• Methodology
  • Open access
  • Published: 11 October 2016

Reviewing the research methods literature: principles and strategies illustrated by a systematic overview of sampling in qualitative research

  • Stephen J. Gentles 1 , 4 ,
  • Cathy Charles 1 ,
  • David B. Nicholas 2 ,
  • Jenny Ploeg 3 &
  • K. Ann McKibbon 1  

Systematic Reviews volume  5 , Article number:  172 ( 2016 ) Cite this article

53k Accesses

28 Citations

13 Altmetric

Metrics details

Overviews of methods are potentially useful means to increase clarity and enhance collective understanding of specific methods topics that may be characterized by ambiguity, inconsistency, or a lack of comprehensiveness. This type of review represents a distinct literature synthesis method, although to date, its methodology remains relatively undeveloped despite several aspects that demand unique review procedures. The purpose of this paper is to initiate discussion about what a rigorous systematic approach to reviews of methods, referred to here as systematic methods overviews , might look like by providing tentative suggestions for approaching specific challenges likely to be encountered. The guidance offered here was derived from experience conducting a systematic methods overview on the topic of sampling in qualitative research.

The guidance is organized into several principles that highlight specific objectives for this type of review given the common challenges that must be overcome to achieve them. Optional strategies for achieving each principle are also proposed, along with discussion of how they were successfully implemented in the overview on sampling. We describe seven paired principles and strategies that address the following aspects: delimiting the initial set of publications to consider, searching beyond standard bibliographic databases, searching without the availability of relevant metadata, selecting publications on purposeful conceptual grounds, defining concepts and other information to abstract iteratively, accounting for inconsistent terminology used to describe specific methods topics, and generating rigorous verifiable analytic interpretations. Since a broad aim in systematic methods overviews is to describe and interpret the relevant literature in qualitative terms, we suggest that iterative decision making at various stages of the review process, and a rigorous qualitative approach to analysis are necessary features of this review type.

Conclusions

We believe that the principles and strategies provided here will be useful to anyone choosing to undertake a systematic methods overview. This paper represents an initial effort to promote high quality critical evaluations of the literature regarding problematic methods topics, which have the potential to promote clearer, shared understandings, and accelerate advances in research methods. Further work is warranted to develop more definitive guidance.

Peer Review reports

While reviews of methods are not new, they represent a distinct review type whose methodology remains relatively under-addressed in the literature despite the clear implications for unique review procedures. One of few examples to describe it is a chapter containing reflections of two contributing authors in a book of 21 reviews on methodological topics compiled for the British National Health Service, Health Technology Assessment Program [ 1 ]. Notable is their observation of how the differences between the methods reviews and conventional quantitative systematic reviews, specifically attributable to their varying content and purpose, have implications for defining what qualifies as systematic. While the authors describe general aspects of “systematicity” (including rigorous application of a methodical search, abstraction, and analysis), they also describe a high degree of variation within the category of methods reviews itself and so offer little in the way of concrete guidance. In this paper, we present tentative concrete guidance, in the form of a preliminary set of proposed principles and optional strategies, for a rigorous systematic approach to reviewing and evaluating the literature on quantitative or qualitative methods topics. For purposes of this article, we have used the term systematic methods overview to emphasize the notion of a systematic approach to such reviews.

The conventional focus of rigorous literature reviews (i.e., review types for which systematic methods have been codified, including the various approaches to quantitative systematic reviews [ 2 – 4 ], and the numerous forms of qualitative and mixed methods literature synthesis [ 5 – 10 ]) is to synthesize empirical research findings from multiple studies. By contrast, the focus of overviews of methods, including the systematic approach we advocate, is to synthesize guidance on methods topics. The literature consulted for such reviews may include the methods literature, methods-relevant sections of empirical research reports, or both. Thus, this paper adds to previous work published in this journal—namely, recent preliminary guidance for conducting reviews of theory [ 11 ]—that has extended the application of systematic review methods to novel review types that are concerned with subject matter other than empirical research findings.

Published examples of methods overviews illustrate the varying objectives they can have. One objective is to establish methodological standards for appraisal purposes. For example, reviews of existing quality appraisal standards have been used to propose universal standards for appraising the quality of primary qualitative research [ 12 ] or evaluating qualitative research reports [ 13 ]. A second objective is to survey the methods-relevant sections of empirical research reports to establish current practices on methods use and reporting practices, which Moher and colleagues [ 14 ] recommend as a means for establishing the needs to be addressed in reporting guidelines (see, for example [ 15 , 16 ]). A third objective for a methods review is to offer clarity and enhance collective understanding regarding a specific methods topic that may be characterized by ambiguity, inconsistency, or a lack of comprehensiveness within the available methods literature. An example of this is a overview whose objective was to review the inconsistent definitions of intention-to-treat analysis (the methodologically preferred approach to analyze randomized controlled trial data) that have been offered in the methods literature and propose a solution for improving conceptual clarity [ 17 ]. Such reviews are warranted because students and researchers who must learn or apply research methods typically lack the time to systematically search, retrieve, review, and compare the available literature to develop a thorough and critical sense of the varied approaches regarding certain controversial or ambiguous methods topics.

While systematic methods overviews , as a review type, include both reviews of the methods literature and reviews of methods-relevant sections from empirical study reports, the guidance provided here is primarily applicable to reviews of the methods literature since it was derived from the experience of conducting such a review [ 18 ], described below. To our knowledge, there are no well-developed proposals on how to rigorously conduct such reviews. Such guidance would have the potential to improve the thoroughness and credibility of critical evaluations of the methods literature, which could increase their utility as a tool for generating understandings that advance research methods, both qualitative and quantitative. Our aim in this paper is thus to initiate discussion about what might constitute a rigorous approach to systematic methods overviews. While we hope to promote rigor in the conduct of systematic methods overviews wherever possible, we do not wish to suggest that all methods overviews need be conducted to the same standard. Rather, we believe that the level of rigor may need to be tailored pragmatically to the specific review objectives, which may not always justify the resource requirements of an intensive review process.

The example systematic methods overview on sampling in qualitative research

The principles and strategies we propose in this paper are derived from experience conducting a systematic methods overview on the topic of sampling in qualitative research [ 18 ]. The main objective of that methods overview was to bring clarity and deeper understanding of the prominent concepts related to sampling in qualitative research (purposeful sampling strategies, saturation, etc.). Specifically, we interpreted the available guidance, commenting on areas lacking clarity, consistency, or comprehensiveness (without proposing any recommendations on how to do sampling). This was achieved by a comparative and critical analysis of publications representing the most influential (i.e., highly cited) guidance across several methodological traditions in qualitative research.

The specific methods and procedures for the overview on sampling [ 18 ] from which our proposals are derived were developed both after soliciting initial input from local experts in qualitative research and an expert health librarian (KAM) and through ongoing careful deliberation throughout the review process. To summarize, in that review, we employed a transparent and rigorous approach to search the methods literature, selected publications for inclusion according to a purposeful and iterative process, abstracted textual data using structured abstraction forms, and analyzed (synthesized) the data using a systematic multi-step approach featuring abstraction of text, summary of information in matrices, and analytic comparisons.

For this article, we reflected on both the problems and challenges encountered at different stages of the review and our means for selecting justifiable procedures to deal with them. Several principles were then derived by considering the generic nature of these problems, while the generalizable aspects of the procedures used to address them formed the basis of optional strategies. Further details of the specific methods and procedures used in the overview on qualitative sampling are provided below to illustrate both the types of objectives and challenges that reviewers will likely need to consider and our approach to implementing each of the principles and strategies.

Organization of the guidance into principles and strategies

For the purposes of this article, principles are general statements outlining what we propose are important aims or considerations within a particular review process, given the unique objectives or challenges to be overcome with this type of review. These statements follow the general format, “considering the objective or challenge of X, we propose Y to be an important aim or consideration.” Strategies are optional and flexible approaches for implementing the previous principle outlined. Thus, generic challenges give rise to principles, which in turn give rise to strategies.

We organize the principles and strategies below into three sections corresponding to processes characteristic of most systematic literature synthesis approaches: literature identification and selection ; data abstraction from the publications selected for inclusion; and analysis , including critical appraisal and synthesis of the abstracted data. Within each section, we also describe the specific methodological decisions and procedures used in the overview on sampling in qualitative research [ 18 ] to illustrate how the principles and strategies for each review process were applied and implemented in a specific case. We expect this guidance and accompanying illustrations will be useful for anyone considering engaging in a methods overview, particularly those who may be familiar with conventional systematic review methods but may not yet appreciate some of the challenges specific to reviewing the methods literature.

Results and discussion

Literature identification and selection.

The identification and selection process includes search and retrieval of publications and the development and application of inclusion and exclusion criteria to select the publications that will be abstracted and analyzed in the final review. Literature identification and selection for overviews of the methods literature is challenging and potentially more resource-intensive than for most reviews of empirical research. This is true for several reasons that we describe below, alongside discussion of the potential solutions. Additionally, we suggest in this section how the selection procedures can be chosen to match the specific analytic approach used in methods overviews.

Delimiting a manageable set of publications

One aspect of methods overviews that can make identification and selection challenging is the fact that the universe of literature containing potentially relevant information regarding most methods-related topics is expansive and often unmanageably so. Reviewers are faced with two large categories of literature: the methods literature , where the possible publication types include journal articles, books, and book chapters; and the methods-relevant sections of empirical study reports , where the possible publication types include journal articles, monographs, books, theses, and conference proceedings. In our systematic overview of sampling in qualitative research, exhaustively searching (including retrieval and first-pass screening) all publication types across both categories of literature for information on a single methods-related topic was too burdensome to be feasible. The following proposed principle follows from the need to delimit a manageable set of literature for the review.

Principle #1:

Considering the broad universe of potentially relevant literature, we propose that an important objective early in the identification and selection stage is to delimit a manageable set of methods-relevant publications in accordance with the objectives of the methods overview.

Strategy #1:

To limit the set of methods-relevant publications that must be managed in the selection process, reviewers have the option to initially review only the methods literature, and exclude the methods-relevant sections of empirical study reports, provided this aligns with the review’s particular objectives.

We propose that reviewers are justified in choosing to select only the methods literature when the objective is to map out the range of recognized concepts relevant to a methods topic, to summarize the most authoritative or influential definitions or meanings for methods-related concepts, or to demonstrate a problematic lack of clarity regarding a widely established methods-related concept and potentially make recommendations for a preferred approach to the methods topic in question. For example, in the case of the methods overview on sampling [ 18 ], the primary aim was to define areas lacking in clarity for multiple widely established sampling-related topics. In the review on intention-to-treat in the context of missing outcome data [ 17 ], the authors identified a lack of clarity based on multiple inconsistent definitions in the literature and went on to recommend separating the issue of how to handle missing outcome data from the issue of whether an intention-to-treat analysis can be claimed.

In contrast to strategy #1, it may be appropriate to select the methods-relevant sections of empirical study reports when the objective is to illustrate how a methods concept is operationalized in research practice or reported by authors. For example, one could review all the publications in 2 years’ worth of issues of five high-impact field-related journals to answer questions about how researchers describe implementing a particular method or approach, or to quantify how consistently they define or report using it. Such reviews are often used to highlight gaps in the reporting practices regarding specific methods, which may be used to justify items to address in reporting guidelines (for example, [ 14 – 16 ]).

It is worth recognizing that other authors have advocated broader positions regarding the scope of literature to be considered in a review, expanding on our perspective. Suri [ 10 ] (who, like us, emphasizes how different sampling strategies are suitable for different literature synthesis objectives) has, for example, described a two-stage literature sampling procedure (pp. 96–97). First, reviewers use an initial approach to conduct a broad overview of the field—for reviews of methods topics, this would entail an initial review of the research methods literature. This is followed by a second more focused stage in which practical examples are purposefully selected—for methods reviews, this would involve sampling the empirical literature to illustrate key themes and variations. While this approach is seductive in its capacity to generate more in depth and interpretive analytic findings, some reviewers may consider it too resource-intensive to include the second step no matter how selective the purposeful sampling. In the overview on sampling where we stopped after the first stage [ 18 ], we discussed our selective focus on the methods literature as a limitation that left opportunities for further analysis of the literature. We explicitly recommended, for example, that theoretical sampling was a topic for which a future review of the methods sections of empirical reports was justified to answer specific questions identified in the primary review.

Ultimately, reviewers must make pragmatic decisions that balance resource considerations, combined with informed predictions about the depth and complexity of literature available on their topic, with the stated objectives of their review. The remaining principles and strategies apply primarily to overviews that include the methods literature, although some aspects may be relevant to reviews that include empirical study reports.

Searching beyond standard bibliographic databases

An important reality affecting identification and selection in overviews of the methods literature is the increased likelihood for relevant publications to be located in sources other than journal articles (which is usually not the case for overviews of empirical research, where journal articles generally represent the primary publication type). In the overview on sampling [ 18 ], out of 41 full-text publications retrieved and reviewed, only 4 were journal articles, while 37 were books or book chapters. Since many books and book chapters did not exist electronically, their full text had to be physically retrieved in hardcopy, while 11 publications were retrievable only through interlibrary loan or purchase request. The tasks associated with such retrieval are substantially more time-consuming than electronic retrieval. Since a substantial proportion of methods-related guidance may be located in publication types that are less comprehensively indexed in standard bibliographic databases, identification and retrieval thus become complicated processes.

Principle #2:

Considering that important sources of methods guidance can be located in non-journal publication types (e.g., books, book chapters) that tend to be poorly indexed in standard bibliographic databases, it is important to consider alternative search methods for identifying relevant publications to be further screened for inclusion.

Strategy #2:

To identify books, book chapters, and other non-journal publication types not thoroughly indexed in standard bibliographic databases, reviewers may choose to consult one or more of the following less standard sources: Google Scholar, publisher web sites, or expert opinion.

In the case of the overview on sampling in qualitative research [ 18 ], Google Scholar had two advantages over other standard bibliographic databases: it indexes and returns records of books and book chapters likely to contain guidance on qualitative research methods topics; and it has been validated as providing higher citation counts than ISI Web of Science (a producer of numerous bibliographic databases accessible through institutional subscription) for several non-biomedical disciplines including the social sciences where qualitative research methods are prominently used [ 19 – 21 ]. While we identified numerous useful publications by consulting experts, the author publication lists generated through Google Scholar searches were uniquely useful to identify more recent editions of methods books identified by experts.

Searching without relevant metadata

Determining what publications to select for inclusion in the overview on sampling [ 18 ] could only rarely be accomplished by reviewing the publication’s metadata. This was because for the many books and other non-journal type publications we identified as possibly relevant, the potential content of interest would be located in only a subsection of the publication. In this common scenario for reviews of the methods literature (as opposed to methods overviews that include empirical study reports), reviewers will often be unable to employ standard title, abstract, and keyword database searching or screening as a means for selecting publications.

Principle #3:

Considering that the presence of information about the topic of interest may not be indicated in the metadata for books and similar publication types, it is important to consider other means of identifying potentially useful publications for further screening.

Strategy #3:

One approach to identifying potentially useful books and similar publication types is to consider what classes of such publications (e.g., all methods manuals for a certain research approach) are likely to contain relevant content, then identify, retrieve, and review the full text of corresponding publications to determine whether they contain information on the topic of interest.

In the example of the overview on sampling in qualitative research [ 18 ], the topic of interest (sampling) was one of numerous topics covered in the general qualitative research methods manuals. Consequently, examples from this class of publications first had to be identified for retrieval according to non-keyword-dependent criteria. Thus, all methods manuals within the three research traditions reviewed (grounded theory, phenomenology, and case study) that might contain discussion of sampling were sought through Google Scholar and expert opinion, their full text obtained, and hand-searched for relevant content to determine eligibility. We used tables of contents and index sections of books to aid this hand searching.

Purposefully selecting literature on conceptual grounds

A final consideration in methods overviews relates to the type of analysis used to generate the review findings. Unlike quantitative systematic reviews where reviewers aim for accurate or unbiased quantitative estimates—something that requires identifying and selecting the literature exhaustively to obtain all relevant data available (i.e., a complete sample)—in methods overviews, reviewers must describe and interpret the relevant literature in qualitative terms to achieve review objectives. In other words, the aim in methods overviews is to seek coverage of the qualitative concepts relevant to the methods topic at hand. For example, in the overview of sampling in qualitative research [ 18 ], achieving review objectives entailed providing conceptual coverage of eight sampling-related topics that emerged as key domains. The following principle recognizes that literature sampling should therefore support generating qualitative conceptual data as the input to analysis.

Principle #4:

Since the analytic findings of a systematic methods overview are generated through qualitative description and interpretation of the literature on a specified topic, selection of the literature should be guided by a purposeful strategy designed to achieve adequate conceptual coverage (i.e., representing an appropriate degree of variation in relevant ideas) of the topic according to objectives of the review.

Strategy #4:

One strategy for choosing the purposeful approach to use in selecting the literature according to the review objectives is to consider whether those objectives imply exploring concepts either at a broad overview level, in which case combining maximum variation selection with a strategy that limits yield (e.g., critical case, politically important, or sampling for influence—described below) may be appropriate; or in depth, in which case purposeful approaches aimed at revealing innovative cases will likely be necessary.

In the methods overview on sampling, the implied scope was broad since we set out to review publications on sampling across three divergent qualitative research traditions—grounded theory, phenomenology, and case study—to facilitate making informative conceptual comparisons. Such an approach would be analogous to maximum variation sampling.

At the same time, the purpose of that review was to critically interrogate the clarity, consistency, and comprehensiveness of literature from these traditions that was “most likely to have widely influenced students’ and researchers’ ideas about sampling” (p. 1774) [ 18 ]. In other words, we explicitly set out to review and critique the most established and influential (and therefore dominant) literature, since this represents a common basis of knowledge among students and researchers seeking understanding or practical guidance on sampling in qualitative research. To achieve this objective, we purposefully sampled publications according to the criterion of influence , which we operationalized as how often an author or publication has been referenced in print or informal discourse. This second sampling approach also limited the literature we needed to consider within our broad scope review to a manageable amount.

