Trending Articles

  • Accurate structure prediction of biomolecular interactions with AlphaFold 3. Abramson J, et al. Nature. 2024. PMID: 38718835
  • Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Bandyopadhyay S, et al. Cell. 2024. PMID: 38714197
  • APOE4 homozygozity represents a distinct genetic form of Alzheimer's disease. Fortea J, et al. Nat Med. 2024. PMID: 38710950
  • Puppy-dog eyes in wild canines sparks rethink on dog evolution. Dohrn G. Nature. 2024. PMID: 38705890 No abstract available.
  • Evaluation of post-surgical cognitive function and protein fingerprints in the cerebro-spinal fluid utilizing surface-enhanced laser Desorption/Ionization time-of-flight mass-spectrometry (SELDI-TOF MS) after coronary artery bypass grafting: review of proteomic analytic tools and introducing a new syndrome. Reis HJ, et al. Curr Med Chem. 2011. PMID: 21254974 Review.

Latest Literature

  • Am Heart J (1)
  • Am J Clin Nutr (1)
  • Arch Phys Med Rehabil (1)
  • Cell Metab (1)
  • Gastroenterology (1)
  • J Neurosci (4)

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Grad Coach

How To Write A Research Paper

Step-By-Step Tutorial With Examples + FREE Template

By: Derek Jansen (MBA) | Expert Reviewer: Dr Eunice Rautenbach | March 2024

For many students, crafting a strong research paper from scratch can feel like a daunting task – and rightly so! In this post, we’ll unpack what a research paper is, what it needs to do , and how to write one – in three easy steps. 🙂 

Overview: Writing A Research Paper

What (exactly) is a research paper.

  • How to write a research paper
  • Stage 1 : Topic & literature search
  • Stage 2 : Structure & outline
  • Stage 3 : Iterative writing
  • Key takeaways

Let’s start by asking the most important question, “ What is a research paper? ”.

Simply put, a research paper is a scholarly written work where the writer (that’s you!) answers a specific question (this is called a research question ) through evidence-based arguments . Evidence-based is the keyword here. In other words, a research paper is different from an essay or other writing assignments that draw from the writer’s personal opinions or experiences. With a research paper, it’s all about building your arguments based on evidence (we’ll talk more about that evidence a little later).

Now, it’s worth noting that there are many different types of research papers , including analytical papers (the type I just described), argumentative papers, and interpretative papers. Here, we’ll focus on analytical papers , as these are some of the most common – but if you’re keen to learn about other types of research papers, be sure to check out the rest of the blog .

With that basic foundation laid, let’s get down to business and look at how to write a research paper .

Research Paper Template

Overview: The 3-Stage Process

While there are, of course, many potential approaches you can take to write a research paper, there are typically three stages to the writing process. So, in this tutorial, we’ll present a straightforward three-step process that we use when working with students at Grad Coach.

These three steps are:

  • Finding a research topic and reviewing the existing literature
  • Developing a provisional structure and outline for your paper, and
  • Writing up your initial draft and then refining it iteratively

Let’s dig into each of these.

Need a helping hand?

research studies paper

Step 1: Find a topic and review the literature

As we mentioned earlier, in a research paper, you, as the researcher, will try to answer a question . More specifically, that’s called a research question , and it sets the direction of your entire paper. What’s important to understand though is that you’ll need to answer that research question with the help of high-quality sources – for example, journal articles, government reports, case studies, and so on. We’ll circle back to this in a minute.

The first stage of the research process is deciding on what your research question will be and then reviewing the existing literature (in other words, past studies and papers) to see what they say about that specific research question. In some cases, your professor may provide you with a predetermined research question (or set of questions). However, in many cases, you’ll need to find your own research question within a certain topic area.

Finding a strong research question hinges on identifying a meaningful research gap – in other words, an area that’s lacking in existing research. There’s a lot to unpack here, so if you wanna learn more, check out the plain-language explainer video below.

Once you’ve figured out which question (or questions) you’ll attempt to answer in your research paper, you’ll need to do a deep dive into the existing literature – this is called a “ literature search ”. Again, there are many ways to go about this, but your most likely starting point will be Google Scholar .

If you’re new to Google Scholar, think of it as Google for the academic world. You can start by simply entering a few different keywords that are relevant to your research question and it will then present a host of articles for you to review. What you want to pay close attention to here is the number of citations for each paper – the more citations a paper has, the more credible it is (generally speaking – there are some exceptions, of course).

how to use google scholar

Ideally, what you’re looking for are well-cited papers that are highly relevant to your topic. That said, keep in mind that citations are a cumulative metric , so older papers will often have more citations than newer papers – just because they’ve been around for longer. So, don’t fixate on this metric in isolation – relevance and recency are also very important.

Beyond Google Scholar, you’ll also definitely want to check out academic databases and aggregators such as Science Direct, PubMed, JStor and so on. These will often overlap with the results that you find in Google Scholar, but they can also reveal some hidden gems – so, be sure to check them out.

Once you’ve worked your way through all the literature, you’ll want to catalogue all this information in some sort of spreadsheet so that you can easily recall who said what, when and within what context. If you’d like, we’ve got a free literature spreadsheet that helps you do exactly that.

Don’t fixate on an article’s citation count in isolation - relevance (to your research question) and recency are also very important.

Step 2: Develop a structure and outline

With your research question pinned down and your literature digested and catalogued, it’s time to move on to planning your actual research paper .

It might sound obvious, but it’s really important to have some sort of rough outline in place before you start writing your paper. So often, we see students eagerly rushing into the writing phase, only to land up with a disjointed research paper that rambles on in multiple

Now, the secret here is to not get caught up in the fine details . Realistically, all you need at this stage is a bullet-point list that describes (in broad strokes) what you’ll discuss and in what order. It’s also useful to remember that you’re not glued to this outline – in all likelihood, you’ll chop and change some sections once you start writing, and that’s perfectly okay. What’s important is that you have some sort of roadmap in place from the start.

You need to have a rough outline in place before you start writing your paper - or you’ll end up with a disjointed research paper that rambles on.

At this stage you might be wondering, “ But how should I structure my research paper? ”. Well, there’s no one-size-fits-all solution here, but in general, a research paper will consist of a few relatively standardised components:

  • Introduction
  • Literature review
  • Methodology

Let’s take a look at each of these.

First up is the introduction section . As the name suggests, the purpose of the introduction is to set the scene for your research paper. There are usually (at least) four ingredients that go into this section – these are the background to the topic, the research problem and resultant research question , and the justification or rationale. If you’re interested, the video below unpacks the introduction section in more detail. 

The next section of your research paper will typically be your literature review . Remember all that literature you worked through earlier? Well, this is where you’ll present your interpretation of all that content . You’ll do this by writing about recent trends, developments, and arguments within the literature – but more specifically, those that are relevant to your research question . The literature review can oftentimes seem a little daunting, even to seasoned researchers, so be sure to check out our extensive collection of literature review content here .

With the introduction and lit review out of the way, the next section of your paper is the research methodology . In a nutshell, the methodology section should describe to your reader what you did (beyond just reviewing the existing literature) to answer your research question. For example, what data did you collect, how did you collect that data, how did you analyse that data and so on? For each choice, you’ll also need to justify why you chose to do it that way, and what the strengths and weaknesses of your approach were.

Now, it’s worth mentioning that for some research papers, this aspect of the project may be a lot simpler . For example, you may only need to draw on secondary sources (in other words, existing data sets). In some cases, you may just be asked to draw your conclusions from the literature search itself (in other words, there may be no data analysis at all). But, if you are required to collect and analyse data, you’ll need to pay a lot of attention to the methodology section. The video below provides an example of what the methodology section might look like.

By this stage of your paper, you will have explained what your research question is, what the existing literature has to say about that question, and how you analysed additional data to try to answer your question. So, the natural next step is to present your analysis of that data . This section is usually called the “results” or “analysis” section and this is where you’ll showcase your findings.

Depending on your school’s requirements, you may need to present and interpret the data in one section – or you might split the presentation and the interpretation into two sections. In the latter case, your “results” section will just describe the data, and the “discussion” is where you’ll interpret that data and explicitly link your analysis back to your research question. If you’re not sure which approach to take, check in with your professor or take a look at past papers to see what the norms are for your programme.

