective

Defining your objective is mostly about soft skills, business knowledge, and lateral thinking. But you’ll also need to keep track of business metrics and key performance indicators (KPIs). Monthly reports can allow you to track problem points in the business. Some KPI dashboards come with a fee, like Databox and DashThis . However, you’ll also find open-source software like Grafana , Freeboard , and Dashbuilder . These are great for producing simple dashboards, both at the beginning and the end of the data analysis process.

2. Step two: Collecting the data

Once you’ve established your objective, you’ll need to create a strategy for collecting and aggregating the appropriate data. A key part of this is determining which data you need. This might be quantitative (numeric) data, e.g. sales figures, or qualitative (descriptive) data, such as customer reviews. All data fit into one of three categories: first-party, second-party, and third-party data. Let’s explore each one.

What is first-party data?

First-party data are data that you, or your company, have directly collected from customers. It might come in the form of transactional tracking data or information from your company’s customer relationship management (CRM) system. Whatever its source, first-party data is usually structured and organized in a clear, defined way. Other sources of first-party data might include customer satisfaction surveys, focus groups, interviews, or direct observation.

What is second-party data?

To enrich your analysis, you might want to secure a secondary data source. Second-party data is the first-party data of other organizations. This might be available directly from the company or through a private marketplace. The main benefit of second-party data is that they are usually structured, and although they will be less relevant than first-party data, they also tend to be quite reliable. Examples of second-party data include website, app or social media activity, like online purchase histories, or shipping data.

What is third-party data?

Third-party data is data that has been collected and aggregated from numerous sources by a third-party organization. Often (though not always) third-party data contains a vast amount of unstructured data points (big data). Many organizations collect big data to create industry reports or to conduct market research. The research and advisory firm Gartner is a good real-world example of an organization that collects big data and sells it on to other companies. Open data repositories and government portals are also sources of third-party data .

Tools to help you collect data

Once you’ve devised a data strategy (i.e. you’ve identified which data you need, and how best to go about collecting them) there are many tools you can use to help you. One thing you’ll need, regardless of industry or area of expertise, is a data management platform (DMP). A DMP is a piece of software that allows you to identify and aggregate data from numerous sources, before manipulating them, segmenting them, and so on. There are many DMPs available. Some well-known enterprise DMPs include Salesforce DMP , SAS , and the data integration platform, Xplenty . If you want to play around, you can also try some open-source platforms like Pimcore or D:Swarm .

Want to learn more about what data analytics is and the process a data analyst follows? We cover this topic (and more) in our free introductory short course for beginners. Check out tutorial one: An introduction to data analytics .

3. Step three: Cleaning the data

Once you’ve collected your data, the next step is to get it ready for analysis. This means cleaning, or ‘scrubbing’ it, and is crucial in making sure that you’re working with high-quality data . Key data cleaning tasks include:

  • Removing major errors, duplicates, and outliers —all of which are inevitable problems when aggregating data from numerous sources.
  • Removing unwanted data points —extracting irrelevant observations that have no bearing on your intended analysis.
  • Bringing structure to your data —general ‘housekeeping’, i.e. fixing typos or layout issues, which will help you map and manipulate your data more easily.
  • Filling in major gaps —as you’re tidying up, you might notice that important data are missing. Once you’ve identified gaps, you can go about filling them.

A good data analyst will spend around 70-90% of their time cleaning their data. This might sound excessive. But focusing on the wrong data points (or analyzing erroneous data) will severely impact your results. It might even send you back to square one…so don’t rush it! You’ll find a step-by-step guide to data cleaning here . You may be interested in this introductory tutorial to data cleaning, hosted by Dr. Humera Noor Minhas.

Carrying out an exploratory analysis

Another thing many data analysts do (alongside cleaning data) is to carry out an exploratory analysis. This helps identify initial trends and characteristics, and can even refine your hypothesis. Let’s use our fictional learning company as an example again. Carrying out an exploratory analysis, perhaps you notice a correlation between how much TopNotch Learning’s clients pay and how quickly they move on to new suppliers. This might suggest that a low-quality customer experience (the assumption in your initial hypothesis) is actually less of an issue than cost. You might, therefore, take this into account.

Tools to help you clean your data

Cleaning datasets manually—especially large ones—can be daunting. Luckily, there are many tools available to streamline the process. Open-source tools, such as OpenRefine , are excellent for basic data cleaning, as well as high-level exploration. However, free tools offer limited functionality for very large datasets. Python libraries (e.g. Pandas) and some R packages are better suited for heavy data scrubbing. You will, of course, need to be familiar with the languages. Alternatively, enterprise tools are also available. For example, Data Ladder , which is one of the highest-rated data-matching tools in the industry. There are many more. Why not see which free data cleaning tools you can find to play around with?

4. Step four: Analyzing the data

Finally, you’ve cleaned your data. Now comes the fun bit—analyzing it! The type of data analysis you carry out largely depends on what your goal is. But there are many techniques available. Univariate or bivariate analysis, time-series analysis, and regression analysis are just a few you might have heard of. More important than the different types, though, is how you apply them. This depends on what insights you’re hoping to gain. Broadly speaking, all types of data analysis fit into one of the following four categories.

Descriptive analysis

Descriptive analysis identifies what has already happened . It is a common first step that companies carry out before proceeding with deeper explorations. As an example, let’s refer back to our fictional learning provider once more. TopNotch Learning might use descriptive analytics to analyze course completion rates for their customers. Or they might identify how many users access their products during a particular period. Perhaps they’ll use it to measure sales figures over the last five years. While the company might not draw firm conclusions from any of these insights, summarizing and describing the data will help them to determine how to proceed.

Learn more: What is descriptive analytics?

Diagnostic analysis

Diagnostic analytics focuses on understanding why something has happened . It is literally the diagnosis of a problem, just as a doctor uses a patient’s symptoms to diagnose a disease. Remember TopNotch Learning’s business problem? ‘Which factors are negatively impacting the customer experience?’ A diagnostic analysis would help answer this. For instance, it could help the company draw correlations between the issue (struggling to gain repeat business) and factors that might be causing it (e.g. project costs, speed of delivery, customer sector, etc.) Let’s imagine that, using diagnostic analytics, TopNotch realizes its clients in the retail sector are departing at a faster rate than other clients. This might suggest that they’re losing customers because they lack expertise in this sector. And that’s a useful insight!

Predictive analysis

Predictive analysis allows you to identify future trends based on historical data . In business, predictive analysis is commonly used to forecast future growth, for example. But it doesn’t stop there. Predictive analysis has grown increasingly sophisticated in recent years. The speedy evolution of machine learning allows organizations to make surprisingly accurate forecasts. Take the insurance industry. Insurance providers commonly use past data to predict which customer groups are more likely to get into accidents. As a result, they’ll hike up customer insurance premiums for those groups. Likewise, the retail industry often uses transaction data to predict where future trends lie, or to determine seasonal buying habits to inform their strategies. These are just a few simple examples, but the untapped potential of predictive analysis is pretty compelling.

Prescriptive analysis

Prescriptive analysis allows you to make recommendations for the future. This is the final step in the analytics part of the process. It’s also the most complex. This is because it incorporates aspects of all the other analyses we’ve described. A great example of prescriptive analytics is the algorithms that guide Google’s self-driving cars. Every second, these algorithms make countless decisions based on past and present data, ensuring a smooth, safe ride. Prescriptive analytics also helps companies decide on new products or areas of business to invest in.

Learn more:  What are the different types of data analysis?

5. Step five: Sharing your results

You’ve finished carrying out your analyses. You have your insights. The final step of the data analytics process is to share these insights with the wider world (or at least with your organization’s stakeholders!) This is more complex than simply sharing the raw results of your work—it involves interpreting the outcomes, and presenting them in a manner that’s digestible for all types of audiences. Since you’ll often present information to decision-makers, it’s very important that the insights you present are 100% clear and unambiguous. For this reason, data analysts commonly use reports, dashboards, and interactive visualizations to support their findings.

How you interpret and present results will often influence the direction of a business. Depending on what you share, your organization might decide to restructure, to launch a high-risk product, or even to close an entire division. That’s why it’s very important to provide all the evidence that you’ve gathered, and not to cherry-pick data. Ensuring that you cover everything in a clear, concise way will prove that your conclusions are scientifically sound and based on the facts. On the flip side, it’s important to highlight any gaps in the data or to flag any insights that might be open to interpretation. Honest communication is the most important part of the process. It will help the business, while also helping you to excel at your job!

Tools for interpreting and sharing your findings

There are tons of data visualization tools available, suited to different experience levels. Popular tools requiring little or no coding skills include Google Charts , Tableau , Datawrapper , and Infogram . If you’re familiar with Python and R, there are also many data visualization libraries and packages available. For instance, check out the Python libraries Plotly , Seaborn , and Matplotlib . Whichever data visualization tools you use, make sure you polish up your presentation skills, too. Remember: Visualization is great, but communication is key!

You can learn more about storytelling with data in this free, hands-on tutorial .  We show you how to craft a compelling narrative for a real dataset, resulting in a presentation to share with key stakeholders. This is an excellent insight into what it’s really like to work as a data analyst!

6. Step six: Embrace your failures

The last ‘step’ in the data analytics process is to embrace your failures. The path we’ve described above is more of an iterative process than a one-way street. Data analytics is inherently messy, and the process you follow will be different for every project. For instance, while cleaning data, you might spot patterns that spark a whole new set of questions. This could send you back to step one (to redefine your objective). Equally, an exploratory analysis might highlight a set of data points you’d never considered using before. Or maybe you find that the results of your core analyses are misleading or erroneous. This might be caused by mistakes in the data, or human error earlier in the process.

While these pitfalls can feel like failures, don’t be disheartened if they happen. Data analysis is inherently chaotic, and mistakes occur. What’s important is to hone your ability to spot and rectify errors. If data analytics was straightforward, it might be easier, but it certainly wouldn’t be as interesting. Use the steps we’ve outlined as a framework, stay open-minded, and be creative. If you lose your way, you can refer back to the process to keep yourself on track.

In this post, we’ve covered the main steps of the data analytics process. These core steps can be amended, re-ordered and re-used as you deem fit, but they underpin every data analyst’s work:

  • Define the question —What business problem are you trying to solve? Frame it as a question to help you focus on finding a clear answer.
  • Collect data —Create a strategy for collecting data. Which data sources are most likely to help you solve your business problem?
  • Clean the data —Explore, scrub, tidy, de-dupe, and structure your data as needed. Do whatever you have to! But don’t rush…take your time!
  • Analyze the data —Carry out various analyses to obtain insights. Focus on the four types of data analysis: descriptive, diagnostic, predictive, and prescriptive.
  • Share your results —How best can you share your insights and recommendations? A combination of visualization tools and communication is key.
  • Embrace your mistakes —Mistakes happen. Learn from them. This is what transforms a good data analyst into a great one.

What next? From here, we strongly encourage you to explore the topic on your own. Get creative with the steps in the data analysis process, and see what tools you can find. As long as you stick to the core principles we’ve described, you can create a tailored technique that works for you.

To learn more, check out our free, 5-day data analytics short course . You might also be interested in the following:

  • These are the top 9 data analytics tools
  • 10 great places to find free datasets for your next project
  • How to build a data analytics portfolio

Your Modern Business Guide To Data Analysis Methods And Techniques

Data analysis methods and techniques blog post by datapine

Table of Contents

1) What Is Data Analysis?

2) Why Is Data Analysis Important?

3) What Is The Data Analysis Process?

4) Types Of Data Analysis Methods

5) Top Data Analysis Techniques To Apply

6) Quality Criteria For Data Analysis

7) Data Analysis Limitations & Barriers

8) Data Analysis Skills

9) Data Analysis In The Big Data Environment

In our data-rich age, understanding how to analyze and extract true meaning from our business’s digital insights is one of the primary drivers of success.

Despite the colossal volume of data we create every day, a mere 0.5% is actually analyzed and used for data discovery , improvement, and intelligence. While that may not seem like much, considering the amount of digital information we have at our fingertips, half a percent still accounts for a vast amount of data.

With so much data and so little time, knowing how to collect, curate, organize, and make sense of all of this potentially business-boosting information can be a minefield – but online data analysis is the solution.

In science, data analysis uses a more complex approach with advanced techniques to explore and experiment with data. On the other hand, in a business context, data is used to make data-driven decisions that will enable the company to improve its overall performance. In this post, we will cover the analysis of data from an organizational point of view while still going through the scientific and statistical foundations that are fundamental to understanding the basics of data analysis. 

To put all of that into perspective, we will answer a host of important analytical questions, explore analytical methods and techniques, while demonstrating how to perform analysis in the real world with a 17-step blueprint for success.

What Is Data Analysis?

Data analysis is the process of collecting, modeling, and analyzing data using various statistical and logical methods and techniques. Businesses rely on analytics processes and tools to extract insights that support strategic and operational decision-making.

All these various methods are largely based on two core areas: quantitative and qualitative research.

To explain the key differences between qualitative and quantitative research, here’s a video for your viewing pleasure:

Gaining a better understanding of different techniques and methods in quantitative research as well as qualitative insights will give your analyzing efforts a more clearly defined direction, so it’s worth taking the time to allow this particular knowledge to sink in. Additionally, you will be able to create a comprehensive analytical report that will skyrocket your analysis.

Apart from qualitative and quantitative categories, there are also other types of data that you should be aware of before dividing into complex data analysis processes. These categories include: 

  • Big data: Refers to massive data sets that need to be analyzed using advanced software to reveal patterns and trends. It is considered to be one of the best analytical assets as it provides larger volumes of data at a faster rate. 
  • Metadata: Putting it simply, metadata is data that provides insights about other data. It summarizes key information about specific data that makes it easier to find and reuse for later purposes. 
  • Real time data: As its name suggests, real time data is presented as soon as it is acquired. From an organizational perspective, this is the most valuable data as it can help you make important decisions based on the latest developments. Our guide on real time analytics will tell you more about the topic. 
  • Machine data: This is more complex data that is generated solely by a machine such as phones, computers, or even websites and embedded systems, without previous human interaction.

Why Is Data Analysis Important?

Before we go into detail about the categories of analysis along with its methods and techniques, you must understand the potential that analyzing data can bring to your organization.

  • Informed decision-making : From a management perspective, you can benefit from analyzing your data as it helps you make decisions based on facts and not simple intuition. For instance, you can understand where to invest your capital, detect growth opportunities, predict your income, or tackle uncommon situations before they become problems. Through this, you can extract relevant insights from all areas in your organization, and with the help of dashboard software , present the data in a professional and interactive way to different stakeholders.
  • Reduce costs : Another great benefit is to reduce costs. With the help of advanced technologies such as predictive analytics, businesses can spot improvement opportunities, trends, and patterns in their data and plan their strategies accordingly. In time, this will help you save money and resources on implementing the wrong strategies. And not just that, by predicting different scenarios such as sales and demand you can also anticipate production and supply. 
  • Target customers better : Customers are arguably the most crucial element in any business. By using analytics to get a 360° vision of all aspects related to your customers, you can understand which channels they use to communicate with you, their demographics, interests, habits, purchasing behaviors, and more. In the long run, it will drive success to your marketing strategies, allow you to identify new potential customers, and avoid wasting resources on targeting the wrong people or sending the wrong message. You can also track customer satisfaction by analyzing your client’s reviews or your customer service department’s performance.

What Is The Data Analysis Process?

Data analysis process graphic

When we talk about analyzing data there is an order to follow in order to extract the needed conclusions. The analysis process consists of 5 key stages. We will cover each of them more in detail later in the post, but to start providing the needed context to understand what is coming next, here is a rundown of the 5 essential steps of data analysis. 

  • Identify: Before you get your hands dirty with data, you first need to identify why you need it in the first place. The identification is the stage in which you establish the questions you will need to answer. For example, what is the customer's perception of our brand? Or what type of packaging is more engaging to our potential customers? Once the questions are outlined you are ready for the next step. 
  • Collect: As its name suggests, this is the stage where you start collecting the needed data. Here, you define which sources of data you will use and how you will use them. The collection of data can come in different forms such as internal or external sources, surveys, interviews, questionnaires, and focus groups, among others.  An important note here is that the way you collect the data will be different in a quantitative and qualitative scenario. 
  • Clean: Once you have the necessary data it is time to clean it and leave it ready for analysis. Not all the data you collect will be useful, when collecting big amounts of data in different formats it is very likely that you will find yourself with duplicate or badly formatted data. To avoid this, before you start working with your data you need to make sure to erase any white spaces, duplicate records, or formatting errors. This way you avoid hurting your analysis with bad-quality data. 
  • Analyze : With the help of various techniques such as statistical analysis, regressions, neural networks, text analysis, and more, you can start analyzing and manipulating your data to extract relevant conclusions. At this stage, you find trends, correlations, variations, and patterns that can help you answer the questions you first thought of in the identify stage. Various technologies in the market assist researchers and average users with the management of their data. Some of them include business intelligence and visualization software, predictive analytics, and data mining, among others. 
  • Interpret: Last but not least you have one of the most important steps: it is time to interpret your results. This stage is where the researcher comes up with courses of action based on the findings. For example, here you would understand if your clients prefer packaging that is red or green, plastic or paper, etc. Additionally, at this stage, you can also find some limitations and work on them. 

Now that you have a basic understanding of the key data analysis steps, let’s look at the top 17 essential methods.

17 Essential Types Of Data Analysis Methods

Before diving into the 17 essential types of methods, it is important that we go over really fast through the main analysis categories. Starting with the category of descriptive up to prescriptive analysis, the complexity and effort of data evaluation increases, but also the added value for the company.

a) Descriptive analysis - What happened.

The descriptive analysis method is the starting point for any analytic reflection, and it aims to answer the question of what happened? It does this by ordering, manipulating, and interpreting raw data from various sources to turn it into valuable insights for your organization.

Performing descriptive analysis is essential, as it enables us to present our insights in a meaningful way. Although it is relevant to mention that this analysis on its own will not allow you to predict future outcomes or tell you the answer to questions like why something happened, it will leave your data organized and ready to conduct further investigations.

b) Exploratory analysis - How to explore data relationships.

As its name suggests, the main aim of the exploratory analysis is to explore. Prior to it, there is still no notion of the relationship between the data and the variables. Once the data is investigated, exploratory analysis helps you to find connections and generate hypotheses and solutions for specific problems. A typical area of ​​application for it is data mining.

c) Diagnostic analysis - Why it happened.

Diagnostic data analytics empowers analysts and executives by helping them gain a firm contextual understanding of why something happened. If you know why something happened as well as how it happened, you will be able to pinpoint the exact ways of tackling the issue or challenge.

Designed to provide direct and actionable answers to specific questions, this is one of the world’s most important methods in research, among its other key organizational functions such as retail analytics , e.g.

c) Predictive analysis - What will happen.

The predictive method allows you to look into the future to answer the question: what will happen? In order to do this, it uses the results of the previously mentioned descriptive, exploratory, and diagnostic analysis, in addition to machine learning (ML) and artificial intelligence (AI). Through this, you can uncover future trends, potential problems or inefficiencies, connections, and casualties in your data.

With predictive analysis, you can unfold and develop initiatives that will not only enhance your various operational processes but also help you gain an all-important edge over the competition. If you understand why a trend, pattern, or event happened through data, you will be able to develop an informed projection of how things may unfold in particular areas of the business.

e) Prescriptive analysis - How will it happen.

Another of the most effective types of analysis methods in research. Prescriptive data techniques cross over from predictive analysis in the way that it revolves around using patterns or trends to develop responsive, practical business strategies.

By drilling down into prescriptive analysis, you will play an active role in the data consumption process by taking well-arranged sets of visual data and using it as a powerful fix to emerging issues in a number of key areas, including marketing, sales, customer experience, HR, fulfillment, finance, logistics analytics , and others.

Top 17 data analysis methods

As mentioned at the beginning of the post, data analysis methods can be divided into two big categories: quantitative and qualitative. Each of these categories holds a powerful analytical value that changes depending on the scenario and type of data you are working with. Below, we will discuss 17 methods that are divided into qualitative and quantitative approaches. 

Without further ado, here are the 17 essential types of data analysis methods with some use cases in the business world: 

A. Quantitative Methods 

To put it simply, quantitative analysis refers to all methods that use numerical data or data that can be turned into numbers (e.g. category variables like gender, age, etc.) to extract valuable insights. It is used to extract valuable conclusions about relationships, differences, and test hypotheses. Below we discuss some of the key quantitative methods. 