To operationalize this strategy of sampling for influence , we sought to identify both the most influential authors within a qualitative research tradition (all of whose citations were subsequently screened) and the most influential publications on the topic of interest by non-influential authors. This involved a flexible approach that combined multiple indicators of influence to avoid the dilemma that any single indicator might provide inadequate coverage. These indicators included bibliometric data (h-index for author influence [ 22 ]; number of cites for publication influence), expert opinion, and cross-references in the literature (i.e., snowball sampling). As a final selection criterion, a publication was included only if it made an original contribution in terms of novel guidance regarding sampling or a related concept; thus, purely secondary sources were excluded. Publish or Perish software (Anne-Wil Harzing; available at http://www.harzing.com/resources/publish-or-perish ) was used to generate bibliometric data via the Google Scholar database. Figure  1 illustrates how identification and selection in the methods overview on sampling was a multi-faceted and iterative process. The authors selected as influential, and the publications selected for inclusion or exclusion are listed in Additional file 1 (Matrices 1, 2a, 2b).

Literature identification and selection process used in the methods overview on sampling [ 18 ]

In summary, the strategies of seeking maximum variation and sampling for influence were employed in the sampling overview to meet the specific review objectives described. Reviewers will need to consider the full range of purposeful literature sampling approaches at their disposal in deciding what best matches the specific aims of their own reviews. Suri [ 10 ] has recently retooled Patton’s well-known typology of purposeful sampling strategies (originally intended for primary research) for application to literature synthesis, providing a useful resource in this respect.

Data abstraction

The purpose of data abstraction in rigorous literature reviews is to locate and record all data relevant to the topic of interest from the full text of included publications, making them available for subsequent analysis. Conventionally, a data abstraction form—consisting of numerous distinct conceptually defined fields to which corresponding information from the source publication is recorded—is developed and employed. There are several challenges, however, to the processes of developing the abstraction form and abstracting the data itself when conducting methods overviews, which we address here. Some of these problems and their solutions may be familiar to those who have conducted qualitative literature syntheses, which are similarly conceptual.

Iteratively defining conceptual information to abstract

In the overview on sampling [ 18 ], while we surveyed multiple sources beforehand to develop a list of concepts relevant for abstraction (e.g., purposeful sampling strategies, saturation, sample size), there was no way for us to anticipate some concepts prior to encountering them in the review process. Indeed, in many cases, reviewers are unable to determine the complete set of methods-related concepts that will be the focus of the final review a priori without having systematically reviewed the publications to be included. Thus, defining what information to abstract beforehand may not be feasible.

Principle #5:

Considering the potential impracticality of defining a complete set of relevant methods-related concepts from a body of literature one has not yet systematically read, selecting and defining fields for data abstraction must often be undertaken iteratively. Thus, concepts to be abstracted can be expected to grow and change as data abstraction proceeds.

Strategy #5:

Reviewers can develop an initial form or set of concepts for abstraction purposes according to standard methods (e.g., incorporating expert feedback, pilot testing) and remain attentive to the need to iteratively revise it as concepts are added or modified during the review. Reviewers should document revisions and return to re-abstract data from previously abstracted publications as the new data requirements are determined.

In the sampling overview [ 18 ], we developed and maintained the abstraction form in Microsoft Word. We derived the initial set of abstraction fields from our own knowledge of relevant sampling-related concepts, consultation with local experts, and reviewing a pilot sample of publications. Since the publications in this review included a large proportion of books, the abstraction process often began by flagging the broad sections within a publication containing topic-relevant information for detailed review to identify text to abstract. When reviewing flagged text, the reviewer occasionally encountered an unanticipated concept significant enough to warrant being added as a new field to the abstraction form. For example, a field was added to capture how authors described the timing of sampling decisions, whether before (a priori) or after (ongoing) starting data collection, or whether this was unclear. In these cases, we systematically documented the modification to the form and returned to previously abstracted publications to abstract any information that might be relevant to the new field.

The logic of this strategy is analogous to the logic used in a form of research synthesis called best fit framework synthesis (BFFS) [ 23 – 25 ]. In that method, reviewers initially code evidence using an a priori framework they have selected. When evidence cannot be accommodated by the selected framework, reviewers then develop new themes or concepts from which they construct a new expanded framework. Both the strategy proposed and the BFFS approach to research synthesis are notable for their rigorous and transparent means to adapt a final set of concepts to the content under review.

Accounting for inconsistent terminology

An important complication affecting the abstraction process in methods overviews is that the language used by authors to describe methods-related concepts can easily vary across publications. For example, authors from different qualitative research traditions often use different terms for similar methods-related concepts. Furthermore, as we found in the sampling overview [ 18 ], there may be cases where no identifiable term, phrase, or label for a methods-related concept is used at all, and a description of it is given instead. This can make searching the text for relevant concepts based on keywords unreliable.

Principle #6:

Since accepted terms may not be used consistently to refer to methods concepts, it is necessary to rely on the definitions for concepts, rather than keywords, to identify relevant information in the publication to abstract.

Strategy #6:

An effective means to systematically identify relevant information is to develop and iteratively adjust written definitions for key concepts (corresponding to abstraction fields) that are consistent with and as inclusive of as much of the literature reviewed as possible. Reviewers then seek information that matches these definitions (rather than keywords) when scanning a publication for relevant data to abstract.

In the abstraction process for the sampling overview [ 18 ], we noted the several concepts of interest to the review for which abstraction by keyword was particularly problematic due to inconsistent terminology across publications: sampling , purposeful sampling , sampling strategy , and saturation (for examples, see Additional file 1 , Matrices 3a, 3b, 4). We iteratively developed definitions for these concepts by abstracting text from publications that either provided an explicit definition or from which an implicit definition could be derived, which was recorded in fields dedicated to the concept’s definition. Using a method of constant comparison, we used text from definition fields to inform and modify a centrally maintained definition of the corresponding concept to optimize its fit and inclusiveness with the literature reviewed. Table  1 shows, as an example, the final definition constructed in this way for one of the central concepts of the review, qualitative sampling .

We applied iteratively developed definitions when making decisions about what specific text to abstract for an existing field, which allowed us to abstract concept-relevant data even if no recognized keyword was used. For example, this was the case for the sampling-related concept, saturation , where the relevant text available for abstraction in one publication [ 26 ]—“to continue to collect data until nothing new was being observed or recorded, no matter how long that takes”—was not accompanied by any term or label whatsoever.

This comparative analytic strategy (and our approach to analysis more broadly as described in strategy #7, below) is analogous to the process of reciprocal translation —a technique first introduced for meta-ethnography by Noblit and Hare [ 27 ] that has since been recognized as a common element in a variety of qualitative metasynthesis approaches [ 28 ]. Reciprocal translation, taken broadly, involves making sense of a study’s findings in terms of the findings of the other studies included in the review. In practice, it has been operationalized in different ways. Melendez-Torres and colleagues developed a typology from their review of the metasynthesis literature, describing four overlapping categories of specific operations undertaken in reciprocal translation: visual representation, key paper integration, data reduction and thematic extraction, and line-by-line coding [ 28 ]. The approaches suggested in both strategies #6 and #7, with their emphasis on constant comparison, appear to fall within the line-by-line coding category.

Generating credible and verifiable analytic interpretations

The analysis in a systematic methods overview must support its more general objective, which we suggested above is often to offer clarity and enhance collective understanding regarding a chosen methods topic. In our experience, this involves describing and interpreting the relevant literature in qualitative terms. Furthermore, any interpretative analysis required may entail reaching different levels of abstraction, depending on the more specific objectives of the review. For example, in the overview on sampling [ 18 ], we aimed to produce a comparative analysis of how multiple sampling-related topics were treated differently within and among different qualitative research traditions. To promote credibility of the review, however, not only should one seek a qualitative analytic approach that facilitates reaching varying levels of abstraction but that approach must also ensure that abstract interpretations are supported and justified by the source data and not solely the product of the analyst’s speculative thinking.

Principle #7:

Considering the qualitative nature of the analysis required in systematic methods overviews, it is important to select an analytic method whose interpretations can be verified as being consistent with the literature selected, regardless of the level of abstraction reached.

Strategy #7:

We suggest employing the constant comparative method of analysis [ 29 ] because it supports developing and verifying analytic links to the source data throughout progressively interpretive or abstract levels. In applying this approach, we advise a rigorous approach, documenting how supportive quotes or references to the original texts are carried forward in the successive steps of analysis to allow for easy verification.

The analytic approach used in the methods overview on sampling [ 18 ] comprised four explicit steps, progressing in level of abstraction—data abstraction, matrices, narrative summaries, and final analytic conclusions (Fig.  2 ). While we have positioned data abstraction as the second stage of the generic review process (prior to Analysis), above, we also considered it as an initial step of analysis in the sampling overview for several reasons. First, it involved a process of constant comparisons and iterative decision-making about the fields to add or define during development and modification of the abstraction form, through which we established the range of concepts to be addressed in the review. At the same time, abstraction involved continuous analytic decisions about what textual quotes (ranging in size from short phrases to numerous paragraphs) to record in the fields thus created. This constant comparative process was analogous to open coding in which textual data from publications was compared to conceptual fields (equivalent to codes) or to other instances of data previously abstracted when constructing definitions to optimize their fit with the overall literature as described in strategy #6. Finally, in the data abstraction step, we also recorded our first interpretive thoughts in dedicated fields, providing initial material for the more abstract analytic steps.

Summary of progressive steps of analysis used in the methods overview on sampling [ 18 ]

In the second step of the analysis, we constructed topic-specific matrices , or tables, by copying relevant quotes from abstraction forms into the appropriate cells of matrices (for the complete set of analytic matrices developed in the sampling review, see Additional file 1 (matrices 3 to 10)). Each matrix ranged from one to five pages; row headings, nested three-deep, identified the methodological tradition, author, and publication, respectively; and column headings identified the concepts, which corresponded to abstraction fields. Matrices thus allowed us to make further comparisons across methodological traditions, and between authors within a tradition. In the third step of analysis, we recorded our comparative observations as narrative summaries , in which we used illustrative quotes more sparingly. In the final step, we developed analytic conclusions based on the narrative summaries about the sampling-related concepts within each methodological tradition for which clarity, consistency, or comprehensiveness of the available guidance appeared to be lacking. Higher levels of analysis thus built logically from the lower levels, enabling us to easily verify analytic conclusions by tracing the support for claims by comparing the original text of publications reviewed.

Integrative versus interpretive methods overviews

The analytic product of systematic methods overviews is comparable to qualitative evidence syntheses, since both involve describing and interpreting the relevant literature in qualitative terms. Most qualitative synthesis approaches strive to produce new conceptual understandings that vary in level of interpretation. Dixon-Woods and colleagues [ 30 ] elaborate on a useful distinction, originating from Noblit and Hare [ 27 ], between integrative and interpretive reviews. Integrative reviews focus on summarizing available primary data and involve using largely secure and well defined concepts to do so; definitions are used from an early stage to specify categories for abstraction (or coding) of data, which in turn supports their aggregation; they do not seek as their primary focus to develop or specify new concepts, although they may achieve some theoretical or interpretive functions. For interpretive reviews, meanwhile, the main focus is to develop new concepts and theories that integrate them, with the implication that the concepts developed become fully defined towards the end of the analysis. These two forms are not completely distinct, and “every integrative synthesis will include elements of interpretation, and every interpretive synthesis will include elements of aggregation of data” [ 30 ].

The example methods overview on sampling [ 18 ] could be classified as predominantly integrative because its primary goal was to aggregate influential authors’ ideas on sampling-related concepts; there were also, however, elements of interpretive synthesis since it aimed to develop new ideas about where clarity in guidance on certain sampling-related topics is lacking, and definitions for some concepts were flexible and not fixed until late in the review. We suggest that most systematic methods overviews will be classifiable as predominantly integrative (aggregative). Nevertheless, more highly interpretive methods overviews are also quite possible—for example, when the review objective is to provide a highly critical analysis for the purpose of generating new methodological guidance. In such cases, reviewers may need to sample more deeply (see strategy #4), specifically by selecting empirical research reports (i.e., to go beyond dominant or influential ideas in the methods literature) that are likely to feature innovations or instructive lessons in employing a given method.

In this paper, we have outlined tentative guidance in the form of seven principles and strategies on how to conduct systematic methods overviews, a review type in which methods-relevant literature is systematically analyzed with the aim of offering clarity and enhancing collective understanding regarding a specific methods topic. Our proposals include strategies for delimiting the set of publications to consider, searching beyond standard bibliographic databases, searching without the availability of relevant metadata, selecting publications on purposeful conceptual grounds, defining concepts and other information to abstract iteratively, accounting for inconsistent terminology, and generating credible and verifiable analytic interpretations. We hope the suggestions proposed will be useful to others undertaking reviews on methods topics in future.

As far as we are aware, this is the first published source of concrete guidance for conducting this type of review. It is important to note that our primary objective was to initiate methodological discussion by stimulating reflection on what rigorous methods for this type of review should look like, leaving the development of more complete guidance to future work. While derived from the experience of reviewing a single qualitative methods topic, we believe the principles and strategies provided are generalizable to overviews of both qualitative and quantitative methods topics alike. However, it is expected that additional challenges and insights for conducting such reviews have yet to be defined. Thus, we propose that next steps for developing more definitive guidance should involve an attempt to collect and integrate other reviewers’ perspectives and experiences in conducting systematic methods overviews on a broad range of qualitative and quantitative methods topics. Formalized guidance and standards would improve the quality of future methods overviews, something we believe has important implications for advancing qualitative and quantitative methodology. When undertaken to a high standard, rigorous critical evaluations of the available methods guidance have significant potential to make implicit controversies explicit, and improve the clarity and precision of our understandings of problematic qualitative or quantitative methods issues.

A review process central to most types of rigorous reviews of empirical studies, which we did not explicitly address in a separate review step above, is quality appraisal . The reason we have not treated this as a separate step stems from the different objectives of the primary publications included in overviews of the methods literature (i.e., providing methodological guidance) compared to the primary publications included in the other established review types (i.e., reporting findings from single empirical studies). This is not to say that appraising quality of the methods literature is not an important concern for systematic methods overviews. Rather, appraisal is much more integral to (and difficult to separate from) the analysis step, in which we advocate appraising clarity, consistency, and comprehensiveness—the quality appraisal criteria that we suggest are appropriate for the methods literature. As a second important difference regarding appraisal, we currently advocate appraising the aforementioned aspects at the level of the literature in aggregate rather than at the level of individual publications. One reason for this is that methods guidance from individual publications generally builds on previous literature, and thus we feel that ahistorical judgments about comprehensiveness of single publications lack relevance and utility. Additionally, while different methods authors may express themselves less clearly than others, their guidance can nonetheless be highly influential and useful, and should therefore not be downgraded or ignored based on considerations of clarity—which raises questions about the alternative uses that quality appraisals of individual publications might have. Finally, legitimate variability in the perspectives that methods authors wish to emphasize, and the levels of generality at which they write about methods, makes critiquing individual publications based on the criterion of clarity a complex and potentially problematic endeavor that is beyond the scope of this paper to address. By appraising the current state of the literature at a holistic level, reviewers stand to identify important gaps in understanding that represent valuable opportunities for further methodological development.

To summarize, the principles and strategies provided here may be useful to those seeking to undertake their own systematic methods overview. Additional work is needed, however, to establish guidance that is comprehensive by comparing the experiences from conducting a variety of methods overviews on a range of methods topics. Efforts that further advance standards for systematic methods overviews have the potential to promote high-quality critical evaluations that produce conceptually clear and unified understandings of problematic methods topics, thereby accelerating the advance of research methodology.

Hutton JL, Ashcroft R. What does “systematic” mean for reviews of methods? In: Black N, Brazier J, Fitzpatrick R, Reeves B, editors. Health services research methods: a guide to best practice. London: BMJ Publishing Group; 1998. p. 249–54.

Google Scholar  

Cochrane handbook for systematic reviews of interventions. In. Edited by Higgins JPT, Green S, Version 5.1.0 edn: The Cochrane Collaboration; 2011.

Centre for Reviews and Dissemination: Systematic reviews: CRD’s guidance for undertaking reviews in health care . York: Centre for Reviews and Dissemination; 2009.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700–0.

Barnett-Page E, Thomas J. Methods for the synthesis of qualitative research: a critical review. BMC Med Res Methodol. 2009;9(1):59.

Article   PubMed   PubMed Central   Google Scholar  

Kastner M, Tricco AC, Soobiah C, Lillie E, Perrier L, Horsley T, Welch V, Cogo E, Antony J, Straus SE. What is the most appropriate knowledge synthesis method to conduct a review? Protocol for a scoping review. BMC Med Res Methodol. 2012;12(1):1–1.

Article   Google Scholar  

Booth A, Noyes J, Flemming K, Gerhardus A. Guidance on choosing qualitative evidence synthesis methods for use in health technology assessments of complex interventions. In: Integrate-HTA. 2016.

Booth A, Sutton A, Papaioannou D. Systematic approaches to successful literature review. 2nd ed. London: Sage; 2016.

Hannes K, Lockwood C. Synthesizing qualitative research: choosing the right approach. Chichester: Wiley-Blackwell; 2012.

Suri H. Towards methodologically inclusive research syntheses: expanding possibilities. New York: Routledge; 2014.

Campbell M, Egan M, Lorenc T, Bond L, Popham F, Fenton C, Benzeval M. Considering methodological options for reviews of theory: illustrated by a review of theories linking income and health. Syst Rev. 2014;3(1):1–11.

Cohen DJ, Crabtree BF. Evaluative criteria for qualitative research in health care: controversies and recommendations. Ann Fam Med. 2008;6(4):331–9.

Tong A, Sainsbury P, Craig J. Consolidated criteria for reportingqualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19(6):349–57.

Article   PubMed   Google Scholar  

Moher D, Schulz KF, Simera I, Altman DG. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7(2):e1000217.

Moher D, Tetzlaff J, Tricco AC, Sampson M, Altman DG. Epidemiology and reporting characteristics of systematic reviews. PLoS Med. 2007;4(3):e78.

Chan AW, Altman DG. Epidemiology and reporting of randomised trials published in PubMed journals. Lancet. 2005;365(9465):1159–62.

Alshurafa M, Briel M, Akl EA, Haines T, Moayyedi P, Gentles SJ, Rios L, Tran C, Bhatnagar N, Lamontagne F, et al. Inconsistent definitions for intention-to-treat in relation to missing outcome data: systematic review of the methods literature. PLoS One. 2012;7(11):e49163.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Gentles SJ, Charles C, Ploeg J, McKibbon KA. Sampling in qualitative research: insights from an overview of the methods literature. Qual Rep. 2015;20(11):1772–89.

Harzing A-W, Alakangas S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics. 2016;106(2):787–804.