Alright – once you’ve presented and discussed your results, it’s time to wrap it up . This usually takes the form of the “ conclusion ” section. In the conclusion, you’ll need to highlight the key takeaways from your study and close the loop by explicitly answering your research question. Again, the exact requirements here will vary depending on your programme (and you may not even need a conclusion section at all) – so be sure to check with your professor if you’re unsure.

Step 3: Write and refine

Finally, it’s time to get writing. All too often though, students hit a brick wall right about here… So, how do you avoid this happening to you?

Well, there’s a lot to be said when it comes to writing a research paper (or any sort of academic piece), but we’ll share three practical tips to help you get started.

First and foremost , it’s essential to approach your writing as an iterative process. In other words, you need to start with a really messy first draft and then polish it over multiple rounds of editing. Don’t waste your time trying to write a perfect research paper in one go. Instead, take the pressure off yourself by adopting an iterative approach.

Secondly , it’s important to always lean towards critical writing , rather than descriptive writing. What does this mean? Well, at the simplest level, descriptive writing focuses on the “ what ”, while critical writing digs into the “ so what ” – in other words, the implications. If you’re not familiar with these two types of writing, don’t worry! You can find a plain-language explanation here.

Last but not least, you’ll need to get your referencing right. Specifically, you’ll need to provide credible, correctly formatted citations for the statements you make. We see students making referencing mistakes all the time and it costs them dearly. The good news is that you can easily avoid this by using a simple reference manager . If you don’t have one, check out our video about Mendeley, an easy (and free) reference management tool that you can start using today.

Recap: Key Takeaways

We’ve covered a lot of ground here. To recap, the three steps to writing a high-quality research paper are:

  • To choose a research question and review the literature
  • To plan your paper structure and draft an outline
  • To take an iterative approach to writing, focusing on critical writing and strong referencing

Remember, this is just a b ig-picture overview of the research paper development process and there’s a lot more nuance to unpack. So, be sure to grab a copy of our free research paper template to learn more about how to write a research paper.

You Might Also Like:

Referencing in Word

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Detail of a painting depicting the landscape of New Mexico with mountains in the distance

Explore millions of high-quality primary sources and images from around the world, including artworks, maps, photographs, and more.

Explore migration issues through a variety of media types

  • Part of The Streets are Talking: Public Forms of Creative Expression from Around the World
  • Part of The Journal of Economic Perspectives, Vol. 34, No. 1 (Winter 2020)
  • Part of Cato Institute (Aug. 3, 2021)
  • Part of University of California Press
  • Part of Open: Smithsonian National Museum of African American History & Culture
  • Part of Indiana Journal of Global Legal Studies, Vol. 19, No. 1 (Winter 2012)
  • Part of R Street Institute (Nov. 1, 2020)
  • Part of Leuven University Press
  • Part of UN Secretary-General Papers: Ban Ki-moon (2007-2016)
  • Part of Perspectives on Terrorism, Vol. 12, No. 4 (August 2018)
  • Part of Leveraging Lives: Serbia and Illegal Tunisian Migration to Europe, Carnegie Endowment for International Peace (Mar. 1, 2023)
  • Part of UCL Press

Harness the power of visual materials—explore more than 3 million images now on JSTOR.

Enhance your scholarly research with underground newspapers, magazines, and journals.

Explore collections in the arts, sciences, and literature from the world’s leading museums, archives, and scholars.

Research articles

Ultra-processed food consumption and all cause and cause specific mortality, comparative effectiveness of second line oral antidiabetic treatments among people with type 2 diabetes mellitus, efficacy of psilocybin for treating symptoms of depression, reverse total shoulder replacement versus anatomical total shoulder replacement for osteoarthritis, effect of combination treatment with glp-1 receptor agonists and sglt-2 inhibitors on incidence of cardiovascular and serious renal events, prenatal opioid exposure and risk of neuropsychiatric disorders in children, temporal trends in lifetime risks of atrial fibrillation and its complications, antipsychotic use in people with dementia, predicting the risks of kidney failure and death in adults with moderate to severe chronic kidney disease, impact of large scale, multicomponent intervention to reduce proton pump inhibitor overuse, esketamine after childbirth for mothers with prenatal depression, glucagon-like peptide 1 receptor agonist use and risk of thyroid cancer, use of progestogens and the risk of intracranial meningioma, delirium and incident dementia in hospital patients, derivation and external validation of a simple risk score for predicting severe acute kidney injury after intravenous cisplatin, quality and safety of artificial intelligence generated health information, large language models and the generation of health disinformation, 25 year trends in cancer incidence and mortality among adults in the uk, cervical pessary versus vaginal progesterone in women with a singleton pregnancy, comparison of prior authorization across insurers, diagnostic accuracy of magnetically guided capsule endoscopy with a detachable string for detecting oesophagogastric varices in adults with cirrhosis, ultra-processed food exposure and adverse health outcomes, added benefit and revenues of oncology drugs approved by the ema, exposure to air pollution and hospital admission for cardiovascular diseases, short term exposure to low level ambient fine particulate matter and natural cause, cardiovascular, and respiratory morbidity, optimal timing of influenza vaccination in young children, effect of exercise for depression, association of non-alcoholic fatty liver disease with cardiovascular disease and all cause death in patients with type 2 diabetes, duration of cpr and outcomes for adults with in-hospital cardiac arrest, clinical effectiveness of an online physical and mental health rehabilitation programme for post-covid-19 condition, atypia detected during breast screening and subsequent development of cancer, publishers’ and journals’ instructions to authors on use of generative ai in academic and scientific publishing, effectiveness of glp-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes, neurological development in children born moderately or late preterm, invasive breast cancer and breast cancer death after non-screen detected ductal carcinoma in situ, all cause and cause specific mortality in obsessive-compulsive disorder, acute rehabilitation following traumatic anterior shoulder dislocation, perinatal depression and risk of mortality, undisclosed financial conflicts of interest in dsm-5-tr, effect of risk mitigation guidance opioid and stimulant dispensations on mortality and acute care visits, update to living systematic review on sars-cov-2 positivity in offspring and timing of mother-to-child transmission, perinatal depression and its health impact, christmas 2023: common healthcare related instruments subjected to magnetic attraction study, using autoregressive integrated moving average models for time series analysis of observational data, demand for morning after pill following new year holiday, christmas 2023: christmas recipes from the great british bake off, effect of a doctor working during the festive period on population health: experiment using doctor who episodes, christmas 2023: analysis of barbie medical and science career dolls, christmas 2023: effect of chair placement on physicians’ behavior and patients’ satisfaction, management of chronic pain secondary to temporomandibular disorders, christmas 2023: projecting complete redaction of clinical trial protocols, christmas 2023: a drug target for erectile dysfunction to help improve fertility, sexual activity, and wellbeing, christmas 2023: efficacy of cola ingestion for oesophageal food bolus impaction, conservative management versus laparoscopic cholecystectomy in adults with gallstone disease, social media use and health risk behaviours in young people, untreated cervical intraepithelial neoplasia grade 2 and cervical cancer, air pollution deaths attributable to fossil fuels, implementation of a high sensitivity cardiac troponin i assay and risk of myocardial infarction or death at five years, covid-19 vaccine effectiveness against post-covid-19 condition, association between patient-surgeon gender concordance and mortality after surgery, intravascular imaging guided versus coronary angiography guided percutaneous coronary intervention, treatment of lower urinary tract symptoms in men in primary care using a conservative intervention, autism intervention meta-analysis of early childhood studies, effectiveness of the live zoster vaccine during the 10 years following vaccination, effects of a multimodal intervention in primary care to reduce second line antibiotic prescriptions for urinary tract infections in women, pyrotinib versus placebo in combination with trastuzumab and docetaxel in patients with her2 positive metastatic breast cancer, association of dcis size and margin status with risk of developing breast cancer post-treatment, racial differences in low value care among older patients in the us, pharmaceutical industry payments and delivery of low value cancer drugs, rosuvastatin versus atorvastatin in adults with coronary artery disease, clinical effectiveness of septoplasty versus medical management for nasal airways obstruction, ultrasound guided lavage with corticosteroid injection versus sham lavage with and without corticosteroid injection for calcific tendinopathy of shoulder, early versus delayed antihypertensive treatment in patients with acute ischaemic stroke, mortality risks associated with floods in 761 communities worldwide, interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities, association between changes in carbohydrate intake and long term weight changes, future-case control crossover analysis for adjusting bias in case crossover studies, association between recently raised anticholinergic burden and risk of acute cardiovascular events, suboptimal gestational weight gain and neonatal outcomes in low and middle income countries: individual participant data meta-analysis, efficacy and safety of an inactivated virus-particle vaccine for sars-cov-2, effect of invitation letter in language of origin on screening attendance: randomised controlled trial in breastscreen norway, visits by nurse practitioners and physician assistants in the usa, non-erosive gastro-oesophageal reflux disease and oesophageal adenocarcinoma, venous thromboembolism with use of hormonal contraception and nsaids, food additive emulsifiers and risk of cardiovascular disease, balancing risks and benefits of cannabis use, promoting activity, independence, and stability in early dementia and mild cognitive impairment, effect of home cook interventions for salt reduction in china, cancer mortality after low dose exposure to ionising radiation, effect of a smartphone intervention among university students with unhealthy alcohol use, long term risk of death and readmission after hospital admission with covid-19 among older adults, mortality rates among patients successfully treated for hepatitis c, association between antenatal corticosteroids and risk of serious infection in children, the proportions of term or late preterm births after exposure to early antenatal corticosteroids, and outcomes, safety of ba.4-5 or ba.1 bivalent mrna booster vaccines, comparative effectiveness of booster vaccines among adults aged ≥50 years, third dose vaccine schedules against severe covid-19 during omicron predominance in nordic countries, private equity ownership and impacts on health outcomes, costs, and quality, healthcare disruption due to covid-19 and avoidable hospital admission, follow us on, content links.