1. Cluster analysis

The action of grouping a set of data elements in a way that said elements are more similar (in a particular sense) to each other than to those in other groups – hence the term ‘cluster.’ Since there is no target variable when clustering, the method is often used to find hidden patterns in the data. The approach is also used to provide additional context to a trend or dataset.

Let's look at it from an organizational perspective. In a perfect world, marketers would be able to analyze each customer separately and give them the best-personalized service, but let's face it, with a large customer base, it is timely impossible to do that. That's where clustering comes in. By grouping customers into clusters based on demographics, purchasing behaviors, monetary value, or any other factor that might be relevant for your company, you will be able to immediately optimize your efforts and give your customers the best experience based on their needs.

2. Cohort analysis

This type of data analysis approach uses historical data to examine and compare a determined segment of users' behavior, which can then be grouped with others with similar characteristics. By using this methodology, it's possible to gain a wealth of insight into consumer needs or a firm understanding of a broader target group.

Cohort analysis can be really useful for performing analysis in marketing as it will allow you to understand the impact of your campaigns on specific groups of customers. To exemplify, imagine you send an email campaign encouraging customers to sign up for your site. For this, you create two versions of the campaign with different designs, CTAs, and ad content. Later on, you can use cohort analysis to track the performance of the campaign for a longer period of time and understand which type of content is driving your customers to sign up, repurchase, or engage in other ways.  

A useful tool to start performing cohort analysis method is Google Analytics. You can learn more about the benefits and limitations of using cohorts in GA in this useful guide . In the bottom image, you see an example of how you visualize a cohort in this tool. The segments (devices traffic) are divided into date cohorts (usage of devices) and then analyzed week by week to extract insights into performance.

Cohort analysis chart example from google analytics

3. Regression analysis

Regression uses historical data to understand how a dependent variable's value is affected when one (linear regression) or more independent variables (multiple regression) change or stay the same. By understanding each variable's relationship and how it developed in the past, you can anticipate possible outcomes and make better decisions in the future.

Let's bring it down with an example. Imagine you did a regression analysis of your sales in 2019 and discovered that variables like product quality, store design, customer service, marketing campaigns, and sales channels affected the overall result. Now you want to use regression to analyze which of these variables changed or if any new ones appeared during 2020. For example, you couldn’t sell as much in your physical store due to COVID lockdowns. Therefore, your sales could’ve either dropped in general or increased in your online channels. Through this, you can understand which independent variables affected the overall performance of your dependent variable, annual sales.

If you want to go deeper into this type of analysis, check out this article and learn more about how you can benefit from regression.

4. Neural networks

The neural network forms the basis for the intelligent algorithms of machine learning. It is a form of analytics that attempts, with minimal intervention, to understand how the human brain would generate insights and predict values. Neural networks learn from each and every data transaction, meaning that they evolve and advance over time.

A typical area of application for neural networks is predictive analytics. There are BI reporting tools that have this feature implemented within them, such as the Predictive Analytics Tool from datapine. This tool enables users to quickly and easily generate all kinds of predictions. All you have to do is select the data to be processed based on your KPIs, and the software automatically calculates forecasts based on historical and current data. Thanks to its user-friendly interface, anyone in your organization can manage it; there’s no need to be an advanced scientist. 

Here is an example of how you can use the predictive analysis tool from datapine:

Example on how to use predictive analytics tool from datapine

**click to enlarge**

5. Factor analysis

The factor analysis also called “dimension reduction” is a type of data analysis used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. The aim here is to uncover independent latent variables, an ideal method for streamlining specific segments.

A good way to understand this data analysis method is a customer evaluation of a product. The initial assessment is based on different variables like color, shape, wearability, current trends, materials, comfort, the place where they bought the product, and frequency of usage. Like this, the list can be endless, depending on what you want to track. In this case, factor analysis comes into the picture by summarizing all of these variables into homogenous groups, for example, by grouping the variables color, materials, quality, and trends into a brother latent variable of design.

If you want to start analyzing data using factor analysis we recommend you take a look at this practical guide from UCLA.

6. Data mining

A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.  When considering how to analyze data, adopting a data mining mindset is essential to success - as such, it’s an area that is worth exploring in greater detail.

An excellent use case of data mining is datapine intelligent data alerts . With the help of artificial intelligence and machine learning, they provide automated signals based on particular commands or occurrences within a dataset. For example, if you’re monitoring supply chain KPIs , you could set an intelligent alarm to trigger when invalid or low-quality data appears. By doing so, you will be able to drill down deep into the issue and fix it swiftly and effectively.

In the following picture, you can see how the intelligent alarms from datapine work. By setting up ranges on daily orders, sessions, and revenues, the alarms will notify you if the goal was not completed or if it exceeded expectations.

Example on how to use intelligent alerts from datapine

7. Time series analysis

As its name suggests, time series analysis is used to analyze a set of data points collected over a specified period of time. Although analysts use this method to monitor the data points in a specific interval of time rather than just monitoring them intermittently, the time series analysis is not uniquely used for the purpose of collecting data over time. Instead, it allows researchers to understand if variables changed during the duration of the study, how the different variables are dependent, and how did it reach the end result. 

In a business context, this method is used to understand the causes of different trends and patterns to extract valuable insights. Another way of using this method is with the help of time series forecasting. Powered by predictive technologies, businesses can analyze various data sets over a period of time and forecast different future events. 

A great use case to put time series analysis into perspective is seasonality effects on sales. By using time series forecasting to analyze sales data of a specific product over time, you can understand if sales rise over a specific period of time (e.g. swimwear during summertime, or candy during Halloween). These insights allow you to predict demand and prepare production accordingly.  

8. Decision Trees 

The decision tree analysis aims to act as a support tool to make smart and strategic decisions. By visually displaying potential outcomes, consequences, and costs in a tree-like model, researchers and company users can easily evaluate all factors involved and choose the best course of action. Decision trees are helpful to analyze quantitative data and they allow for an improved decision-making process by helping you spot improvement opportunities, reduce costs, and enhance operational efficiency and production.

But how does a decision tree actually works? This method works like a flowchart that starts with the main decision that you need to make and branches out based on the different outcomes and consequences of each decision. Each outcome will outline its own consequences, costs, and gains and, at the end of the analysis, you can compare each of them and make the smartest decision. 

Businesses can use them to understand which project is more cost-effective and will bring more earnings in the long run. For example, imagine you need to decide if you want to update your software app or build a new app entirely.  Here you would compare the total costs, the time needed to be invested, potential revenue, and any other factor that might affect your decision.  In the end, you would be able to see which of these two options is more realistic and attainable for your company or research.

9. Conjoint analysis 

Last but not least, we have the conjoint analysis. This approach is usually used in surveys to understand how individuals value different attributes of a product or service and it is one of the most effective methods to extract consumer preferences. When it comes to purchasing, some clients might be more price-focused, others more features-focused, and others might have a sustainable focus. Whatever your customer's preferences are, you can find them with conjoint analysis. Through this, companies can define pricing strategies, packaging options, subscription packages, and more. 

A great example of conjoint analysis is in marketing and sales. For instance, a cupcake brand might use conjoint analysis and find that its clients prefer gluten-free options and cupcakes with healthier toppings over super sugary ones. Thus, the cupcake brand can turn these insights into advertisements and promotions to increase sales of this particular type of product. And not just that, conjoint analysis can also help businesses segment their customers based on their interests. This allows them to send different messaging that will bring value to each of the segments. 

10. Correspondence Analysis

Also known as reciprocal averaging, correspondence analysis is a method used to analyze the relationship between categorical variables presented within a contingency table. A contingency table is a table that displays two (simple correspondence analysis) or more (multiple correspondence analysis) categorical variables across rows and columns that show the distribution of the data, which is usually answers to a survey or questionnaire on a specific topic. 

This method starts by calculating an “expected value” which is done by multiplying row and column averages and dividing it by the overall original value of the specific table cell. The “expected value” is then subtracted from the original value resulting in a “residual number” which is what allows you to extract conclusions about relationships and distribution. The results of this analysis are later displayed using a map that represents the relationship between the different values. The closest two values are in the map, the bigger the relationship. Let’s put it into perspective with an example. 

Imagine you are carrying out a market research analysis about outdoor clothing brands and how they are perceived by the public. For this analysis, you ask a group of people to match each brand with a certain attribute which can be durability, innovation, quality materials, etc. When calculating the residual numbers, you can see that brand A has a positive residual for innovation but a negative one for durability. This means that brand A is not positioned as a durable brand in the market, something that competitors could take advantage of. 

11. Multidimensional Scaling (MDS)

MDS is a method used to observe the similarities or disparities between objects which can be colors, brands, people, geographical coordinates, and more. The objects are plotted using an “MDS map” that positions similar objects together and disparate ones far apart. The (dis) similarities between objects are represented using one or more dimensions that can be observed using a numerical scale. For example, if you want to know how people feel about the COVID-19 vaccine, you can use 1 for “don’t believe in the vaccine at all”  and 10 for “firmly believe in the vaccine” and a scale of 2 to 9 for in between responses.  When analyzing an MDS map the only thing that matters is the distance between the objects, the orientation of the dimensions is arbitrary and has no meaning at all. 

Multidimensional scaling is a valuable technique for market research, especially when it comes to evaluating product or brand positioning. For instance, if a cupcake brand wants to know how they are positioned compared to competitors, it can define 2-3 dimensions such as taste, ingredients, shopping experience, or more, and do a multidimensional scaling analysis to find improvement opportunities as well as areas in which competitors are currently leading. 

Another business example is in procurement when deciding on different suppliers. Decision makers can generate an MDS map to see how the different prices, delivery times, technical services, and more of the different suppliers differ and pick the one that suits their needs the best. 

A final example proposed by a research paper on "An Improved Study of Multilevel Semantic Network Visualization for Analyzing Sentiment Word of Movie Review Data". Researchers picked a two-dimensional MDS map to display the distances and relationships between different sentiments in movie reviews. They used 36 sentiment words and distributed them based on their emotional distance as we can see in the image below where the words "outraged" and "sweet" are on opposite sides of the map, marking the distance between the two emotions very clearly.

Example of multidimensional scaling analysis

Aside from being a valuable technique to analyze dissimilarities, MDS also serves as a dimension-reduction technique for large dimensional data. 

B. Qualitative Methods

Qualitative data analysis methods are defined as the observation of non-numerical data that is gathered and produced using methods of observation such as interviews, focus groups, questionnaires, and more. As opposed to quantitative methods, qualitative data is more subjective and highly valuable in analyzing customer retention and product development.

12. Text analysis

Text analysis, also known in the industry as text mining, works by taking large sets of textual data and arranging them in a way that makes it easier to manage. By working through this cleansing process in stringent detail, you will be able to extract the data that is truly relevant to your organization and use it to develop actionable insights that will propel you forward.

Modern software accelerate the application of text analytics. Thanks to the combination of machine learning and intelligent algorithms, you can perform advanced analytical processes such as sentiment analysis. This technique allows you to understand the intentions and emotions of a text, for example, if it's positive, negative, or neutral, and then give it a score depending on certain factors and categories that are relevant to your brand. Sentiment analysis is often used to monitor brand and product reputation and to understand how successful your customer experience is. To learn more about the topic check out this insightful article .

By analyzing data from various word-based sources, including product reviews, articles, social media communications, and survey responses, you will gain invaluable insights into your audience, as well as their needs, preferences, and pain points. This will allow you to create campaigns, services, and communications that meet your prospects’ needs on a personal level, growing your audience while boosting customer retention. There are various other “sub-methods” that are an extension of text analysis. Each of them serves a more specific purpose and we will look at them in detail next. 

13. Content Analysis

This is a straightforward and very popular method that examines the presence and frequency of certain words, concepts, and subjects in different content formats such as text, image, audio, or video. For example, the number of times the name of a celebrity is mentioned on social media or online tabloids. It does this by coding text data that is later categorized and tabulated in a way that can provide valuable insights, making it the perfect mix of quantitative and qualitative analysis.

There are two types of content analysis. The first one is the conceptual analysis which focuses on explicit data, for instance, the number of times a concept or word is mentioned in a piece of content. The second one is relational analysis, which focuses on the relationship between different concepts or words and how they are connected within a specific context. 

Content analysis is often used by marketers to measure brand reputation and customer behavior. For example, by analyzing customer reviews. It can also be used to analyze customer interviews and find directions for new product development. It is also important to note, that in order to extract the maximum potential out of this analysis method, it is necessary to have a clearly defined research question. 

14. Thematic Analysis

Very similar to content analysis, thematic analysis also helps in identifying and interpreting patterns in qualitative data with the main difference being that the first one can also be applied to quantitative analysis. The thematic method analyzes large pieces of text data such as focus group transcripts or interviews and groups them into themes or categories that come up frequently within the text. It is a great method when trying to figure out peoples view’s and opinions about a certain topic. For example, if you are a brand that cares about sustainability, you can do a survey of your customers to analyze their views and opinions about sustainability and how they apply it to their lives. You can also analyze customer service calls transcripts to find common issues and improve your service. 

Thematic analysis is a very subjective technique that relies on the researcher’s judgment. Therefore,  to avoid biases, it has 6 steps that include familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. It is also important to note that, because it is a flexible approach, the data can be interpreted in multiple ways and it can be hard to select what data is more important to emphasize. 

15. Narrative Analysis 

A bit more complex in nature than the two previous ones, narrative analysis is used to explore the meaning behind the stories that people tell and most importantly, how they tell them. By looking into the words that people use to describe a situation you can extract valuable conclusions about their perspective on a specific topic. Common sources for narrative data include autobiographies, family stories, opinion pieces, and testimonials, among others. 

From a business perspective, narrative analysis can be useful to analyze customer behaviors and feelings towards a specific product, service, feature, or others. It provides unique and deep insights that can be extremely valuable. However, it has some drawbacks.  

The biggest weakness of this method is that the sample sizes are usually very small due to the complexity and time-consuming nature of the collection of narrative data. Plus, the way a subject tells a story will be significantly influenced by his or her specific experiences, making it very hard to replicate in a subsequent study. 

16. Discourse Analysis

Discourse analysis is used to understand the meaning behind any type of written, verbal, or symbolic discourse based on its political, social, or cultural context. It mixes the analysis of languages and situations together. This means that the way the content is constructed and the meaning behind it is significantly influenced by the culture and society it takes place in. For example, if you are analyzing political speeches you need to consider different context elements such as the politician's background, the current political context of the country, the audience to which the speech is directed, and so on. 

From a business point of view, discourse analysis is a great market research tool. It allows marketers to understand how the norms and ideas of the specific market work and how their customers relate to those ideas. It can be very useful to build a brand mission or develop a unique tone of voice. 

17. Grounded Theory Analysis

Traditionally, researchers decide on a method and hypothesis and start to collect the data to prove that hypothesis. The grounded theory is the only method that doesn’t require an initial research question or hypothesis as its value lies in the generation of new theories. With the grounded theory method, you can go into the analysis process with an open mind and explore the data to generate new theories through tests and revisions. In fact, it is not necessary to collect the data and then start to analyze it. Researchers usually start to find valuable insights as they are gathering the data. 

All of these elements make grounded theory a very valuable method as theories are fully backed by data instead of initial assumptions. It is a great technique to analyze poorly researched topics or find the causes behind specific company outcomes. For example, product managers and marketers might use the grounded theory to find the causes of high levels of customer churn and look into customer surveys and reviews to develop new theories about the causes. 

How To Analyze Data? Top 17 Data Analysis Techniques To Apply

17 top data analysis techniques by datapine

Now that we’ve answered the questions “what is data analysis’”, why is it important, and covered the different data analysis types, it’s time to dig deeper into how to perform your analysis by working through these 17 essential techniques.

1. Collaborate your needs

Before you begin analyzing or drilling down into any techniques, it’s crucial to sit down collaboratively with all key stakeholders within your organization, decide on your primary campaign or strategic goals, and gain a fundamental understanding of the types of insights that will best benefit your progress or provide you with the level of vision you need to evolve your organization.

2. Establish your questions

Once you’ve outlined your core objectives, you should consider which questions will need answering to help you achieve your mission. This is one of the most important techniques as it will shape the very foundations of your success.

To help you ask the right things and ensure your data works for you, you have to ask the right data analysis questions .

3. Data democratization

After giving your data analytics methodology some real direction, and knowing which questions need answering to extract optimum value from the information available to your organization, you should continue with democratization.

Data democratization is an action that aims to connect data from various sources efficiently and quickly so that anyone in your organization can access it at any given moment. You can extract data in text, images, videos, numbers, or any other format. And then perform cross-database analysis to achieve more advanced insights to share with the rest of the company interactively.  

Once you have decided on your most valuable sources, you need to take all of this into a structured format to start collecting your insights. For this purpose, datapine offers an easy all-in-one data connectors feature to integrate all your internal and external sources and manage them at your will. Additionally, datapine’s end-to-end solution automatically updates your data, allowing you to save time and focus on performing the right analysis to grow your company.

data connectors from datapine

4. Think of governance 

When collecting data in a business or research context you always need to think about security and privacy. With data breaches becoming a topic of concern for businesses, the need to protect your client's or subject’s sensitive information becomes critical. 

To ensure that all this is taken care of, you need to think of a data governance strategy. According to Gartner , this concept refers to “ the specification of decision rights and an accountability framework to ensure the appropriate behavior in the valuation, creation, consumption, and control of data and analytics .” In simpler words, data governance is a collection of processes, roles, and policies, that ensure the efficient use of data while still achieving the main company goals. It ensures that clear roles are in place for who can access the information and how they can access it. In time, this not only ensures that sensitive information is protected but also allows for an efficient analysis as a whole. 

5. Clean your data

After harvesting from so many sources you will be left with a vast amount of information that can be overwhelming to deal with. At the same time, you can be faced with incorrect data that can be misleading to your analysis. The smartest thing you can do to avoid dealing with this in the future is to clean the data. This is fundamental before visualizing it, as it will ensure that the insights you extract from it are correct.

There are many things that you need to look for in the cleaning process. The most important one is to eliminate any duplicate observations; this usually appears when using multiple internal and external sources of information. You can also add any missing codes, fix empty fields, and eliminate incorrectly formatted data.

Another usual form of cleaning is done with text data. As we mentioned earlier, most companies today analyze customer reviews, social media comments, questionnaires, and several other text inputs. In order for algorithms to detect patterns, text data needs to be revised to avoid invalid characters or any syntax or spelling errors. 

Most importantly, the aim of cleaning is to prevent you from arriving at false conclusions that can damage your company in the long run. By using clean data, you will also help BI solutions to interact better with your information and create better reports for your organization.

6. Set your KPIs

Once you’ve set your sources, cleaned your data, and established clear-cut questions you want your insights to answer, you need to set a host of key performance indicators (KPIs) that will help you track, measure, and shape your progress in a number of key areas.

KPIs are critical to both qualitative and quantitative analysis research. This is one of the primary methods of data analysis you certainly shouldn’t overlook.

To help you set the best possible KPIs for your initiatives and activities, here is an example of a relevant logistics KPI : transportation-related costs. If you want to see more go explore our collection of key performance indicator examples .

Transportation costs logistics KPIs

7. Omit useless data

Having bestowed your data analysis tools and techniques with true purpose and defined your mission, you should explore the raw data you’ve collected from all sources and use your KPIs as a reference for chopping out any information you deem to be useless.

Trimming the informational fat is one of the most crucial methods of analysis as it will allow you to focus your analytical efforts and squeeze every drop of value from the remaining ‘lean’ information.

Any stats, facts, figures, or metrics that don’t align with your business goals or fit with your KPI management strategies should be eliminated from the equation.

8. Build a data management roadmap

While, at this point, this particular step is optional (you will have already gained a wealth of insight and formed a fairly sound strategy by now), creating a data governance roadmap will help your data analysis methods and techniques become successful on a more sustainable basis. These roadmaps, if developed properly, are also built so they can be tweaked and scaled over time.

Invest ample time in developing a roadmap that will help you store, manage, and handle your data internally, and you will make your analysis techniques all the more fluid and functional – one of the most powerful types of data analysis methods available today.

9. Integrate technology

There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.

Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will also present them in a digestible, visual, interactive format from one central, live dashboard . A data methodology you can count on.

By integrating the right technology within your data analysis methodology, you’ll avoid fragmenting your insights, saving you time and effort while allowing you to enjoy the maximum value from your business’s most valuable insights.

For a look at the power of software for the purpose of analysis and to enhance your methods of analyzing, glance over our selection of dashboard examples .

10. Answer your questions

By considering each of the above efforts, working with the right technology, and fostering a cohesive internal culture where everyone buys into the different ways to analyze data as well as the power of digital intelligence, you will swiftly start to answer your most burning business questions. Arguably, the best way to make your data concepts accessible across the organization is through data visualization.

11. Visualize your data

Online data visualization is a powerful tool as it lets you tell a story with your metrics, allowing users across the organization to extract meaningful insights that aid business evolution – and it covers all the different ways to analyze data.

The purpose of analyzing is to make your entire organization more informed and intelligent, and with the right platform or dashboard, this is simpler than you think, as demonstrated by our marketing dashboard .

An executive dashboard example showcasing high-level marketing KPIs such as cost per lead, MQL, SQL, and cost per customer.

This visual, dynamic, and interactive online dashboard is a data analysis example designed to give Chief Marketing Officers (CMO) an overview of relevant metrics to help them understand if they achieved their monthly goals.

In detail, this example generated with a modern dashboard creator displays interactive charts for monthly revenues, costs, net income, and net income per customer; all of them are compared with the previous month so that you can understand how the data fluctuated. In addition, it shows a detailed summary of the number of users, customers, SQLs, and MQLs per month to visualize the whole picture and extract relevant insights or trends for your marketing reports .

The CMO dashboard is perfect for c-level management as it can help them monitor the strategic outcome of their marketing efforts and make data-driven decisions that can benefit the company exponentially.

12. Be careful with the interpretation

We already dedicated an entire post to data interpretation as it is a fundamental part of the process of data analysis. It gives meaning to the analytical information and aims to drive a concise conclusion from the analysis results. Since most of the time companies are dealing with data from many different sources, the interpretation stage needs to be done carefully and properly in order to avoid misinterpretations. 

To help you through the process, here we list three common practices that you need to avoid at all costs when looking at your data:

  • Correlation vs. causation: The human brain is formatted to find patterns. This behavior leads to one of the most common mistakes when performing interpretation: confusing correlation with causation. Although these two aspects can exist simultaneously, it is not correct to assume that because two things happened together, one provoked the other. A piece of advice to avoid falling into this mistake is never to trust just intuition, trust the data. If there is no objective evidence of causation, then always stick to correlation. 
  • Confirmation bias: This phenomenon describes the tendency to select and interpret only the data necessary to prove one hypothesis, often ignoring the elements that might disprove it. Even if it's not done on purpose, confirmation bias can represent a real problem, as excluding relevant information can lead to false conclusions and, therefore, bad business decisions. To avoid it, always try to disprove your hypothesis instead of proving it, share your analysis with other team members, and avoid drawing any conclusions before the entire analytical project is finalized.
  • Statistical significance: To put it in short words, statistical significance helps analysts understand if a result is actually accurate or if it happened because of a sampling error or pure chance. The level of statistical significance needed might depend on the sample size and the industry being analyzed. In any case, ignoring the significance of a result when it might influence decision-making can be a huge mistake.

13. Build a narrative

Now, we’re going to look at how you can bring all of these elements together in a way that will benefit your business - starting with a little something called data storytelling.

The human brain responds incredibly well to strong stories or narratives. Once you’ve cleansed, shaped, and visualized your most invaluable data using various BI dashboard tools , you should strive to tell a story - one with a clear-cut beginning, middle, and end.

By doing so, you will make your analytical efforts more accessible, digestible, and universal, empowering more people within your organization to use your discoveries to their actionable advantage.

14. Consider autonomous technology

Autonomous technologies, such as artificial intelligence (AI) and machine learning (ML), play a significant role in the advancement of understanding how to analyze data more effectively.

Gartner predicts that by the end of this year, 80% of emerging technologies will be developed with AI foundations. This is a testament to the ever-growing power and value of autonomous technologies.

At the moment, these technologies are revolutionizing the analysis industry. Some examples that we mentioned earlier are neural networks, intelligent alarms, and sentiment analysis.

15. Share the load

If you work with the right tools and dashboards, you will be able to present your metrics in a digestible, value-driven format, allowing almost everyone in the organization to connect with and use relevant data to their advantage.

Modern dashboards consolidate data from various sources, providing access to a wealth of insights in one centralized location, no matter if you need to monitor recruitment metrics or generate reports that need to be sent across numerous departments. Moreover, these cutting-edge tools offer access to dashboards from a multitude of devices, meaning that everyone within the business can connect with practical insights remotely - and share the load.

Once everyone is able to work with a data-driven mindset, you will catalyze the success of your business in ways you never thought possible. And when it comes to knowing how to analyze data, this kind of collaborative approach is essential.

16. Data analysis tools

In order to perform high-quality analysis of data, it is fundamental to use tools and software that will ensure the best results. Here we leave you a small summary of four fundamental categories of data analysis tools for your organization.

  • Business Intelligence: BI tools allow you to process significant amounts of data from several sources in any format. Through this, you can not only analyze and monitor your data to extract relevant insights but also create interactive reports and dashboards to visualize your KPIs and use them for your company's good. datapine is an amazing online BI software that is focused on delivering powerful online analysis features that are accessible to beginner and advanced users. Like this, it offers a full-service solution that includes cutting-edge analysis of data, KPIs visualization, live dashboards, reporting, and artificial intelligence technologies to predict trends and minimize risk.
  • Statistical analysis: These tools are usually designed for scientists, statisticians, market researchers, and mathematicians, as they allow them to perform complex statistical analyses with methods like regression analysis, predictive analysis, and statistical modeling. A good tool to perform this type of analysis is R-Studio as it offers a powerful data modeling and hypothesis testing feature that can cover both academic and general data analysis. This tool is one of the favorite ones in the industry, due to its capability for data cleaning, data reduction, and performing advanced analysis with several statistical methods. Another relevant tool to mention is SPSS from IBM. The software offers advanced statistical analysis for users of all skill levels. Thanks to a vast library of machine learning algorithms, text analysis, and a hypothesis testing approach it can help your company find relevant insights to drive better decisions. SPSS also works as a cloud service that enables you to run it anywhere.
  • SQL Consoles: SQL is a programming language often used to handle structured data in relational databases. Tools like these are popular among data scientists as they are extremely effective in unlocking these databases' value. Undoubtedly, one of the most used SQL software in the market is MySQL Workbench . This tool offers several features such as a visual tool for database modeling and monitoring, complete SQL optimization, administration tools, and visual performance dashboards to keep track of KPIs.
  • Data Visualization: These tools are used to represent your data through charts, graphs, and maps that allow you to find patterns and trends in the data. datapine's already mentioned BI platform also offers a wealth of powerful online data visualization tools with several benefits. Some of them include: delivering compelling data-driven presentations to share with your entire company, the ability to see your data online with any device wherever you are, an interactive dashboard design feature that enables you to showcase your results in an interactive and understandable way, and to perform online self-service reports that can be used simultaneously with several other people to enhance team productivity.

17. Refine your process constantly 

Last is a step that might seem obvious to some people, but it can be easily ignored if you think you are done. Once you have extracted the needed results, you should always take a retrospective look at your project and think about what you can improve. As you saw throughout this long list of techniques, data analysis is a complex process that requires constant refinement. For this reason, you should always go one step further and keep improving. 

Quality Criteria For Data Analysis

So far we’ve covered a list of methods and techniques that should help you perform efficient data analysis. But how do you measure the quality and validity of your results? This is done with the help of some science quality criteria. Here we will go into a more theoretical area that is critical to understanding the fundamentals of statistical analysis in science. However, you should also be aware of these steps in a business context, as they will allow you to assess the quality of your results in the correct way. Let’s dig in. 

  • Internal validity: The results of a survey are internally valid if they measure what they are supposed to measure and thus provide credible results. In other words , internal validity measures the trustworthiness of the results and how they can be affected by factors such as the research design, operational definitions, how the variables are measured, and more. For instance, imagine you are doing an interview to ask people if they brush their teeth two times a day. While most of them will answer yes, you can still notice that their answers correspond to what is socially acceptable, which is to brush your teeth at least twice a day. In this case, you can’t be 100% sure if respondents actually brush their teeth twice a day or if they just say that they do, therefore, the internal validity of this interview is very low. 
  • External validity: Essentially, external validity refers to the extent to which the results of your research can be applied to a broader context. It basically aims to prove that the findings of a study can be applied in the real world. If the research can be applied to other settings, individuals, and times, then the external validity is high. 
  • Reliability : If your research is reliable, it means that it can be reproduced. If your measurement were repeated under the same conditions, it would produce similar results. This means that your measuring instrument consistently produces reliable results. For example, imagine a doctor building a symptoms questionnaire to detect a specific disease in a patient. Then, various other doctors use this questionnaire but end up diagnosing the same patient with a different condition. This means the questionnaire is not reliable in detecting the initial disease. Another important note here is that in order for your research to be reliable, it also needs to be objective. If the results of a study are the same, independent of who assesses them or interprets them, the study can be considered reliable. Let’s see the objectivity criteria in more detail now. 
  • Objectivity: In data science, objectivity means that the researcher needs to stay fully objective when it comes to its analysis. The results of a study need to be affected by objective criteria and not by the beliefs, personality, or values of the researcher. Objectivity needs to be ensured when you are gathering the data, for example, when interviewing individuals, the questions need to be asked in a way that doesn't influence the results. Paired with this, objectivity also needs to be thought of when interpreting the data. If different researchers reach the same conclusions, then the study is objective. For this last point, you can set predefined criteria to interpret the results to ensure all researchers follow the same steps. 

The discussed quality criteria cover mostly potential influences in a quantitative context. Analysis in qualitative research has by default additional subjective influences that must be controlled in a different way. Therefore, there are other quality criteria for this kind of research such as credibility, transferability, dependability, and confirmability. You can see each of them more in detail on this resource . 

Data Analysis Limitations & Barriers

Analyzing data is not an easy task. As you’ve seen throughout this post, there are many steps and techniques that you need to apply in order to extract useful information from your research. While a well-performed analysis can bring various benefits to your organization it doesn't come without limitations. In this section, we will discuss some of the main barriers you might encounter when conducting an analysis. Let’s see them more in detail. 

  • Lack of clear goals: No matter how good your data or analysis might be if you don’t have clear goals or a hypothesis the process might be worthless. While we mentioned some methods that don’t require a predefined hypothesis, it is always better to enter the analytical process with some clear guidelines of what you are expecting to get out of it, especially in a business context in which data is utilized to support important strategic decisions. 
  • Objectivity: Arguably one of the biggest barriers when it comes to data analysis in research is to stay objective. When trying to prove a hypothesis, researchers might find themselves, intentionally or unintentionally, directing the results toward an outcome that they want. To avoid this, always question your assumptions and avoid confusing facts with opinions. You can also show your findings to a research partner or external person to confirm that your results are objective. 
  • Data representation: A fundamental part of the analytical procedure is the way you represent your data. You can use various graphs and charts to represent your findings, but not all of them will work for all purposes. Choosing the wrong visual can not only damage your analysis but can mislead your audience, therefore, it is important to understand when to use each type of data depending on your analytical goals. Our complete guide on the types of graphs and charts lists 20 different visuals with examples of when to use them. 
  • Flawed correlation : Misleading statistics can significantly damage your research. We’ve already pointed out a few interpretation issues previously in the post, but it is an important barrier that we can't avoid addressing here as well. Flawed correlations occur when two variables appear related to each other but they are not. Confusing correlations with causation can lead to a wrong interpretation of results which can lead to building wrong strategies and loss of resources, therefore, it is very important to identify the different interpretation mistakes and avoid them. 
  • Sample size: A very common barrier to a reliable and efficient analysis process is the sample size. In order for the results to be trustworthy, the sample size should be representative of what you are analyzing. For example, imagine you have a company of 1000 employees and you ask the question “do you like working here?” to 50 employees of which 49 say yes, which means 95%. Now, imagine you ask the same question to the 1000 employees and 950 say yes, which also means 95%. Saying that 95% of employees like working in the company when the sample size was only 50 is not a representative or trustworthy conclusion. The significance of the results is way more accurate when surveying a bigger sample size.   
  • Privacy concerns: In some cases, data collection can be subjected to privacy regulations. Businesses gather all kinds of information from their customers from purchasing behaviors to addresses and phone numbers. If this falls into the wrong hands due to a breach, it can affect the security and confidentiality of your clients. To avoid this issue, you need to collect only the data that is needed for your research and, if you are using sensitive facts, make it anonymous so customers are protected. The misuse of customer data can severely damage a business's reputation, so it is important to keep an eye on privacy. 
  • Lack of communication between teams : When it comes to performing data analysis on a business level, it is very likely that each department and team will have different goals and strategies. However, they are all working for the same common goal of helping the business run smoothly and keep growing. When teams are not connected and communicating with each other, it can directly affect the way general strategies are built. To avoid these issues, tools such as data dashboards enable teams to stay connected through data in a visually appealing way. 
  • Innumeracy : Businesses are working with data more and more every day. While there are many BI tools available to perform effective analysis, data literacy is still a constant barrier. Not all employees know how to apply analysis techniques or extract insights from them. To prevent this from happening, you can implement different training opportunities that will prepare every relevant user to deal with data. 

Key Data Analysis Skills

As you've learned throughout this lengthy guide, analyzing data is a complex task that requires a lot of knowledge and skills. That said, thanks to the rise of self-service tools the process is way more accessible and agile than it once was. Regardless, there are still some key skills that are valuable to have when working with data, we list the most important ones below.

  • Critical and statistical thinking: To successfully analyze data you need to be creative and think out of the box. Yes, that might sound like a weird statement considering that data is often tight to facts. However, a great level of critical thinking is required to uncover connections, come up with a valuable hypothesis, and extract conclusions that go a step further from the surface. This, of course, needs to be complemented by statistical thinking and an understanding of numbers. 
  • Data cleaning: Anyone who has ever worked with data before will tell you that the cleaning and preparation process accounts for 80% of a data analyst's work, therefore, the skill is fundamental. But not just that, not cleaning the data adequately can also significantly damage the analysis which can lead to poor decision-making in a business scenario. While there are multiple tools that automate the cleaning process and eliminate the possibility of human error, it is still a valuable skill to dominate. 
  • Data visualization: Visuals make the information easier to understand and analyze, not only for professional users but especially for non-technical ones. Having the necessary skills to not only choose the right chart type but know when to apply it correctly is key. This also means being able to design visually compelling charts that make the data exploration process more efficient. 
  • SQL: The Structured Query Language or SQL is a programming language used to communicate with databases. It is fundamental knowledge as it enables you to update, manipulate, and organize data from relational databases which are the most common databases used by companies. It is fairly easy to learn and one of the most valuable skills when it comes to data analysis. 
  • Communication skills: This is a skill that is especially valuable in a business environment. Being able to clearly communicate analytical outcomes to colleagues is incredibly important, especially when the information you are trying to convey is complex for non-technical people. This applies to in-person communication as well as written format, for example, when generating a dashboard or report. While this might be considered a “soft” skill compared to the other ones we mentioned, it should not be ignored as you most likely will need to share analytical findings with others no matter the context. 

Data Analysis In The Big Data Environment

Big data is invaluable to today’s businesses, and by using different methods for data analysis, it’s possible to view your data in a way that can help you turn insight into positive action.

To inspire your efforts and put the importance of big data into context, here are some insights that you should know:

  • By 2026 the industry of big data is expected to be worth approximately $273.4 billion.
  • 94% of enterprises say that analyzing data is important for their growth and digital transformation. 
  • Companies that exploit the full potential of their data can increase their operating margins by 60% .
  • We already told you the benefits of Artificial Intelligence through this article. This industry's financial impact is expected to grow up to $40 billion by 2025.

Data analysis concepts may come in many forms, but fundamentally, any solid methodology will help to make your business more streamlined, cohesive, insightful, and successful than ever before.

Key Takeaways From Data Analysis 

As we reach the end of our data analysis journey, we leave a small summary of the main methods and techniques to perform excellent analysis and grow your business.

17 Essential Types of Data Analysis Methods:

  • Cluster analysis
  • Cohort analysis
  • Regression analysis
  • Factor analysis
  • Neural Networks
  • Data Mining
  • Text analysis
  • Time series analysis
  • Decision trees
  • Conjoint analysis 
  • Correspondence Analysis
  • Multidimensional Scaling 
  • Content analysis 
  • Thematic analysis
  • Narrative analysis 
  • Grounded theory analysis
  • Discourse analysis 

Top 17 Data Analysis Techniques:

  • Collaborate your needs
  • Establish your questions
  • Data democratization
  • Think of data governance 
  • Clean your data
  • Set your KPIs
  • Omit useless data
  • Build a data management roadmap
  • Integrate technology
  • Answer your questions
  • Visualize your data
  • Interpretation of data
  • Consider autonomous technology
  • Build a narrative
  • Share the load
  • Data Analysis tools
  • Refine your process constantly 

We’ve pondered the data analysis definition and drilled down into the practical applications of data-centric analytics, and one thing is clear: by taking measures to arrange your data and making your metrics work for you, it’s possible to transform raw information into action - the kind of that will push your business to the next level.

Yes, good data analytics techniques result in enhanced business intelligence (BI). To help you understand this notion in more detail, read our exploration of business intelligence reporting .

And, if you’re ready to perform your own analysis, drill down into your facts and figures while interacting with your data on astonishing visuals, you can try our software for a free, 14-day trial .

What is Data Analysis? Definition, Tools, Examples

Appinio Research · 11.04.2024 · 35min read

What is Data Analysis Definition Tools Examples

Have you ever wondered how businesses make decisions, scientists uncover new discoveries, or governments tackle complex challenges? The answer often lies in data analysis. In today's data-driven world, organizations and individuals alike rely on data analysis to extract valuable insights from vast amounts of information. Whether it's understanding customer preferences, predicting future trends, or optimizing processes, data analysis plays a crucial role in driving informed decision-making and problem-solving. This guide will take you through the fundamentals of analyzing data, exploring various techniques and tools used in the process, and understanding the importance of data analysis in different domains. From understanding what data analysis is to delving into advanced techniques and best practices, this guide will equip you with the knowledge and skills to harness the power of data and unlock its potential to drive success and innovation.

What is Data Analysis?

Data analysis is the process of examining, cleaning, transforming, and interpreting data to uncover insights, identify patterns, and make informed decisions. It involves applying statistical, mathematical, and computational techniques to understand the underlying structure and relationships within the data and extract actionable information from it. Data analysis is used in various domains, including business, science, healthcare, finance, and government, to support decision-making, solve complex problems, and drive innovation.

Importance of Data Analysis

Data analysis is crucial in modern organizations and society, providing valuable insights and enabling informed decision-making across various domains. Here are some key reasons why data analysis is important:

  • Informed Decision-Making:  Data analysis enables organizations to make evidence-based decisions by providing insights into past trends, current performance, and future predictions.
  • Improved Efficiency:  By analyzing data, organizations can identify inefficiencies, streamline processes, and optimize resource allocation, leading to increased productivity and cost savings.
  • Identification of Opportunities:  Data analysis helps organizations identify market trends, customer preferences, and emerging opportunities, allowing them to capitalize on new business prospects and stay ahead of competitors.
  • Risk Management:  Data analysis enables organizations to assess and mitigate risks by identifying potential threats, vulnerabilities, and opportunities for improvement.
  • Performance Evaluation:  Data analysis allows organizations to measure and evaluate their performance against key metrics and objectives, facilitating continuous improvement and accountability.
  • Innovation and Growth:  By analyzing data, organizations can uncover new insights, discover innovative solutions, and drive growth through product development, process optimization, and strategic initiatives.
  • Personalization and Customer Satisfaction:  Data analysis enables organizations to understand customer behavior, preferences, and needs, allowing them to deliver personalized products, services, and experiences that enhance customer satisfaction and loyalty .
  • Regulatory Compliance:  Data analysis helps organizations ensure compliance with regulations and standards by monitoring and analyzing data for compliance-related issues, such as fraud, security breaches, and data privacy violations.