Harzing A-WK, van der Wal R. Google Scholar as a new source for citation analysis. Ethics Sci Environ Polit. 2008;8(1):61–73.

Kousha K, Thelwall M. Google Scholar citations and Google Web/URL citations: a multi‐discipline exploratory analysis. J Assoc Inf Sci Technol. 2007;58(7):1055–65.

Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci U S A. 2005;102(46):16569–72.

Booth A, Carroll C. How to build up the actionable knowledge base: the role of ‘best fit’ framework synthesis for studies of improvement in healthcare. BMJ Quality Safety. 2015;24(11):700–8.

Carroll C, Booth A, Leaviss J, Rick J. “Best fit” framework synthesis: refining the method. BMC Med Res Methodol. 2013;13(1):37.

Carroll C, Booth A, Cooper K. A worked example of “best fit” framework synthesis: a systematic review of views concerning the taking of some potential chemopreventive agents. BMC Med Res Methodol. 2011;11(1):29.

Cohen MZ, Kahn DL, Steeves DL. Hermeneutic phenomenological research: a practical guide for nurse researchers. Thousand Oaks: Sage; 2000.

Noblit GW, Hare RD. Meta-ethnography: synthesizing qualitative studies. Newbury Park: Sage; 1988.

Book   Google Scholar  

Melendez-Torres GJ, Grant S, Bonell C. A systematic review and critical appraisal of qualitative metasynthetic practice in public health to develop a taxonomy of operations of reciprocal translation. Res Synthesis Methods. 2015;6(4):357–71.

Article   CAS   Google Scholar  

Glaser BG, Strauss A. The discovery of grounded theory. Chicago: Aldine; 1967.

Dixon-Woods M, Agarwal S, Young B, Jones D, Sutton A. Integrative approaches to qualitative and quantitative evidence. In: UK National Health Service. 2004. p. 1–44.

Download references

Acknowledgements

Not applicable.

There was no funding for this work.

Availability of data and materials

The systematic methods overview used as a worked example in this article (Gentles SJ, Charles C, Ploeg J, McKibbon KA: Sampling in qualitative research: insights from an overview of the methods literature. The Qual Rep 2015, 20(11):1772-1789) is available from http://nsuworks.nova.edu/tqr/vol20/iss11/5 .

Authors’ contributions

SJG wrote the first draft of this article, with CC contributing to drafting. All authors contributed to revising the manuscript. All authors except CC (deceased) approved the final draft. SJG, CC, KAB, and JP were involved in developing methods for the systematic methods overview on sampling.

Authors’ information

Competing interests.

The authors declare that they have no competing interests.

Consent for publication

Ethics approval and consent to participate, author information, authors and affiliations.

Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada

Stephen J. Gentles, Cathy Charles & K. Ann McKibbon

Faculty of Social Work, University of Calgary, Alberta, Canada

David B. Nicholas

School of Nursing, McMaster University, Hamilton, Ontario, Canada

Jenny Ploeg

CanChild Centre for Childhood Disability Research, McMaster University, 1400 Main Street West, IAHS 408, Hamilton, ON, L8S 1C7, Canada

Stephen J. Gentles

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stephen J. Gentles .

Additional information

Cathy Charles is deceased

Additional file

Additional file 1:.

Submitted: Analysis_matrices. (DOC 330 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article.

Gentles, S.J., Charles, C., Nicholas, D.B. et al. Reviewing the research methods literature: principles and strategies illustrated by a systematic overview of sampling in qualitative research. Syst Rev 5 , 172 (2016). https://doi.org/10.1186/s13643-016-0343-0

Download citation

Received : 06 June 2016

Accepted : 14 September 2016

Published : 11 October 2016

DOI : https://doi.org/10.1186/s13643-016-0343-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Systematic review
  • Literature selection
  • Research methods
  • Research methodology
  • Overview of methods
  • Systematic methods overview
  • Review methods

Systematic Reviews

ISSN: 2046-4053

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

research methodology journal article

Criteria for Good Qualitative Research: A Comprehensive Review

  • Regular Article
  • Open access
  • Published: 18 September 2021
  • Volume 31 , pages 679–689, ( 2022 )

Cite this article

You have full access to this open access article

research methodology journal article

  • Drishti Yadav   ORCID: orcid.org/0000-0002-2974-0323 1  

87k Accesses

32 Citations

72 Altmetric

Explore all metrics

This review aims to synthesize a published set of evaluative criteria for good qualitative research. The aim is to shed light on existing standards for assessing the rigor of qualitative research encompassing a range of epistemological and ontological standpoints. Using a systematic search strategy, published journal articles that deliberate criteria for rigorous research were identified. Then, references of relevant articles were surveyed to find noteworthy, distinct, and well-defined pointers to good qualitative research. This review presents an investigative assessment of the pivotal features in qualitative research that can permit the readers to pass judgment on its quality and to condemn it as good research when objectively and adequately utilized. Overall, this review underlines the crux of qualitative research and accentuates the necessity to evaluate such research by the very tenets of its being. It also offers some prospects and recommendations to improve the quality of qualitative research. Based on the findings of this review, it is concluded that quality criteria are the aftereffect of socio-institutional procedures and existing paradigmatic conducts. Owing to the paradigmatic diversity of qualitative research, a single and specific set of quality criteria is neither feasible nor anticipated. Since qualitative research is not a cohesive discipline, researchers need to educate and familiarize themselves with applicable norms and decisive factors to evaluate qualitative research from within its theoretical and methodological framework of origin.

Similar content being viewed by others

research methodology journal article

Good Qualitative Research: Opening up the Debate

Beyond qualitative/quantitative structuralism: the positivist qualitative research and the paradigmatic disclaimer.

research methodology journal article

What is Qualitative in Research

Avoid common mistakes on your manuscript.

Introduction

“… It is important to regularly dialogue about what makes for good qualitative research” (Tracy, 2010 , p. 837)

To decide what represents good qualitative research is highly debatable. There are numerous methods that are contained within qualitative research and that are established on diverse philosophical perspectives. Bryman et al., ( 2008 , p. 262) suggest that “It is widely assumed that whereas quality criteria for quantitative research are well‐known and widely agreed, this is not the case for qualitative research.” Hence, the question “how to evaluate the quality of qualitative research” has been continuously debated. There are many areas of science and technology wherein these debates on the assessment of qualitative research have taken place. Examples include various areas of psychology: general psychology (Madill et al., 2000 ); counseling psychology (Morrow, 2005 ); and clinical psychology (Barker & Pistrang, 2005 ), and other disciplines of social sciences: social policy (Bryman et al., 2008 ); health research (Sparkes, 2001 ); business and management research (Johnson et al., 2006 ); information systems (Klein & Myers, 1999 ); and environmental studies (Reid & Gough, 2000 ). In the literature, these debates are enthused by the impression that the blanket application of criteria for good qualitative research developed around the positivist paradigm is improper. Such debates are based on the wide range of philosophical backgrounds within which qualitative research is conducted (e.g., Sandberg, 2000 ; Schwandt, 1996 ). The existence of methodological diversity led to the formulation of different sets of criteria applicable to qualitative research.

Among qualitative researchers, the dilemma of governing the measures to assess the quality of research is not a new phenomenon, especially when the virtuous triad of objectivity, reliability, and validity (Spencer et al., 2004 ) are not adequate. Occasionally, the criteria of quantitative research are used to evaluate qualitative research (Cohen & Crabtree, 2008 ; Lather, 2004 ). Indeed, Howe ( 2004 ) claims that the prevailing paradigm in educational research is scientifically based experimental research. Hypotheses and conjectures about the preeminence of quantitative research can weaken the worth and usefulness of qualitative research by neglecting the prominence of harmonizing match for purpose on research paradigm, the epistemological stance of the researcher, and the choice of methodology. Researchers have been reprimanded concerning this in “paradigmatic controversies, contradictions, and emerging confluences” (Lincoln & Guba, 2000 ).

In general, qualitative research tends to come from a very different paradigmatic stance and intrinsically demands distinctive and out-of-the-ordinary criteria for evaluating good research and varieties of research contributions that can be made. This review attempts to present a series of evaluative criteria for qualitative researchers, arguing that their choice of criteria needs to be compatible with the unique nature of the research in question (its methodology, aims, and assumptions). This review aims to assist researchers in identifying some of the indispensable features or markers of high-quality qualitative research. In a nutshell, the purpose of this systematic literature review is to analyze the existing knowledge on high-quality qualitative research and to verify the existence of research studies dealing with the critical assessment of qualitative research based on the concept of diverse paradigmatic stances. Contrary to the existing reviews, this review also suggests some critical directions to follow to improve the quality of qualitative research in different epistemological and ontological perspectives. This review is also intended to provide guidelines for the acceleration of future developments and dialogues among qualitative researchers in the context of assessing the qualitative research.

The rest of this review article is structured in the following fashion: Sect.  Methods describes the method followed for performing this review. Section Criteria for Evaluating Qualitative Studies provides a comprehensive description of the criteria for evaluating qualitative studies. This section is followed by a summary of the strategies to improve the quality of qualitative research in Sect.  Improving Quality: Strategies . Section  How to Assess the Quality of the Research Findings? provides details on how to assess the quality of the research findings. After that, some of the quality checklists (as tools to evaluate quality) are discussed in Sect.  Quality Checklists: Tools for Assessing the Quality . At last, the review ends with the concluding remarks presented in Sect.  Conclusions, Future Directions and Outlook . Some prospects in qualitative research for enhancing its quality and usefulness in the social and techno-scientific research community are also presented in Sect.  Conclusions, Future Directions and Outlook .

For this review, a comprehensive literature search was performed from many databases using generic search terms such as Qualitative Research , Criteria , etc . The following databases were chosen for the literature search based on the high number of results: IEEE Explore, ScienceDirect, PubMed, Google Scholar, and Web of Science. The following keywords (and their combinations using Boolean connectives OR/AND) were adopted for the literature search: qualitative research, criteria, quality, assessment, and validity. The synonyms for these keywords were collected and arranged in a logical structure (see Table 1 ). All publications in journals and conference proceedings later than 1950 till 2021 were considered for the search. Other articles extracted from the references of the papers identified in the electronic search were also included. A large number of publications on qualitative research were retrieved during the initial screening. Hence, to include the searches with the main focus on criteria for good qualitative research, an inclusion criterion was utilized in the search string.

From the selected databases, the search retrieved a total of 765 publications. Then, the duplicate records were removed. After that, based on the title and abstract, the remaining 426 publications were screened for their relevance by using the following inclusion and exclusion criteria (see Table 2 ). Publications focusing on evaluation criteria for good qualitative research were included, whereas those works which delivered theoretical concepts on qualitative research were excluded. Based on the screening and eligibility, 45 research articles were identified that offered explicit criteria for evaluating the quality of qualitative research and were found to be relevant to this review.

Figure  1 illustrates the complete review process in the form of PRISMA flow diagram. PRISMA, i.e., “preferred reporting items for systematic reviews and meta-analyses” is employed in systematic reviews to refine the quality of reporting.

figure 1

PRISMA flow diagram illustrating the search and inclusion process. N represents the number of records

Criteria for Evaluating Qualitative Studies

Fundamental criteria: general research quality.

Various researchers have put forward criteria for evaluating qualitative research, which have been summarized in Table 3 . Also, the criteria outlined in Table 4 effectively deliver the various approaches to evaluate and assess the quality of qualitative work. The entries in Table 4 are based on Tracy’s “Eight big‐tent criteria for excellent qualitative research” (Tracy, 2010 ). Tracy argues that high-quality qualitative work should formulate criteria focusing on the worthiness, relevance, timeliness, significance, morality, and practicality of the research topic, and the ethical stance of the research itself. Researchers have also suggested a series of questions as guiding principles to assess the quality of a qualitative study (Mays & Pope, 2020 ). Nassaji ( 2020 ) argues that good qualitative research should be robust, well informed, and thoroughly documented.

Qualitative Research: Interpretive Paradigms

All qualitative researchers follow highly abstract principles which bring together beliefs about ontology, epistemology, and methodology. These beliefs govern how the researcher perceives and acts. The net, which encompasses the researcher’s epistemological, ontological, and methodological premises, is referred to as a paradigm, or an interpretive structure, a “Basic set of beliefs that guides action” (Guba, 1990 ). Four major interpretive paradigms structure the qualitative research: positivist and postpositivist, constructivist interpretive, critical (Marxist, emancipatory), and feminist poststructural. The complexity of these four abstract paradigms increases at the level of concrete, specific interpretive communities. Table 5 presents these paradigms and their assumptions, including their criteria for evaluating research, and the typical form that an interpretive or theoretical statement assumes in each paradigm. Moreover, for evaluating qualitative research, quantitative conceptualizations of reliability and validity are proven to be incompatible (Horsburgh, 2003 ). In addition, a series of questions have been put forward in the literature to assist a reviewer (who is proficient in qualitative methods) for meticulous assessment and endorsement of qualitative research (Morse, 2003 ). Hammersley ( 2007 ) also suggests that guiding principles for qualitative research are advantageous, but methodological pluralism should not be simply acknowledged for all qualitative approaches. Seale ( 1999 ) also points out the significance of methodological cognizance in research studies.

Table 5 reflects that criteria for assessing the quality of qualitative research are the aftermath of socio-institutional practices and existing paradigmatic standpoints. Owing to the paradigmatic diversity of qualitative research, a single set of quality criteria is neither possible nor desirable. Hence, the researchers must be reflexive about the criteria they use in the various roles they play within their research community.

Improving Quality: Strategies

Another critical question is “How can the qualitative researchers ensure that the abovementioned quality criteria can be met?” Lincoln and Guba ( 1986 ) delineated several strategies to intensify each criteria of trustworthiness. Other researchers (Merriam & Tisdell, 2016 ; Shenton, 2004 ) also presented such strategies. A brief description of these strategies is shown in Table 6 .

It is worth mentioning that generalizability is also an integral part of qualitative research (Hays & McKibben, 2021 ). In general, the guiding principle pertaining to generalizability speaks about inducing and comprehending knowledge to synthesize interpretive components of an underlying context. Table 7 summarizes the main metasynthesis steps required to ascertain generalizability in qualitative research.

Figure  2 reflects the crucial components of a conceptual framework and their contribution to decisions regarding research design, implementation, and applications of results to future thinking, study, and practice (Johnson et al., 2020 ). The synergy and interrelationship of these components signifies their role to different stances of a qualitative research study.

figure 2

Essential elements of a conceptual framework

In a nutshell, to assess the rationale of a study, its conceptual framework and research question(s), quality criteria must take account of the following: lucid context for the problem statement in the introduction; well-articulated research problems and questions; precise conceptual framework; distinct research purpose; and clear presentation and investigation of the paradigms. These criteria would expedite the quality of qualitative research.

How to Assess the Quality of the Research Findings?

The inclusion of quotes or similar research data enhances the confirmability in the write-up of the findings. The use of expressions (for instance, “80% of all respondents agreed that” or “only one of the interviewees mentioned that”) may also quantify qualitative findings (Stenfors et al., 2020 ). On the other hand, the persuasive reason for “why this may not help in intensifying the research” has also been provided (Monrouxe & Rees, 2020 ). Further, the Discussion and Conclusion sections of an article also prove robust markers of high-quality qualitative research, as elucidated in Table 8 .

Quality Checklists: Tools for Assessing the Quality

Numerous checklists are available to speed up the assessment of the quality of qualitative research. However, if used uncritically and recklessly concerning the research context, these checklists may be counterproductive. I recommend that such lists and guiding principles may assist in pinpointing the markers of high-quality qualitative research. However, considering enormous variations in the authors’ theoretical and philosophical contexts, I would emphasize that high dependability on such checklists may say little about whether the findings can be applied in your setting. A combination of such checklists might be appropriate for novice researchers. Some of these checklists are listed below:

The most commonly used framework is Consolidated Criteria for Reporting Qualitative Research (COREQ) (Tong et al., 2007 ). This framework is recommended by some journals to be followed by the authors during article submission.

Standards for Reporting Qualitative Research (SRQR) is another checklist that has been created particularly for medical education (O’Brien et al., 2014 ).

Also, Tracy ( 2010 ) and Critical Appraisal Skills Programme (CASP, 2021 ) offer criteria for qualitative research relevant across methods and approaches.

Further, researchers have also outlined different criteria as hallmarks of high-quality qualitative research. For instance, the “Road Trip Checklist” (Epp & Otnes, 2021 ) provides a quick reference to specific questions to address different elements of high-quality qualitative research.

Conclusions, Future Directions, and Outlook

This work presents a broad review of the criteria for good qualitative research. In addition, this article presents an exploratory analysis of the essential elements in qualitative research that can enable the readers of qualitative work to judge it as good research when objectively and adequately utilized. In this review, some of the essential markers that indicate high-quality qualitative research have been highlighted. I scope them narrowly to achieve rigor in qualitative research and note that they do not completely cover the broader considerations necessary for high-quality research. This review points out that a universal and versatile one-size-fits-all guideline for evaluating the quality of qualitative research does not exist. In other words, this review also emphasizes the non-existence of a set of common guidelines among qualitative researchers. In unison, this review reinforces that each qualitative approach should be treated uniquely on account of its own distinctive features for different epistemological and disciplinary positions. Owing to the sensitivity of the worth of qualitative research towards the specific context and the type of paradigmatic stance, researchers should themselves analyze what approaches can be and must be tailored to ensemble the distinct characteristics of the phenomenon under investigation. Although this article does not assert to put forward a magic bullet and to provide a one-stop solution for dealing with dilemmas about how, why, or whether to evaluate the “goodness” of qualitative research, it offers a platform to assist the researchers in improving their qualitative studies. This work provides an assembly of concerns to reflect on, a series of questions to ask, and multiple sets of criteria to look at, when attempting to determine the quality of qualitative research. Overall, this review underlines the crux of qualitative research and accentuates the need to evaluate such research by the very tenets of its being. Bringing together the vital arguments and delineating the requirements that good qualitative research should satisfy, this review strives to equip the researchers as well as reviewers to make well-versed judgment about the worth and significance of the qualitative research under scrutiny. In a nutshell, a comprehensive portrayal of the research process (from the context of research to the research objectives, research questions and design, speculative foundations, and from approaches of collecting data to analyzing the results, to deriving inferences) frequently proliferates the quality of a qualitative research.