  • Collections
  • Health in South Asia
  • Women’s, children’s & adolescents’ health
  • News and views
  • BMJ Opinion
  • Rapid responses
  • Editorial staff
  • BMJ in the USA
  • BMJ in South Asia
  • Submit your paper
  • BMA members
  • Subscribers
  • Advertisers and sponsors

Explore BMJ

  • Our company
  • BMJ Careers
  • BMJ Learning
  • BMJ Masterclasses
  • BMJ Journals
  • BMJ Student
  • Academic edition of The BMJ
  • BMJ Best Practice
  • The BMJ Awards
  • Email alerts
  • Activate subscription

Information

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 06 May 2024

Venus water loss is dominated by HCO + dissociative recombination

  • M. S. Chaffin   ORCID: orcid.org/0000-0002-1939-4797 1   na1 ,
  • E. M. Cangi 1   na1 ,
  • B. S. Gregory 1 ,
  • R. V. Yelle 2 ,
  • J. Deighan   ORCID: orcid.org/0000-0003-3667-902X 1 ,
  • R. D. Elliott 1 &
  • H. Gröller 2  

Nature volume  629 ,  pages 307–310 ( 2024 ) Cite this article

1456 Accesses

988 Altmetric

Metrics details

  • Atmospheric chemistry
  • Inner planets

Despite its Earth-like size and source material 1 , 2 , Venus is extremely dry 3 , 4 , indicating near-total water loss to space by means of hydrogen outflow from an ancient, steam-dominated atmosphere 5 , 6 . Such hydrodynamic escape likely removed most of an initial Earth-like 3-km global equivalent layer (GEL) of water but cannot deplete the atmosphere to the observed 3-cm GEL because it shuts down below about 10–100 m GEL 5 , 7 . To complete Venus water loss, and to produce the observed bulk atmospheric enrichment in deuterium of about 120 times Earth 8 , 9 , nonthermal H escape mechanisms still operating today are required 10 , 11 . Early studies identified these as resonant charge exchange 12 , 13 , 14 , hot oxygen impact 15 , 16 and ion outflow 17 , 18 , establishing a consensus view of H escape 10 , 19 that has since received only minimal updates 20 . Here we show that this consensus omits the most important present-day H loss process, HCO + dissociative recombination. This process nearly doubles the Venus H escape rate and, consequently, doubles the amount of present-day volcanic water outgassing and/or impactor infall required to maintain a steady-state atmospheric water abundance. These higher loss rates resolve long-standing difficulties in simultaneously explaining the measured abundance and isotope ratio of Venusian water 21 , 22 and would enable faster desiccation in the wake of speculative late ocean scenarios 23 . Design limitations prevented past Venus missions from measuring both HCO + and the escaping hydrogen produced by its recombination; future spacecraft measurements are imperative.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

research studies paper

Similar content being viewed by others

research studies paper

Oxygen production from dissociation of Europa’s water-ice surface

research studies paper

Isotopic fractionation of water and its photolytic products in the atmosphere of Mars

research studies paper

Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution

Data availability.

Tables containing all reactions used in the model, including their adopted rate coefficients and computed column rates, are provided in a supplementary PDF file accessible on the journal website. These rates are also accessible in the archived code repository listed below, which also includes our adopted photo cross-sections and all other source data used in our model. Model densities for all species, computed rates for reactions shown in Fig. 2 , assumed temperature and escape probabilities and computed photo rates are provided in Excel format in the online version of the paper; this file also includes data for our illustrative water-inventory timelines.  Source data are provided with this paper.

Code availability

All model code is available at github.com/emcangi/VenusPhotochemistry . The version of the model used to prepare the manuscript is archived on Zenodo at https://doi.org/10.5281/zenodo.10460004 .

Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6 , 357–366 (2022).

Article   ADS   Google Scholar  

Salvador, A. et al. Magma ocean, water, and the early atmosphere of Venus. Space Sci. Rev. 219 , 51 (2023).

Article   ADS   CAS   Google Scholar  

Moroz, V. I. et al. Spectrum of the Venus day sky. Nature 284 , 243–244 (1980).

Marcq, E., Mills, F. P., Parkinson, C. D. & Vandaele, A. C. Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214 , 10 (2018).

Kasting, J. F. & Pollack, J. B. Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53 , 479–508 (1983).

Turbet, M. et al. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598 , 276–280 (2021).

Article   ADS   CAS   PubMed   Google Scholar  

Johnstone, C. P. Hydrodynamic escape of water vapor atmospheres near very active stars. Astrophys. J. 890 , 79 (2020).

Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216 , 630–633 (1982).

De Bergh, C. et al. Deuterium on Venus: observations from Earth. Science 251 , 547–549 (1991).

Article   ADS   PubMed   Google Scholar  

Kumar, S., Hunten, D. M. & Pollack, J. B. Nonthermal escape of hydrogen and deuterium from Venus and implications for loss of water. Icarus 55 , 369–389 (1983).

Donahue, T. M. New analysis of hydrogen and deuterium escape from Venus. Icarus 141 , 226–235 (1999).

Stewart, A. I. F. in Second Arizona Conference on Planetary Atmospheres (1968).

Hodges, R. R. An exospheric perspective of isotopic fractionation of hydrogen on Venus. J. Geophys. Res. Planets 104 , 8463–8471 (1999).

Chaufray, J.-Y., Bertaux, J.-L., Quémerais, E., Villard, E. & Leblanc, F. Hydrogen density in the dayside Venusian exosphere derived from Lyman-α observations by SPICAV on Venus Express. Icarus 217 , 767–778 (2012).

McElroy, M. B., Prather, M. J. & Rodriguez, J. M. Escape of hydrogen from Venus. Science 215 , 1614–1615 (1982).

Gu, H., Cui, J., Niu, D. & Yu, J. Hydrogen and helium escape on Venus via energy transfer from hot oxygen atoms. Mon. Not. R. Astron. Soc. 501 , 2394–2402 (2021).

Hartle, R. E. & Grebowsky, J. M. Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. Planets 98 , 7437–7445 (1993).

Persson, M. et al. H + /O + escape rate ratio in the Venus magnetotail and its dependence on the solar cycle. Geophys. Res. Lett. 45 , 10805–10811 (2018).

Lammer, H. et al. Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54 , 1445–1456 (2006).