Overall, data analysis empowers organizations to harness the power of data to drive strategic decision-making, improve performance, and achieve their goals and objectives.

Understanding Data

Understanding the nature of data is fundamental to effective data analysis. It involves recognizing the types of data, their sources, methods of collection, and the crucial process of cleaning and preprocessing data before analysis.

Types of Data

Data can be broadly categorized into two main types: quantitative and qualitative data .

  • Quantitative data:  This type of data represents quantities and is measurable. It deals with numbers and numerical values, allowing for mathematical calculations and statistical analysis. Examples include age, height, temperature, and income.
  • Qualitative data:  Qualitative data describes qualities or characteristics and cannot be expressed numerically. It focuses on qualities, opinions, and descriptions that cannot be measured. Examples include colors, emotions, opinions, and preferences.

Understanding the distinction between these two types of data is essential as it influences the choice of analysis techniques and methods.

Data Sources

Data can be obtained from various sources, depending on the nature of the analysis and the project's specific requirements.

  • Internal databases:  Many organizations maintain internal databases that store valuable information about their operations, customers, products, and more. These databases often contain structured data that is readily accessible for analysis.
  • External sources:  External data sources provide access to a wealth of information beyond an organization's internal databases. This includes data from government agencies, research institutions, public repositories, and third-party vendors. Examples include census data, market research reports, and social media data.
  • Sensor data:  With the proliferation of IoT (Internet of Things) devices, sensor data has become increasingly valuable for various applications. These devices collect data from the physical environment, such as temperature, humidity, motion, and location, providing real-time insights for analysis.

Understanding the available data sources is crucial for determining the scope and scale of the analysis and ensuring that the data collected is relevant and reliable.

Data Collection Methods

The process of collecting data can vary depending on the research objectives, the nature of the data, and the target population. Various data collection methods are employed to gather information effectively.

  • Surveys :  Surveys involve collecting information from individuals or groups through questionnaires, interviews, or online forms. Surveys are versatile and can be conducted in various formats, including face-to-face interviews, telephone interviews, paper surveys, and online surveys.
  • Observational studies:  Observational studies involve observing and recording behavior, events, or phenomena in their natural settings without intervention. This method is often used in fields such as anthropology, sociology, psychology, and ecology to gather qualitative data.
  • Experiments:  Experiments are controlled investigations designed to test hypotheses and determine cause-and-effect relationships between variables. They involve manipulating one or more variables while keeping others constant to observe the effect on the dependent variable.

Understanding the strengths and limitations of different data collection methods is essential for designing robust research studies and ensuring the quality and validity of the data collected. For businesses seeking efficient and insightful data collection, Appinio offers a seamless solution.

With its user-friendly interface and comprehensive features, Appinio simplifies the process of gathering valuable insights from diverse audiences. Whether conducting surveys, observational studies, or experiments, Appinio provides the tools and support needed to collect, analyze, and interpret data effectively.

Ready to elevate your data collection efforts? Book a demo today and experience the power of real-time market research with Appinio!

Book a Demo

Data Cleaning and Preprocessing

Data cleaning and preprocessing are essential steps in the data analysis process aimed at improving data quality, consistency, and reliability.

  • Handling missing values:  Missing values are common in datasets and can arise due to various reasons, such as data entry errors, equipment malfunction, or non-response. Techniques for handling missing values include deletion, imputation, and predictive modeling.
  • Dealing with outliers:  Outliers are data points that deviate significantly from the rest of the data and may distort the analysis results. It's essential to identify and handle outliers appropriately using statistical methods, visualization techniques, or domain knowledge.
  • Standardizing data:  Standardization involves scaling variables to a common scale to facilitate comparison and analysis. It ensures that variables with different units or scales contribute equally to the analysis results. Standardization techniques include z-score normalization, min-max scaling, and robust scaling.

By cleaning and preprocessing the data effectively, you can ensure that it is accurate, consistent, and suitable for analysis, leading to more reliable and actionable insights.

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a crucial phase in the data analysis process, where you explore and summarize the main characteristics of your dataset. This phase helps you gain insights into the data, identify patterns, and detect anomalies or outliers. Let's delve into the key components of EDA.

Descriptive Statistics

Descriptive statistics provide a summary of the main characteristics of your dataset, allowing you to understand its central tendency, variability, and distribution. Standard descriptive statistics include measures such as mean, median, mode, standard deviation, variance, and range.

  • Mean: The average value of a dataset, calculated by summing all values and dividing by the number of observations. Mean = (Sum of all values) / (Number of observations)
  • Median:  The middle value of a dataset when it is ordered from least to greatest.
  • Mode:  The value that appears most frequently in a dataset.
  • Standard deviation:  A measure of the dispersion or spread of values around the mean. Standard deviation = Square root of [(Sum of squared differences from the mean) / (Number of observations)]
  • Variance: The average of the squared differences from the mean. Variance = Sum of squared differences from the mean / Number of observations
  • Range:  The difference between the maximum and minimum values in a dataset.

Descriptive statistics provide initial insights into the central tendencies and variability of the data, helping you identify potential issues or areas for further exploration.

Data Visualization Techniques

Data visualization is a powerful tool for exploring and communicating insights from your data. By representing data visually, you can identify patterns, trends, and relationships that may not be apparent from raw numbers alone. Common data visualization techniques include:

  • Histograms:  A graphical representation of the distribution of numerical data divided into bins or intervals.
  • Scatter plots:  A plot of individual data points on a two-dimensional plane, useful for visualizing relationships between two variables.
  • Box plots:  A graphical summary of the distribution of a dataset, showing the median, quartiles, and outliers.
  • Bar charts:  A visual representation of categorical data using rectangular bars of varying heights or lengths.
  • Heatmaps :  A visual representation of data in a matrix format, where values are represented using colors to indicate their magnitude.

Data visualization allows you to explore your data from different angles, uncover patterns, and communicate insights effectively to stakeholders.

Identifying Patterns and Trends

During EDA, you'll analyze your data to identify patterns, trends, and relationships that can provide valuable insights into the underlying processes or phenomena.

  • Time series analysis:  Analyzing data collected over time to identify temporal patterns, seasonality, and trends.
  • Correlation analysis:  Examining the relationships between variables to determine if they are positively, negatively, or not correlated.
  • Cluster analysis:  Grouping similar data points together based on their characteristics to identify natural groupings or clusters within the data.
  • Principal Component Analysis (PCA):  A dimensionality reduction technique used to identify the underlying structure in high-dimensional data and visualize it in lower-dimensional space.

By identifying patterns and trends in your data, you can uncover valuable insights that can inform decision-making and drive business outcomes.

Handling Missing Values and Outliers

Missing values and outliers can distort the results of your analysis, leading to biased conclusions or inaccurate predictions. It's essential to handle them appropriately during the EDA phase. Techniques for handling missing values include:

  • Deletion:  Removing observations with missing values from the dataset.
  • Imputation:  Filling in missing values using methods such as mean imputation, median imputation, or predictive modeling.
  • Detection and treatment of outliers:  Identifying outliers using statistical methods or visualization techniques and either removing them or transforming them to mitigate their impact on the analysis.

By addressing missing values and outliers, you can ensure the reliability and validity of your analysis results, leading to more robust insights and conclusions.

Data Analysis Examples

Data analysis spans various industries and applications. Here are a few examples showcasing the versatility and power of data-driven insights.

Business and Marketing

Data analysis is used to understand customer behavior, optimize marketing strategies, and drive business growth. For instance, a retail company may analyze sales data to identify trends in customer purchasing behavior, allowing them to tailor their product offerings and promotional campaigns accordingly.

Similarly, marketing teams use data analysis techniques to measure the effectiveness of advertising campaigns, segment customers based on demographics or preferences, and personalize marketing messages to improve engagement and conversion rates.

Healthcare and Medicine

In healthcare, data analysis is vital in improving patient outcomes, optimizing treatment protocols, and advancing medical research. For example, healthcare providers may analyze electronic health records (EHRs) to identify patterns in patient symptoms, diagnoses, and treatment outcomes, helping to improve diagnostic accuracy and treatment effectiveness.

Pharmaceutical companies use data analysis techniques to analyze clinical trial data, identify potential drug candidates, and optimize drug development processes, ultimately leading to the discovery of new treatments and therapies for various diseases and conditions.

Finance and Economics

Data analysis is used to inform investment decisions, manage risk, and detect fraudulent activities. For instance, investment firms analyze financial market data to identify trends, assess market risk, and make informed investment decisions.

Banks and financial institutions use data analysis techniques to detect fraudulent transactions, identify suspicious activity patterns, and prevent financial crimes such as money laundering and fraud. Additionally, economists use data analysis to analyze economic indicators, forecast economic trends, and inform policy decisions at the national and global levels.

Science and Research

Data analysis is essential for generating insights, testing hypotheses, and advancing knowledge in various fields of scientific research. For example, astronomers analyze observational data from telescopes to study the properties and behavior of celestial objects such as stars, galaxies, and black holes.

Biologists use data analysis techniques to analyze genomic data, study gene expression patterns, and understand the molecular mechanisms underlying diseases. Environmental scientists use data analysis to monitor environmental changes, track pollution levels, and assess the impact of human activities on ecosystems and biodiversity.

These examples highlight the diverse applications of data analysis across different industries and domains, demonstrating its importance in driving innovation, solving complex problems, and improving decision-making processes.

Statistical Analysis

Statistical analysis is a fundamental aspect of data analysis, enabling you to draw conclusions, make predictions, and infer relationships from your data. Let's explore various statistical techniques commonly used in data analysis.

Hypothesis Testing

Hypothesis testing is a method used to make inferences about a population based on sample data. It involves formulating a hypothesis about the population parameter and using sample data to determine whether there is enough evidence to reject or fail to reject the null hypothesis.

Common types of hypothesis tests include:

  • t-test:  Used to compare the means of two groups and determine if they are significantly different from each other.
  • Chi-square test:  Used to determine whether there is a significant association between two categorical variables.
  • ANOVA (Analysis of Variance):  Used to compare means across multiple groups to determine if there are significant differences.

Correlation Analysis

Correlation analysis is used to measure the strength and direction of the relationship between two variables. The correlation coefficient, typically denoted by "r," ranges from -1 to 1, where:

  • r = 1:  Perfect positive correlation
  • r = -1:  Perfect negative correlation
  • r = 0:  No correlation

Common correlation coefficients include:

  • Pearson correlation coefficient:  Measures the linear relationship between two continuous variables.
  • Spearman rank correlation coefficient:  Measures the strength and direction of the monotonic relationship between two variables, particularly useful for ordinal data .

Correlation analysis helps you understand the degree to which changes in one variable are associated with changes in another variable.

Regression Analysis

Regression analysis is a statistical technique used to model the relationship between a dependent variable and one or more independent variables. It aims to predict the value of the dependent variable based on the values of the independent variables. Common types of regression analysis include:

  • Linear regression:  Models the relationship between the dependent variable and one or more independent variables using a linear equation. It is suitable for predicting continuous outcomes.
  • Logistic regression:  Models the relationship between a binary dependent variable and one or more independent variables. It is commonly used for classification tasks.

Regression analysis helps you understand how changes in one or more independent variables are associated with changes in the dependent variable.

ANOVA (Analysis of Variance)

ANOVA is a statistical technique used to analyze the differences among group means in a sample. It is often used to compare means across multiple groups and determine whether there are significant differences between them. ANOVA tests the null hypothesis that the means of all groups are equal against the alternative hypothesis that at least one group mean is different.

ANOVA can be performed in various forms, including:

  • One-way ANOVA:  Used when there is one categorical independent variable with two or more levels and one continuous dependent variable.
  • Two-way ANOVA:  Used when there are two categorical independent variables and one continuous dependent variable.
  • Repeated measures ANOVA:  Used when measurements are taken on the same subjects at different time points or under different conditions.

ANOVA is a powerful tool for comparing means across multiple groups and identifying significant differences that may exist between them.

Machine Learning for Data Analysis

Machine learning is a powerful subset of artificial intelligence that focuses on developing algorithms capable of learning from data to make predictions or decisions.

Introduction to Machine Learning

Machine learning algorithms learn from historical data to identify patterns and make predictions or decisions without being explicitly programmed. The process involves training a model on labeled data (supervised learning) or unlabeled data (unsupervised learning) to learn the underlying patterns and relationships.

Key components of machine learning include:

  • Features:  The input variables or attributes used to train the model.
  • Labels:  The output variable that the model aims to predict in supervised learning.
  • Training data:  The dataset used to train the model.
  • Testing data:  The dataset used to evaluate the performance of the trained model.

Supervised Learning Techniques

Supervised learning involves training a model on labeled data, where the input features are paired with corresponding output labels. The goal is to learn a mapping from input features to output labels, enabling the model to make predictions on new, unseen data.

Supervised learning techniques include:

  • Regression:  Used to predict a continuous target variable. Examples include linear regression for predicting house prices and logistic regression for binary classification tasks.
  • Classification:  Used to predict a categorical target variable. Examples include decision trees, support vector machines, and neural networks.

Supervised learning is widely used in various domains, including finance, healthcare, and marketing, for tasks such as predicting customer churn, detecting fraudulent transactions, and diagnosing diseases.

Unsupervised Learning Techniques

Unsupervised learning involves training a model on unlabeled data, where the algorithm tries to learn the underlying structure or patterns in the data without explicit guidance.

Unsupervised learning techniques include:

  • Clustering:  Grouping similar data points together based on their features. Examples include k-means clustering and hierarchical clustering.
  • Dimensionality reduction:  Reducing the number of features in the dataset while preserving its essential information. Examples include principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE).

Unsupervised learning is used for tasks such as customer segmentation, anomaly detection, and data visualization.

Model Evaluation and Selection

Once a machine learning model has been trained, it's essential to evaluate its performance and select the best-performing model for deployment.

  • Cross-validation:  Dividing the dataset into multiple subsets and training the model on different combinations of training and validation sets to assess its generalization performance.
  • Performance metrics:  Using metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic (ROC) curve to evaluate the model's performance on the validation set.
  • Hyperparameter tuning:  Adjusting the hyperparameters of the model, such as learning rate, regularization strength, and number of hidden layers, to optimize its performance.

Model evaluation and selection are critical steps in the machine learning pipeline to ensure that the deployed model performs well on new, unseen data.

Advanced Data Analysis Techniques

Advanced data analysis techniques go beyond traditional statistical methods and machine learning algorithms to uncover deeper insights from complex datasets.

Time Series Analysis

Time series analysis is a method for analyzing data collected at regular time intervals. It involves identifying patterns, trends, and seasonal variations in the data to make forecasts or predictions about future values. Time series analysis is commonly used in fields such as finance, economics, and meteorology for tasks such as forecasting stock prices, predicting sales, and analyzing weather patterns.

Key components of time series analysis include:

  • Trend analysis :  Identifying long-term trends or patterns in the data, such as upward or downward movements over time.
  • Seasonality analysis:  Identifying recurring patterns or cycles that occur at fixed intervals, such as daily, weekly, or monthly seasonality.
  • Forecasting:  Using historical data to make predictions about future values of the time series.

Time series analysis techniques include:

  • Autoregressive integrated moving average (ARIMA) models.
  • Exponential smoothing methods.
  • Seasonal decomposition of time series (STL).

Predictive Modeling

Predictive modeling involves using historical data to build a model that can make predictions about future events or outcomes. It is widely used in various industries for customer churn prediction, demand forecasting, and risk assessment. This involves involves:

  • Data preparation:  Cleaning and preprocessing the data to ensure its quality and reliability.
  • Feature selection:  Identifying the most relevant features or variables contributing to the predictive task.
  • Model selection:  Choosing an appropriate machine learning algorithm or statistical technique to build the predictive model.
  • Model training:  Training the model on historical data to learn the underlying patterns and relationships.
  • Model evaluation:  Assessing the performance of the model on a separate validation dataset using appropriate metrics such as accuracy, precision, recall, and F1-score.

Common predictive modeling techniques include linear regression, decision trees, random forests, gradient boosting, and neural networks.

Text Mining and Sentiment Analysis

Text mining, also known as text analytics, involves extracting insights from unstructured text data. It encompasses techniques for processing, analyzing, and interpreting textual data to uncover patterns, trends, and sentiments. Text mining is used in various applications, including social media analysis, customer feedback analysis, and document classification.

Key components of text mining and sentiment analysis include:

  • Text preprocessing:  Cleaning and transforming raw text data into a structured format suitable for analysis, including tasks such as tokenization, stemming, and lemmatization.
  • Sentiment analysis:  Determining the sentiment or opinion expressed in text data, such as positive, negative, or neutral sentiment.
  • Topic modeling:  Identifying the underlying themes or topics present in a collection of documents using techniques such as latent Dirichlet allocation (LDA).
  • Named entity recognition:  Identifying and categorizing entities mentioned in text data, such as names of people, organizations, or locations.

Text mining and sentiment analysis techniques enable organizations to gain valuable insights from textual data sources and make data-driven decisions.

Network Analysis

Network analysis, also known as graph analysis, involves studying the structure and interactions of complex networks or graphs. It is used to analyze relationships and dependencies between entities in various domains, including social networks, biological networks, and transportation networks.

Key concepts in network analysis include:

  • Nodes:  Represent entities or objects in the network, such as people, websites, or genes.
  • Edges:  Represent relationships or connections between nodes, such as friendships, hyperlinks, or interactions.
  • Centrality measures:  Quantify the importance or influence of nodes within the network, such as degree centrality, betweenness centrality, and eigenvector centrality.
  • Community detection:  Identify groups or communities of nodes that are densely connected within themselves but sparsely connected to nodes in other communities.

Network analysis techniques enable researchers and analysts to uncover hidden patterns, identify key influencers, and understand the underlying structure of complex systems.

Data Analysis Software and Tools

Effective data analysis relies on the use of appropriate tools and software to process, analyze, and visualize data.

What Are Data Analysis Tools?

Data analysis tools encompass a wide range of software applications and platforms designed to assist in the process of exploring, transforming, and interpreting data. These tools provide features for data manipulation, statistical analysis, visualization, and more. Depending on the analysis requirements and user preferences, different tools may be chosen for specific tasks.

Popular Data Analysis Tools

Several software packages are widely used in data analysis due to their versatility, functionality, and community support. Some of the most popular data analysis software include:

  • Python:  A versatile programming language with a rich ecosystem of libraries and frameworks for data analysis, including NumPy, pandas, Matplotlib, and scikit-learn.
  • R:  A programming language and environment specifically designed for statistical computing and graphics, featuring a vast collection of packages for data analysis, such as ggplot2, dplyr, and caret.
  • Excel:  A spreadsheet application that offers basic data analysis capabilities, including formulas, pivot tables, and charts. Excel is widely used for simple data analysis tasks and visualization.

These software packages cater to different user needs and skill levels, providing options for beginners and advanced users alike.

Data Collection Tools

Data collection tools are software applications or platforms that gather data from various sources, including surveys, forms, databases, and APIs. These tools provide features for designing data collection instruments, distributing surveys, and collecting responses.

Examples of data collection tools include:

  • Google Forms:  A free online tool for creating surveys and forms, collecting responses, and analyzing the results.
  • Appinio :  A real-time market research platform that simplifies data collection and analysis. With Appinio, businesses can easily create surveys, gather responses, and gain valuable insights to drive decision-making.

Data collection tools streamline the process of gathering and analyzing data, ensuring accuracy, consistency, and efficiency. Appinio stands out as a powerful tool for businesses seeking rapid and comprehensive data collection, empowering them to make informed decisions with ease.

Ready to experience the benefits of Appinio? Book a demo and get started today!

Data Visualization Tools

Data visualization tools enable users to create visual representations of data, such as charts, graphs, and maps, to communicate insights effectively. These tools provide features for creating interactive and dynamic visualizations that enhance understanding and facilitate decision-making.

Examples of data visualization tools include Power BI, a business analytics tool from Microsoft that enables users to visualize and analyze data from various sources, create interactive reports and dashboards, and share insights with stakeholders.

Data visualization tools play a crucial role in exploring and presenting data in a meaningful and visually appealing manner.

Data Management Platforms

Data management platforms (DMPs) are software solutions designed to centralize and manage data from various sources, including customer data, transaction data, and marketing data. These platforms provide features for data integration, cleansing, transformation, and storage, allowing organizations to maintain a single source of truth for their data.