Prospects : A Road Ahead for Qualitative Research

Irrefutably, qualitative research is a vivacious and evolving discipline wherein different epistemological and disciplinary positions have their own characteristics and importance. In addition, not surprisingly, owing to the sprouting and varied features of qualitative research, no consensus has been pulled off till date. Researchers have reflected various concerns and proposed several recommendations for editors and reviewers on conducting reviews of critical qualitative research (Levitt et al., 2021 ; McGinley et al., 2021 ). Following are some prospects and a few recommendations put forward towards the maturation of qualitative research and its quality evaluation:

In general, most of the manuscript and grant reviewers are not qualitative experts. Hence, it is more likely that they would prefer to adopt a broad set of criteria. However, researchers and reviewers need to keep in mind that it is inappropriate to utilize the same approaches and conducts among all qualitative research. Therefore, future work needs to focus on educating researchers and reviewers about the criteria to evaluate qualitative research from within the suitable theoretical and methodological context.

There is an urgent need to refurbish and augment critical assessment of some well-known and widely accepted tools (including checklists such as COREQ, SRQR) to interrogate their applicability on different aspects (along with their epistemological ramifications).

Efforts should be made towards creating more space for creativity, experimentation, and a dialogue between the diverse traditions of qualitative research. This would potentially help to avoid the enforcement of one's own set of quality criteria on the work carried out by others.

Moreover, journal reviewers need to be aware of various methodological practices and philosophical debates.

It is pivotal to highlight the expressions and considerations of qualitative researchers and bring them into a more open and transparent dialogue about assessing qualitative research in techno-scientific, academic, sociocultural, and political rooms.

Frequent debates on the use of evaluative criteria are required to solve some potentially resolved issues (including the applicability of a single set of criteria in multi-disciplinary aspects). Such debates would not only benefit the group of qualitative researchers themselves, but primarily assist in augmenting the well-being and vivacity of the entire discipline.

To conclude, I speculate that the criteria, and my perspective, may transfer to other methods, approaches, and contexts. I hope that they spark dialog and debate – about criteria for excellent qualitative research and the underpinnings of the discipline more broadly – and, therefore, help improve the quality of a qualitative study. Further, I anticipate that this review will assist the researchers to contemplate on the quality of their own research, to substantiate research design and help the reviewers to review qualitative research for journals. On a final note, I pinpoint the need to formulate a framework (encompassing the prerequisites of a qualitative study) by the cohesive efforts of qualitative researchers of different disciplines with different theoretic-paradigmatic origins. I believe that tailoring such a framework (of guiding principles) paves the way for qualitative researchers to consolidate the status of qualitative research in the wide-ranging open science debate. Dialogue on this issue across different approaches is crucial for the impending prospects of socio-techno-educational research.

Amin, M. E. K., Nørgaard, L. S., Cavaco, A. M., Witry, M. J., Hillman, L., Cernasev, A., & Desselle, S. P. (2020). Establishing trustworthiness and authenticity in qualitative pharmacy research. Research in Social and Administrative Pharmacy, 16 (10), 1472–1482.

Article   Google Scholar  

Barker, C., & Pistrang, N. (2005). Quality criteria under methodological pluralism: Implications for conducting and evaluating research. American Journal of Community Psychology, 35 (3–4), 201–212.

Bryman, A., Becker, S., & Sempik, J. (2008). Quality criteria for quantitative, qualitative and mixed methods research: A view from social policy. International Journal of Social Research Methodology, 11 (4), 261–276.

Caelli, K., Ray, L., & Mill, J. (2003). ‘Clear as mud’: Toward greater clarity in generic qualitative research. International Journal of Qualitative Methods, 2 (2), 1–13.

CASP (2021). CASP checklists. Retrieved May 2021 from https://casp-uk.net/casp-tools-checklists/

Cohen, D. J., & Crabtree, B. F. (2008). Evaluative criteria for qualitative research in health care: Controversies and recommendations. The Annals of Family Medicine, 6 (4), 331–339.

Denzin, N. K., & Lincoln, Y. S. (2005). Introduction: The discipline and practice of qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), The sage handbook of qualitative research (pp. 1–32). Sage Publications Ltd.

Google Scholar  

Elliott, R., Fischer, C. T., & Rennie, D. L. (1999). Evolving guidelines for publication of qualitative research studies in psychology and related fields. British Journal of Clinical Psychology, 38 (3), 215–229.

Epp, A. M., & Otnes, C. C. (2021). High-quality qualitative research: Getting into gear. Journal of Service Research . https://doi.org/10.1177/1094670520961445

Guba, E. G. (1990). The paradigm dialog. In Alternative paradigms conference, mar, 1989, Indiana u, school of education, San Francisco, ca, us . Sage Publications, Inc.

Hammersley, M. (2007). The issue of quality in qualitative research. International Journal of Research and Method in Education, 30 (3), 287–305.

Haven, T. L., Errington, T. M., Gleditsch, K. S., van Grootel, L., Jacobs, A. M., Kern, F. G., & Mokkink, L. B. (2020). Preregistering qualitative research: A Delphi study. International Journal of Qualitative Methods, 19 , 1609406920976417.

Hays, D. G., & McKibben, W. B. (2021). Promoting rigorous research: Generalizability and qualitative research. Journal of Counseling and Development, 99 (2), 178–188.

Horsburgh, D. (2003). Evaluation of qualitative research. Journal of Clinical Nursing, 12 (2), 307–312.

Howe, K. R. (2004). A critique of experimentalism. Qualitative Inquiry, 10 (1), 42–46.

Johnson, J. L., Adkins, D., & Chauvin, S. (2020). A review of the quality indicators of rigor in qualitative research. American Journal of Pharmaceutical Education, 84 (1), 7120.

Johnson, P., Buehring, A., Cassell, C., & Symon, G. (2006). Evaluating qualitative management research: Towards a contingent criteriology. International Journal of Management Reviews, 8 (3), 131–156.

Klein, H. K., & Myers, M. D. (1999). A set of principles for conducting and evaluating interpretive field studies in information systems. MIS Quarterly, 23 (1), 67–93.

Lather, P. (2004). This is your father’s paradigm: Government intrusion and the case of qualitative research in education. Qualitative Inquiry, 10 (1), 15–34.

Levitt, H. M., Morrill, Z., Collins, K. M., & Rizo, J. L. (2021). The methodological integrity of critical qualitative research: Principles to support design and research review. Journal of Counseling Psychology, 68 (3), 357.

Lincoln, Y. S., & Guba, E. G. (1986). But is it rigorous? Trustworthiness and authenticity in naturalistic evaluation. New Directions for Program Evaluation, 1986 (30), 73–84.

Lincoln, Y. S., & Guba, E. G. (2000). Paradigmatic controversies, contradictions and emerging confluences. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 163–188). Sage Publications.

Madill, A., Jordan, A., & Shirley, C. (2000). Objectivity and reliability in qualitative analysis: Realist, contextualist and radical constructionist epistemologies. British Journal of Psychology, 91 (1), 1–20.

Mays, N., & Pope, C. (2020). Quality in qualitative research. Qualitative Research in Health Care . https://doi.org/10.1002/9781119410867.ch15

McGinley, S., Wei, W., Zhang, L., & Zheng, Y. (2021). The state of qualitative research in hospitality: A 5-year review 2014 to 2019. Cornell Hospitality Quarterly, 62 (1), 8–20.

Merriam, S., & Tisdell, E. (2016). Qualitative research: A guide to design and implementation. San Francisco, US.

Meyer, M., & Dykes, J. (2019). Criteria for rigor in visualization design study. IEEE Transactions on Visualization and Computer Graphics, 26 (1), 87–97.

Monrouxe, L. V., & Rees, C. E. (2020). When I say… quantification in qualitative research. Medical Education, 54 (3), 186–187.

Morrow, S. L. (2005). Quality and trustworthiness in qualitative research in counseling psychology. Journal of Counseling Psychology, 52 (2), 250.

Morse, J. M. (2003). A review committee’s guide for evaluating qualitative proposals. Qualitative Health Research, 13 (6), 833–851.

Nassaji, H. (2020). Good qualitative research. Language Teaching Research, 24 (4), 427–431.

O’Brien, B. C., Harris, I. B., Beckman, T. J., Reed, D. A., & Cook, D. A. (2014). Standards for reporting qualitative research: A synthesis of recommendations. Academic Medicine, 89 (9), 1245–1251.

O’Connor, C., & Joffe, H. (2020). Intercoder reliability in qualitative research: Debates and practical guidelines. International Journal of Qualitative Methods, 19 , 1609406919899220.

Reid, A., & Gough, S. (2000). Guidelines for reporting and evaluating qualitative research: What are the alternatives? Environmental Education Research, 6 (1), 59–91.

Rocco, T. S. (2010). Criteria for evaluating qualitative studies. Human Resource Development International . https://doi.org/10.1080/13678868.2010.501959

Sandberg, J. (2000). Understanding human competence at work: An interpretative approach. Academy of Management Journal, 43 (1), 9–25.

Schwandt, T. A. (1996). Farewell to criteriology. Qualitative Inquiry, 2 (1), 58–72.

Seale, C. (1999). Quality in qualitative research. Qualitative Inquiry, 5 (4), 465–478.

Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research projects. Education for Information, 22 (2), 63–75.

Sparkes, A. C. (2001). Myth 94: Qualitative health researchers will agree about validity. Qualitative Health Research, 11 (4), 538–552.

Spencer, L., Ritchie, J., Lewis, J., & Dillon, L. (2004). Quality in qualitative evaluation: A framework for assessing research evidence.

Stenfors, T., Kajamaa, A., & Bennett, D. (2020). How to assess the quality of qualitative research. The Clinical Teacher, 17 (6), 596–599.

Taylor, E. W., Beck, J., & Ainsworth, E. (2001). Publishing qualitative adult education research: A peer review perspective. Studies in the Education of Adults, 33 (2), 163–179.

Tong, A., Sainsbury, P., & Craig, J. (2007). Consolidated criteria for reporting qualitative research (COREQ): A 32-item checklist for interviews and focus groups. International Journal for Quality in Health Care, 19 (6), 349–357.

Tracy, S. J. (2010). Qualitative quality: Eight “big-tent” criteria for excellent qualitative research. Qualitative Inquiry, 16 (10), 837–851.

Download references

Open access funding provided by TU Wien (TUW).

Author information

Authors and affiliations.

Faculty of Informatics, Technische Universität Wien, 1040, Vienna, Austria

Drishti Yadav

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Drishti Yadav .

Ethics declarations

Conflict of interest.

The author declares no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Yadav, D. Criteria for Good Qualitative Research: A Comprehensive Review. Asia-Pacific Edu Res 31 , 679–689 (2022). https://doi.org/10.1007/s40299-021-00619-0

Download citation

Accepted : 28 August 2021

Published : 18 September 2021

Issue Date : December 2022

DOI : https://doi.org/10.1007/s40299-021-00619-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Qualitative research
  • Evaluative criteria
  • Find a journal
  • Publish with us
  • Track your research
  • Research article
  • Open access
  • Published: 22 June 2020

Research methodology and characteristics of journal articles with original data, preprint articles and registered clinical trial protocols about COVID-19

  • Mahir Fidahic 1   na1 ,
  • Danijela Nujic 2 , 3   na1 ,
  • Renata Runjic 4 ,
  • Marta Civljak 5 ,
  • Filipa Markotic 6 ,
  • Zvjezdana Lovric Makaric 7 &
  • Livia Puljak   ORCID: orcid.org/0000-0002-8467-6061 5  

BMC Medical Research Methodology volume  20 , Article number:  161 ( 2020 ) Cite this article

22k Accesses

38 Citations

19 Altmetric

Metrics details

The research community reacted rapidly to the emergence of COVID-19. We aimed to assess characteristics of journal articles, preprint articles, and registered trial protocols about COVID-19 and its causal agent SARS-CoV-2.

We analyzed characteristics of journal articles with original data indexed by March 19, 2020, in World Health Organization (WHO) COVID-19 collection, articles published on preprint servers medRxiv and bioRxiv by April 3, 2010. Additionally, we assessed characteristics of clinical trials indexed in the WHO International Clinical Trials Registry Platform (WHO ICTRP) by April 7, 2020.

Among the first 2118 articles on COVID-19 published in scholarly journals, 533 (25%) contained original data. The majority was published by authors from China (75%) and funded by Chinese sponsors (75%); a quarter was published in the Chinese language. Among 312 articles that self-reported study design, the most frequent were retrospective studies ( N  = 88; 28%) and case reports ( N  = 86; 28%), analyzing patients’ characteristics (38%). Median Journal Impact Factor of journals where articles were published was 5.099.

Among 1088 analyzed preprint articles, the majority came from authors affiliated in China (51%) and were funded by sources in China (46%). Less than half reported study design; the majority were modeling studies (62%), and analyzed transmission/risk/prevalence (43%).

Of the 927 analyzed registered trials, the majority were interventional (58%). Half were already recruiting participants. The location for the conduct of the trial in the majority was China ( N  = 522; 63%). The median number of planned participants was 140 (range: 1 to 15,000,000). Registered intervention trials used highly heterogeneous primary outcomes and tested highly heterogeneous interventions; the most frequently studied interventions were hydroxychloroquine ( N  = 39; 7.2%) and chloroquine ( N  = 16; 3%).

Conclusions

Early articles on COVID-19 were predominantly retrospective case reports and modeling studies. The diversity of outcomes used in intervention trial protocols indicates the urgent need for defining a core outcome set for COVID-19 research. Chinese scholars had a head start in reporting about the new disease, but publishing articles in Chinese may limit their global reach. Mapping publications with original data can help finding gaps that will help us respond better to the new public health emergency.

Peer Review reports

On December 31, 2019, the World Health Organization (WHO) China Country Office was informed by the Chinese authorities of a series of pneumonia cases with unknown etiology (unknown cause) in Wuhan, Hubei, China, with clinical presentations that greatly resembled viral pneumonia. The Chinese authorities have isolated a causal agent on 7 January 2020, which was identified as a new type of coronavirus (novel coronavirus, nCoV) [ 1 ], titled “severe acute respiratory syndrome coronavirus 2” (SARS-CoV-2) and the disease it causes “coronavirus disease” (COVID-19) [ 2 ].

After emerging in China, the virus has spread rapidly throughout the world. On April 29, 2020, there were 3,162,438 confirmed cases throughout the world, with 219,287 deaths due to COVID-19 [ 3 ]; these numbers were escalating rapidly day by day.

The research community has responded rapidly to this new threat to humanity. On March 19, 2020, a simple search of PubMed, using the most common terms associated with the new virus and disease (coronavirus OR COVID-19 OR COVID 19 OR SARS-CoV-2), revealed that almost 2000 such articles were published since December 1, 2019. However, cursory browsing of those articles indicated that the majority of them appeared to be editorials, news, and opinions.

This is the third coronavirus epidemic in the third millennium, after severe acute respiratory syndrome (SARS) in 2002 and Middle East respiratory syndrome (MERS) in 2012; it is highly pathogenic and requires urgent action in the research community [ 4 ]. Mapping research methodology of published original studies and registered clinical trials since the outbreak of pandemic will help researchers in getting a better overview of relevant studies published thus far and how fast the research community has responded to the new health threat immediately following the outbreak.

This study aimed to identify and classify published original research studies, preprint articles and registered clinical trials regarding the SARS-CoV-2 and COVID-19 from December 1, 2019, until March/April 2020, the period which would correspond to the first months following the outbreak. We did not include an earlier period because the first official report about the new disease was submitted to the WHO on December 31, 2019 [ 1 ].

Protocol and registration

We defined protocol for this review prospectively and, for transparency, the protocol was published on Open Science Framework (OSF), URL: https://osf.io/dzvxc/ after the final draft of the protocol was endorsed by all co-authors, and before the commencement of any work.

Eligibility criteria

We included original studies of any study design that reported original data related to the virus SARS-CoV-2 and disease it causes, COVID-19, from December 1, 2019, onwards. We searched for records without language restrictions. We excluded articles reporting editorials, news, opinions, and other types of articles that did not report original research data. All excluded articles were tabulated, with references, and reasons for exclusion. We included articles posted on preprint servers medRxiv and bioRxiv, as well as registered protocols of clinical trials about SARS-CoV-2 and COVID-19.

Information sources

To retrieve published original studies, we used publicly available WHO Database of publications on coronavirus disease (COVID-19) [ 5 ]. The WHO has created this Database based on searches of bibliographic databases and hand-searching of tables of contents of relevant journals, as well as other scientific articles that came to their attention [ 5 ]. We conducted a separate initial search of MEDLINE using common keywords related to COVID-19 (coronavirus OR COVID-19 OR COVID 19 OR SARS-CoV-2), and we found a similar number of records as presented in the WHO database. We downloaded the full database in Excel and EndNote format on March 19, 2020.

We downloaded a list of preprint articles published in medRxiv and bioRxiv on April 3, 2020. The download was made via web site of the medRxiv ( https://www.medrxiv.org/ ), where there is a link to „COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv“. We accessed registered protocols of clinical trials from the WHO International Clinical Trials Registry Platform (WHO ICTRP) on April 7, 2020. For both preprint articles and clinical trial registrations we did not conduct any searches, as these information sources had pre-curated collections devoted to COVID-19, and they do not publish other types of content. Two authors screened preprint articles and clinical trial registrations to make sure they were about COVID-19.

Selection of sources of evidence

For published articles, two review authors screened all records (titles/abstracts) retrieved from the WHO Database. For each record, they noted their opinion on whether the study was eligible or not, and if not what was the reason (not related to the topic, not an original study report). We retrieved full texts of eligible or potentially eligible studies and two review authors independently screened them. For each full text, reviewers recorded their opinion about study eligibility, and reasons for exclusion (not related to the topic, not an original study report). Disagreements between reviewers in the second screening phase, evaluating full texts, were resolved via discussion or involvement of other authors. For preprint articles and registered clinical trials, one author verified their eligibility because they were downloaded from curated collections dedicated to COVID-19.

Data charting process

For published studies, one review author extracted the data and another author verified data extraction. Disagreements were resolved via discussion, or involvement of the third author if necessary. We extracted the following data, related to characteristics of articles and journals, in a standardized format for each eligible study: date of publication, journal, Journal Impact Factor (JIF) for the year 2018, country of the authors’ affiliation (whole count method was used, whereas each country was counted once, regardless of the number of authors from an individual country), unit of analysis (humans, animal models, etc.) study aim, number of authors, self-reported study design, a thematic group in line with categories used by The Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) [ 6 ], information about study funding, study sponsor name, study sponsor country. We classified all studies into three groups based on study design: observational, experimental, and evidence synthesis. For studies in languages other than English, we used Google Translate, as it has been shown that it is a viable, accurate tool for data extraction from non-English articles used in evidence syntheses [ 7 ]. For any uncertainties, we planned to contact native speakers of languages other than English. This was necessary only regarding an article in Persian.