Gillmann, C. et al. The long-term evolution of the atmosphere of Venus: processes and feedback mechanisms. Space Sci. Rev. 218 , 56 (2022).

Grinspoon, D. H. Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363 , 428–431 (1993).

Avice, G. et al. Noble gases and stable isotopes track the origin and early evolution of the Venus atmosphere. Space Sci. Rev. 218 , 60 (2022).

Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125 , e06276 (2020).

Article   Google Scholar  

Chaffin, M. S., Deighan, J., Schneider, N. M. & Stewart, A. I. F. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat. Geosci. 10 , 174–178 (2017).

Cangi, E. M., Chaffin, M. S. & Deighan, J. Higher Martian atmospheric temperatures at all altitudes increase the D/H fractionation factor and water loss. J. Geophys. Res. Planets 125 , e06626 (2020).

Cangi, E., Chaffin, M., Yelle, R., Gregory, B. & Deighan, J. Fully coupled photochemistry of the deuterated ionosphere of Mars and its effects on escape of H and D. J. Geophys. Res. Planets 128 , e2022JE007713 (2023).

Yung, Y. L. & Demore, W. B. Photochemistry of the stratosphere of Venus: implications for atmospheric evolution. Icarus 51 , 199–247 (1982).

Fox, J. L. & Sung, K. Y. Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. Space Phys. 106 , 21305–21335 (2001).

Krasnopolsky, V. A. A photochemical model for the Venus atmosphere at 47–112 km. Icarus 218 , 230–246 (2012).

Fedorova, A. et al. HDO and H 2 O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express. J. Geophys. Res. Planets 113 , E00B22 (2008).

Paxton, L. J., Anderson Jr, D. E. & Stewart, A. I. F. Analysis of Pioneer Venus Orbiter ultraviolet spectrometer Lyman α data from near the subsolar region. J. Geophys. Res. Space Phys. 93 , 1766–1772 (1988).

Fox, J. L. The post-terminator ionosphere of Venus. Icarus 216 , 625–639 (2011).

Brinton, H. C. et al. Venus nighttime hydrogen bulge. Geophys. Res. Lett. 7 , 865–868 (1980).

Martinez, A. et al. Exploring the variability of the Venusian thermosphere with the IPSL Venus GCM. Icarus 389 , 115272 (2023).

Article   CAS   Google Scholar  

Navarro, T. et al. Venus’ upper atmosphere revealed by a GCM: I. Structure and variability of the circulation. Icarus 366 , 114400 (2021).

Fox, J. L. The chemistry of protonated species in the Martian ionosphere. Icarus 252 , 366–392 (2015).

Taylor, H. A., Brinton, H. C., Wagner, T. C. G., Blackwell, B. H. & Cordier, G. R. Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter. IEEE Tran. Geosci. Remote Sens. 18 , 44–49 (1980).

Miller, K. L., Knudsen, W. C. & Spenner, K. The dayside Venus ionosphere: I. Pioneer-Venus retarding potential analyzer experimental observations. Icarus 57 , 386–409 (1984).

Barabash, S. et al. The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planet. Space Sci. 55 , 1772–1792 (2007).

Bertaux, J. L. & Clarke, J. T. Deuterium content of the Venus atmosphere. Nature 338 , 567–568 (1989).

Donahue, T. M. Deuterium on Venus. Nature 340 , 513–514 (1989).

Liang, M.-C. & Yung, Y. L. Modeling the distribution of H 2 O and HDO in the upper atmosphere of Venus. J. Geophys. Res. Planets 114 , E00B28 (2009).

Parkinson, C. D. et al. Photochemical control of the distribution of Venusian water. Planet. Space Sci. 113 , 226–236 (2015).

Widemann, T. et al. Venus evolution through time: key science questions, selected mission concepts and future investigations. Space Sci. Rev. 219 , 56 (2023).

McClintock, W. E. et al. The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission. Space Sci. Rev. 195 , 75–124 (2015).

Bertaux, J. L., Goutail, F., Dimarellis, E., Kockarts, G. & van Ransbeeck, E. First optical detection of atomic deuterium in the upper atmosphere from Spacelab 1. Nature 309 , 771–773 (1984).

Gregory, B. S., Elliott, R. D., Deighan, J., Gröller, H. & Chaffin, M. S. HCO + dissociative recombination: a significant driver of nonthermal hydrogen loss at Mars. J. Geophys. Res. Planets 128 , e2022JE007576 (2023).

Barth, C. A., Pearce, J. B., Kelly, K. K., Wallace, L. & Fastie, W. G. Ultraviolet emissions observed near Venus from Mariner V. Science 158 , 1675–1678 (1967).

Anderson, D. E. The Mariner 5 ultraviolet photometer experiment: analysis of hydrogen Lyman alpha data. J. Geophys. Res. 81 , 1213–1216 (1976).

Takacs, P., Broadfoot, A., Smith, G. & Kumar, S. Mariner 10 observations of hydrogen Lyman alpha emission from the Venus exosphere: evidence of complex structure. Planet. Space Sci. 28 , 687–701 (1980).

von Zahn, U., Kumar, S., Niemann, H. & Prinn, R. in Venus (eds Hunten D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 299–430 (Univ. Arizona Press, 1983).

Hunten, D. M. The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30 , 1481–1494 (1973).

Krissansen-Totton, J., Fortney, J. J. & Nimmo, F. Was Venus ever habitable? Constraints from a coupled interior–atmosphere–redox evolution model. Planet. Sci. J. 2 , 216 (2021).

Warren, A. O. & Kite, E. S. Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. Proc. Natl Acad. Sci. 120 , e2209751120 (2023).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Chassefière, E. Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res. 101 , 26039–26056 (1996).

Chassefière, E. Loss of water on the young Venus: the effect of a strong primitive solar wind. Icarus 126 , 229–232 (1997).

Way, M. J. et al. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43 , 8376–8383 (2016).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13 , 265–269 (2020).

Selsis, F., Leconte, J., Turbet, M., Chaverot, G. & Bolmont, É. A cool runaway greenhouse without surface magma ocean. Nature 620 , 287–291 (2023).

Fox, J. L. & Bougher, S. W. Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci. Rev. 55 , 357–489 (1991).

Hodges Jr, R. R. Collision cross sections and diffusion parameters for H and D in atomic oxygen. J. Geophys. Res. 98 , 3799–3805 (1993).

Shizgal, B. D. Escape of H and D from Mars and Venus by energization with hot oxygen. J. Geophys. Res. 104 , 14833–14846 (1999).

Yang, J., Boué, G., Fabrycky, D. C. & Abbot, D. S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. 787 , L2 (2014).

Herrick, R. R. & Hensley, S. Surface changes observed on a Venusian volcano during the Magellan mission. Science 379 , 1205–1208 (2023).

Rolf, T. et al. Dynamics and evolution of Venus’ mantle through time. Space Sci. Rev. 218 , 70 (2022).

Hedin, A. E., Niemann, H. B., Kasprzak, W. T. & Seiff, A. Global empirical model of the Venus thermosphere. J. Geophys. Res. 88 , 73–84 (1983).

Bertaux, J.-L. et al. SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55 , 1673–1700 (2007).

Hagemann, R., Nief, G. & Roth, E. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22 , 712–715 (1970).

ADS   CAS   Google Scholar  

Lillis, R. et al. Photochemical escape of oxygen from Mars: first results from MAVEN in situ data. J. Geophys. Res. Space Phys. 122 , 3815–3836 (2017).

Rosati, R. E., Skrzypkowski, M. P., Johnsen, R. & Golde, M. F. Yield of excited CO molecules from dissociative recombination of HCO + and HOC + ions with electrons. J. Chem. Phys. 126 , 154302–154302 (2007).

Miller, K. L., Knudsen, C. W., Spenner, K., Whitten, R. C. & Novak, V. Solar zenith angle dependence of ionospheric ion and electron temperatures and density on Venus. J. Geophys. Res. Space Phys. 85 , 7759–7764 (1980).

Brace, L. H. et al. The dynamic behavior of the Venus ionosphere in response to solar wind interactions. J. Geophys. Res. 85 , 7663–7678 (1980).

Kasprzak, W. T. et al. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 225–258 (Univ. Arizona Press, 1997).

Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M. & Spencer, N. W. Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus. J. Geophys. Res. Space Res. 85 , 7817–7827 (1980).

Fox, J. L. & Kliore, A. J. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 161–188 (Univ. Arizona Press, 1997).

Grebowsky, J. M., Kasprzak, W. T., Hartle, R. E. & Donahue, T. M. A new look at Venus’ thermosphere H distribution. Adv. Space Res. 17 , 191–195 (1996).

Donahue, T. M., Grinspoon, D. H., Hartle, R. E. & Hodges, R. R. Jr. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 385–414 (Univ. Arizona Press, 1997).

Stolzenbach, A., Lefèvre, F., Lebonnois, S. & Määttänen, A. Three-dimensional modeling of Venus photochemistry and clouds. Icarus 395 , 115447 (2023).

Dickinson, R. E. & Ridley, E. C. Venus mesosphere and thermosphere temperature structure: II. Day-night variations. Icarus 30 , 163–178 (1977).

Seiff, A. Dynamical implications of the observed thermal contrasts in Venus’ upper atmosphere. Icarus 51 , 574–592 (1982).

Garvin, J. B. et al. Revealing the mysteries of Venus: the DAVINCI mission. Planet. Sci. J. 3 , 117 (2022).

Smrekar, S. E. et al. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy): a selected discovery mission in 53rd Lunar and Planetary Science Conference. LPI contribution no. 2678, id. 1122 (2022).

Helbert, J. et al. The VenSpec suite on the ESA Envision mission – a holistic investigation of the coupled surface atmosphere system of Venus in 16th Europlanet Science Congress, id. EPSC2022-374 (2022).

Download references

Acknowledgements

M.S.C., E.M.C., B.S.G. and R.D.E. were supported by NASA Solar System Workings grant 80NSSC19K0164 and Planetary Science Early Career Award grant 80NSSC20K1081. E.M.C. was also supported by NASA FINESST award 80NSSC22K1326. M.S.C. and E.M.C. thank M. Landis for helpful discussions about water delivery.

Author information

These authors contributed equally: M. S. Chaffin, E. M. Cangi

Authors and Affiliations

Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA

M. S. Chaffin, E. M. Cangi, B. S. Gregory, J. Deighan & R. D. Elliott

Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA

R. V. Yelle & H. Gröller

You can also search for this author in PubMed   Google Scholar

Contributions

M.S.C. oversaw the study, performed final model calculations and the photochemical equilibrium calculation and wrote the initial text of the paper. E.M.C. developed the H-bearing and D-bearing photochemical model and nonthermal escape calculation originally used at Mars with a reaction network provided by R.V.Y. and performed initial model calculations for Venus. B.S.G. developed and ran the Monte Carlo model to generate escape probability curves. R.D.E. initially developed the Monte Carlo escape model with support from J.D. and H.G. H.G. performed pilot studies of HCO + -driven loss in the Mars atmosphere. All authors contributed to the interpretation and presentation of model results.

Corresponding author

Correspondence to M. S. Chaffin .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature thanks David Grinspoon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended data fig. 1 model densities for all species..

The six panels function only to separate species for clarity.

Extended Data Fig. 2 Key photochemical model inputs.

a , Temperature profiles for neutrals, ions and electrons adapted from the inputs in ref.  28 . b , Adopted eddy diffusion profile and molecular diffusion coefficients for H and O atoms.

Extended Data Fig. 3 Implications of HCO + -driven loss for Venus ocean scenarios.

a , Escaping H production rates for the two most important processes in our model. b , Schematic water loss history of Venus.

Supplementary information

Supplementary information.

This file contains Supplementary Methods and Supplementary Tables. Merged PDF containing tables of reactions used in the model, assumed reaction rate coefficients and computed equilibrium model column rates.

Peer Review File

Source data, source data figs. 1–3, rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Chaffin, M.S., Cangi, E.M., Gregory, B.S. et al. Venus water loss is dominated by HCO + dissociative recombination. Nature 629 , 307–310 (2024). https://doi.org/10.1038/s41586-024-07261-y

Download citation

Received : 03 October 2023

Accepted : 29 February 2024

Published : 06 May 2024

Issue Date : 09 May 2024

DOI : https://doi.org/10.1038/s41586-024-07261-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

research studies paper

ScienceDaily

Top Science News

Latest top headlines.

  • Neuroscience
  • Brain Injury
  • Disorders and Syndromes
  • Sleep Disorders
  • Sleep Disorder Research
  • Insomnia Research
  • Diseases and Conditions
  • Personalized Medicine
  • Bone and Spine
  • Nervous System
  • Robotics Research
  • Artificial Intelligence
  • Astrophysics
  • Travel and Recreation
  • Video Games
  • Extrasolar Planets
  • Kuiper Belt
  • New Species
  • Drought Research
  • Environmental Awareness
  • Environmental Policies
  • Earthquakes
  • Natural Disasters
  • Earth Science
  • Origin of Life
  • Brain Flexibility for a Complex World
  • Kids' Sleep Problems Linked to Later Psychosis
  • New Target for Potential Leukemia Therapy
  • 'Wraparound' Implants for Spinal Cord Injuries

Top Physical/Tech

  • Controlling Shape-Shifting Soft Robots
  • ONe Nova to Rule Them All
  • AI Systems Are Skilled at Manipulating Humans
  • Planet Glows With Molten Lava

Top Environment

  • Symbiosis Solves Long-Standing Marine Mystery
  • Surprising Common Ideas in Environmental ...
  • Climate May Influence Seismic Activity
  • How Continents Stabilized

Health News

Latest health headlines.

  • Wounds and Healing
  • Medical Topics
  • Accident and Trauma
  • Children's Health
  • Brain Tumor
  • Learning Disorders
  • Child Development
  • Educational Psychology
  • K-12 Education
  • Healthy Aging
  • Social Issues
  • Racial Issues
  • Retail and Services
  • Computers and Internet
  • Educational Technology
  • Gene Therapy
  • Mental Health Research
  • Teen Health
  • Mental Health

Health & Medicine

  • Breakthrough in Hemostasis and Wound Healing
  • Battle Against Childhood Undernutrition
  • Heightened Sensitivity to PTSD in Autism
  • Dogma-Challenging Telomere Findings

Mind & Brain

  • Sensory Hypersensitivity in Mouse Model of ASD
  • Metabolism of Autism: Developmental Origins
  • New Tool for Predicting Neurotransmitters
  • Discrimination May Accelerate Aging

Living Well

  • 'Digital Afterlife': 'Hauntings' by AI Chatbots
  • How Biological Aging Clocks Tick
  • Ancestral Components of Japanese People
  • Chaotic Household and Mental Health Issues

Physical/Tech News

Latest physical/tech headlines.

  • Alternative Fuels
  • Energy and the Environment
  • Energy Issues
  • Information Technology
  • Engineering
  • Mathematical Modeling
  • Materials Science
  • Electronics
  • Engineering and Construction
  • Solar System
  • Asteroids, Comets and Meteors
  • Black Holes
  • Neural Interfaces
  • Organic Chemistry
  • Life Sciences
  • Evolutionary Biology
  • Computer Modeling

Matter & Energy

  • New Approach to Transport Ticketing
  • Carbon-Neutral Hydrogen Economy
  • AI Knowledge Gets Your Foot in the Door
  • Next-Gen Thermoelectric Conversion

Space & Time

  • Ozone's Influence On Exoplanetary Climate
  • Hunting the First Stars
  • Iron Fingerprints in Nearby Active Galaxy
  • Stellar Light Surrounding Ancient Quasars

Computers & Math

  • Smaller, More Powerful Wireless Devices
  • New Machine Learning Algorithm
  • 2D All-Organic Perovskites: 2D Electronics
  • AI Deciphers Gene Regulatory Code in Plants

Environment News

Latest environment headlines.