Data management platforms help organizations streamline their data operations, improve data quality, and derive actionable insights from their data assets.

Data Analysis Best Practices

Effective data analysis requires adherence to best practices to ensure the accuracy, reliability, and validity of the results.

  • Define Clear Objectives:  Clearly define the objectives and goals of your data analysis project to guide your efforts and ensure alignment with the desired outcomes.
  • Understand the Data:  Thoroughly understand the characteristics and limitations of your data, including its sources, quality, structure, and any potential biases or anomalies.
  • Preprocess Data:  Clean and preprocess the data to handle missing values, outliers, and inconsistencies, ensuring that the data is suitable for analysis.
  • Use Appropriate Tools:  Select and use appropriate tools and software for data analysis, considering factors such as the complexity of the data, the analysis objectives, and the skills of the analysts.
  • Document the Process:  Document the data analysis process, including data preprocessing steps, analysis techniques, assumptions, and decisions made, to ensure reproducibility and transparency.
  • Validate Results:  Validate the results of your analysis using appropriate techniques such as cross-validation, sensitivity analysis, and hypothesis testing to ensure their accuracy and reliability.
  • Visualize Data:  Use data visualization techniques to represent your findings visually, making complex patterns and relationships easier to understand and communicate to stakeholders.
  • Iterate and Refine:  Iterate on your analysis process, incorporating feedback and refining your approach as needed to improve the quality and effectiveness of your analysis.
  • Consider Ethical Implications:  Consider the ethical implications of your data analysis, including issues such as privacy, fairness, and bias, and take appropriate measures to mitigate any potential risks.
  • Collaborate and Communicate:  Foster collaboration and communication among team members and stakeholders throughout the data analysis process to ensure alignment, shared understanding, and effective decision-making.

By following these best practices, you can enhance the rigor, reliability, and impact of your data analysis efforts, leading to more informed decision-making and actionable insights.

Data analysis is a powerful tool that empowers individuals and organizations to make sense of the vast amounts of data available to them. By applying various techniques and tools, data analysis allows us to uncover valuable insights, identify patterns, and make informed decisions across diverse fields such as business, science, healthcare, and government. From understanding customer behavior to predicting future trends, data analysis applications are virtually limitless. However, successful data analysis requires more than just technical skills—it also requires critical thinking, creativity, and a commitment to ethical practices. As we navigate the complexities of our data-rich world, it's essential to approach data analysis with curiosity, integrity, and a willingness to learn and adapt. By embracing best practices, collaborating with others, and continuously refining our approaches, we can harness the full potential of data analysis to drive innovation, solve complex problems, and create positive change in the world around us. So, whether you're just starting your journey in data analysis or looking to deepen your expertise, remember that the power of data lies not only in its quantity but also in our ability to analyze, interpret, and use it wisely.

How to Conduct Data Analysis in Minutes?

Introducing Appinio , the real-time market research platform that revolutionizes data analysis. With Appinio, companies can easily collect and analyze consumer insights in minutes, empowering them to make better, data-driven decisions swiftly. Appinio handles all the heavy lifting in research and technology, allowing clients to focus on what truly matters: leveraging real-time consumer insights for rapid decision-making.

  • From questions to insights in minutes:  With Appinio, get answers to your burning questions in record time, enabling you to act swiftly on emerging trends and consumer preferences.
  • No research PhD required:  Our platform is designed to be user-friendly and intuitive, ensuring that anyone, regardless of their research background, can navigate it effortlessly and extract valuable insights.
  • Rapid data collection:  With an average field time of less than 23 minutes for 1,000 respondents, Appinio enables you to gather comprehensive data from a diverse range of target groups spanning over 90 countries. Plus, it offers over 1,200 characteristics to define your target audience, ensuring precise and actionable insights tailored to your needs.

Register now EN

Get free access to the platform!

Join the loop 💌

Be the first to hear about new updates, product news, and data insights. We'll send it all straight to your inbox.

Get the latest market research news straight to your inbox! 💌

Wait, there's more

Time Series Analysis Definition Types Techniques Examples

16.05.2024 | 30min read

Time Series Analysis: Definition, Types, Techniques, Examples

Experimental Research Definition Types Design Examples

14.05.2024 | 31min read

Experimental Research: Definition, Types, Design, Examples

Interval Scale Definition Characteristics Examples

07.05.2024 | 29min read

Interval Scale: Definition, Characteristics, Examples

  • Privacy Policy

Research Method

Home » Research Process – Steps, Examples and Tips

Research Process – Steps, Examples and Tips

Table of Contents

Research Process

Research Process

Definition:

Research Process is a systematic and structured approach that involves the collection, analysis, and interpretation of data or information to answer a specific research question or solve a particular problem.

Research Process Steps

Research Process Steps are as follows:

Identify the Research Question or Problem

This is the first step in the research process. It involves identifying a problem or question that needs to be addressed. The research question should be specific, relevant, and focused on a particular area of interest.

Conduct a Literature Review

Once the research question has been identified, the next step is to conduct a literature review. This involves reviewing existing research and literature on the topic to identify any gaps in knowledge or areas where further research is needed. A literature review helps to provide a theoretical framework for the research and also ensures that the research is not duplicating previous work.

Formulate a Hypothesis or Research Objectives

Based on the research question and literature review, the researcher can formulate a hypothesis or research objectives. A hypothesis is a statement that can be tested to determine its validity, while research objectives are specific goals that the researcher aims to achieve through the research.

Design a Research Plan and Methodology

This step involves designing a research plan and methodology that will enable the researcher to collect and analyze data to test the hypothesis or achieve the research objectives. The research plan should include details on the sample size, data collection methods, and data analysis techniques that will be used.

Collect and Analyze Data

This step involves collecting and analyzing data according to the research plan and methodology. Data can be collected through various methods, including surveys, interviews, observations, or experiments. The data analysis process involves cleaning and organizing the data, applying statistical and analytical techniques to the data, and interpreting the results.

Interpret the Findings and Draw Conclusions

After analyzing the data, the researcher must interpret the findings and draw conclusions. This involves assessing the validity and reliability of the results and determining whether the hypothesis was supported or not. The researcher must also consider any limitations of the research and discuss the implications of the findings.

Communicate the Results

Finally, the researcher must communicate the results of the research through a research report, presentation, or publication. The research report should provide a detailed account of the research process, including the research question, literature review, research methodology, data analysis, findings, and conclusions. The report should also include recommendations for further research in the area.

Review and Revise

The research process is an iterative one, and it is important to review and revise the research plan and methodology as necessary. Researchers should assess the quality of their data and methods, reflect on their findings, and consider areas for improvement.

Ethical Considerations

Throughout the research process, ethical considerations must be taken into account. This includes ensuring that the research design protects the welfare of research participants, obtaining informed consent, maintaining confidentiality and privacy, and avoiding any potential harm to participants or their communities.

Dissemination and Application

The final step in the research process is to disseminate the findings and apply the research to real-world settings. Researchers can share their findings through academic publications, presentations at conferences, or media coverage. The research can be used to inform policy decisions, develop interventions, or improve practice in the relevant field.

Research Process Example

Following is a Research Process Example:

Research Question : What are the effects of a plant-based diet on athletic performance in high school athletes?

Step 1: Background Research Conduct a literature review to gain a better understanding of the existing research on the topic. Read academic articles and research studies related to plant-based diets, athletic performance, and high school athletes.

Step 2: Develop a Hypothesis Based on the literature review, develop a hypothesis that a plant-based diet positively affects athletic performance in high school athletes.

Step 3: Design the Study Design a study to test the hypothesis. Decide on the study population, sample size, and research methods. For this study, you could use a survey to collect data on dietary habits and athletic performance from a sample of high school athletes who follow a plant-based diet and a sample of high school athletes who do not follow a plant-based diet.

Step 4: Collect Data Distribute the survey to the selected sample and collect data on dietary habits and athletic performance.

Step 5: Analyze Data Use statistical analysis to compare the data from the two samples and determine if there is a significant difference in athletic performance between those who follow a plant-based diet and those who do not.

Step 6 : Interpret Results Interpret the results of the analysis in the context of the research question and hypothesis. Discuss any limitations or potential biases in the study design.

Step 7: Draw Conclusions Based on the results, draw conclusions about whether a plant-based diet has a significant effect on athletic performance in high school athletes. If the hypothesis is supported by the data, discuss potential implications and future research directions.

Step 8: Communicate Findings Communicate the findings of the study in a clear and concise manner. Use appropriate language, visuals, and formats to ensure that the findings are understood and valued.

Applications of Research Process

The research process has numerous applications across a wide range of fields and industries. Some examples of applications of the research process include:

  • Scientific research: The research process is widely used in scientific research to investigate phenomena in the natural world and develop new theories or technologies. This includes fields such as biology, chemistry, physics, and environmental science.
  • Social sciences : The research process is commonly used in social sciences to study human behavior, social structures, and institutions. This includes fields such as sociology, psychology, anthropology, and economics.
  • Education: The research process is used in education to study learning processes, curriculum design, and teaching methodologies. This includes research on student achievement, teacher effectiveness, and educational policy.
  • Healthcare: The research process is used in healthcare to investigate medical conditions, develop new treatments, and evaluate healthcare interventions. This includes fields such as medicine, nursing, and public health.
  • Business and industry : The research process is used in business and industry to study consumer behavior, market trends, and develop new products or services. This includes market research, product development, and customer satisfaction research.
  • Government and policy : The research process is used in government and policy to evaluate the effectiveness of policies and programs, and to inform policy decisions. This includes research on social welfare, crime prevention, and environmental policy.

Purpose of Research Process

The purpose of the research process is to systematically and scientifically investigate a problem or question in order to generate new knowledge or solve a problem. The research process enables researchers to:

  • Identify gaps in existing knowledge: By conducting a thorough literature review, researchers can identify gaps in existing knowledge and develop research questions that address these gaps.
  • Collect and analyze data : The research process provides a structured approach to collecting and analyzing data. Researchers can use a variety of research methods, including surveys, experiments, and interviews, to collect data that is valid and reliable.
  • Test hypotheses : The research process allows researchers to test hypotheses and make evidence-based conclusions. Through the systematic analysis of data, researchers can draw conclusions about the relationships between variables and develop new theories or models.
  • Solve problems: The research process can be used to solve practical problems and improve real-world outcomes. For example, researchers can develop interventions to address health or social problems, evaluate the effectiveness of policies or programs, and improve organizational processes.
  • Generate new knowledge : The research process is a key way to generate new knowledge and advance understanding in a given field. By conducting rigorous and well-designed research, researchers can make significant contributions to their field and help to shape future research.

Tips for Research Process

Here are some tips for the research process:

  • Start with a clear research question : A well-defined research question is the foundation of a successful research project. It should be specific, relevant, and achievable within the given time frame and resources.
  • Conduct a thorough literature review: A comprehensive literature review will help you to identify gaps in existing knowledge, build on previous research, and avoid duplication. It will also provide a theoretical framework for your research.
  • Choose appropriate research methods: Select research methods that are appropriate for your research question, objectives, and sample size. Ensure that your methods are valid, reliable, and ethical.
  • Be organized and systematic: Keep detailed notes throughout the research process, including your research plan, methodology, data collection, and analysis. This will help you to stay organized and ensure that you don’t miss any important details.
  • Analyze data rigorously: Use appropriate statistical and analytical techniques to analyze your data. Ensure that your analysis is valid, reliable, and transparent.
  • I nterpret results carefully : Interpret your results in the context of your research question and objectives. Consider any limitations or potential biases in your research design, and be cautious in drawing conclusions.
  • Communicate effectively: Communicate your research findings clearly and effectively to your target audience. Use appropriate language, visuals, and formats to ensure that your findings are understood and valued.
  • Collaborate and seek feedback : Collaborate with other researchers, experts, or stakeholders in your field. Seek feedback on your research design, methods, and findings to ensure that they are relevant, meaningful, and impactful.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Research Questions

Research Questions – Types, Examples and Writing...

Table of Contents

What is data analysis, why is data analysis important, what is the data analysis process, data analysis methods, applications of data analysis, top data analysis techniques to analyze data, what is the importance of data analysis in research, future trends in data analysis, choose the right program, what is data analysis: a comprehensive guide.

What Is Data Analysis: A Comprehensive Guide

In the contemporary business landscape, gaining a competitive edge is imperative, given the challenges such as rapidly evolving markets, economic unpredictability, fluctuating political environments, capricious consumer sentiments, and even global health crises. These challenges have reduced the room for error in business operations. For companies striving not only to survive but also to thrive in this demanding environment, the key lies in embracing the concept of data analysis . This involves strategically accumulating valuable, actionable information, which is leveraged to enhance decision-making processes.

If you're interested in forging a career in data analysis and wish to discover the top data analysis courses in 2024, we invite you to explore our informative video. It will provide insights into the opportunities to develop your expertise in this crucial field.

Data analysis inspects, cleans, transforms, and models data to extract insights and support decision-making. As a data analyst , your role involves dissecting vast datasets, unearthing hidden patterns, and translating numbers into actionable information.

Data analysis plays a pivotal role in today's data-driven world. It helps organizations harness the power of data, enabling them to make decisions, optimize processes, and gain a competitive edge. By turning raw data into meaningful insights, data analysis empowers businesses to identify opportunities, mitigate risks, and enhance their overall performance.

1. Informed Decision-Making

Data analysis is the compass that guides decision-makers through a sea of information. It enables organizations to base their choices on concrete evidence rather than intuition or guesswork. In business, this means making decisions more likely to lead to success, whether choosing the right marketing strategy, optimizing supply chains, or launching new products. By analyzing data, decision-makers can assess various options' potential risks and rewards, leading to better choices.

2. Improved Understanding

Data analysis provides a deeper understanding of processes, behaviors, and trends. It allows organizations to gain insights into customer preferences, market dynamics, and operational efficiency .

3. Competitive Advantage

Organizations can identify opportunities and threats by analyzing market trends, consumer behavior , and competitor performance. They can pivot their strategies to respond effectively, staying one step ahead of the competition. This ability to adapt and innovate based on data insights can lead to a significant competitive advantage.

Become a Data Science & Business Analytics Professional

  • 11.5 M Expected New Jobs For Data Science And Analytics
  • 28% Annual Job Growth By 2026
  • $46K-$100K Average Annual Salary

Post Graduate Program in Data Analytics

  • Post Graduate Program certificate and Alumni Association membership
  • Exclusive hackathons and Ask me Anything sessions by IBM

Data Analyst

  • Industry-recognized Data Analyst Master’s certificate from Simplilearn
  • Dedicated live sessions by faculty of industry experts

Here's what learners are saying regarding our programs:

Felix Chong

Felix Chong

Project manage , codethink.

After completing this course, I landed a new job & a salary hike of 30%. I now work with Zuhlke Group as a Project Manager.

Gayathri Ramesh

Gayathri Ramesh

Associate data engineer , publicis sapient.

The course was well structured and curated. The live classes were extremely helpful. They made learning more productive and interactive. The program helped me change my domain from a data analyst to an Associate Data Engineer.

4. Risk Mitigation

Data analysis is a valuable tool for risk assessment and management. Organizations can assess potential issues and take preventive measures by analyzing historical data. For instance, data analysis detects fraudulent activities in the finance industry by identifying unusual transaction patterns. This not only helps minimize financial losses but also safeguards the reputation and trust of customers.

5. Efficient Resource Allocation

Data analysis helps organizations optimize resource allocation. Whether it's allocating budgets, human resources, or manufacturing capacities, data-driven insights can ensure that resources are utilized efficiently. For example, data analysis can help hospitals allocate staff and resources to the areas with the highest patient demand, ensuring that patient care remains efficient and effective.

6. Continuous Improvement

Data analysis is a catalyst for continuous improvement. It allows organizations to monitor performance metrics, track progress, and identify areas for enhancement. This iterative process of analyzing data, implementing changes, and analyzing again leads to ongoing refinement and excellence in processes and products.

The data analysis process is a structured sequence of steps that lead from raw data to actionable insights. Here are the answers to what is data analysis:

  • Data Collection: Gather relevant data from various sources, ensuring data quality and integrity.
  • Data Cleaning: Identify and rectify errors, missing values, and inconsistencies in the dataset. Clean data is crucial for accurate analysis.
  • Exploratory Data Analysis (EDA): Conduct preliminary analysis to understand the data's characteristics, distributions, and relationships. Visualization techniques are often used here.
  • Data Transformation: Prepare the data for analysis by encoding categorical variables, scaling features, and handling outliers, if necessary.
  • Model Building: Depending on the objectives, apply appropriate data analysis methods, such as regression, clustering, or deep learning.
  • Model Evaluation: Depending on the problem type, assess the models' performance using metrics like Mean Absolute Error, Root Mean Squared Error , or others.
  • Interpretation and Visualization: Translate the model's results into actionable insights. Visualizations, tables, and summary statistics help in conveying findings effectively.
  • Deployment: Implement the insights into real-world solutions or strategies, ensuring that the data-driven recommendations are implemented.

1. Regression Analysis

Regression analysis is a powerful method for understanding the relationship between a dependent and one or more independent variables. It is applied in economics, finance, and social sciences. By fitting a regression model, you can make predictions, analyze cause-and-effect relationships, and uncover trends within your data.

2. Statistical Analysis

Statistical analysis encompasses a broad range of techniques for summarizing and interpreting data. It involves descriptive statistics (mean, median, standard deviation), inferential statistics (hypothesis testing, confidence intervals), and multivariate analysis. Statistical methods help make inferences about populations from sample data, draw conclusions, and assess the significance of results.

3. Cohort Analysis

Cohort analysis focuses on understanding the behavior of specific groups or cohorts over time. It can reveal patterns, retention rates, and customer lifetime value, helping businesses tailor their strategies.

4. Content Analysis

It is a qualitative data analysis method used to study the content of textual, visual, or multimedia data. Social sciences, journalism, and marketing often employ it to analyze themes, sentiments, or patterns within documents or media. Content analysis can help researchers gain insights from large volumes of unstructured data.

5. Factor Analysis

Factor analysis is a technique for uncovering underlying latent factors that explain the variance in observed variables. It is commonly used in psychology and the social sciences to reduce the dimensionality of data and identify underlying constructs. Factor analysis can simplify complex datasets, making them easier to interpret and analyze.

6. Monte Carlo Method

This method is a simulation technique that uses random sampling to solve complex problems and make probabilistic predictions. Monte Carlo simulations allow analysts to model uncertainty and risk, making it a valuable tool for decision-making.

7. Text Analysis

Also known as text mining , this method involves extracting insights from textual data. It analyzes large volumes of text, such as social media posts, customer reviews, or documents. Text analysis can uncover sentiment, topics, and trends, enabling organizations to understand public opinion, customer feedback, and emerging issues.

8. Time Series Analysis

Time series analysis deals with data collected at regular intervals over time. It is essential for forecasting, trend analysis, and understanding temporal patterns. Time series methods include moving averages, exponential smoothing, and autoregressive integrated moving average (ARIMA) models. They are widely used in finance for stock price prediction, meteorology for weather forecasting, and economics for economic modeling.

9. Descriptive Analysis

Descriptive analysis   involves summarizing and describing the main features of a dataset. It focuses on organizing and presenting the data in a meaningful way, often using measures such as mean, median, mode, and standard deviation. It provides an overview of the data and helps identify patterns or trends.

10. Inferential Analysis

Inferential analysis   aims to make inferences or predictions about a larger population based on sample data. It involves applying statistical techniques such as hypothesis testing, confidence intervals, and regression analysis. It helps generalize findings from a sample to a larger population.

11. Exploratory Data Analysis (EDA)

EDA   focuses on exploring and understanding the data without preconceived hypotheses. It involves visualizations, summary statistics, and data profiling techniques to uncover patterns, relationships, and interesting features. It helps generate hypotheses for further analysis.

12. Diagnostic Analysis

Diagnostic analysis aims to understand the cause-and-effect relationships within the data. It investigates the factors or variables that contribute to specific outcomes or behaviors. Techniques such as regression analysis, ANOVA (Analysis of Variance), or correlation analysis are commonly used in diagnostic analysis.

13. Predictive Analysis

Predictive analysis   involves using historical data to make predictions or forecasts about future outcomes. It utilizes statistical modeling techniques, machine learning algorithms, and time series analysis to identify patterns and build predictive models. It is often used for forecasting sales, predicting customer behavior, or estimating risk.