For preprint articles, we extracted the following data: title, DOI, link to online article, abstract, number of authors, country of affiliation (using the whole country method), self-reported study design, a thematic group in line with categories used by EPPI-Centre [ 6 ], information about study funding, study sponsor name, study sponsor country.

For registered protocols, we analyzed the following data: clinical trial registry where the protocol was primarily registered, recruitment status, minimal and maximal age of participants, sex of eligible participants, self-reported study type, a location where the study will be conducted, and primary outcome.

Synthesis of results

We analyzed data using descriptive statistics, frequencies, and percentages.

Articles with original data published in scholarly journals

Among the first 2118 articles on COVID-19 published in scholarly journals, 533 (25%) contained original data. We have excluded 1585 articles for the following reasons: not original research ( N  = 1386), duplicate articles ( N  = 118), unrelated to the topic ( N  = 56), correction ( N  = 18), preprint server publication ( N  = 4), study protocol ( N  = 2), and retraction ( N  = 1). The list of analyzed and the list of excluded studies is available on OSF ( https://osf.io/dzvxc/ ). The first article was published on January 21, 2020. The majority of articles were published in English ( N  = 401; 75%); a quarter was published in Chinese ( N  = 131; 24%), and one article was published in Persian.

The median number of authors was 7 (range: 1 to 63). Articles were published in 207 different journals. The highest number of articles was published in the Journal of Virology ( N  = 33; 6.1%) (Table  1 ). For 377 articles published in journals with a JIF, the median JIF was 5.099 (range: 0.364 to 70.670).

The median number of countries in the authors’ affiliations was 1 (range: 1 to 9). Authors from 48 countries authored the articles, the majority of affiliations were from China ( N  = 402; 75%), followed by the USA ( N  = 62; 12%) (Table 1 ).

In 312 (58%) journal articles, authors self-reported study design. The most common self-reported study designs were retrospective study ( N  = 88; 28%) and case report ( N  = 86; 28%) (Table 1 ). Our classification of articles in three major groups showed that there were 503 (94%) observational studies, 19 (4%) evidence syntheses of various types, and 11 (2%) experimental studies.

Among the 533 articles, 456 were in the EPPI-Centre living map of evidence; the majority were classified as case reports ( N  = 173; 38%) (Table 1 ). In 381 (71%) articles unit of analyses were humans; in the majority ( N  = 236; 62%) only adults were included. Declaration about study funding was reported in 324 (60%) of the journal articles; among those, there were 268 (83%) articles that reported that the study received funding. Sponsors were most commonly from China ( N  = 202; 75%) (Table 1 ).

Preprint articles

From the exported 1102 preprint articles we excluded 4 that were withdrawn and 10 that were about SARS and MERS; we included the remaining 1088 preprint articles in the analysis. The list of analyzed preprint articles is available on OSF ( https://osf.io/dzvxc/ ). The majority was posted on medRxiv (Table  2 ). The first preprint article on COVID-19 was posted on bioRxiv on January 19, 2020; it reported a mathematical model of transmission of the novel virus [ 8 ], the first article was posted on medRxiv on January 24, 2020; it reported early estimation of epidemiological parameters and epidemic predictions regarding the novel virus [ 9 ].

The median number of authors was 7 (range: 1 to 178). The most common country in the authors’ affiliations was China (51%) (Table 2 ). In 494 (45%) preprint articles, authors self-reported study design. The most common self-reported study design was a modeling study (Table 2 ).

The most frequent thematic classification of the preprint articles was transmission/risk/prevalence (43%; Table 2 ). Study funding was reported in 681 (63%) of the preprint articles. The majority of funders were from China and the USA (Table 2 ).

Registered clinical trials

By April 7, 2020, there were 927 clinical trials indexed on WHO ICTRP. The list of analyzed registered trials is available on OSF ( https://osf.io/dzvxc/ ). The first trial was indexed on January 27, 2020. The majority ( N  = 581; 63%) of trials were primarily registered on the Chinese Clinical Trials Registry (ChiCTR), followed by ClinicalTrials.gov ( N  = 286; 30%). Few trials were primarily registered with other platforms (Table  3 ).

Recruitment status was available for 915 (99%) of registered protocols, and among them about half were either “not recruiting” or “recruiting” (Table 3 ). None of the trials retrieved from WHO ICTRP were labeled as “withdrawn” in the recruitment status. However, 38 (4%) of protocols were labeled as “Cancelled” in the name of the study; all these protocols were indexed primarily in ChiCTR.

In 744 trials, the minimal age of participants was specified. In the majority, the minimal age of participants was 18 years ( N  = 532; 72%) (Table 3 ). In 663 trials, information about the maximum age of participants was provided. In about a third of them ( N  = 197; 30%), it was specified that there was no upper age limit (Table 3 ). In 921 protocols there was information about the inclusion of participants based on sex; the majority ( N  = 892; 97%) reported they will include both men and women (Table 3 ).

The majority of registered trials were described as interventional ( N  = 535; 58%), followed by descriptor “observational” ( N  = 322; 35%) (Table 3 ). Among registered “trials”, there were even 7 that were described as “basic science” (Table 3 ).

The median number of planned study participants was 140 (range above zero: 1 to 15,000,000). For eight protocols, the planned number of participants in the WHO ICTRP data was zero; we checked web sites of all those protocols and found that five of them were from ClinicalTrials.gov where they were labeled as withdrawn, the remaining three were from ChiCTR, whereas one had information about the number of patients in the wrong field, but the remaining two did not have any explanation for zero number of patients.

Five protocols did not have any information about the number of participants; two were canceled protocols from ChiCTR, two were protocols labeled as “Expanded access status” in ClinicalTrials.gov , and we were unable to verify the fifth because the web link was not functional. In interventional studies, the median number of planned participants was 108 (range from 1 to 55,000), while in the observational median was 200 (range from 8 to 15,000,000). Three protocols reported that the planned number of participants was higher than one million.

In 825 registrations, the location, where the trial will be conducted, was reported. Only 20 (2.4%) reported that the trial will be conducted in more than one country. Most of the trials for which it was reported they will be conducted in a single location were located in China ( N  = 522; 63%), followed by the United States ( N  = 33; 4%) (Table 3 ).

In 535 trial protocols described as interventional, 532 (99%) provided information about the primary outcome. Most of the protocols ( N  = 260; 49%) had multiple primary outcomes that were not described as composite. In studies with a single or composite primary outcome ( N  = 272), highly heterogeneous primary outcomes were used (details about registered trials are available on OSF; https://osf.io/dzvxc/ ). Few outcomes were used more commonly. The most commonly used outcome was time to recovery, used in 40 (15%) protocols, and phrased differently such as “time to clinical recovery”, “time to clinical improvement”, “time to disease recovery”, “time to remission”, “clinical recovery time”, etc. The second most common outcome was mortality, found in 23 (8.4%) protocols with a single or composite primary outcome, described variously as mortality, all-cause mortality, in-hospital mortality, or mortality at certain time points (28 days, 30 days, 60 days).

In registered trials of interventions, various heterogeneous interventions were tested; the most frequently studied interventions were hydroxychloroquine ( N  = 39; 7.2%) and chloroquine ( N  = 16; 3%) (Table 3 ).

The research community has responded swiftly to COVID-19 in terms of scholarly dissemination output. The earliest date of onset of COVID-19 symptoms was reported as December 1, 2020 [ 10 ], and December 8, 2019 [ 11 ]. Our study shows that within about 3 months since the earliest reported date of onset of symptoms, more than two thousand articles were published in scholarly journals, a quarter of which had original data. Within 4 months from the public announcement [ 11 ] about the new disease, 1100 preprint articles were published and almost 1000 clinical trials registered.

The majority of studies came from China, which is understandable, as the disease originated there. Thus, Chinese scientists had a head start in exploring the disease. The majority of the first studies with original data, that were published in scholarly journals, had observational study design, which is understandable, as interventional studies usually take more time to be completed. However, the research community has responded rapidly with designing and registering clinical trials on COVID-19.

Even though the majority of journal articles with original data were published in English, a quarter was published in the Chinese language; this is concerning because those manuscripts may likely have valuable data, but they will be difficult to read and access by an audience that does not speak Chinese. Furthermore, this may prove challenging for conducting evidence syntheses; if the authors conducting systematic reviews and similar studies are unable to access or translate studies published in Chinese, those studies may not be included in evidence syntheses, thus contributing to biased evidence syntheses. Some authors of evidence syntheses deliberately upfront exclude articles published in languages other than English [ 12 ]; our results indicate that this may not be advisable in the evidence syntheses about COVID-19.

The median JIF of published articles was 5.099, which is rather high; it indicates that early articles were published in many high-impact journals, even if they described case reports, or case series, because of the novelty of the disease. It is likely that those journals were also able to accommodate submissions about COVID-19 quickly and organize rapid peer-review, and that those were journals with short turnaround times; journals with professional staff would be in a better position to adapt quickly to publishing novel topic of interest, compared to journals depending on volunteer staff.

While the majority of early articles about COVID-19 in scholarly journals were observational, mostly case reports, the predominant type of early articles about COVID-19 articles published on preprint servers included modeling studies. This might be early view of studies that will be soon published in peer-reviewed journals, but it remains to be seen how many of those preprint articles will actually pass the scrutiny of peer-review. It is possible that the massive production of modeling studies is leading to difficulties with publishing them, and that authors post those studies on a preprint server, to make their work publicly available. A large number of articles on preprint servers that we analyzed could be due to calls for authors to make their work publicly available in preprint servers along with submitting articles to peer-reviewed scholarly journals; there were even suggestions that submission to a preprint should be the default for all submissions [ 13 ].

The majority of registered trials we analyzed were registered in the Chinese registry of clinical trials, which is contrary to the report that ClinicalTrials.gov contains most of the global trial registrations [ 14 ], also, the overwhelming majority of registered trials we analyzed were conducted in China.

Although the aim of this study was not an in-depth analysis of outcomes and interventions that were used in registered trials about COVID-19, our analysis of those trials indicates both the novelty of the disease as well as methodological shortcomings. For example, the majority of registered trials of interventions specified more than one primary outcome; a clinical trial should have one primary outcome, or a combination of co-primary outcomes, but not multiple primary outcomes because primary outcomes are the basis for a sample size estimation. Primary outcomes and outcome measures were very different. Outcomes used in these trials should be used for informing the development of a core outcome set (COS) for COVID-19. It is possible that trialists used multiple primary outcomes that were treated as exploratory due to the early phase of the pandemic.

Various initiatives were already set up to start defining a COS for COVID-19. At least one article about COS-COVID has already been published [ 15 ], and multiple initiatives for developing COS for COVID-19 were registered on the web site of the COMET (Core Outcome Measures in Effectiveness Trials) initiative [ 16 ].

Many trials mentioned “standard therapy” or “conventional therapy”, and it would be interesting to further investigate what is considered a standard or conventional therapy for a completely new disease with no approved interventions by regulatory agencies. Furthermore, more than 10% of analyzed registered intervention trials were testing hydroxychloroquine and chloroquine, therapies that have been suggested as effective for COVID-19, and that have raised controversies [ 17 ].

Accumulation of evidence on COVID-19 is not without challenges. There are particular methodological challenges related to analyzing COVID-19 data during the pandemic [ 18 ]. A major challenge is also timely evidence synthesis of the rapidly accumulating data and methodological sacrifices that are being made along the way. Multiple evidence synthesis organizations are now offering evidence collections, investing duplicate effort into similar activities [ 19 ]. Overview of systematic reviews published until March 24 indicated that the majority of systematic reviews on COVID-19 available by that date were of critically low methodological quality [ 20 ]. Hopefully, research collaborations will be set up to reduce the multiplication of effort in terms of synthesizing and appraising COVID-19 evidence [ 19 ].

Early initiatives are evolving and improving along the way. We used WHO collection of evidence on COVID-19, and among the excluded studies there were 4 that were not published in scholarly journals; instead, they were published on a preprint server chemRxiv. Similarly, we have used classification of EPPI-Centre for categorizing analyzed articles into thematic areas; along the way we noticed that the number of articles in their collection had decreased, indicating that they are likely better in curating their content in the living map of evidence [ 6 ].

In future studies, it would be worthwhile to continue exploring the growth and characteristics of further studies regarding COVID-19; to analyze how many of the preprint articles will be published in peer-reviewed journals, and how many registered trials will be completed. The resolution of the COVID-19 pandemic is difficult to predict, and this may hinder plans for clinical trials. For countries that may be very successful in their lockdown and quarantine efforts, reduction of the number of infected and diseased patients may prevent the completion of registered clinical trials. Thus, it would be interesting to monitor how many of the registered trials will be terminated prematurely, or will not even begin.

However, in comparison to the past coronavirus epidemics (SARS-CoV and MERS-CoV), the scientific community appears to be much more involved. We were unable to find bibliometric studies comparable to ours about the volume of research considering SARS and MERS, but the simple PubMed search reveals that researchers were much less productive even in the first year after SARS-CoV and MERS-CoV first emerged. Namely, the number of articles from November 1, 2002, to November 1, 2003, and from April 1, 2012, to April 1, 2013, was 611 and 561, respectively.

A limitation of our study is a different search date for the three sources of information we analyzed. However, these sources have major differences in the export functionalities and amount/type of data they provide, and that need to be screened or analyzed. Our analysis of articles published in journal articles took longer time compared to the analysis of preprint articles and registered trials because we needed to conduct screening and analysis about whether those articles contained original data, a quarter of those articles were published in Chinese, and many of those articles were difficult to retrieve from Chinese journals. We are aware that with the ongoing COVID-19 pandemic, research output is fast increasing, but we aimed to analyze early research output, published between 3 and 4 months from the emergence of the new disease.

Furthermore, we did not analyse whether perhaps multiple publications referred to the same dataset. Also, for the translation of non-English articles, we used Google Translate, as it has been shown in 2019 that this tool can be trusted for data extraction in evidence synthesis [ 7 ]. One Persian article was additionally clarified through consultation with a native speaker; other languages that are not English were easily translated using Google Translate.

Early articles on COVID-19 were predominantly retrospective case reports and modelling studies. Many clinical trials about COVID-19 were registered, but it remains to be seen whether they will be completed due to unpredictable development of the pandemic and changes in the number of infected individuals. Diversity of outcomes used in intervention trial protocols indicates the urgent need for defining a core outcome set for COVID-19 research. Chinese scholars had a head start in reporting about the new disease, but publishing articles in Chinese may limit their global reach. Mapping publications with original data can help finding gaps that will help us respond better to the new public health emergency.

Availability of data and materials

Raw data collected and analyzed within this study are publicly available on Open Science Framework ( https://osf.io/dzvxc/ ).

Abbreviations

Core outcome measures in effectiveness trials

Journal impact factor

Open science framework

Severe acute respiratory syndrome coronavirus 2

World health organization

World health organization international clinical trials registry platform

Coronavirus disease 2019

World Health Organization. Novel coronavirus - China. URL: https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/ . Accessed 18 June 2020.

World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease- (covid-2019)-and-the-virus-that-causes-it. Accessed 18 June 2020.

Worldometer. COVID-19 coronavirus outbreak. URL: https://www.worldometers.info/coronavirus/ . Accessed 18 June 2020.

Civljak R, Markotic A, Kuzman I. The third coronavirus epidemic in the third millennium: what's next? Croat Med J. 2020;61(1):1–4.

Article   Google Scholar  

World Health Organization. Database of publications on coronavirus disease (COVID-19). URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov . Accessed 18 June 2020.

EPPI Centre. COVID-19: a living systematic map of the evidence. Available at: http://eppi.ioe.ac.uk/cms/Projects/DepartmentofHealthandSocialCare/Publishedreviews/COVID-19Livingsystematicmapoftheevidence/tabid/3765/Default.aspx . Accessed 18 June 2020.

Jackson JL, Kuriyama A, Anton A, Choi A, Fournier JP, Geier AK, Jacquerioz F, Kogan D, Scholcoff C, Sun R. The accuracy of Google translate for abstracting data from non-English-language trials for systematic reviews. Ann Intern Med. 2019;171(9):677–9.

Chen TF, Rui J, Weng Q, Zhao Z, Cui J, Yin L: A mathematical model for simulating the transmission of Wuhan novel Coronavirus. bioRxiv 2020.01.19.911669; doi: https://doi.org/ https://doi.org/10.1101/2020.01.19.911669 . 2020.

Read JM, Bridgen JRE, Cummings DAT, Ho A, Jewell CP: Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv 2020.01.23.20018549; doi: https://doi.org/ https://doi.org/10.1101/2020.01.23.20018549 . 2020.

Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: an overview. Journal of the Chinese Medical Association : JCMA. 2020;83(3):217–20.

World Health Organization. Novel coronavirus - China. January 12, 2020. Available at: https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/ .

Song F, Parekh S, Hooper L, Loke YK, Ryder J, Sutton AJ, Hing C, Kwok CS, Pang C, Harvey I. Dissemination and publication of research findings: an updated review of related biases. Health Technol Assess. 2010;14(8):iii ix-xi, 1-193.

Article   CAS   Google Scholar  

Eisen MB, Akhmanova A, Behrens TE, Weigel D. Publishing in the time of COVID-19. Elife. 2020;9.

Zarin DA, Tse T, Williams RJ, Rajakannan T. Update on trial registration 11 years after the ICMJE policy was established. N Engl J Med. 2017;376(4):383–91.

Jin X, Pang B, Zhang J, Liu Q, Yang Z, Feng J, Liu X, Zhang L, Wang B, Huang Y, et al. Core outcome set for clinical trials on coronavirus disease 2019 (COS-COVID). Engineering (Beijing). 2020.

COMET. Core outcome set developers’ response to COVID-19 (15th April 2020). Available at: http://www.comet-initiative.org/Studies/Details/1538 .

Retraction Watch. Elsevier investigating hydroxychloroquine-COVID-19 paper. Available at: https://retractionwatch.com/2020/04/12/elsevier-investigating-hydroxychloroquine-covid-19-paper/ . Accessed 18 June 2020.

Wolkewitz M, Puljak L. Methodological challenges of analysing COVID-19 data during the pandemic. BMC Med Res Methodol. 2020;20(1):81.