  • Environmental Policy
  • Global Warming
  • Human Biology
  • Biochemistry Research
  • Environmental Issues
  • Behavioral Science
  • Wild Animals
  • Ocean Policy
  • Early Climate
  • Ancient Civilizations
  • Archaeology

Plants & Animals

  • Limited Climate Ambition On 'Residual' Emissions
  • Recycling in Our DNA
  • Climate Change and Malaria Transmission
  • Mantis Shrimp and High-Speed Strikes

Earth & Climate

  • Improving Volcanic Eruption Forecasts
  • Chemical Industry's Environmental Impact
  • New 'Forever Chemical' Cleanup Strategy
  • Transformation of Ocean Management

Fossils & Ruins

  • Micro-Earthquakes at Carbon Sequestration Site
  • Interpreting Oceans' Past
  • End of the African Humid Period?
  • Origin of Roman Lead

Society/Education News

Latest society/education headlines.

  • Marine Biology
  • Oceanography
  • Severe Weather
  • Mobile Computing
  • STEM Education
  • Funding Policy
  • Education and Employment
  • Computer Programming
  • Photography
  • Social Psychology
  • Sustainability
  • Educational Policy
  • Mathematics
  • Land Management

Science & Society

  • Ocean Biodiversity Work Needs Improvement
  • Tornado Warnings Widely Misunderstood
  • Treating Substance Abuse Through Apps
  • AI-Generated Empathy Has Its Limits

Education & Learning

  • Cybersecurity Education Varies Widely in US
  • Self-Critical Perfectionism Gnaws On Students
  • New Study Reveals How Teens Thrive Online
  • Birdwatching Can Improve Mental Health

Business & Industry

  • Pulling Power of Renewables
  • Can AI Simulate Multidisciplinary Workshops?
  • New Sensing Checks Overhaul Manufacturing
  • Sustainability in Agricultural Trade
  • A Fragment of Human Brain, Mapped
  • Generative AI That Imitates Human Motion

Trending Topics

Strange & offbeat, about this site.

ScienceDaily features breaking news about the latest discoveries in science, health, the environment, technology, and more -- from leading universities, scientific journals, and research organizations.

Visitors can browse more than 500 individual topics, grouped into 12 main sections (listed under the top navigational menu), covering: the medical sciences and health; physical sciences and technology; biological sciences and the environment; and social sciences, business and education. Headlines and summaries of relevant news stories are provided on each topic page.

Stories are posted daily, selected from press materials provided by hundreds of sources from around the world. Links to sources and relevant journal citations (where available) are included at the end of each post.

For more information about ScienceDaily, please consult the links listed at the bottom of each page.

  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Help | Advanced Search

Computer Science > Artificial Intelligence

Title: capabilities of gemini models in medicine.

Abstract: Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

  • Program Finder
  • Admissions Services
  • Course Directory
  • Academic Calendar
  • Hybrid Campus
  • Lecture Series
  • Convocation
  • Strategy and Development
  • Implementation and Impact
  • Integrity and Oversight
  • In the School
  • In the Field
  • In Baltimore
  • Resources for Practitioners
  • Articles & News Releases
  • In The News
  • Statements & Announcements
  • At a Glance
  • Student Life
  • Strategic Priorities
  • Inclusion, Diversity, Anti-Racism, and Equity (IDARE)
  • What is Public Health?

research@BSPH

The School’s research endeavors aim to improve the public’s health in the U.S. and throughout the world.

  • Funding Opportunities and Support
  • Faculty Innovation Award Winners

Conducting Research That Addresses Public Health Issues Worldwide

Systematic and rigorous inquiry allows us to discover the fundamental mechanisms and causes of disease and disparities. At our Office of Research ( research@BSPH), we translate that knowledge to develop, evaluate, and disseminate treatment and prevention strategies and inform public health practice. Research along this entire spectrum represents a fundamental mission of the Johns Hopkins Bloomberg School of Public Health.

From laboratories at Baltimore’s Wolfe Street building, to Bangladesh maternity wards in densely   packed neighborhoods, to field studies in rural Botswana, Bloomberg School faculty lead research that directly addresses the most critical public health issues worldwide. Research spans from molecules to societies and relies on methodologies as diverse as bench science and epidemiology. That research is translated into impact, from discovering ways to eliminate malaria, increase healthy behavior, reduce the toll of chronic disease, improve the health of mothers and infants, or change the biology of aging.

120+ countries

engaged in research activity by BSPH faculty and teams.

of all federal grants and contracts awarded to schools of public health are awarded to BSPH. 

citations on  publications where BSPH was listed in the authors' affiliation in 2019-2023. 

 publications where BSPH was listed in the authors' affiliation in 2019-2023.

Departments

Our 10 departments offer faculty and students the flexibility to focus on a variety of public health disciplines

Centers and Institutes Directory

Our 80+ Centers and Institutes provide a unique combination of breadth and depth, and rich opportunities for collaboration

Institutional Review Board (IRB)

The Institutional Review Board (IRB) oversees two IRBs registered with the U.S. Office of Human Research Protections, IRB X and IRB FC, which meet weekly to review human subjects research applications for Bloomberg School faculty and students

Generosity helps our community think outside the traditional boundaries of public health, working across disciplines and industries, to translate research into innovative health interventions and practices

Introducing the research@BSPH Ecosystem

The   research@BSPH   ecosystem aims to foster an interdependent sense of community among faculty researchers, their research teams, administration, and staff that leverages knowledge and develops shared responses to challenges. The ultimate goal is to work collectively to reduce administrative and bureaucratic barriers related to conducting experiments, recruiting participants, analyzing data, hiring staff,   and more, so that faculty can focus on their core academic pursuits.

research@BSPH Ecosystem Graphic

Research at the Bloomberg School is a team sport.

In order to provide  extensive guidance, infrastructure, and support in pursuit of its research mission,   research@BSPH  employs three core areas: strategy and development, implementation and impact, and integrity and oversight. Our exceptional research teams comprised of faculty, postdoctoral fellows, students, and committed staff are united in our collaborative, collegial, and entrepreneurial approach to problem solving. T he Bloomberg School ensures that our research is accomplished according to the highest ethical standards and complies with all regulatory requirements. In addition to our institutional review board (IRB) which provides oversight for human subjects research, basic science studies employee techniques to ensure the reproducibility of research. 

Research@BSPH in the News

Four bloomberg school faculty elected to national academy of medicine.

Considered one of the highest honors in the fields of health and medicine, NAM membership recognizes outstanding professional achievements and commitment to service.

The Maryland Maternal Health Innovation Program Grant Renewed with Johns Hopkins

Lerner center for public health advocacy announces inaugural sommer klag advocacy impact award winners.

Bloomberg School faculty Nadia Akseer and Cass Crifasi selected winners at Advocacy Impact Awards Pitch Competition

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-.

Cover of InformedHealth.org

InformedHealth.org [Internet].

In brief: what types of studies are there.

Last Update: September 8, 2016 ; Next update: 2024.

There are various types of scientific studies such as experiments and comparative analyses, observational studies, surveys, or interviews. The choice of study type will mainly depend on the research question being asked.

When making decisions, patients and doctors need reliable answers to a number of questions. Depending on the medical condition and patient's personal situation, the following questions may be asked:

  • What is the cause of the condition?
  • What is the natural course of the disease if left untreated?
  • What will change because of the treatment?
  • How many other people have the same condition?
  • How do other people cope with it?

Each of these questions can best be answered by a different type of study.

In order to get reliable results, a study has to be carefully planned right from the start. One thing that is especially important to consider is which type of study is best suited to the research question. A study protocol should be written and complete documentation of the study's process should also be done. This is vital in order for other scientists to be able to reproduce and check the results afterwards.

The main types of studies are randomized controlled trials (RCTs), cohort studies, case-control studies and qualitative studies.

  • Randomized controlled trials

If you want to know how effective a treatment or diagnostic test is, randomized trials provide the most reliable answers. Because the effect of the treatment is often compared with "no treatment" (or a different treatment), they can also show what happens if you opt to not have the treatment or diagnostic test.

When planning this type of study, a research question is stipulated first. This involves deciding what exactly should be tested and in what group of people. In order to be able to reliably assess how effective the treatment is, the following things also need to be determined before the study is started:

  • How long the study should last
  • How many participants are needed
  • How the effect of the treatment should be measured

For instance, a medication used to treat menopause symptoms needs to be tested on a different group of people than a flu medicine. And a study on treatment for a stuffy nose may be much shorter than a study on a drug taken to prevent strokes .