14. Prescriptive Analysis

Prescriptive analysis goes beyond predictive analysis by recommending actions or decisions based on the predictions. It combines historical data, optimization algorithms, and business rules to provide actionable insights and optimize outcomes. It helps in decision-making and resource allocation.

Our Data Analyst Master's Program will help you learn analytics tools and techniques to become a Data Analyst expert! It's the pefect course for you to jumpstart your career. Enroll now!

Data analysis is a versatile and indispensable tool that finds applications across various industries and domains. Its ability to extract actionable insights from data has made it a fundamental component of decision-making and problem-solving. Let's explore some of the key applications of data analysis:

1. Business and Marketing

  • Market Research: Data analysis helps businesses understand market trends, consumer preferences, and competitive landscapes. It aids in identifying opportunities for product development, pricing strategies, and market expansion.
  • Sales Forecasting: Data analysis models can predict future sales based on historical data, seasonality, and external factors. This helps businesses optimize inventory management and resource allocation.

2. Healthcare and Life Sciences

  • Disease Diagnosis: Data analysis is vital in medical diagnostics, from interpreting medical images (e.g., MRI, X-rays) to analyzing patient records. Machine learning models can assist in early disease detection.
  • Drug Discovery: Pharmaceutical companies use data analysis to identify potential drug candidates, predict their efficacy, and optimize clinical trials.
  • Genomics and Personalized Medicine: Genomic data analysis enables personalized treatment plans by identifying genetic markers that influence disease susceptibility and response to therapies.
  • Risk Management: Financial institutions use data analysis to assess credit risk, detect fraudulent activities, and model market risks.
  • Algorithmic Trading: Data analysis is integral to developing trading algorithms that analyze market data and execute trades automatically based on predefined strategies.
  • Fraud Detection: Credit card companies and banks employ data analysis to identify unusual transaction patterns and detect fraudulent activities in real time.

4. Manufacturing and Supply Chain

  • Quality Control: Data analysis monitors and controls product quality on manufacturing lines. It helps detect defects and ensure consistency in production processes.
  • Inventory Optimization: By analyzing demand patterns and supply chain data, businesses can optimize inventory levels, reduce carrying costs, and ensure timely deliveries.

5. Social Sciences and Academia

  • Social Research: Researchers in social sciences analyze survey data, interviews, and textual data to study human behavior, attitudes, and trends. It helps in policy development and understanding societal issues.
  • Academic Research: Data analysis is crucial to scientific physics, biology, and environmental science research. It assists in interpreting experimental results and drawing conclusions.

6. Internet and Technology

  • Search Engines: Google uses complex data analysis algorithms to retrieve and rank search results based on user behavior and relevance.
  • Recommendation Systems: Services like Netflix and Amazon leverage data analysis to recommend content and products to users based on their past preferences and behaviors.

7. Environmental Science

  • Climate Modeling: Data analysis is essential in climate science. It analyzes temperature, precipitation, and other environmental data. It helps in understanding climate patterns and predicting future trends.
  • Environmental Monitoring: Remote sensing data analysis monitors ecological changes, including deforestation, water quality, and air pollution.

1. Descriptive Statistics

Descriptive statistics provide a snapshot of a dataset's central tendencies and variability. These techniques help summarize and understand the data's basic characteristics.

2. Inferential Statistics

Inferential statistics involve making predictions or inferences based on a sample of data. Techniques include hypothesis testing, confidence intervals, and regression analysis. These methods are crucial for drawing conclusions from data and assessing the significance of findings.

3. Regression Analysis

It explores the relationship between one or more independent variables and a dependent variable. It is widely used for prediction and understanding causal links. Linear, logistic, and multiple regression are common in various fields.

4. Clustering Analysis

It is an unsupervised learning method that groups similar data points. K-means clustering and hierarchical clustering are examples. This technique is used for customer segmentation, anomaly detection, and pattern recognition.

5. Classification Analysis

Classification analysis assigns data points to predefined categories or classes. It's often used in applications like spam email detection, image recognition, and sentiment analysis. Popular algorithms include decision trees, support vector machines, and neural networks.

6. Time Series Analysis

Time series analysis deals with data collected over time, making it suitable for forecasting and trend analysis. Techniques like moving averages, autoregressive integrated moving averages (ARIMA), and exponential smoothing are applied in fields like finance, economics, and weather forecasting.

7. Text Analysis (Natural Language Processing - NLP)

Text analysis techniques, part of NLP , enable extracting insights from textual data. These methods include sentiment analysis, topic modeling, and named entity recognition. Text analysis is widely used for analyzing customer reviews, social media content, and news articles.

8. Principal Component Analysis

It is a dimensionality reduction technique that simplifies complex datasets while retaining important information. It transforms correlated variables into a set of linearly uncorrelated variables, making it easier to analyze and visualize high-dimensional data.

9. Anomaly Detection

Anomaly detection identifies unusual patterns or outliers in data. It's critical in fraud detection, network security, and quality control. Techniques like statistical methods, clustering-based approaches, and machine learning algorithms are employed for anomaly detection.

10. Data Mining

Data mining involves the automated discovery of patterns, associations, and relationships within large datasets. Techniques like association rule mining, frequent pattern analysis, and decision tree mining extract valuable knowledge from data.

11. Machine Learning and Deep Learning

ML and deep learning algorithms are applied for predictive modeling, classification, and regression tasks. Techniques like random forests, support vector machines, and convolutional neural networks (CNNs) have revolutionized various industries, including healthcare, finance, and image recognition.

12. Geographic Information Systems (GIS) Analysis

GIS analysis combines geographical data with spatial analysis techniques to solve location-based problems. It's widely used in urban planning, environmental management, and disaster response.

  • Uncovering Patterns and Trends: Data analysis allows researchers to identify patterns, trends, and relationships within the data. By examining these patterns, researchers can better understand the phenomena under investigation. For example, in epidemiological research, data analysis can reveal the trends and patterns of disease outbreaks, helping public health officials take proactive measures.
  • Testing Hypotheses: Research often involves formulating hypotheses and testing them. Data analysis provides the means to evaluate hypotheses rigorously. Through statistical tests and inferential analysis, researchers can determine whether the observed patterns in the data are statistically significant or simply due to chance.
  • Making Informed Conclusions: Data analysis helps researchers draw meaningful and evidence-based conclusions from their research findings. It provides a quantitative basis for making claims and recommendations. In academic research, these conclusions form the basis for scholarly publications and contribute to the body of knowledge in a particular field.
  • Enhancing Data Quality: Data analysis includes data cleaning and validation processes that improve the quality and reliability of the dataset. Identifying and addressing errors, missing values, and outliers ensures that the research results accurately reflect the phenomena being studied.
  • Supporting Decision-Making: In applied research, data analysis assists decision-makers in various sectors, such as business, government, and healthcare. Policy decisions, marketing strategies, and resource allocations are often based on research findings.
  • Identifying Outliers and Anomalies: Outliers and anomalies in data can hold valuable information or indicate errors. Data analysis techniques can help identify these exceptional cases, whether medical diagnoses, financial fraud detection, or product quality control.
  • Revealing Insights: Research data often contain hidden insights that are not immediately apparent. Data analysis techniques, such as clustering or text analysis, can uncover these insights. For example, social media data sentiment analysis can reveal public sentiment and trends on various topics in social sciences.
  • Forecasting and Prediction: Data analysis allows for the development of predictive models. Researchers can use historical data to build models forecasting future trends or outcomes. This is valuable in fields like finance for stock price predictions, meteorology for weather forecasting, and epidemiology for disease spread projections.
  • Optimizing Resources: Research often involves resource allocation. Data analysis helps researchers and organizations optimize resource use by identifying areas where improvements can be made, or costs can be reduced.
  • Continuous Improvement: Data analysis supports the iterative nature of research. Researchers can analyze data, draw conclusions, and refine their hypotheses or research designs based on their findings. This cycle of analysis and refinement leads to continuous improvement in research methods and understanding.

Data analysis is an ever-evolving field driven by technological advancements. The future of data analysis promises exciting developments that will reshape how data is collected, processed, and utilized. Here are some of the key trends of data analysis:

1. Artificial Intelligence and Machine Learning Integration

Artificial intelligence (AI) and machine learning (ML) are expected to play a central role in data analysis. These technologies can automate complex data processing tasks, identify patterns at scale, and make highly accurate predictions. AI-driven analytics tools will become more accessible, enabling organizations to harness the power of ML without requiring extensive expertise.

2. Augmented Analytics

Augmented analytics combines AI and natural language processing (NLP) to assist data analysts in finding insights. These tools can automatically generate narratives, suggest visualizations, and highlight important trends within data. They enhance the speed and efficiency of data analysis, making it more accessible to a broader audience.

3. Data Privacy and Ethical Considerations

As data collection becomes more pervasive, privacy concerns and ethical considerations will gain prominence. Future data analysis trends will prioritize responsible data handling, transparency, and compliance with regulations like GDPR . Differential privacy techniques and data anonymization will be crucial in balancing data utility with privacy protection.

4. Real-time and Streaming Data Analysis

The demand for real-time insights will drive the adoption of real-time and streaming data analysis. Organizations will leverage technologies like Apache Kafka and Apache Flink to process and analyze data as it is generated. This trend is essential for fraud detection, IoT analytics, and monitoring systems.

5. Quantum Computing

It can potentially revolutionize data analysis by solving complex problems exponentially faster than classical computers. Although quantum computing is in its infancy, its impact on optimization, cryptography , and simulations will be significant once practical quantum computers become available.

6. Edge Analytics

With the proliferation of edge devices in the Internet of Things (IoT), data analysis is moving closer to the data source. Edge analytics allows for real-time processing and decision-making at the network's edge, reducing latency and bandwidth requirements.

7. Explainable AI (XAI)

Interpretable and explainable AI models will become crucial, especially in applications where trust and transparency are paramount. XAI techniques aim to make AI decisions more understandable and accountable, which is critical in healthcare and finance.

8. Data Democratization

The future of data analysis will see more democratization of data access and analysis tools. Non-technical users will have easier access to data and analytics through intuitive interfaces and self-service BI tools , reducing the reliance on data specialists.

9. Advanced Data Visualization

Data visualization tools will continue to evolve, offering more interactivity, 3D visualization, and augmented reality (AR) capabilities. Advanced visualizations will help users explore data in new and immersive ways.

10. Ethnographic Data Analysis

Ethnographic data analysis will gain importance as organizations seek to understand human behavior, cultural dynamics, and social trends. This qualitative data analysis approach and quantitative methods will provide a holistic understanding of complex issues.

11. Data Analytics Ethics and Bias Mitigation

Ethical considerations in data analysis will remain a key trend. Efforts to identify and mitigate bias in algorithms and models will become standard practice, ensuring fair and equitable outcomes.

Our Data Analytics courses have been meticulously crafted to equip you with the necessary skills and knowledge to thrive in this swiftly expanding industry. Our instructors will lead you through immersive, hands-on projects, real-world simulations, and illuminating case studies, ensuring you gain the practical expertise necessary for success. Through our courses, you will acquire the ability to dissect data, craft enlightening reports, and make data-driven choices that have the potential to steer businesses toward prosperity.

Having addressed the question of what is data analysis, if you're considering a career in data analytics, it's advisable to begin by researching the prerequisites for becoming a data analyst. You may also want to explore the Post Graduate Program in Data Analytics offered in collaboration with Purdue University. This program offers a practical learning experience through real-world case studies and projects aligned with industry needs. It provides comprehensive exposure to the essential technologies and skills currently employed in the field of data analytics.

Program Name Data Analyst Post Graduate Program In Data Analytics Data Analytics Bootcamp Geo All Geos All Geos US University Simplilearn Purdue Caltech Course Duration 11 Months 8 Months 6 Months Coding Experience Required No Basic No Skills You Will Learn 10+ skills including Python, MySQL, Tableau, NumPy and more Data Analytics, Statistical Analysis using Excel, Data Analysis Python and R, and more Data Visualization with Tableau, Linear and Logistic Regression, Data Manipulation and more Additional Benefits Applied Learning via Capstone and 20+ industry-relevant Data Analytics projects Purdue Alumni Association Membership Free IIMJobs Pro-Membership of 6 months Access to Integrated Practical Labs Caltech CTME Circle Membership Cost $$ $$$$ $$$$ Explore Program Explore Program Explore Program

1. What is the difference between data analysis and data science? 

Data analysis primarily involves extracting meaningful insights from existing data using statistical techniques and visualization tools. Whereas, data science encompasses a broader spectrum, incorporating data analysis as a subset while involving machine learning, deep learning, and predictive modeling to build data-driven solutions and algorithms.

2. What are the common mistakes to avoid in data analysis?

Common mistakes to avoid in data analysis include neglecting data quality issues, failing to define clear objectives, overcomplicating visualizations, not considering algorithmic biases, and disregarding the importance of proper data preprocessing and cleaning. Additionally, avoiding making unwarranted assumptions and misinterpreting correlation as causation in your analysis is crucial.

Data Science & Business Analytics Courses Duration and Fees

Data Science & Business Analytics programs typically range from a few weeks to several months, with fees varying based on program and institution.

Learn from Industry Experts with free Masterclasses

Data science & business analytics.

How Can You Master the Art of Data Analysis: Uncover the Path to Career Advancement

Develop Your Career in Data Analytics with Purdue University Professional Certificate

Career Masterclass: How to Get Qualified for a Data Analytics Career

Recommended Reads

Big Data Career Guide: A Comprehensive Playbook to Becoming a Big Data Engineer

Why Python Is Essential for Data Analysis and Data Science?

All the Ins and Outs of Exploratory Data Analysis

The Rise of the Data-Driven Professional: 6 Non-Data Roles That Need Data Analytics Skills

Exploratory Data Analysis [EDA]: Techniques, Best Practices and Popular Applications

The Best Spotify Data Analysis Project You Need to Know

Get Affiliated Certifications with Live Class programs

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

An Introduction to Data Analysis

  • First Online: 28 September 2018

Cite this chapter

definition of data analysis in research process

  • Fabio Nelli 2  

16k Accesses

In this chapter, you begin to take the first steps in the world of data analysis, learning in detail about all the concepts and processes that make up this discipline. The concepts discussed in this chapter are helpful background for the following chapters, where these concepts and procedures will be applied in the form of Python code, through the use of several libraries that will be discussed in just as many chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and affiliations.

Rome, Italy

Fabio Nelli

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Fabio Nelli

About this chapter

Nelli, F. (2018). An Introduction to Data Analysis. In: Python Data Analytics. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-3913-1_1

Download citation

DOI : https://doi.org/10.1007/978-1-4842-3913-1_1

Published : 28 September 2018

Publisher Name : Apress, Berkeley, CA

Print ISBN : 978-1-4842-3912-4

Online ISBN : 978-1-4842-3913-1

eBook Packages : Professional and Applied Computing Apress Access Books Professional and Applied Computing (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Malays Fam Physician
  • v.3(1); 2008

Data Analysis in Qualitative Research: A Brief Guide to Using Nvivo

MSc, PhD, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Qualitative data is often subjective, rich, and consists of in-depth information normally presented in the form of words. Analysing qualitative data entails reading a large amount of transcripts looking for similarities or differences, and subsequently finding themes and developing categories. Traditionally, researchers ‘cut and paste’ and use coloured pens to categorise data. Recently, the use of software specifically designed for qualitative data management greatly reduces technical sophistication and eases the laborious task, thus making the process relatively easier. A number of computer software packages has been developed to mechanise this ‘coding’ process as well as to search and retrieve data. This paper illustrates the ways in which NVivo can be used in the qualitative data analysis process. The basic features and primary tools of NVivo which assist qualitative researchers in managing and analysing their data are described.

QUALITATIVE RESEARCH IN MEDICINE

Qualitative research has seen an increased popularity in the last two decades and is becoming widely accepted across a wide range of medical and health disciplines, including health services research, health technology assessment, nursing, and allied health. 1 There has also been a corresponding rise in the reporting of qualitative research studies in medical and health related journals. 2

The increasing popularity of qualitative methods is a result of failure of quantitative methods to provide insight into in-depth information about the attitudes, beliefs, motives, or behaviours of people, for example in understanding the emotions, perceptions and actions of people who suffer from a medical condition. Qualitative methods explore the perspective and meaning of experiences, seek insight and identify the social structures or processes that explain people”s behavioural meaning. 1 , 3 Most importantly, qualitative research relies on extensive interaction with the people being studied, and often allows researchers to uncover unexpected or unanticipated information, which is not possible in the quantitative methods. In medical research, it is particularly useful, for example, in a health behaviour study whereby health or education policies can be effectively developed if reasons for behaviours are clearly understood when observed or investigated using qualitative methods. 4

ANALYSING QUALITATIVE DATA

Qualitative research yields mainly unstructured text-based data. These textual data could be interview transcripts, observation notes, diary entries, or medical and nursing records. In some cases, qualitative data can also include pictorial display, audio or video clips (e.g. audio and visual recordings of patients, radiology film, and surgery videos), or other multimedia materials. Data analysis is the part of qualitative research that most distinctively differentiates from quantitative research methods. It is not a technical exercise as in quantitative methods, but more of a dynamic, intuitive and creative process of inductive reasoning, thinking and theorising. 5 In contrast to quantitative research, which uses statistical methods, qualitative research focuses on the exploration of values, meanings, beliefs, thoughts, experiences, and feelings characteristic of the phenomenon under investigation. 6

Data analysis in qualitative research is defined as the process of systematically searching and arranging the interview transcripts, observation notes, or other non-textual materials that the researcher accumulates to increase the understanding of the phenomenon. 7 The process of analysing qualitative data predominantly involves coding or categorising the data. Basically it involves making sense of huge amounts of data by reducing the volume of raw information, followed by identifying significant patterns, and finally drawing meaning from data and subsequently building a logical chain of evidence. 8

Coding or categorising the data is the most important stage in the qualitative data analysis process. Coding and data analysis are not synonymous, though coding is a crucial aspect of the qualitative data analysis process. Coding merely involves subdividing the huge amount of raw information or data, and subsequently assigning them into categories. 9 In simple terms, codes are tags or labels for allocating identified themes or topics from the data compiled in the study. Traditionally, coding was done manually, with the use of coloured pens to categorise data, and subsequently cutting and sorting the data. Given the advancement of software technology, electronic methods of coding data are increasingly used by qualitative researchers.

Nevertheless, the computer does not do the analysis for the researchers. Users still have to create the categories, code, decide what to collate, identify the patterns and draw meaning from the data. The use of computer software in qualitative data analysis is limited due to the nature of qualitative research itself in terms of the complexity of its unstructured data, the richness of the data and the way in which findings and theories emerge from the data. 10 The programme merely takes over the marking, cutting, and sorting tasks that qualitative researchers used to do with a pair of scissors, paper and note cards. It helps to maximise efficiency and speed up the process of grouping data according to categories and retrieving coded themes. Ultimately, the researcher still has to synthesise the data and interpret the meanings that were extracted from the data. Therefore, the use of computers in qualitative analysis merely made organisation, reduction and storage of data more efficient and manageable. The qualitative data analysis process is illustrated in Figure 1 .

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g001.jpg

Qualitative data analysis flowchart

USING NVIVO IN QUALITATIVE DATA ANALYSIS

NVivo is one of the computer-assisted qualitative data analysis softwares (CAQDAS) developed by QSR International (Melbourne, Australia), the world’s largest qualitative research software developer. This software allows for qualitative inquiry beyond coding, sorting and retrieval of data. It was also designed to integrate coding with qualitative linking, shaping and modelling. The following sections discuss the fundamentals of the NVivo software (version 2.0) and illustrates the primary tools in NVivo which assist qualitative researchers in managing their data.

Key features of NVivo

To work with NVivo, first and foremost, the researcher has to create a Project to hold the data or study information. Once a project is created, the Project pad appears ( Figure 2 ). The project pad of NVivo has two main menus: Document browser and Node browser . In any project in NVivo, the researcher can create and explore documents and nodes, when the data is browsed, linked and coded. Both document and node browsers have an Attribute feature, which helps researchers to refer the characteristics of the data such as age, gender, marital status, ethnicity, etc.