Ruano J, Gomez F, Pieper D, Puljak L. What evidence-based medicine researchers can do to help clinicians fighting COVID-2019? J Clin Epidemiol. 2020. https://doi.org/10.1016/j.jclinepi.2020.04.015 .

Borges do Nascimento IJ, O'Mathuna DP, von Groote TC, Abdulazeem HM, Weerasekara I, Marusic A, Puljak L, Tassoni Civile V, Zakarija-Grkovic I, Poklepovic Pericic T et al: coronavirus disease (covid-19) pandemic: an overview of systematic reviews. medRxiv 2020.04.16.20068213; doi: https://doi.org/ https://doi.org/10.1101/2020.04.16.20068213 .

Download references

Acknowledgments

We are grateful to Dr. Antonia Jelicic Kadic for her help with data extraction for articles published in scholarly journals.

No extramural funding.

Author information

Mahir Fidahic and Danijela Nujic contributed equally to this work.

Authors and Affiliations

Faculty of Medicine, University of Tuzla, Tuzla, Bosnia and Herzegovina

Mahir Fidahic

Department of Public Health, Faculty of Medicine, Osijek, Croatia

Danijela Nujic

Department of Public Health, Humanities and Social Sciences in Biomedicine, Faculty of Dental Medicine and Health, Osijek, Croatia

University of Split School of Medicine, Split, Croatia

Renata Runjic

Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia

Marta Civljak & Livia Puljak

Croatian Agency for Medicinal Products and Medical Devices, Zagreb, Croatia

Filipa Markotic

Department of Epidemiology, Croatian National Institute of Public Health, Zagreb, Croatia

Zvjezdana Lovric Makaric

You can also search for this author in PubMed   Google Scholar

Contributions

Study design: LP. Data collection, analysis, and interpretation: MF, DN, RR, MC, FM, ZLM, LP. Writing of the manuscript and revising the manuscript for intellectual content: MF, DN, RR, MC, FM, ZLM, LP. Final approval of the manuscript: MF, DN, RR, MC, FM, ZLM, LP.

Corresponding author

Correspondence to Livia Puljak .

Ethics declarations

Ethics approval and consent to participate.

Not applicable. This study did not involve human participants. We analyzed publicly available information from scholarly journals and public web sites with preprint articles and registered clinical trials.

Consent for publication

Not applicable.

Competing interests

Livia Puljak is Section Editor of the BMC Medical Research Methodology. Other authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Fidahic, M., Nujic, D., Runjic, R. et al. Research methodology and characteristics of journal articles with original data, preprint articles and registered clinical trial protocols about COVID-19. BMC Med Res Methodol 20 , 161 (2020). https://doi.org/10.1186/s12874-020-01047-2

Download citation

Received : 01 May 2020

Accepted : 10 June 2020

Published : 22 June 2020

DOI : https://doi.org/10.1186/s12874-020-01047-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Coronavirus
  • Original research
  • Clinical trial

BMC Medical Research Methodology

ISSN: 1471-2288

research methodology journal article

  • Download PDF
  • CME & MOC
  • Share X Facebook Email LinkedIn
  • Permissions

Accounting for Competing Risks in Clinical Research

  • 1 Institute for Clinical Evaluative Sciences (ICES), Toronto, Ontario, Canada
  • 2 Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
  • 3 Sunnybrook Research Institute, Toronto, Ontario, Canada
  • 4 NHS Blood and Transplant, Bristol, United Kingdom
  • 5 Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
  • Original Investigation Metformin or Sulfonylurea Use in Kidney Disease Christianne L. Roumie, MD, MPH; Jonathan Chipman, PhD; Jea Young Min, PharmD, MPH, PhD; Amber J. Hackstadt, PhD; Adriana M. Hung, MD, MPH; Robert A. Greevy Jr, PhD; Carlos G. Grijalva, MD, MPH; Tom Elasy, MD, MPH; Marie R. Griffin, MD, MPH JAMA

Survival analyses are statistical methods for the analysis of time-to-event outcomes. 1 An example is time from study entry to death. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study whose outcome is time to death due to cardiovascular causes, for instance, death due to a noncardiovascular cause is a competing risk. Conventional statistical methods for the analysis of survival data typically aim to estimate the probability of the event of interest over time or the effect of a risk factor or treatment on that probability or on the intensity with which events occur. These methods require modification in the presence of competing risks. A key feature of survival analysis is the ability to properly account for censoring, which occurs when the outcome event is not observed before the end of the study participant’s follow-up period.

Read More About

Austin PC , Ibrahim M , Putter H. Accounting for Competing Risks in Clinical Research. JAMA. Published online May 29, 2024. doi:10.1001/jama.2024.4970

Manage citations:

© 2024

Artificial Intelligence Resource Center

Cardiology in JAMA : Read the Latest

Browse and subscribe to JAMA Network podcasts!

Others Also Liked

Select your interests.

Customize your JAMA Network experience by selecting one or more topics from the list below.

  • Academic Medicine
  • Acid Base, Electrolytes, Fluids
  • Allergy and Clinical Immunology
  • American Indian or Alaska Natives
  • Anesthesiology
  • Anticoagulation
  • Art and Images in Psychiatry
  • Artificial Intelligence
  • Assisted Reproduction
  • Bleeding and Transfusion
  • Caring for the Critically Ill Patient
  • Challenges in Clinical Electrocardiography
  • Climate and Health
  • Climate Change
  • Clinical Challenge
  • Clinical Decision Support
  • Clinical Implications of Basic Neuroscience
  • Clinical Pharmacy and Pharmacology
  • Complementary and Alternative Medicine
  • Consensus Statements
  • Coronavirus (COVID-19)
  • Critical Care Medicine
  • Cultural Competency
  • Dental Medicine
  • Dermatology
  • Diabetes and Endocrinology
  • Diagnostic Test Interpretation
  • Drug Development
  • Electronic Health Records
  • Emergency Medicine
  • End of Life, Hospice, Palliative Care
  • Environmental Health
  • Equity, Diversity, and Inclusion
  • Facial Plastic Surgery
  • Gastroenterology and Hepatology
  • Genetics and Genomics
  • Genomics and Precision Health
  • Global Health
  • Guide to Statistics and Methods
  • Hair Disorders
  • Health Care Delivery Models
  • Health Care Economics, Insurance, Payment
  • Health Care Quality
  • Health Care Reform
  • Health Care Safety
  • Health Care Workforce
  • Health Disparities
  • Health Inequities
  • Health Policy
  • Health Systems Science
  • History of Medicine
  • Hypertension
  • Images in Neurology
  • Implementation Science
  • Infectious Diseases
  • Innovations in Health Care Delivery
  • JAMA Infographic
  • Law and Medicine
  • Leading Change
  • Less is More
  • LGBTQIA Medicine
  • Lifestyle Behaviors
  • Medical Coding
  • Medical Devices and Equipment
  • Medical Education
  • Medical Education and Training
  • Medical Journals and Publishing
  • Mobile Health and Telemedicine
  • Narrative Medicine
  • Neuroscience and Psychiatry
  • Notable Notes
  • Nutrition, Obesity, Exercise
  • Obstetrics and Gynecology
  • Occupational Health
  • Ophthalmology
  • Orthopedics
  • Otolaryngology
  • Pain Medicine
  • Palliative Care
  • Pathology and Laboratory Medicine
  • Patient Care
  • Patient Information
  • Performance Improvement
  • Performance Measures
  • Perioperative Care and Consultation
  • Pharmacoeconomics
  • Pharmacoepidemiology
  • Pharmacogenetics
  • Pharmacy and Clinical Pharmacology
  • Physical Medicine and Rehabilitation
  • Physical Therapy
  • Physician Leadership
  • Population Health
  • Primary Care
  • Professional Well-being
  • Professionalism
  • Psychiatry and Behavioral Health
  • Public Health
  • Pulmonary Medicine
  • Regulatory Agencies
  • Reproductive Health
  • Research, Methods, Statistics
  • Resuscitation
  • Rheumatology
  • Risk Management
  • Scientific Discovery and the Future of Medicine
  • Shared Decision Making and Communication
  • Sleep Medicine
  • Sports Medicine
  • Stem Cell Transplantation
  • Substance Use and Addiction Medicine
  • Surgical Innovation
  • Surgical Pearls
  • Teachable Moment
  • Technology and Finance
  • The Art of JAMA
  • The Arts and Medicine
  • The Rational Clinical Examination
  • Tobacco and e-Cigarettes
  • Translational Medicine
  • Trauma and Injury
  • Treatment Adherence
  • Ultrasonography
  • Users' Guide to the Medical Literature
  • Vaccination
  • Venous Thromboembolism
  • Veterans Health
  • Women's Health
  • Workflow and Process
  • Wound Care, Infection, Healing
  • Register for email alerts with links to free full-text articles
  • Access PDFs of free articles
  • Manage your interests
  • Save searches and receive search alerts

Loading metrics

Open Access

Peer-reviewed

Research Article

Functional connectivity changes in the brain of adolescents with internet addiction: A systematic literature review of imaging studies

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing – original draft, Writing – review & editing

Affiliation Child and Adolescent Mental Health, Department of Brain Sciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom

Roles Conceptualization, Supervision, Validation, Writing – review & editing

* E-mail: [email protected]

Affiliation Behavioural Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom

ORCID logo

  • Max L. Y. Chang, 
  • Irene O. Lee

PLOS

  • Published: June 4, 2024
  • https://doi.org/10.1371/journal.pmen.0000022
  • Peer Review
  • Reader Comments

Fig 1

Internet usage has seen a stark global rise over the last few decades, particularly among adolescents and young people, who have also been diagnosed increasingly with internet addiction (IA). IA impacts several neural networks that influence an adolescent’s behaviour and development. This article issued a literature review on the resting-state and task-based functional magnetic resonance imaging (fMRI) studies to inspect the consequences of IA on the functional connectivity (FC) in the adolescent brain and its subsequent effects on their behaviour and development. A systematic search was conducted from two databases, PubMed and PsycINFO, to select eligible articles according to the inclusion and exclusion criteria. Eligibility criteria was especially stringent regarding the adolescent age range (10–19) and formal diagnosis of IA. Bias and quality of individual studies were evaluated. The fMRI results from 12 articles demonstrated that the effects of IA were seen throughout multiple neural networks: a mix of increases/decreases in FC in the default mode network; an overall decrease in FC in the executive control network; and no clear increase or decrease in FC within the salience network and reward pathway. The FC changes led to addictive behaviour and tendencies in adolescents. The subsequent behavioural changes are associated with the mechanisms relating to the areas of cognitive control, reward valuation, motor coordination, and the developing adolescent brain. Our results presented the FC alterations in numerous brain regions of adolescents with IA leading to the behavioural and developmental changes. Research on this topic had a low frequency with adolescent samples and were primarily produced in Asian countries. Future research studies of comparing results from Western adolescent samples provide more insight on therapeutic intervention.

Citation: Chang MLY, Lee IO (2024) Functional connectivity changes in the brain of adolescents with internet addiction: A systematic literature review of imaging studies. PLOS Ment Health 1(1): e0000022. https://doi.org/10.1371/journal.pmen.0000022

Editor: Kizito Omona, Uganda Martyrs University, UGANDA

Received: December 29, 2023; Accepted: March 18, 2024; Published: June 4, 2024

Copyright: © 2024 Chang, Lee. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper and its Supporting information files.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Introduction

The behavioural addiction brought on by excessive internet use has become a rising source of concern [ 1 ] since the last decade. According to clinical studies, individuals with Internet Addiction (IA) or Internet Gaming Disorder (IGD) may have a range of biopsychosocial effects and is classified as an impulse-control disorder owing to its resemblance to pathological gambling and substance addiction [ 2 , 3 ]. IA has been defined by researchers as a person’s inability to resist the urge to use the internet, which has negative effects on their psychological well-being as well as their social, academic, and professional lives [ 4 ]. The symptoms can have serious physical and interpersonal repercussions and are linked to mood modification, salience, tolerance, impulsivity, and conflict [ 5 ]. In severe circumstances, people may experience severe pain in their bodies or health issues like carpal tunnel syndrome, dry eyes, irregular eating and disrupted sleep [ 6 ]. Additionally, IA is significantly linked to comorbidities with other psychiatric disorders [ 7 ].

Stevens et al (2021) reviewed 53 studies including 17 countries and reported the global prevalence of IA was 3.05% [ 8 ]. Asian countries had a higher prevalence (5.1%) than European countries (2.7%) [ 8 ]. Strikingly, adolescents and young adults had a global IGD prevalence rate of 9.9% which matches previous literature that reported historically higher prevalence among adolescent populations compared to adults [ 8 , 9 ]. Over 80% of adolescent population in the UK, the USA, and Asia have direct access to the internet [ 10 ]. Children and adolescents frequently spend more time on media (possibly 7 hours and 22 minutes per day) than at school or sleeping [ 11 ]. Developing nations have also shown a sharp rise in teenage internet usage despite having lower internet penetration rates [ 10 ]. Concerns regarding the possible harms that overt internet use could do to adolescents and their development have arisen because of this surge, especially the significant impacts by the COVID-19 pandemic [ 12 ]. The growing prevalence and neurocognitive consequences of IA among adolescents makes this population a vital area of study [ 13 ].

Adolescence is a crucial developmental stage during which people go through significant changes in their biology, cognition, and personalities [ 14 ]. Adolescents’ emotional-behavioural functioning is hyperactivated, which creates risk of psychopathological vulnerability [ 15 ]. In accordance with clinical study results [ 16 ], this emotional hyperactivity is supported by a high level of neuronal plasticity. This plasticity enables teenagers to adapt to the numerous physical and emotional changes that occur during puberty as well as develop communication techniques and gain independence [ 16 ]. However, the strong neuronal plasticity is also associated with risk-taking and sensation seeking [ 17 ] which may lead to IA.

Despite the fact that the precise neuronal mechanisms underlying IA are still largely unclear, functional magnetic resonance imaging (fMRI) method has been used by scientists as an important framework to examine the neuropathological changes occurring in IA, particularly in the form of functional connectivity (FC) [ 18 ]. fMRI research study has shown that IA alters both the functional and structural makeup of the brain [ 3 ].

We hypothesise that IA has widespread neurological alteration effects rather than being limited to a few specific brain regions. Further hypothesis holds that according to these alterations of FC between the brain regions or certain neural networks, adolescents with IA would experience behavioural changes. An investigation of these domains could be useful for creating better procedures and standards as well as minimising the negative effects of overt internet use. This literature review aims to summarise and analyse the evidence of various imaging studies that have investigated the effects of IA on the FC in adolescents. This will be addressed through two research questions:

  • How does internet addiction affect the functional connectivity in the adolescent brain?
  • How is adolescent behaviour and development impacted by functional connectivity changes due to internet addiction?

The review protocol was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (see S1 Checklist ).

Search strategy and selection process

A systematic search was conducted up until April 2023 from two sources of database, PubMed and PsycINFO, using a range of terms relevant to the title and research questions (see full list of search terms in S1 Appendix ). All the searched articles can be accessed in the S1 Data . The eligible articles were selected according to the inclusion and exclusion criteria. Inclusion criteria used for the present review were: (i) participants in the studies with clinical diagnosis of IA; (ii) participants between the ages of 10 and 19; (iii) imaging research investigations; (iv) works published between January 2013 and April 2023; (v) written in English language; (vi) peer-reviewed papers and (vii) full text. The numbers of articles excluded due to not meeting the inclusion criteria are shown in Fig 1 . Each study’s title and abstract were screened for eligibility.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pmen.0000022.g001

Quality appraisal

Full texts of all potentially relevant studies were then retrieved and further appraised for eligibility. Furthermore, articles were critically appraised based on the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) framework to evaluate the individual study for both quality and bias. The subsequent quality levels were then appraised to each article and listed as either low, moderate, or high.

Data collection process

Data that satisfied the inclusion requirements was entered into an excel sheet for data extraction and further selection. An article’s author, publication year, country, age range, participant sample size, sex, area of interest, measures, outcome and article quality were all included in the data extraction spreadsheet. Studies looking at FC, for instance, were grouped, while studies looking at FC in specific area were further divided into sub-groups.

Data synthesis and analysis

Articles were classified according to their location in the brain as well as the network or pathway they were a part of to create a coherent narrative between the selected studies. Conclusions concerning various research trends relevant to particular groupings were drawn from these groupings and subgroupings. To maintain the offered information in a prominent manner, these assertions were entered into the data extraction excel spreadsheet.

With the search performed on the selected databases, 238 articles in total were identified (see Fig 1 ). 15 duplicated articles were eliminated, and another 6 items were removed for various other reasons. Title and abstract screening eliminated 184 articles because they were not in English (number of article, n, = 7), did not include imaging components (n = 47), had adult participants (n = 53), did not have a clinical diagnosis of IA (n = 19), did not address FC in the brain (n = 20), and were published outside the desired timeframe (n = 38). A further 21 papers were eliminated for failing to meet inclusion requirements after the remaining 33 articles underwent full-text eligibility screening. A total of 12 papers were deemed eligible for this review analysis.

Characteristics of the included studies, as depicted in the data extraction sheet in Table 1 provide information of the author(s), publication year, sample size, study location, age range, gender, area of interest, outcome, measures used and quality appraisal. Most of the studies in this review utilised resting state functional magnetic resonance imaging techniques (n = 7), with several studies demonstrating task-based fMRI procedures (n = 3), and the remaining studies utilising whole-brain imaging measures (n = 2). The studies were all conducted in Asiatic countries, specifically coming from China (8), Korea (3), and Indonesia (1). Sample sizes ranged from 12 to 31 participants with most of the imaging studies having comparable sample sizes. Majority of the studies included a mix of male and female participants (n = 8) with several studies having a male only participant pool (n = 3). All except one of the mixed gender studies had a majority male participant pool. One study did not disclose their data on the gender demographics of their experiment. Study years ranged from 2013–2022, with 2 studies in 2013, 3 studies in 2014, 3 studies in 2015, 1 study in 2017, 1 study in 2020, 1 study in 2021, and 1 study in 2022.

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.t001

(1) How does internet addiction affect the functional connectivity in the adolescent brain?

The included studies were organised according to the brain region or network that they were observing. The specific networks affected by IA were the default mode network, executive control system, salience network and reward pathway. These networks are vital components of adolescent behaviour and development [ 31 ]. The studies in each section were then grouped into subsections according to their specific brain regions within their network.

Default mode network (DMN)/reward network.