“Randomized” means divided into groups by chance. In RCTs participants are randomly assigned to one of two or more groups. Then one group receives the new drug A, for example, while the other group receives the conventional drug B or a placebo (dummy drug). Things like the appearance and taste of the drug and the placebo should be as similar as possible. Ideally, the assignment to the various groups is done "double blinded," meaning that neither the participants nor their doctors know who is in which group.

The assignment to groups has to be random in order to make sure that only the effects of the medications are compared, and no other factors influence the results. If doctors decided themselves which patients should receive which treatment, they might – for instance – give the more promising drug to patients who have better chances of recovery. This would distort the results. Random allocation ensures that differences between the results of the two groups at the end of the study are actually due to the treatment and not something else.

Randomized controlled trials provide the best results when trying to find out if there is a cause-and-effect relationship. RCTs can answer questions such as these:

  • Is the new drug A better than the standard treatment for medical condition X?
  • Does regular physical activity speed up recovery after a slipped disk when compared to passive waiting?
  • Cohort studies

A cohort is a group of people who are observed frequently over a period of many years – for instance, to determine how often a certain disease occurs. In a cohort study, two (or more) groups that are exposed to different things are compared with each other: For example, one group might smoke while the other doesn't. Or one group may be exposed to a hazardous substance at work, while the comparison group isn't. The researchers then observe how the health of the people in both groups develops over the course of several years, whether they become ill, and how many of them pass away. Cohort studies often include people who are healthy at the start of the study. Cohort studies can have a prospective (forward-looking) design or a retrospective (backward-looking) design. In a prospective study, the result that the researchers are interested in (such as a specific illness) has not yet occurred by the time the study starts. But the outcomes that they want to measure and other possible influential factors can be precisely defined beforehand. In a retrospective study, the result (the illness) has already occurred before the study starts, and the researchers look at the patient's history to find risk factors.

Cohort studies are especially useful if you want to find out how common a medical condition is and which factors increase the risk of developing it. They can answer questions such as:

  • How does high blood pressure affect heart health?
  • Does smoking increase your risk of lung cancer?

For example, one famous long-term cohort study observed a group of 40,000 British doctors, many of whom smoked. It tracked how many doctors died over the years, and what they died of. The study showed that smoking caused a lot of deaths, and that people who smoked more were more likely to get ill and die.

  • Case-control studies

Case-control studies compare people who have a certain medical condition with people who do not have the medical condition, but who are otherwise as similar as possible, for example in terms of their sex and age. Then the two groups are interviewed, or their medical files are analyzed, to find anything that might be risk factors for the disease. So case-control studies are generally retrospective.

Case-control studies are one way to gain knowledge about rare diseases. They are also not as expensive or time-consuming as RCTs or cohort studies. But it is often difficult to tell which people are the most similar to each other and should therefore be compared with each other. Because the researchers usually ask about past events, they are dependent on the participants’ memories. But the people they interview might no longer remember whether they were, for instance, exposed to certain risk factors in the past.

Still, case-control studies can help to investigate the causes of a specific disease, and answer questions like these:

  • Do HPV infections increase the risk of cervical cancer ?
  • Is the risk of sudden infant death syndrome (“cot death”) increased by parents smoking at home?

Cohort studies and case-control studies are types of "observational studies."

  • Cross-sectional studies

Many people will be familiar with this kind of study. The classic type of cross-sectional study is the survey: A representative group of people – usually a random sample – are interviewed or examined in order to find out their opinions or facts. Because this data is collected only once, cross-sectional studies are relatively quick and inexpensive. They can provide information on things like the prevalence of a particular disease (how common it is). But they can't tell us anything about the cause of a disease or what the best treatment might be.

Cross-sectional studies can answer questions such as these:

  • How tall are German men and women at age 20?
  • How many people have cancer screening?
  • Qualitative studies

This type of study helps us understand, for instance, what it is like for people to live with a certain disease. Unlike other kinds of research, qualitative research does not rely on numbers and data. Instead, it is based on information collected by talking to people who have a particular medical condition and people close to them. Written documents and observations are used too. The information that is obtained is then analyzed and interpreted using a number of methods.

Qualitative studies can answer questions such as these:

  • How do women experience a Cesarean section?
  • What aspects of treatment are especially important to men who have prostate cancer ?
  • How reliable are the different types of studies?

Each type of study has its advantages and disadvantages. It is always important to find out the following: Did the researchers select a study type that will actually allow them to find the answers they are looking for? You can’t use a survey to find out what is causing a particular disease, for instance.

It is really only possible to draw reliable conclusions about cause and effect by using randomized controlled trials. Other types of studies usually only allow us to establish correlations (relationships where it isn’t clear whether one thing is causing the other). For instance, data from a cohort study may show that people who eat more red meat develop bowel cancer more often than people who don't. This might suggest that eating red meat can increase your risk of getting bowel cancer. But people who eat a lot of red meat might also smoke more, drink more alcohol, or tend to be overweight. The influence of these and other possible risk factors can only be determined by comparing two equal-sized groups made up of randomly assigned participants.

That is why randomized controlled trials are usually the only suitable way to find out how effective a treatment is. Systematic reviews, which summarize multiple RCTs , are even better. In order to be good-quality, though, all studies and systematic reviews need to be designed properly and eliminate as many potential sources of error as possible.

  • German Network for Evidence-based Medicine. Glossar: Qualitative Forschung.  Berlin: DNEbM; 2011. 
  • Greenhalgh T. Einführung in die Evidence-based Medicine: kritische Beurteilung klinischer Studien als Basis einer rationalen Medizin. Bern: Huber; 2003. 
  • Institute for Quality and Efficiency in Health Care (IQWiG, Germany). General methods . Version 5.0. Cologne: IQWiG; 2017.
  • Klug SJ, Bender R, Blettner M, Lange S. Wichtige epidemiologische Studientypen. Dtsch Med Wochenschr 2007; 132:e45-e47. [ PubMed : 17530597 ]
  • Schäfer T. Kritische Bewertung von Studien zur Ätiologie. In: Kunz R, Ollenschläger G, Raspe H, Jonitz G, Donner-Banzhoff N (eds.). Lehrbuch evidenzbasierte Medizin in Klinik und Praxis. Cologne: Deutscher Ärzte-Verlag; 2007.

IQWiG health information is written with the aim of helping people understand the advantages and disadvantages of the main treatment options and health care services.

Because IQWiG is a German institute, some of the information provided here is specific to the German health care system. The suitability of any of the described options in an individual case can be determined by talking to a doctor. informedhealth.org can provide support for talks with doctors and other medical professionals, but cannot replace them. We do not offer individual consultations.

Our information is based on the results of good-quality studies. It is written by a team of health care professionals, scientists and editors, and reviewed by external experts. You can find a detailed description of how our health information is produced and updated in our methods.

  • Cite this Page InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. In brief: What types of studies are there? [Updated 2016 Sep 8].

In this Page

Informed health links, related information.

  • PubMed Links to PubMed

Recent Activity

  • In brief: What types of studies are there? - InformedHealth.org In brief: What types of studies are there? - InformedHealth.org

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

U.S. flag

An official website of the United States government

  • Research @ BEA

Studies on the Value of Data

The U.S. Bureau of Economic Analysis has undertaken a series of studies that present methods for quantifying the value of simple data that can be differentiated from the complex data created by highly skilled workers that was studied in Calderón and Rassier 2022 . Preliminary studies in this series focus on tax data, individual credit data, and driving data. Additional examples include medical records, educational transcripts, business financial records, customer data, equipment maintenance histories, social media profiles, tourist maps, and many more. If new case studies under this topic are released, they will be added to the listing below.

  • Capitalizing Data: Case Studies of Driving Records and Vehicle Insurance Claims | April 2024
  • Private Funding of “Free” Data: A Theoretical Framework | April 2024
  • Capitalizing Data: Case Studies of Tax Forms and Individual Credit Reports | June 2023

Rachel Soloveichik

JEL Code(s) E01 Published April 2024

*Deadline Extended* Call for Papers: Demystifying Machine Learning for Population Researchers (Due 5/15/24)

Posted: 5/2/2024 ()

research studies paper

This workshop on November 5 to 6, 2024 at the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, clarifies the goals, techniques, and applications of machine learning methods for population research. The main focus of this workshop is on ML techniques using quantitative population data and research questions, not on ML language models. The workshop consists of keynotes, contributed sessions, and a tutorial. Learn more here and apply by May 15th. A pdf version of the call is also available here .