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g002.jpg

Project pad with documents tab selected

The document browser is the main work space for coding documents ( Figure 3 ). Documents in NVivo can be created inside the NVivo project or imported from MS Word or WordPad in a rich text (.rtf) format into the project. It can also be imported as a plain text file (.txt) from any word processor. Transcripts of interview data and observation notes are examples of documents that can be saved as individual documents in NVivo. In the document browser all the documents can be viewed in a database with short descriptions of each document.

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g003.jpg

Document browser with coder and coding stripe activated

NVivo is also designed to allow the researcher to place a Hyperlink to other files (for example audio, video and image files, web pages, etc.) in the documents to capture conceptual links which are observed during the analysis. The readers can click on it and be taken to another part of the same document, or a separate file. A hyperlink is very much like a footnote.

The second menu is Node explorer ( Figure 4 ), which represents categories throughout the data. The codes are saved within the NVivo database as nodes. Nodes created in NVivo are equivalent to sticky notes that the researcher places on the document to indicate that a particular passage belongs to a certain theme or topic. Unlike sticky notes, the nodes in NVivo are retrievable, easily organised, and give flexibility to the researcher to either create, delete, alter or merge at any stage. There are two most common types of node: tree nodes (codes that are organised in a hierarchical structure) and free nodes (free standing and not associated with a structured framework of themes or concepts). Once the coding process is complete, the researcher can browse the nodes. To view all the quotes on a particular Node, select the particular node on the Node Explorer and click the Browse button ( Figure 5 ).

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g004.jpg

Node explorer with a tree node highlighted

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g005.jpg

Browsing a node

Coding in NVivo using Coder

Coding is done in the document browser. Coding involves the desegregation of textual data into segments, examining the data similarities and differences, and grouping together conceptually similar data in the respective nodes. 11 The organised list of nodes will appear with a click on the Coder button at the bottom of document browser window.

To code a segment of the text in a project document under a particular node, highlight the particular segment and drag the highlighted text to the desired node in the coder window ( Figure 3 ). The segments that have been coded to a particular node are highlighted in colours and nodes that have attached to a document turns bold. Multiple codes can be assigned to the same segment of text using the same process. Coding Stripes can be activated to view the quotes that are associated with the particular nodes. With the guide of highlighted text and coding stripes, the researcher can return to the data to do further coding or refine the coding.

Coding can be done with pre-constructed coding schemes where the nodes are first created using the Node explorer followed by coding using the coder. Alternatively, a bottom-up approach can be used where the researcher reads the documents and creates nodes when themes arise from the data as he or she codes.

Making and using memos

In analysing qualitative data, pieces of reflective thinking, ideas, theories, and concepts often emerge as the researcher reads through the data. NVivo allows the user the flexibility to record ideas about the research as they emerge in the Memos . Memos can be seen as add-on documents, treated as full status data and coded like any other documents. 12 Memos can be placed in a document or at a node. A memo itself can have memos (e.g. documents or nodes) linked to it, using DocLinks and NodeLinks .

Creating attributes

Attributes are characteristics (e.g. age, marital status, ethnicity, educational level, etc.) that the researcher associates with a document or node. Attributes have different values (for example, the values of the attribute for ethnicity are ‘Malay’, ‘Chinese’ and ‘Indian’). NVivo makes it possible to assign attributes to either document or node. Items in attributes can be added, removed or rearranged to help the researcher in making comparisons. Attributes are also integrated with the searching process; for example, linking the attributes to documents will enable the researcher to conduct searches pertaining to documents with specified characteristics ( Figure 6 ).

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g006.jpg

Document attribute explorer

Search operation

The three most useful types of searches in NVivo are Single item (text, node, or attribute value), Boolean and Proximity searches. Single item search is particularly important, for example, if researchers want to ensure that every mention of the word ‘cure’ has been coded under the ‘Curability of cervical cancer’ tree node. Every paragraph in which this word is used can be viewed. The results of the search can also be compiled into a single document in the node browser and by viewing the coding stripe. The researcher can check whether each of the resulting passages has been coded under a particular node. This is particularly useful for the researcher to further determine whether conducting further coding is necessary.

Boolean searches combine codes using the logical terms like ‘and’, ‘or’ and ‘not’. Common Boolean searches are ‘or’ (also referred to as ‘combination’ or ‘union’) and ‘and’ (also called ‘intersection’). For example, the researcher may wish to search for a node and an attributed value, such as ‘ever screened for cervical cancer’ and ‘primary educated’. Search results can be displayed in matrix form and it is possible for the researcher to perform quantitative interpretations or simple counts to provide useful summaries of some aspects of the analysis. 13 Proximity searches are used to find places where two items (e.g. text patterns, attribute values, nodes) appear near each other in the text.

Using models to show relationships

Models or visualisations are an essential way to describe and explore relationships in qualitative research. NVivo provides a Modeler designated for visual exploration and explanation of relationships between various nodes and documents. In Model Explorer, the researcher can create, label and connect ideas or concepts. NVivo allows the user to create a model over time and have any number of layers to track the progress of theory development to enable the researcher to examine the stages in the model-building over time ( Figure 7 ). Any documents, nodes or attributes can be placed in a model and clicking on the item will enable the researcher to inspect its properties.

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g007.jpg

Model explorer showing the perceived risk factors of cervical cancer

NVivo has clear advantages and can greatly enhance research quality as outlined above. It can ease the laborious task of data analysis which would otherwise be performed manually. The software certainly removes the tremendous amount of manual tasks and allows more time for the researcher to explore trends, identify themes, and make conclusions. Ultimately, analysis of qualitative data is now more systematic and much easier. In addition, NVivo is ideal for researchers working in a team as the software has a Merge tool that enables researchers that work in separate teams to bring their work together into one project.

The NVivo software has been revolutionised and enhanced recently. The newly released NVivo 7 (released March 2006) and NVivo 8 (released March 2008) are even more sophisticated, flexible, and enable more fluid analysis. These new softwares come with a more user-friendly interface that resembles the Microsoft Windows XP applications. Furthermore, they have new data handling capacities such as to enable tables or images embedded in rich text files to be imported and coded as well. In addition, the user can also import and work on rich text files in character based languages such as Chinese or Arabic.

To sum up, qualitative research undoubtedly has been advanced greatly by the development of CAQDAS. The use of qualitative methods in medical and health care research is postulated to grow exponentially in years to come with the further development of CAQDAS.

More information about the NVivo software

Detailed information about NVivo’s functionality is available at http://www.qsrinternational.com . The website also carries information about the latest versions of NVivo. Free demonstrations and tutorials are available for download.

ACKNOWLEDGEMENT

The examples in this paper were adapted from the data of the study funded by the Ministry of Science, Technology and Environment, Malaysia under the Intensification of Research in Priority Areas (IRPA) 06-02-1032 PR0024/09-06.

TERMINOLOGY

Attributes : An attribute is a property of a node, case or document. It is equivalent to a variable in quantitative analysis. An attribute (e.g. ethnicity) may have several values (e.g. Malay, Chinese, Indian, etc.). Any particular node, case or document may be assigned one value for each attribute. Similarities within or differences between groups can be identified using attributes. Attribute Explorer displays a table of all attributes assigned to a document, node or set.

CAQDAS : Computer Aided Qualitative Data Analysis. The CAQDAS programme assists data management and supports coding processes. The software does not really analyse data, but rather supports the qualitative analysis process. NVivo is one of the CAQDAS programmes; others include NUDIST, ATLAS-ti, AQUAD, ETHNOGRAPH and MAXQDA.

Code : A term that represents an idea, theme, theory, dimension, characteristic, etc., of the data.

Coder : A tool used to code a passage of text in a document under a particular node. The coder can be accessed from the Document or Node Browser .

Coding : The action of identifying a passage of text in a document that exemplifies ideas or concepts and connecting it to a node that represents that idea or concept. Multiple codes can be assigned to the same segment of text in a document.

Coding stripes : Coloured vertical lines displayed at the right-hand pane of a Document ; each is named with title of the node at which the text is coded.

DataLinks : A tool for linking the information in a document or node to the information outside the project, or between project documents. DocLinks , NodeLinks and DataBite Links are all forms of DataLink .

Document : A document in an NVivo project is an editable rich text or plain text file. It may be a transcription of project data or it may be a summary of such data or memos, notes or passages written by the researcher. The text in a document can be coded, may be given values of document attributes and may be linked (via DataLinks ) to other related documents, annotations, or external computer files. The Document Explorer shows the list of all project documents.

Memo : A document containing the researcher”s commentary flagged (linked) on any text in a Document or Node. Any files (text, audio or video, or picture data) can be linked via MemoLink .

Model : NVivo models are made up of symbols, usually representing items in the project, which are joined by lines or arrows, designed to represent the relationship between key elements in a field of study. Models are constructed in the Modeller .

Node : Relevant passages in the project”s documents are coded at nodes. A Node represents a code, theme, or idea about the data in a project. Nodes can be kept as Free Nodes (without organisation) or may be organised hierarchically in Trees (of categories and subcategories). Free nodes are free-standing and are not associated to themes or concepts. Early on in the project, tentative ideas may be stored in the Free Nodes area. Free nodes can be kept in a simple list and can be moved to a logical place in the Tree Node when higher levels of categories are discovered. Nodes can be given values of attributes according to the features of what they represent, and can be grouped in sets. Nodes can be organised (created, edited) in Node Explorer (a window listing all the project nodes and node sets). The Node Browser displays the node”s coding and allow the researcher to change the coding.

Project : Collection of all the files, documents, codes, nodes, attributes, etc. associated with a research project. The Project pad is a window in NVivo when a project is open which gives access to all the main functions of the programme.

Sets : Sets in NVivo hold shortcuts to any nodes or documents, as a way of holding those items together without actually combining them. Sets are used primarily as a way of indicating items that in some way are related conceptually or theoretically. It provides different ways of sorting and managing data.

Tree Node : Nodes organised hierarchically into trees to catalogue categories and subcategories.

A woman standing in a server room holding a laptop connected to a series of tall, black servers cabinets.

Published: 5 April 2024 Contributors: Tim Mucci, Cole Stryker

Big data analytics refers to the systematic processing and analysis of large amounts of data and complex data sets, known as big data, to extract valuable insights. Big data analytics allows for the uncovering of trends, patterns and correlations in large amounts of raw data to help analysts make data-informed decisions. This process allows organizations to leverage the exponentially growing data generated from diverse sources, including internet-of-things (IoT) sensors, social media, financial transactions and smart devices to derive actionable intelligence through advanced analytic techniques.

In the early 2000s, advances in software and hardware capabilities made it possible for organizations to collect and handle large amounts of unstructured data. With this explosion of useful data, open-source communities developed big data frameworks to store and process this data. These frameworks are used for distributed storage and processing of large data sets across a network of computers. Along with additional tools and libraries, big data frameworks can be used for:

  • Predictive modeling by incorporating artificial intelligence (AI) and statistical algorithms
  • Statistical analysis for in-depth data exploration and to uncover hidden patterns
  • What-if analysis to simulate different scenarios and explore potential outcomes
  • Processing diverse data sets, including structured, semi-structured and unstructured data from various sources.

Four main data analysis methods  – descriptive, diagnostic, predictive and prescriptive  – are used to uncover insights and patterns within an organization's data. These methods facilitate a deeper understanding of market trends, customer preferences and other important business metrics.

IBM named a Leader in the 2024 Gartner® Magic Quadrant™ for Augmented Data Quality Solutions.

Structured vs unstructured data

What is data management?

The main difference between big data analytics and traditional data analytics is the type of data handled and the tools used to analyze it. Traditional analytics deals with structured data, typically stored in relational databases . This type of database helps ensure that data is well-organized and easy for a computer to understand. Traditional data analytics relies on statistical methods and tools like structured query language (SQL) for querying databases.

Big data analytics involves massive amounts of data in various formats, including structured, semi-structured and unstructured data. The complexity of this data requires more sophisticated analysis techniques. Big data analytics employs advanced techniques like machine learning and data mining to extract information from complex data sets. It often requires distributed processing systems like Hadoop to manage the sheer volume of data.

These are the four methods of data analysis at work within big data:

The "what happened" stage of data analysis. Here, the focus is on summarizing and describing past data to understand its basic characteristics.

The “why it happened” stage. By delving deep into the data, diagnostic analysis identifies the root patterns and trends observed in descriptive analytics.

The “what will happen” stage. It uses historical data, statistical modeling and machine learning to forecast trends.

Describes the “what to do” stage, which goes beyond prediction to provide recommendations for optimizing future actions based on insights derived from all previous.

The following dimensions highlight the core challenges and opportunities inherent in big data analytics.

The sheer volume of data generated today, from social media feeds, IoT devices, transaction records and more, presents a significant challenge. Traditional data storage and processing solutions are often inadequate to handle this scale efficiently. Big data technologies and cloud-based storage solutions enable organizations to store and manage these vast data sets cost-effectively, protecting valuable data from being discarded due to storage limitations.

Data is being produced at unprecedented speeds, from real-time social media updates to high-frequency stock trading records. The velocity at which data flows into organizations requires robust processing capabilities to capture, process and deliver accurate analysis in near real-time. Stream processing frameworks and in-memory data processing are designed to handle these rapid data streams and balance supply with demand.

Today's data comes in many formats, from structured to numeric data in traditional databases to unstructured text, video and images from diverse sources like social media and video surveillance. This variety demans flexible data management systems to handle and integrate disparate data types for comprehensive analysis. NoSQL databases , data lakes and schema -on-read technologies provide the necessary flexibility to accommodate the diverse nature of big data.

Data reliability and accuracy are critical, as decisions based on inaccurate or incomplete data can lead to negative outcomes. Veracity refers to the data's trustworthiness, encompassing data quality, noise and anomaly detection issues. Techniques and tools for data cleaning, validation and verification are integral to ensuring the integrity of big data, enabling organizations to make better decisions based on reliable information.

Big data analytics aims to extract actionable insights that offer tangible value. This involves turning vast data sets into meaningful information that can inform strategic decisions, uncover new opportunities and drive innovation. Advanced analytics, machine learning and AI are key to unlocking the value contained within big data, transforming raw data into strategic assets.

Data professionals, analysts, scientists and statisticians prepare and process data in a data lakehouse, which combines the performance of a data lakehouse with the flexibility of a data lake to clean data and ensure its quality. The process of turning raw data into valuable insights encompasses several key stages:

  • Collect data: The first step involves gathering data, which can be a mix of structured and unstructured forms from myriad sources like cloud, mobile applications and IoT sensors. This step is where organizations adapt their data collection strategies and integrate data from varied sources into central repositories like a data lake, which can automatically assign metadata for better manageability and accessibility.
  • Process data: After being collected, data must be systematically organized, extracted, transformed and then loaded into a storage system to ensure accurate analytical outcomes. Processing involves converting raw data into a format that is usable for analysis, which might involve aggregating data from different sources, converting data types or organizing data into structure formats. Given the exponential growth of available data, this stage can be challenging. Processing strategies may vary between batch processing, which handles large data volumes over extended periods and stream processing, which deals with smaller real-time data batches.
  • Clean data: Regardless of size, data must be cleaned to ensure quality and relevance. Cleaning data involves formatting it correctly, removing duplicates and eliminating irrelevant entries. Clean data prevents the corruption of output and safeguard’s reliability and accuracy.
  • Analyze data: Advanced analytics, such as data mining, predictive analytics, machine learning and deep learning, are employed to sift through the processed and cleaned data. These methods allow users to discover patterns, relationships and trends within the data, providing a solid foundation for informed decision-making.

Under the Analyze umbrella, there are potentially many technologies at work, including data mining, which is used to identify patterns and relationships within large data sets; predictive analytics, which forecasts future trends and opportunities; and deep learning , which mimics human learning patterns to uncover more abstract ideas.

Deep learning uses an artificial neural network with multiple layers to model complex patterns in data. Unlike traditional machine learning algorithms, deep learning learns from images, sound and text without manual help. For big data analytics, this powerful capability means the volume and complexity of data is not an issue.

Natural language processing (NLP) models allow machines to understand, interpret and generate human language. Within big data analytics, NLP extracts insights from massive unstructured text data generated across an organization and beyond.

Structured Data

Structured data refers to highly organized information that is easily searchable and typically stored in relational databases or spreadsheets. It adheres to a rigid schema, meaning each data element is clearly defined and accessible in a fixed field within a record or file. Examples of structured data include:

  • Customer names and addresses in a customer relationship management (CRM) system
  • Transactional data in financial records, such as sales figures and account balances
  • Employee data in human resources databases, including job titles and salaries

Structured data's main advantage is its simplicity for entry, search and analysis, often using straightforward database queries like SQL. However, the rapidly expanding universe of big data means that structured data represents a relatively small portion of the total data available to organizations.

Unstructured Data

Unstructured data lacks a pre-defined data model, making it more difficult to collect, process and analyze. It comprises the majority of data generated today, and includes formats such as:

  • Textual content from documents, emails and social media posts
  • Multimedia content, including images, audio files and videos
  • Data from IoT devices, which can include a mix of sensor data, log files and time-series data

The primary challenge with unstructured data is its complexity and lack of uniformity, requiring more sophisticated methods for indexing, searching and analyzing. NLP, machine learning and advanced analytics platforms are often employed to extract meaningful insights from unstructured data.

Semi-structured data

Semi-structured data occupies the middle ground between structured and unstructured data. While it does not reside in a relational database, it contains tags or other markers to separate semantic elements and enforce hierarchies of records and fields within the data. Examples include:

  • JSON (JavaScript Object Notation) and XML (eXtensible Markup Language) files, which are commonly used for web data interchange
  • Email, where the data has a standardized format (e.g., headers, subject, body) but the content within each section is unstructured
  • NoSQL databases, can store and manage semi-structured data more efficiently than traditional relational databases

Semi-structured data is more flexible than structured data but easier to analyze than unstructured data, providing a balance that is particularly useful in web applications and data integration tasks.

Ensuring data quality and integrity, integrating disparate data sources, protecting data privacy and security and finding the right talent to analyze and interpret data can present challenges to organizations looking to leverage their extensive data volumes. What follows are the benefits organizations can realize once they see success with big data analytics:

Real-time intelligence

One of the standout advantages of big data analytics is the capacity to provide real-time intelligence. Organizations can analyze vast amounts of data as it is generated from myriad sources and in various formats. Real-time insight allows businesses to make quick decisions, respond to market changes instantaneously and identify and act on opportunities as they arise.

Better-informed decisions

With big data analytics, organizations can uncover previously hidden trends, patterns and correlations. A deeper understanding equips leaders and decision-makers with the information needed to strategize effectively, enhancing business decision-making in supply chain management, e-commerce, operations and overall strategic direction.  

Cost savings

Big data analytics drives cost savings by identifying business process efficiencies and optimizations. Organizations can pinpoint wasteful expenditures by analyzing large datasets, streamlining operations and enhancing productivity. Moreover, predictive analytics can forecast future trends, allowing companies to allocate resources more efficiently and avoid costly missteps.

Better customer engagement

Understanding customer needs, behaviors and sentiments is crucial for successful engagement and big data analytics provides the tools to achieve this understanding. Companies gain insights into consumer preferences and tailor their marketing strategies by analyzing customer data.

Optimized risk management strategies

Big data analytics enhances an organization's ability to manage risk by providing the tools to identify, assess and address threats in real time. Predictive analytics can foresee potential dangers before they materialize, allowing companies to devise preemptive strategies.

As organizations across industries seek to leverage data to drive decision-making, improve operational efficiencies and enhance customer experiences, the demand for skilled professionals in big data analytics has surged. Here are some prominent career paths that utilize big data analytics:

Data scientist

Data scientists analyze complex digital data to assist businesses in making decisions. Using their data science training and advanced analytics technologies, including machine learning and predictive modeling, they uncover hidden insights in data.

Data analyst

Data analysts turn data into information and information into insights. They use statistical techniques to analyze and extract meaningful trends from data sets, often to inform business strategy and decisions.

Data engineer

Data engineers prepare, process and manage big data infrastructure and tools. They also develop, maintain, test and evaluate data solutions within organizations, often working with massive datasets to assist in analytics projects.

Machine learning engineer

Machine learning engineers focus on designing and implementing machine learning applications. They develop sophisticated algorithms that learn from and make predictions on data.