Out of the 12 studies, 3 have specifically studied the default mode network (DMN), and 3 observed whole-brain FC that partially included components of the DMN. The effect of IA on the various centres of the DMN was not unilaterally the same. The findings illustrate a complex mix of increases and decreases in FC depending on the specific region in the DMN (see Table 2 and Fig 2 ). The alteration of FC in posterior cingulate cortex (PCC) in the DMN was the most frequently reported area in adolescents with IA, which involved in attentional processes [ 32 ], but Lee et al. (2020) additionally found alterations of FC in other brain regions, such as anterior insula cortex, a node in the DMN that controls the integration of motivational and cognitive processes [ 20 ].

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.g002

thumbnail

The overall changes of functional connectivity in the brain network including default mode network (DMN), executive control network (ECN), salience network (SN) and reward network. IA = Internet Addiction, FC = Functional Connectivity.

https://doi.org/10.1371/journal.pmen.0000022.t002

Ding et al. (2013) revealed altered FC in the cerebellum, the middle temporal gyrus, and the medial prefrontal cortex (mPFC) [ 22 ]. They found that the bilateral inferior parietal lobule, left superior parietal lobule, and right inferior temporal gyrus had decreased FC, while the bilateral posterior lobe of the cerebellum and the medial temporal gyrus had increased FC [ 22 ]. The right middle temporal gyrus was found to have 111 cluster voxels (t = 3.52, p<0.05) and the right inferior parietal lobule was found to have 324 cluster voxels (t = -4.07, p<0.05) with an extent threshold of 54 voxels (figures above this threshold are deemed significant) [ 22 ]. Additionally, there was a negative correlation, with 95 cluster voxels (p<0.05) between the FC of the left superior parietal lobule and the PCC with the Chen Internet Addiction Scores (CIAS) which are used to determine the severity of IA [ 22 ]. On the other hand, in regions of the reward system, connection with the PCC was positively connected with CIAS scores [ 22 ]. The most significant was the right praecuneus with 219 cluster voxels (p<0.05) [ 22 ]. Wang et al. (2017) also discovered that adolescents with IA had 33% less FC in the left inferior parietal lobule and 20% less FC in the dorsal mPFC [ 24 ]. A potential connection between the effects of substance use and overt internet use is revealed by the generally decreased FC in these areas of the DMN of teenagers with drug addiction and IA [ 35 ].

The putamen was one of the main regions of reduced FC in adolescents with IA [ 19 ]. The putamen and the insula-operculum demonstrated significant group differences regarding functional connectivity with a cluster size of 251 and an extent threshold of 250 (Z = 3.40, p<0.05) [ 19 ]. The molecular mechanisms behind addiction disorders have been intimately connected to decreased striatal dopaminergic function [ 19 ], making this function crucial.

Executive Control Network (ECN).

5 studies out of 12 have specifically viewed parts of the executive control network (ECN) and 3 studies observed whole-brain FC. The effects of IA on the ECN’s constituent parts were consistent across all the studies examined for this analysis (see Table 2 and Fig 3 ). The results showed a notable decline in all the ECN’s major centres. Li et al. (2014) used fMRI imaging and a behavioural task to study response inhibition in adolescents with IA [ 25 ] and found decreased activation at the striatum and frontal gyrus, particularly a reduction in FC at inferior frontal gyrus, in the IA group compared to controls [ 25 ]. The inferior frontal gyrus showed a reduction in FC in comparison to the controls with a cluster size of 71 (t = 4.18, p<0.05) [ 25 ]. In addition, the frontal-basal ganglia pathways in the adolescents with IA showed little effective connection between areas and increased degrees of response inhibition [ 25 ].

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.g003

Lin et al. (2015) found that adolescents with IA demonstrated disrupted corticostriatal FC compared to controls [ 33 ]. The corticostriatal circuitry experienced decreased connectivity with the caudate, bilateral anterior cingulate cortex (ACC), as well as the striatum and frontal gyrus [ 33 ]. The inferior ventral striatum showed significantly reduced FC with the subcallosal ACC and caudate head with cluster size of 101 (t = -4.64, p<0.05) [ 33 ]. Decreased FC in the caudate implies dysfunction of the corticostriatal-limbic circuitry involved in cognitive and emotional control [ 36 ]. The decrease in FC in both the striatum and frontal gyrus is related to inhibitory control, a common deficit seen with disruptions with the ECN [ 33 ].

The dorsolateral prefrontal cortex (DLPFC), ACC, and right supplementary motor area (SMA) of the prefrontal cortex were all found to have significantly decreased grey matter volume [ 29 ]. In addition, the DLPFC, insula, temporal cortices, as well as significant subcortical regions like the striatum and thalamus, showed decreased FC [ 29 ]. According to Tremblay (2009), the striatum plays a significant role in the processing of rewards, decision-making, and motivation [ 37 ]. Chen et al. (2020) reported that the IA group demonstrated increased impulsivity as well as decreased reaction inhibition using a Stroop colour-word task [ 26 ]. Furthermore, Chen et al. (2020) observed that the left DLPFC and dorsal striatum experienced a negative connection efficiency value, specifically demonstrating that the dorsal striatum activity suppressed the left DLPFC [ 27 ].

Salience network (SN).

Out of the 12 chosen studies, 3 studies specifically looked at the salience network (SN) and 3 studies have observed whole-brain FC. Relative to the DMN and ECN, the findings on the SN were slightly sparser. Despite this, adolescents with IA demonstrated a moderate decrease in FC, as well as other measures like fibre connectivity and cognitive control, when compared to healthy control (see Table 2 and Fig 4 ).

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.g004

Xing et al. (2014) used both dorsal anterior cingulate cortex (dACC) and insula to test FC changes in the SN of adolescents with IA and found decreased structural connectivity in the SN as well as decreased fractional anisotropy (FA) that correlated to behaviour performance in the Stroop colour word-task [ 21 ]. They examined the dACC and insula to determine whether the SN’s disrupted connectivity may be linked to the SN’s disruption of regulation, which would explain the impaired cognitive control seen in adolescents with IA. However, researchers did not find significant FC differences in the SN when compared to the controls [ 21 ]. These results provided evidence for the structural changes in the interconnectivity within SN in adolescents with IA.

Wang et al. (2017) investigated network interactions between the DMN, ECN, SN and reward pathway in IA subjects [ 24 ] (see Fig 5 ), and found 40% reduction of FC between the DMN and specific regions of the SN, such as the insula, in comparison to the controls (p = 0.008) [ 24 ]. The anterior insula and dACC are two areas that are impacted by this altered FC [ 24 ]. This finding supports the idea that IA has similar neurobiological abnormalities with other addictive illnesses, which is in line with a study that discovered disruptive changes in the SN and DMN’s interaction in cocaine addiction [ 38 ]. The insula has also been linked to the intensity of symptoms and has been implicated in the development of IA [ 39 ].

thumbnail

“+” indicates an increase in behaivour; “-”indicates a decrease in behaviour; solid arrows indicate a direct network interaction; and the dotted arrows indicates a reduction in network interaction. This diagram depicts network interactions juxtaposed with engaging in internet related behaviours. Through the neural interactions, the diagram illustrates how the networks inhibit or amplify internet usage and vice versa. Furthermore, it demonstrates how the SN mediates both the DMN and ECN.

https://doi.org/10.1371/journal.pmen.0000022.g005

(2) How is adolescent behaviour and development impacted by functional connectivity changes due to internet addiction?

The findings that IA individuals demonstrate an overall decrease in FC in the DMN is supported by numerous research [ 24 ]. Drug addict populations also exhibited similar decline in FC in the DMN [ 40 ]. The disruption of attentional orientation and self-referential processing for both substance and behavioural addiction was then hypothesised to be caused by DMN anomalies in FC [ 41 ].

In adolescents with IA, decline of FC in the parietal lobule affects visuospatial task-related behaviour [ 22 ], short-term memory [ 42 ], and the ability of controlling attention or restraining motor responses during response inhibition tests [ 42 ]. Cue-induced gaming cravings are influenced by the DMN [ 43 ]. A visual processing area called the praecuneus links gaming cues to internal information [ 22 ]. A meta-analysis found that the posterior cingulate cortex activity of individuals with IA during cue-reactivity tasks was connected with their gaming time [ 44 ], suggesting that excessive gaming may impair DMN function and that individuals with IA exert more cognitive effort to control it. Findings for the behavioural consequences of FC changes in the DMN illustrate its underlying role in regulating impulsivity, self-monitoring, and cognitive control.

Furthermore, Ding et al. (2013) reported an activation of components of the reward pathway, including areas like the nucleus accumbens, praecuneus, SMA, caudate, and thalamus, in connection to the DMN [ 22 ]. The increased FC of the limbic and reward networks have been confirmed to be a major biomarker for IA [ 45 , 46 ]. The increased reinforcement in these networks increases the strength of reward stimuli and makes it more difficult for other networks, namely the ECN, to down-regulate the increased attention [ 29 ] (See Fig 5 ).

Executive control network (ECN).

The numerous IA-affected components in the ECN have a role in a variety of behaviours that are connected to both response inhibition and emotional regulation [ 47 ]. For instance, brain regions like the striatum, which are linked to impulsivity and the reward system, are heavily involved in the act of playing online games [ 47 ]. Online game play activates the striatum, which suppresses the left DLPFC in ECN [ 48 ]. As a result, people with IA may find it difficult to control their want to play online games [ 48 ]. This system thus causes impulsive and protracted gaming conduct, lack of inhibitory control leading to the continued use of internet in an overt manner despite a variety of negative effects, personal distress, and signs of psychological dependence [ 33 ] (See Fig 5 ).

Wang et al. (2017) report that disruptions in cognitive control networks within the ECN are frequently linked to characteristics of substance addiction [ 24 ]. With samples that were addicted to heroin and cocaine, previous studies discovered abnormal FC in the ECN and the PFC [ 49 ]. Electronic gaming is known to promote striatal dopamine release, similar to drug addiction [ 50 ]. According to Drgonova and Walther (2016), it is hypothesised that dopamine could stimulate the reward system of the striatum in the brain, leading to a loss of impulse control and a failure of prefrontal lobe executive inhibitory control [ 51 ]. In the end, IA’s resemblance to drug use disorders may point to vital biomarkers or underlying mechanisms that explain how cognitive control and impulsive behaviour are related.

A task-related fMRI study found that the decrease in FC between the left DLPFC and dorsal striatum was congruent with an increase in impulsivity in adolescents with IA [ 26 ]. The lack of response inhibition from the ECN results in a loss of control over internet usage and a reduced capacity to display goal-directed behaviour [ 33 ]. Previous studies have linked the alteration of the ECN in IA with higher cue reactivity and impaired ability to self-regulate internet specific stimuli [ 52 ].

Salience network (SN)/ other networks.

Xing et al. (2014) investigated the significance of the SN regarding cognitive control in teenagers with IA [ 21 ]. The SN, which is composed of the ACC and insula, has been demonstrated to control dynamic changes in other networks to modify cognitive performance [ 21 ]. The ACC is engaged in conflict monitoring and cognitive control, according to previous neuroimaging research [ 53 ]. The insula is a region that integrates interoceptive states into conscious feelings [ 54 ]. The results from Xing et al. (2014) showed declines in the SN regarding its structural connectivity and fractional anisotropy, even though they did not observe any appreciable change in FC in the IA participants [ 21 ]. Due to the small sample size, the results may have indicated that FC methods are not sensitive enough to detect the significant functional changes [ 21 ]. However, task performance behaviours associated with impaired cognitive control in adolescents with IA were correlated with these findings [ 21 ]. Our comprehension of the SN’s broader function in IA can be enhanced by this relationship.

Research study supports the idea that different psychological issues are caused by the functional reorganisation of expansive brain networks, such that strong association between SN and DMN may provide neurological underpinnings at the system level for the uncontrollable character of internet-using behaviours [ 24 ]. In the study by Wang et al. (2017), the decreased interconnectivity between the SN and DMN, comprising regions such the DLPFC and the insula, suggests that adolescents with IA may struggle to effectively inhibit DMN activity during internally focused processing, leading to poorly managed desires or preoccupations to use the internet [ 24 ] (See Fig 5 ). Subsequently, this may cause a failure to inhibit DMN activity as well as a restriction of ECN functionality [ 55 ]. As a result, the adolescent experiences an increased salience and sensitivity towards internet addicting cues making it difficult to avoid these triggers [ 56 ].

The primary aim of this review was to present a summary of how internet addiction impacts on the functional connectivity of adolescent brain. Subsequently, the influence of IA on the adolescent brain was compartmentalised into three sections: alterations of FC at various brain regions, specific FC relationships, and behavioural/developmental changes. Overall, the specific effects of IA on the adolescent brain were not completely clear, given the variety of FC changes. However, there were overarching behavioural, network and developmental trends that were supported that provided insight on adolescent development.

The first hypothesis that was held about this question was that IA was widespread and would be regionally similar to substance-use and gambling addiction. After conducting a review of the information in the chosen articles, the hypothesis was predictably supported. The regions of the brain affected by IA are widespread and influence multiple networks, mainly DMN, ECN, SN and reward pathway. In the DMN, there was a complex mix of increases and decreases within the network. However, in the ECN, the alterations of FC were more unilaterally decreased, but the findings of SN and reward pathway were not quite clear. Overall, the FC changes within adolescents with IA are very much network specific and lay a solid foundation from which to understand the subsequent behaviour changes that arise from the disorder.

The second hypothesis placed emphasis on the importance of between network interactions and within network interactions in the continuation of IA and the development of its behavioural symptoms. The results from the findings involving the networks, DMN, SN, ECN and reward system, support this hypothesis (see Fig 5 ). Studies confirm the influence of all these neural networks on reward valuation, impulsivity, salience to stimuli, cue reactivity and other changes that alter behaviour towards the internet use. Many of these changes are connected to the inherent nature of the adolescent brain.

There are multiple explanations that underlie the vulnerability of the adolescent brain towards IA related urges. Several of them have to do with the inherent nature and underlying mechanisms of the adolescent brain. Children’s emotional, social, and cognitive capacities grow exponentially during childhood and adolescence [ 57 ]. Early teenagers go through a process called “social reorientation” that is characterised by heightened sensitivity to social cues and peer connections [ 58 ]. Adolescents’ improvements in their social skills coincide with changes in their brains’ anatomical and functional organisation [ 59 ]. Functional hubs exhibit growing connectivity strength [ 60 ], suggesting increased functional integration during development. During this time, the brain’s functional networks change from an anatomically dominant structure to a scattered architecture [ 60 ].

The adolescent brain is very responsive to synaptic reorganisation and experience cues [ 61 ]. As a result, one of the distinguishing traits of the maturation of adolescent brains is the variation in neural network trajectory [ 62 ]. Important weaknesses of the adolescent brain that may explain the neurobiological change brought on by external stimuli are illustrated by features like the functional gaps between networks and the inadequate segregation of networks [ 62 ].

The implications of these findings towards adolescent behaviour are significant. Although the exact changes and mechanisms are not fully clear, the observed changes in functional connectivity have the capacity of influencing several aspects of adolescent development. For example, functional connectivity has been utilised to investigate attachment styles in adolescents [ 63 ]. It was observed that adolescent attachment styles were negatively associated with caudate-prefrontal connectivity, but positively with the putamen-visual area connectivity [ 63 ]. Both named areas were also influenced by the onset of internet addiction, possibly providing a connection between the two. Another study associated neighbourhood/socioeconomic disadvantage with functional connectivity alterations in the DMN and dorsal attention network [ 64 ]. The study also found multivariate brain behaviour relationships between the altered/disadvantaged functional connectivity and mental health and cognition [ 64 ]. This conclusion supports the notion that the functional connectivity alterations observed in IA are associated with specific adolescent behaviours as well as the fact that functional connectivity can be utilised as a platform onto which to compare various neurologic conditions.

Limitations/strengths

There were several limitations that were related to the conduction of the review as well as the data extracted from the articles. Firstly, the study followed a systematic literature review design when analysing the fMRI studies. The data pulled from these imaging studies were namely qualitative and were subject to bias contrasting the quantitative nature of statistical analysis. Components of the study, such as sample sizes, effect sizes, and demographics were not weighted or controlled. The second limitation brought up by a similar review was the lack of a universal consensus of terminology given IA [ 47 ]. Globally, authors writing about this topic use an array of terminology including online gaming addiction, internet addiction, internet gaming disorder, and problematic internet use. Often, authors use multiple terms interchangeably which makes it difficult to depict the subtle similarities and differences between the terms.

Reviewing the explicit limitations in each of the included studies, two major limitations were brought up in many of the articles. One was relating to the cross-sectional nature of the included studies. Due to the inherent qualities of a cross-sectional study, the studies did not provide clear evidence that IA played a causal role towards the development of the adolescent brain. While several biopsychosocial factors mediate these interactions, task-based measures that combine executive functions with imaging results reinforce the assumed connection between the two that is utilised by the papers studying IA. Another limitation regarded the small sample size of the included studies, which averaged to around 20 participants. The small sample size can influence the generalisation of the results as well as the effectiveness of statistical analyses. Ultimately, both included study specific limitations illustrate the need for future studies to clarify the causal relationship between the alterations of FC and the development of IA.

Another vital limitation was the limited number of studies applying imaging techniques for investigations on IA in adolescents were a uniformly Far East collection of studies. The reason for this was because the studies included in this review were the only fMRI studies that were found that adhered to the strict adolescent age restriction. The adolescent age range given by the WHO (10–19 years old) [ 65 ] was strictly followed. It is important to note that a multitude of studies found in the initial search utilised an older adolescent demographic that was slightly higher than the WHO age range and had a mean age that was outside of the limitations. As a result, the results of this review are biased and based on the 12 studies that met the inclusion and exclusion criteria.

Regarding the global nature of the research, although the journals that the studies were published in were all established western journals, the collection of studies were found to all originate from Asian countries, namely China and Korea. Subsequently, it pulls into question if the results and measures from these studies are generalisable towards a western population. As stated previously, Asian countries have a higher prevalence of IA, which may be the reasoning to why the majority of studies are from there [ 8 ]. However, in an additional search including other age groups, it was found that a high majority of all FC studies on IA were done in Asian countries. Interestingly, western papers studying fMRI FC were primarily focused on gambling and substance-use addiction disorders. The western papers on IA were less focused on fMRI FC but more on other components of IA such as sleep, game-genre, and other non-imaging related factors. This demonstrated an overall lack of western fMRI studies on IA. It is important to note that both western and eastern fMRI studies on IA presented an overall lack on children and adolescents in general.