IMAGES

  1. ⛔ Research paper layout. What Is The Research Paper Layout: Effective

    research studies paper

  2. Research Paper Format

    research studies paper

  3. FREE 5+ Sample Research Paper Templates in PDF

    research studies paper

  4. (PDF) 1a How to read a scientific research paper

    research studies paper

  5. Sample student research paper. Download Research Paper Samples For Free

    research studies paper

  6. Qualitative Research Paper Example Apa : Https Encrypted Tbn0 Gstatic

    research studies paper

VIDEO

  1. Different Types of Research Papers

  2. How to write a research paper during bachelor’s degree?

  3. Research Gap Example In A Research Paper (PUBLISHED Research)

  4. How to do research? and How to write a research paper?

  5. How to Write a Research Paper

  6. Research Paper Example: Full Step-By-Step Tutorial

COMMENTS

  1. Google Scholar

    Google Scholar provides a simple way to broadly search for scholarly literature. Search across a wide variety of disciplines and sources: articles, theses, books, abstracts and court opinions.

  2. PubMed

    PubMed is a comprehensive database of biomedical literature from various sources, including MEDLINE, life science journals, and online books. You can search for citations, access full text content, and explore topics related to health, medicine, and biology. PubMed also provides advanced search options and tools for researchers and clinicians.

  3. Research articles

    Pulmonary arteries in coelacanths shed light on the vasculature evolution of air-breathing organs in vertebrates. Camila Cupello. Gaël Clément. Paulo M. Brito. Article Open Access 09 May 2024.

  4. Search

    Find the research you need | With 160+ million publications, 1+ million questions, and 25+ million researchers, this is where everyone can access science

  5. How To Write A Research Paper (FREE Template

    Step 1: Find a topic and review the literature. As we mentioned earlier, in a research paper, you, as the researcher, will try to answer a question.More specifically, that's called a research question, and it sets the direction of your entire paper. What's important to understand though is that you'll need to answer that research question with the help of high-quality sources - for ...

  6. JSTOR Home

    Enrich your research with primary sources Enrich your research with primary sources. ... Part of Indiana Journal of Global Legal Studies, Vol. 19, No. 1 (Winter 2012) Part of R Street Institute (Nov. 1, 2020) Part of Leuven University Press. Part of UN Secretary-General Papers: Ban Ki-moon (2007-2016) Part of Perspectives on Terrorism, Vol. 12 ...

  7. ResearchGate

    Access 160+ million publications and connect with 25+ million researchers. Join for free and gain visibility by uploading your research.

  8. How to Write a Research Paper

    A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research. Research papers are similar to academic essays, but they are usually longer and more detailed assignments, designed to assess not only your writing skills but also your skills in scholarly research ...

  9. Writing a Research Paper Introduction

    Table of contents. Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  10. Research articles

    Read the latest Research articles from Nature. A completely genetically encoded boronic-acid-containing designer enzyme was created and characterized using X-ray crystallography, high-resolution ...

  11. A Practical Guide to Writing Quantitative and Qualitative Research

    The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question.1 An ... Many research studies have floundered because the development of research questions and subsequent hypotheses ...

  12. Social Media Use and Its Connection to Mental Health: A Systematic

    Of the 16 selected research papers, there were a research focus on adults, gender, and preadolescents [10-19]. In the design, there were qualitative and quantitative studies [ 15 , 16 ]. There were three systematic reviews and one thematic analysis that explored the better or worse of using social media among adolescents [ 20 - 23 ].

  13. Types of studies and research design

    Types of study design. Medical research is classified into primary and secondary research. Clinical/experimental studies are performed in primary research, whereas secondary research consolidates available studies as reviews, systematic reviews and meta-analyses. Three main areas in primary research are basic medical research, clinical research ...

  14. The BMJ original medical research articles

    Original research studies that can improve decision making in clinical medicine, public health, health care policy, medical education, or biomedical research. Intended for healthcare professionals Our Company Subscribe My Account Login

  15. Venus water loss is dominated by HCO+ dissociative recombination

    Early studies identified these as resonant charge exchange 12,13,14, hot oxygen impact 15,16 and ion outflow 17,18, establishing a consensus view of H escape 10,19 that has since received only ...

  16. ScienceDaily: Your source for the latest research news

    Breaking science news and articles on global warming, extrasolar planets, stem cells, bird flu, autism, nanotechnology, dinosaurs, evolution -- the latest discoveries ...

  17. Research Paper

    A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research. About us; Disclaimer; ... Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health. Limitations: The study has some limitations, including the use of ...

  18. Systematic Review of Recommendation Systems for Course Selection

    We examined case studies conducted over the previous six years (2017-2022), with a focus on 35 key studies selected from 1938 academic papers found using the CADIMA tool.

  19. [2404.18416] Capabilities of Gemini Models in Medicine

    Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce ...

  20. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  21. Clinical Trials and Clinical Research: A Comprehensive Review

    Clinical research is an alternative terminology used to describe medical research. Clinical research involves people, and it is generally carried out to evaluate the efficacy of a therapeutic drug, a medical/surgical procedure, or a device as a part of treatment and patient management. ... Most importantly, these genetic research studies use ...

  22. Augmented Reality and Wearable Technology for Cultural Heritage ...

    The main goal of this study is to provide a more interactive experience with AR technology and wearable devices compared to traditional preservation methods in order to protect, promote, and transfer cultural heritage to future generations. It aims to evaluate the usability of the developed AR application with SUS and WARUS analyses. During the research process, similar studies were conducted ...

  23. research@BSPH

    Systematic and rigorous inquiry allows us to discover the fundamental mechanisms and causes of disease and disparities. At our Office of Research (research@BSPH), we translate that knowledge to develop, evaluate, and disseminate treatment and prevention strategies and inform public health practice.Research along this entire spectrum represents a fundamental mission of the Johns Hopkins ...

  24. A systematic literature review on requirement ...

    Therefore, this research paper suggests planning poker for estimating the length of sprint to accommodate and deliver a release scope derived using theme or semantic based release planning method ...

  25. Carrot intake is consistently negatively associated with cancer

    Data sources, search strategy and study selection. PubMed, Cochrane Library, Web of Science, Scopus, EBSCO and JSTOR were searched from database inception to June 9, 2022, for published studies of any design, observational or intervention, which related human consumption of carrots (reported directly as carrot intake, or indirectly as intake or plasma concentration of α-carotene) with an ...

  26. In brief: What types of studies are there?

    There are various types of scientific studies such as experiments and comparative analyses, observational studies, surveys, or interviews. The choice of study type will mainly depend on the research question being asked. When making decisions, patients and doctors need reliable answers to a number of questions. Depending on the medical condition and patient's personal situation, the following ...

  27. Studies on the Value of Data

    The U.S. Bureau of Economic Analysis has undertaken a series of studies that present methods for quantifying the value of simple data that can be differentiated from the complex data created by highly skilled workers that was studied in Calderón and Rassier 2022. Preliminary studies in this series focus on tax data, individual credit data, and driving data.

  28. *Deadline Extended* Call for Papers: Demystifying Machine Learning for

    *Deadline Extended* Call for Papers: Demystifying Machine Learning for Population Researchers (Due 5/15/24) Posted: 5/2/2024 This workshop on November 5 to 6, 2024 at the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, clarifies the goals, techniques, and applications of machine learning methods for population research.

  29. (PDF) Evaluate quality of urban life

    This paper studies quality of life (QOL) in urban environment. The term environment has been used in broader sense, which includes physical, social and economic environment.

  30. 2024 AP Exam Dates

    AP African American Studies Exam Pilot: For the 2024 AP Exam administration, only schools that are participating in the 2023-24 AP African American Studies Exam Pilot can order and administer the exam. AP Seminar end-of-course exams are only available to students taking AP Seminar at a school participating in the AP Capstone Diploma Program.