Business intelligence analyst

Business intelligence (BI) analysts help businesses make data-driven decisions by analyzing data to produce actionable insights. They often use BI tools to convert data into easy-to-understand reports and visualizations for business stakeholders.

Data visualization specialist

These specialists focus on the visual representation of data. They create data visualizations that help end users understand the significance of data by placing it in a visual context.

Data architect

Data architects design, create, deploy and manage an organization's data architecture. They define how data is stored, consumed, integrated and managed by different data entities and IT systems.

IBM and Cloudera have partnered to create an industry-leading, enterprise-grade big data framework distribution plus a variety of cloud services and products — all designed to achieve faster analytics at scale.

IBM Db2 Database on IBM Cloud Pak for Data combines a proven, AI-infused, enterprise-ready data management system with an integrated data and AI platform built on the security-rich, scalable Red Hat OpenShift foundation.

IBM Big Replicate is an enterprise-class data replication software platform that keeps data consistent in a distributed environment, on-premises and in the hybrid cloud, including SQL and NoSQL databases.

A data warehouse is a system that aggregates data from different sources into a single, central, consistent data store to support data analysis, data mining, artificial intelligence and machine learning.

Business intelligence gives organizations the ability to get answers they can understand. Instead of using best guesses, they can base decisions on what their business data is telling them — whether it relates to production, supply chain, customers or market trends.

Cloud computing is the on-demand access of physical or virtual servers, data storage, networking capabilities, application development tools, software, AI analytic tools and more—over the internet with pay-per-use pricing. The cloud computing model offers customers flexibility and scalability compared to traditional infrastructure.

Purpose-built data-driven architecture helps support business intelligence across the organization. IBM analytics solutions allow organizations to simplify raw data access, provide end-to-end data management and empower business users with AI-driven self-service analytics to predict outcomes.

Artificial intelligence in strategy

Can machines automate strategy development? The short answer is no. However, there are numerous aspects of strategists’ work where AI and advanced analytics tools can already bring enormous value. Yuval Atsmon is a senior partner who leads the new McKinsey Center for Strategy Innovation, which studies ways new technologies can augment the timeless principles of strategy. In this episode of the Inside the Strategy Room podcast, he explains how artificial intelligence is already transforming strategy and what’s on the horizon. This is an edited transcript of the discussion. For more conversations on the strategy issues that matter, follow the series on your preferred podcast platform .

Joanna Pachner: What does artificial intelligence mean in the context of strategy?

Yuval Atsmon: When people talk about artificial intelligence, they include everything to do with analytics, automation, and data analysis. Marvin Minsky, the pioneer of artificial intelligence research in the 1960s, talked about AI as a “suitcase word”—a term into which you can stuff whatever you want—and that still seems to be the case. We are comfortable with that because we think companies should use all the capabilities of more traditional analysis while increasing automation in strategy that can free up management or analyst time and, gradually, introducing tools that can augment human thinking.

Joanna Pachner: AI has been embraced by many business functions, but strategy seems to be largely immune to its charms. Why do you think that is?

Subscribe to the Inside the Strategy Room podcast

Yuval Atsmon: You’re right about the limited adoption. Only 7 percent of respondents to our survey about the use of AI say they use it in strategy or even financial planning, whereas in areas like marketing, supply chain, and service operations, it’s 25 or 30 percent. One reason adoption is lagging is that strategy is one of the most integrative conceptual practices. When executives think about strategy automation, many are looking too far ahead—at AI capabilities that would decide, in place of the business leader, what the right strategy is. They are missing opportunities to use AI in the building blocks of strategy that could significantly improve outcomes.

I like to use the analogy to virtual assistants. Many of us use Alexa or Siri but very few people use these tools to do more than dictate a text message or shut off the lights. We don’t feel comfortable with the technology’s ability to understand the context in more sophisticated applications. AI in strategy is similar: it’s hard for AI to know everything an executive knows, but it can help executives with certain tasks.

When executives think about strategy automation, many are looking too far ahead—at AI deciding the right strategy. They are missing opportunities to use AI in the building blocks of strategy.

Joanna Pachner: What kind of tasks can AI help strategists execute today?

Yuval Atsmon: We talk about six stages of AI development. The earliest is simple analytics, which we refer to as descriptive intelligence. Companies use dashboards for competitive analysis or to study performance in different parts of the business that are automatically updated. Some have interactive capabilities for refinement and testing.

The second level is diagnostic intelligence, which is the ability to look backward at the business and understand root causes and drivers of performance. The level after that is predictive intelligence: being able to anticipate certain scenarios or options and the value of things in the future based on momentum from the past as well as signals picked in the market. Both diagnostics and prediction are areas that AI can greatly improve today. The tools can augment executives’ analysis and become areas where you develop capabilities. For example, on diagnostic intelligence, you can organize your portfolio into segments to understand granularly where performance is coming from and do it in a much more continuous way than analysts could. You can try 20 different ways in an hour versus deploying one hundred analysts to tackle the problem.

Predictive AI is both more difficult and more risky. Executives shouldn’t fully rely on predictive AI, but it provides another systematic viewpoint in the room. Because strategic decisions have significant consequences, a key consideration is to use AI transparently in the sense of understanding why it is making a certain prediction and what extrapolations it is making from which information. You can then assess if you trust the prediction or not. You can even use AI to track the evolution of the assumptions for that prediction.

Those are the levels available today. The next three levels will take time to develop. There are some early examples of AI advising actions for executives’ consideration that would be value-creating based on the analysis. From there, you go to delegating certain decision authority to AI, with constraints and supervision. Eventually, there is the point where fully autonomous AI analyzes and decides with no human interaction.

Because strategic decisions have significant consequences, you need to understand why AI is making a certain prediction and what extrapolations it’s making from which information.

Joanna Pachner: What kind of businesses or industries could gain the greatest benefits from embracing AI at its current level of sophistication?

Yuval Atsmon: Every business probably has some opportunity to use AI more than it does today. The first thing to look at is the availability of data. Do you have performance data that can be organized in a systematic way? Companies that have deep data on their portfolios down to business line, SKU, inventory, and raw ingredients have the biggest opportunities to use machines to gain granular insights that humans could not.

Companies whose strategies rely on a few big decisions with limited data would get less from AI. Likewise, those facing a lot of volatility and vulnerability to external events would benefit less than companies with controlled and systematic portfolios, although they could deploy AI to better predict those external events and identify what they can and cannot control.

Third, the velocity of decisions matters. Most companies develop strategies every three to five years, which then become annual budgets. If you think about strategy in that way, the role of AI is relatively limited other than potentially accelerating analyses that are inputs into the strategy. However, some companies regularly revisit big decisions they made based on assumptions about the world that may have since changed, affecting the projected ROI of initiatives. Such shifts would affect how you deploy talent and executive time, how you spend money and focus sales efforts, and AI can be valuable in guiding that. The value of AI is even bigger when you can make decisions close to the time of deploying resources, because AI can signal that your previous assumptions have changed from when you made your plan.

Joanna Pachner: Can you provide any examples of companies employing AI to address specific strategic challenges?

Yuval Atsmon: Some of the most innovative users of AI, not coincidentally, are AI- and digital-native companies. Some of these companies have seen massive benefits from AI and have increased its usage in other areas of the business. One mobility player adjusts its financial planning based on pricing patterns it observes in the market. Its business has relatively high flexibility to demand but less so to supply, so the company uses AI to continuously signal back when pricing dynamics are trending in a way that would affect profitability or where demand is rising. This allows the company to quickly react to create more capacity because its profitability is highly sensitive to keeping demand and supply in equilibrium.

Joanna Pachner: Given how quickly things change today, doesn’t AI seem to be more a tactical than a strategic tool, providing time-sensitive input on isolated elements of strategy?

Yuval Atsmon: It’s interesting that you make the distinction between strategic and tactical. Of course, every decision can be broken down into smaller ones, and where AI can be affordably used in strategy today is for building blocks of the strategy. It might feel tactical, but it can make a massive difference. One of the world’s leading investment firms, for example, has started to use AI to scan for certain patterns rather than scanning individual companies directly. AI looks for consumer mobile usage that suggests a company’s technology is catching on quickly, giving the firm an opportunity to invest in that company before others do. That created a significant strategic edge for them, even though the tool itself may be relatively tactical.

Joanna Pachner: McKinsey has written a lot about cognitive biases  and social dynamics that can skew decision making. Can AI help with these challenges?

Yuval Atsmon: When we talk to executives about using AI in strategy development, the first reaction we get is, “Those are really big decisions; what if AI gets them wrong?” The first answer is that humans also get them wrong—a lot. [Amos] Tversky, [Daniel] Kahneman, and others have proven that some of those errors are systemic, observable, and predictable. The first thing AI can do is spot situations likely to give rise to biases. For example, imagine that AI is listening in on a strategy session where the CEO proposes something and everyone says “Aye” without debate and discussion. AI could inform the room, “We might have a sunflower bias here,” which could trigger more conversation and remind the CEO that it’s in their own interest to encourage some devil’s advocacy.

We also often see confirmation bias, where people focus their analysis on proving the wisdom of what they already want to do, as opposed to looking for a fact-based reality. Just having AI perform a default analysis that doesn’t aim to satisfy the boss is useful, and the team can then try to understand why that is different than the management hypothesis, triggering a much richer debate.

In terms of social dynamics, agency problems can create conflicts of interest. Every business unit [BU] leader thinks that their BU should get the most resources and will deliver the most value, or at least they feel they should advocate for their business. AI provides a neutral way based on systematic data to manage those debates. It’s also useful for executives with decision authority, since we all know that short-term pressures and the need to make the quarterly and annual numbers lead people to make different decisions on the 31st of December than they do on January 1st or October 1st. Like the story of Ulysses and the sirens, you can use AI to remind you that you wanted something different three months earlier. The CEO still decides; AI can just provide that extra nudge.

Joanna Pachner: It’s like you have Spock next to you, who is dispassionate and purely analytical.

Yuval Atsmon: That is not a bad analogy—for Star Trek fans anyway.

Joanna Pachner: Do you have a favorite application of AI in strategy?

Yuval Atsmon: I have worked a lot on resource allocation, and one of the challenges, which we call the hockey stick phenomenon, is that executives are always overly optimistic about what will happen. They know that resource allocation will inevitably be defined by what you believe about the future, not necessarily by past performance. AI can provide an objective prediction of performance starting from a default momentum case: based on everything that happened in the past and some indicators about the future, what is the forecast of performance if we do nothing? This is before we say, “But I will hire these people and develop this new product and improve my marketing”— things that every executive thinks will help them overdeliver relative to the past. The neutral momentum case, which AI can calculate in a cold, Spock-like manner, can change the dynamics of the resource allocation discussion. It’s a form of predictive intelligence accessible today and while it’s not meant to be definitive, it provides a basis for better decisions.

Joanna Pachner: Do you see access to technology talent as one of the obstacles to the adoption of AI in strategy, especially at large companies?

Yuval Atsmon: I would make a distinction. If you mean machine-learning and data science talent or software engineers who build the digital tools, they are definitely not easy to get. However, companies can increasingly use platforms that provide access to AI tools and require less from individual companies. Also, this domain of strategy is exciting—it’s cutting-edge, so it’s probably easier to get technology talent for that than it might be for manufacturing work.

The bigger challenge, ironically, is finding strategists or people with business expertise to contribute to the effort. You will not solve strategy problems with AI without the involvement of people who understand the customer experience and what you are trying to achieve. Those who know best, like senior executives, don’t have time to be product managers for the AI team. An even bigger constraint is that, in some cases, you are asking people to get involved in an initiative that may make their jobs less important. There could be plenty of opportunities for incorpo­rating AI into existing jobs, but it’s something companies need to reflect on. The best approach may be to create a digital factory where a different team tests and builds AI applications, with oversight from senior stakeholders.

The big challenge is finding strategists to contribute to the AI effort. You are asking people to get involved in an initiative that may make their jobs less important.

Joanna Pachner: Do you think this worry about job security and the potential that AI will automate strategy is realistic?

Yuval Atsmon: The question of whether AI will replace human judgment and put humanity out of its job is a big one that I would leave for other experts.

The pertinent question is shorter-term automation. Because of its complexity, strategy would be one of the later domains to be affected by automation, but we are seeing it in many other domains. However, the trend for more than two hundred years has been that automation creates new jobs, although ones requiring different skills. That doesn’t take away the fear some people have of a machine exposing their mistakes or doing their job better than they do it.

Joanna Pachner: We recently published an article about strategic courage in an age of volatility  that talked about three types of edge business leaders need to develop. One of them is an edge in insights. Do you think AI has a role to play in furnishing a proprietary insight edge?

Yuval Atsmon: One of the challenges most strategists face is the overwhelming complexity of the world we operate in—the number of unknowns, the information overload. At one level, it may seem that AI will provide another layer of complexity. In reality, it can be a sharp knife that cuts through some of the clutter. The question to ask is, Can AI simplify my life by giving me sharper, more timely insights more easily?

Joanna Pachner: You have been working in strategy for a long time. What sparked your interest in exploring this intersection of strategy and new technology?

Yuval Atsmon: I have always been intrigued by things at the boundaries of what seems possible. Science fiction writer Arthur C. Clarke’s second law is that to discover the limits of the possible, you have to venture a little past them into the impossible, and I find that particularly alluring in this arena.

AI in strategy is in very nascent stages but could be very consequential for companies and for the profession. For a top executive, strategic decisions are the biggest way to influence the business, other than maybe building the top team, and it is amazing how little technology is leveraged in that process today. It’s conceivable that competitive advantage will increasingly rest in having executives who know how to apply AI well. In some domains, like investment, that is already happening, and the difference in returns can be staggering. I find helping companies be part of that evolution very exciting.

Explore a career with us

Related articles.

Floating chess pieces

Strategic courage in an age of volatility

Bias Busters collection

Bias Busters Collection

IMAGES

  1. 5 Steps of the Data Analysis Process

    definition of data analysis in research process

  2. Unleashing Insights: Mastering the Art of Research and Data Analysis

    definition of data analysis in research process

  3. Data analysis

    definition of data analysis in research process

  4. How-To: Data Analytics for Beginners

    definition of data analysis in research process

  5. What is Data Analysis ?

    definition of data analysis in research process

  6. The 4 Types of Data Analysis [Ultimate Guide] (2022)

    definition of data analysis in research process

VIDEO

  1. LESSON 46

  2. Qualitative Data Analysis 101 Tutorial: 6 Analysis Methods + Examples

  3. What Is Data Analytics?

  4. Types of Qualitative Data Analysis [Purposes, Steps, Example]

  5. Quantitative Data Analysis 101 Tutorial: Descriptive vs Inferential Statistics (With Examples)

  6. Fundamentals of Qualitative Research Methods: Data Analysis (Module 5)

COMMENTS

  1. Data analysis

    data analysis, the process of systematically collecting, cleaning, transforming, describing, modeling, and interpreting data, generally employing statistical techniques. Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making.

  2. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  3. Data Analysis

    Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.

  4. What is Data Analysis? An Expert Guide With Examples

    Data analysis is a comprehensive method of inspecting, cleansing, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making. It is a multifaceted process involving various techniques and methodologies to interpret data from various sources in different formats, both structured and unstructured.

  5. Guides: Data Analysis: Introduction to Data Analysis

    According to the federal government, data analysis is "the process of systematically applying statistical and/or logical techniques to describe and illustrate, condense and recap, and evaluate data" (Responsible Conduct in Data Management).Important components of data analysis include searching for patterns, remaining unbiased in drawing inference from data, practicing responsible data ...

  6. What Is Data Analysis? (With Examples)

    Data analysis process. As the data available to companies continues to grow both in amount and complexity, so too does the need for an effective and efficient process by which to harness the value of that data. The data analysis process typically moves through several iterative phases. Let's take a closer look at each.

  7. Data analysis

    Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains.

  8. An Introduction to Data Analysis

    Problem Definition. The process of data analysis actually begins long before the collection of raw data. In fact, data analysis always starts with a problem to be solved, which needs to be defined. The problem is defined only after you have focused the system you want to study; this may be a mechanism, an application, or a process in general.

  9. Data Analysis in Quantitative Research

    Abstract. Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility.

  10. PDF The SAGE Handbook of Qualitative Data Analysis

    look at the role of data analysis in the research process. Another axis is linked to the differ-ence between producing new data and taking existing, naturally occurring data for a research project. A further distinction is related to the major approaches to analysing data - either 1 Mapping the Field Uwe Flick

  11. A Step-by-Step Guide to the Data Analysis Process

    The first step in any data analysis process is to define your objective. In data analytics jargon, this is sometimes called the 'problem statement'. ... Many organizations collect big data to create industry reports or to conduct market research. The research and advisory firm Gartner is a good real-world example of an organization that ...

  12. What is data analysis? Methods, techniques, types & how-to

    A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.

  13. What is Data Analysis? Definition, Tools, Examples

    Data analysis is the process of examining, cleaning, transforming, and interpreting data to uncover insights, identify patterns, and make informed decisions. It involves applying statistical, mathematical, and computational techniques to understand the underlying structure and relationships within the data and extract actionable information ...

  14. Data Analysis

    Data analysis is a process of collecting data and organizing it in a manner where one can draw a conclusion. Methods of data collection include surveys , interviews , measurements or records , and ...

  15. Research Process

    Definition: Research Process is a systematic and structured approach that involves the collection, analysis, and interpretation of data or information to answer a specific research question or solve a particular problem. ... The data analysis process involves cleaning and organizing the data, applying statistical and analytical techniques to ...

  16. What Is Data Analysis: A Comprehensive Guide

    Data analysis is a catalyst for continuous improvement. It allows organizations to monitor performance metrics, track progress, and identify areas for enhancement. This iterative process of analyzing data, implementing changes, and analyzing again leads to ongoing refinement and excellence in processes and products.

  17. Learning to Do Qualitative Data Analysis: A Starting Point

    On the basis of Rocco (2010), Storberg-Walker's (2012) amended list on qualitative data analysis in research papers included the following: (a) the article should provide enough details so that reviewers could follow the same analytical steps; (b) the analysis process selected should be logically connected to the purpose of the study; and (c ...

  18. PDF An Introduction to Data Analysis

    the performance of all the steps constituting data analysis, from data research to data mining, to publishing the results of the predictive model. Mathematics and Statistics As you will see throughout the book, data analysis requires a lot of complex math during the treatment and processing of data. You need to be competent in all of this,

  19. Data Analysis

    Data Analysis is the process of systematically applying statistical and/or logical techniques to describe and illustrate, condense and recap, and evaluate data. According to Shamoo and Resnik (2003) various analytic procedures "provide a way of drawing inductive inferences from data and distinguishing the signal (the phenomenon of interest) from the noise (statistical fluctuations) present ...

  20. Data Analysis in Qualitative Research: A Brief Guide to Using Nvivo

    Data analysis in qualitative research is defined as the process of systematically searching and arranging the interview transcripts, observation notes, or other non-textual materials that the researcher accumulates to increase the understanding of the phenomenon.7 The process of analysing qualitative data predominantly involves coding or ...

  21. (PDF) The art of Data Analysis

    The process of performing certain. calculations and evaluation in order to extract. relevant information from data is called data. analysis. The data analysis ma y take several steps. to reach ...

  22. PDF Chapter 6: Data Analysis and Interpretation 6.1. Introduction

    conceptualisation of the rather sophisticated research process that was made possible by the illustration of a mixed research model (cf. par. 5.7.4.3, p. 326; Fig. 18, p. 327), the description of ... data analysis well, when he provides the following definition of qualitative data analysis that serves as a good working definition: ...

  23. (PDF) ANALYSIS OF DATA

    Abstract. Data Analysis is a process of applying statistical practices to organize, represent, describe, evaluate, and interpret data. In statistical applications data analysis can be divided into ...

  24. What is Big Data Analytics?

    Data professionals, analysts, scientists and statisticians prepare and process data in a data lakehouse, which combines the performance of a data lakehouse with the flexibility of a data lake to clean data and ensure its quality. The process of turning raw data into valuable insights encompasses several key stages: Collect data: The first step ...

  25. AI strategy in business: A guide for executives

    Yuval Atsmon: When people talk about artificial intelligence, they include everything to do with analytics, automation, and data analysis. Marvin Minsky, the pioneer of artificial intelligence research in the 1960s, talked about AI as a "suitcase word"—a term into which you can stuff whatever you want—and that still seems to be the case.