Despite the several limitations, this review provided a clear reflection on the state of the data. The strengths of the review include the strict inclusion/exclusion criteria that filtered through studies and only included ones that contained a purely adolescent sample. As a result, the information presented in this review was specific to the review’s aims. Given the sparse nature of adolescent specific fMRI studies on the FC changes in IA, this review successfully provided a much-needed niche representation of adolescent specific results. Furthermore, the review provided a thorough functional explanation of the DMN, ECN, SN and reward pathway making it accessible to readers new to the topic.

Future directions and implications

Through the search process of the review, there were more imaging studies focused on older adolescence and adulthood. Furthermore, finding a review that covered a strictly adolescent population, focused on FC changes, and was specifically depicting IA, was proven difficult. Many related reviews, such as Tereshchenko and Kasparov (2019), looked at risk factors related to the biopsychosocial model, but did not tackle specific alterations in specific structural or functional changes in the brain [ 66 ]. Weinstein (2017) found similar structural and functional results as well as the role IA has in altering response inhibition and reward valuation in adolescents with IA [ 47 ]. Overall, the accumulated findings only paint an emerging pattern which aligns with similar substance-use and gambling disorders. Future studies require more specificity in depicting the interactions between neural networks, as well as more literature on adolescent and comorbid populations. One future field of interest is the incorporation of more task-based fMRI data. Advances in resting-state fMRI methods have yet to be reflected or confirmed in task-based fMRI methods [ 62 ]. Due to the fact that network connectivity is shaped by different tasks, it is critical to confirm that the findings of the resting state fMRI studies also apply to the task based ones [ 62 ]. Subsequently, work in this area will confirm if intrinsic connectivity networks function in resting state will function similarly during goal directed behaviour [ 62 ]. An elevated focus on adolescent populations as well as task-based fMRI methodology will help uncover to what extent adolescent network connectivity maturation facilitates behavioural and cognitive development [ 62 ].

A treatment implication is the potential usage of bupropion for the treatment of IA. Bupropion has been previously used to treat patients with gambling disorder and has been effective in decreasing overall gambling behaviour as well as money spent while gambling [ 67 ]. Bae et al. (2018) found a decrease in clinical symptoms of IA in line with a 12-week bupropion treatment [ 31 ]. The study found that bupropion altered the FC of both the DMN and ECN which in turn decreased impulsivity and attentional deficits for the individuals with IA [ 31 ]. Interventions like bupropion illustrate the importance of understanding the fundamental mechanisms that underlie disorders like IA.

The goal for this review was to summarise the current literature on functional connectivity changes in adolescents with internet addiction. The findings answered the primary research questions that were directed at FC alterations within several networks of the adolescent brain and how that influenced their behaviour and development. Overall, the research demonstrated several wide-ranging effects that influenced the DMN, SN, ECN, and reward centres. Additionally, the findings gave ground to important details such as the maturation of the adolescent brain, the high prevalence of Asian originated studies, and the importance of task-based studies in this field. The process of making this review allowed for a thorough understanding IA and adolescent brain interactions.

Given the influx of technology and media in the lives and education of children and adolescents, an increase in prevalence and focus on internet related behavioural changes is imperative towards future children/adolescent mental health. Events such as COVID-19 act to expose the consequences of extended internet usage on the development and lifestyle of specifically young people. While it is important for parents and older generations to be wary of these changes, it is important for them to develop a base understanding of the issue and not dismiss it as an all-bad or all-good scenario. Future research on IA will aim to better understand the causal relationship between IA and psychological symptoms that coincide with it. The current literature regarding functional connectivity changes in adolescents is limited and requires future studies to test with larger sample sizes, comorbid populations, and populations outside Far East Asia.

This review aimed to demonstrate the inner workings of how IA alters the connection between the primary behavioural networks in the adolescent brain. Predictably, the present answers merely paint an unfinished picture that does not necessarily depict internet usage as overwhelmingly positive or negative. Alternatively, the research points towards emerging patterns that can direct individuals on the consequences of certain variables or risk factors. A clearer depiction of the mechanisms of IA would allow physicians to screen and treat the onset of IA more effectively. Clinically, this could be in the form of more streamlined and accurate sessions of CBT or family therapy, targeting key symptoms of IA. Alternatively clinicians could potentially prescribe treatment such as bupropion to target FC in certain regions of the brain. Furthermore, parental education on IA is another possible avenue of prevention from a public health standpoint. Parents who are aware of the early signs and onset of IA will more effectively handle screen time, impulsivity, and minimize the risk factors surrounding IA.

Additionally, an increased attention towards internet related fMRI research is needed in the West, as mentioned previously. Despite cultural differences, Western countries may hold similarities to the eastern countries with a high prevalence of IA, like China and Korea, regarding the implications of the internet and IA. The increasing influence of the internet on the world may contribute to an overall increase in the global prevalence of IA. Nonetheless, the high saturation of eastern studies in this field should be replicated with a Western sample to determine if the same FC alterations occur. A growing interest in internet related research and education within the West will hopefully lead to the knowledge of healthier internet habits and coping strategies among parents with children and adolescents. Furthermore, IA research has the potential to become a crucial proxy for which to study adolescent brain maturation and development.

Supporting information

S1 checklist. prisma checklist..

https://doi.org/10.1371/journal.pmen.0000022.s001

S1 Appendix. Search strategies with all the terms.

https://doi.org/10.1371/journal.pmen.0000022.s002

S1 Data. Article screening records with details of categorized content.

https://doi.org/10.1371/journal.pmen.0000022.s003

Acknowledgments

The authors thank https://www.stockio.com/free-clipart/brain-01 (with attribution to Stockio.com); and https://www.rawpixel.com/image/6442258/png-sticker-vintage for the free images used to create Figs 2 – 4 .

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 2. Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. 5 ed. Washington, D.C.: American Psychiatric Publishing; 2013.
  • 10. Stats IW. World Internet Users Statistics and World Population Stats 2013 [ http://www.internetworldstats.com/stats.htm .
  • 11. Rideout VJR M. B. The common sense census: media use by tweens and teens. San Francisco, CA: Common Sense Media; 2019.
  • 37. Tremblay L. The Ventral Striatum. Handbook of Reward and Decision Making: Academic Press; 2009.
  • 57. Bhana A. Middle childhood and pre-adolescence. Promoting mental health in scarce-resource contexts: emerging evidence and practice. Cape Town: HSRC Press; 2010. p. 124–42.
  • 65. Organization WH. Adolescent Health 2023 [ https://www.who.int/health-topics/adolescent-health#tab=tab_1 .

research methodology journal article

Environmental Science: Water Research & Technology

Wastewater-based protocols for sars-cov-2: insights into virus concentration, extraction and quantitation methods from two years of public health surveillance.

The ongoing COVID-19 pandemic has accelerated the development and application of wastewater-based disease surveillance (WBS) as a tool for public health practice. The wide variety of WBS methods currently in use hinders the ability to compare data between different laboratories and limits the potential of nationwide surveillance programs. In this study, we conducted a systematic analysis to identify among widely used concentration, extraction and quantification methods, which ones would perform well for WBS of SARS-CoV-2. We evaluated electronegative filtration (HA), one of the traditional methods applied early in the pandemic, to other methods including direct capture, magnetic affinity particles and PEG. Our results indicated that these alternative concentration methods quantify SARS-CoV-2 just as effective, if not better compared to membrane filtration. We also identified the effect that filtration flow rate, volume filtered, and bead beating parameters have on viral target recovery. The evaluation of different extraction methods demonstrated that an automatic paramagnetic bead-based method performs better than the column-based method tested. In addition, we compared the quantification between RT-qPCR and RT-dPCR, and while both perform well, we document that RT-dPCR has a lower LOD and can provide more accurate data. Lastly, we compared three weeks of side-by-side wastewater surveillance by two different, but currently commonly applied approaches: HA filtration quantified by RT-qPCR and Ceres Nanotrap® Microbiome A Particles quantified by RT-dPCR. On average, we found a 3.6-fold difference in SARS-CoV-2 levels between the two approaches and observed that the N1:N2 ratio was closer to one with Nanotrap® particle concentration quantified by RT-dPCR.

Supplementary files

  • Supplementary information PDF (816K)

Article information

research methodology journal article

Download Citation

Permissions.

research methodology journal article

D. S. Antkiewicz, K. H. Janssen, A. Roguet, H. E. Pilch, R. B. Fahney, P. A. Mullen, G. N. Knuth, D. G. Everett, E. M. Doolittle, K. E. King, C. H. Wood, A. R. Stanley, J. D. Hemming and M. Shafer, Environ. Sci.: Water Res. Technol. , 2024, Accepted Manuscript , DOI: 10.1039/D3EW00958K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence . You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication , please go to the Copyright Clearance Center request page .

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page .

Read more about how to correctly acknowledge RSC content .

Social activity

Search articles by author.

This article has not yet been cited.

Advertisements

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 30, Number 7—July 2024

Covid-19 death determination methods, minnesota, usa, 2020–2022 1.

Main Article

Median days from date of death to filing of death certificate, by demographic and disease history characteristics, for confirmed COVID-19 deaths detected by using the Minnesota Department of Health COVID-19 mortality case definition, March 19, 2020–December 31, 2022*

*Values are no. (%) except as indicated. IQR, interquartile range. †Statistically significant at p = 0.05. p values are for median 1-way analysis.
‡Other includes sheltered and unsheltered homeless, jail/prison–dormitories, and other settings.
§Other includes decedents who died at home, in the emergency department, and in other settings, such as at another private residence.

1 Preliminary results from this analysis were presented at the Council of State and Territorial Epidemiologists annual conference; 2023 Jun 25–29; Salt Lake City, Utah, USA.

Exit Notification / Disclaimer Policy

  • The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
  • Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
  • You will be subject to the destination website's privacy policy when you follow the link.
  • CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
  • Search Menu
  • Sign in through your institution
  • Advance Articles
  • Editor's Choice
  • Braunwald's Corner
  • ESC Guidelines
  • EHJ Dialogues
  • Issue @ a Glance Podcasts
  • CardioPulse
  • Weekly Journal Scan
  • European Heart Journal Supplements
  • Year in Cardiovascular Medicine
  • Asia in EHJ
  • Most Cited Articles
  • ESC Content Collections
  • Author Guidelines
  • Submission Site
  • Why publish with EHJ?
  • Open Access Options
  • Submit from medRxiv or bioRxiv
  • Author Resources
  • Self-Archiving Policy
  • Read & Publish
  • Advertising and Corporate Services
  • Advertising
  • Reprints and ePrints
  • Sponsored Supplements
  • Journals Career Network
  • About European Heart Journal
  • Editorial Board
  • About the European Society of Cardiology
  • ESC Publications
  • War in Ukraine
  • ESC Membership
  • ESC Journals App
  • Developing Countries Initiative
  • Dispatch Dates
  • Terms and Conditions
  • Journals on Oxford Academic
  • Books on Oxford Academic

Article Contents

  • Introduction
  • Acknowledgements
  • Supplementary Data
  • Declarations

Xylitol is prothrombotic and associated with cardiovascular risk

ORCID logo

  • Article contents
  • Figures & tables

Marco Witkowski, Ina Nemet, Xinmin S Li, Jennifer Wilcox, Marc Ferrell, Hassan Alamri, Nilaksh Gupta, Zeneng Wang, Wai Hong Wilson Tang, Stanley L Hazen, Xylitol is prothrombotic and associated with cardiovascular risk, European Heart Journal , 2024;, ehae244, https://doi.org/10.1093/eurheartj/ehae244

  • Permissions Icon Permissions

The pathways and metabolites that contribute to residual cardiovascular disease risks are unclear. Low-calorie sweeteners are widely used sugar substitutes in processed foods with presumed health benefits. Many low-calorie sweeteners are sugar alcohols that also are produced endogenously, albeit at levels over 1000-fold lower than observed following consumption as a sugar substitute.

Untargeted metabolomics studies were performed on overnight fasting plasma samples in a discovery cohort ( n = 1157) of sequential stable subjects undergoing elective diagnostic cardiac evaluations; subsequent stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses were performed on an independent, non-overlapping validation cohort ( n = 2149). Complementary isolated human platelet, platelet-rich plasma, whole blood, and animal model studies examined the effect of xylitol on platelet responsiveness and thrombus formation in vivo . Finally, an intervention study was performed to assess the effects of xylitol consumption on platelet function in healthy volunteers ( n = 10).

In initial untargeted metabolomics studies (discovery cohort), circulating levels of a polyol tentatively assigned as xylitol were associated with incident (3-year) major adverse cardiovascular event (MACE) risk. Subsequent stable isotope dilution LC-MS/MS analyses (validation cohort) specific for xylitol (and not its structural isomers) confirmed its association with incident MACE risk [third vs. first tertile adjusted hazard ratio (95% confidence interval), 1.57 (1.12–2.21), P < .01]. Complementary mechanistic studies showed xylitol-enhanced multiple indices of platelet reactivity and in vivo thrombosis formation at levels observed in fasting plasma. In interventional studies, consumption of a xylitol-sweetened drink markedly raised plasma levels and enhanced multiple functional measures of platelet responsiveness in all subjects.

Xylitol is associated with incident MACE risk. Moreover, xylitol both enhanced platelet reactivity and thrombosis potential in vivo . Further studies examining the cardiovascular safety of xylitol are warranted.

Role of the artificial sweetener xylitol in cardiovascular event risk. In initial untargeted metabolomics studies (discovery cohort) and subsequent stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) studies (validation cohort), fasting levels of xylitol are associated with incident major adverse cardiovascular events (MACE). Using human whole blood, platelet-rich plasma, and washed platelets, xylitol enhances multiple indices of platelet reactivity in vitro. Xylitol also was shown to enhance thrombosis formation in a murine arterial injury model in vivo. In human intervention studies, when subjects ingested a typical dietary amount of xylitol in an artificially sweetened food, multiple functional measures of platelet responsiveness were significantly increased. Xylitol is both clinically associated with cardiovascular event risks and mechanistically linked to enhanced platelet responsiveness and thrombosis potential in vivo. ADP, adenosine diphosphate; MI, myocardial infarction.

Role of the artificial sweetener xylitol in cardiovascular event risk. In initial untargeted metabolomics studies (discovery cohort) and subsequent stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) studies (validation cohort), fasting levels of xylitol are associated with incident major adverse cardiovascular events (MACE). Using human whole blood, platelet-rich plasma, and washed platelets, xylitol enhances multiple indices of platelet reactivity in vitro . Xylitol also was shown to enhance thrombosis formation in a murine arterial injury model in vivo . In human intervention studies, when subjects ingested a typical dietary amount of xylitol in an artificially sweetened food, multiple functional measures of platelet responsiveness were significantly increased. Xylitol is both clinically associated with cardiovascular event risks and mechanistically linked to enhanced platelet responsiveness and thrombosis potential in vivo . ADP, adenosine diphosphate; MI, myocardial infarction.

  • cardiovascular diseases
  • blood platelets
  • sugar alcohols
  • sweetening agents
  • whole blood

Email alerts

Companion article.

  • Xylitol: bitter cardiovascular data for a successful sweetener

Related articles in PubMed

Citing articles via, looking for your next opportunity, affiliations.

  • Online ISSN 1522-9645
  • Print ISSN 0195-668X
  • Copyright © 2024 European Society of Cardiology
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Methodology for research II

S bala bhaskar.

Department of Anaesthesiology, Vijayanagar Institute Medical Sciences, Bellary, Karnataka, India

M Manjuladevi

1 Department of Anaesthesiology, St. John's Medical College, Bengaluru, Karnataka, India

Research is a systematic process, which uses scientific methods to generate new knowledge that can be used to solve a query or improve on the existing system. Any research on human subjects is associated with varying degree of risk to the participating individual and it is important to safeguard the welfare and rights of the participants. This review focuses on various steps involved in methodology (in continuation with the previous section) before the data are submitted for publication.

INTRODUCTION

Research uses a systematic approach to generate new knowledge to answer questions based on needs of patient health and practice. The investigator identifies research question, examines the ethical implications, describes the research design and collects appropriate data[ 1 , 2 , 3 ] which is evaluated by statistical tests before it can be published.[ 4 ] Before putting this to use in clinical practice, the relevant data are critically appraised for validity and reliability.[ 1 ] This review covers these aspects of the research methodology, in continuation with the first part by Garg et al . published in this issue of Indian Journal of Anaesthesia (IJA).[ 5 ]

REGULATORY AND ETHICAL CONSIDERATIONS

The Indian Council of Medical Research (ICMR) is the apex body in India responsible for the formulation, coordination and promotion of biomedical research. The International Committee of Medical Journal Editors (ICMJE) makes it mandatory for clinical trials to be included in a clinical trials registry for acceptance for publication. Clinical Trials.gov, run by the United States National Library of Medicine, was the first online registry established in 2005 and is widely used today. All trials to be conducted in India should have mandatory prospective registration with the Clinical Trial Registry of India (CTRI- www.ctri.in ). Good clinical practice (GCP) guidelines is a set of guidelines for biomedical studies which encompasses the design, conduct, termination, audit, analysis, reporting and documentation of the studies involving human subjects. It protects rights of human subjects and the authenticity of biomedical data. ( www.cdsco.nic.in/html/GCP1.html ). Table 1 lists the type of the research involved and their regulatory bodies.[ 6 ]

Research involved and their regulatory bodies

An external file that holds a picture, illustration, etc.
Object name is IJA-60-646-g001.jpg

The International Standard Randomised Controlled Trial Number (ISRCTN) registry is a primary clinical trial registry recognised by the World Health Organization. The ICMJE provides content validation of all submitted studies (proposed, ongoing or completed). The study is assigned a unique identification number, and records of the study in the database can be easily accessed ( www.isrctn.com ).

To conduct a clinical trial in India, Institution Ethics Committee (IEC) approval is mandatory, and it must be registered with CTRI- www.ctri.nic.in .[ 2 , 6 ] When ‘off-label’ use of a drug (drug being used for a new indication/new dose/formulation/route) is tested for purely academic purposes and not for commercial use, currently there is no requirement of regulator approval.[ 2 , 6 ] However, the IEC has to consider the risks-benefits and ethical basis for approval of the research.

Drugs Controller General of India (DCGI) in India insists on registration and approval of clinical trials through CTRI and ensures scientific and safe conduct of the study. Most of the academic medical centres have Institutional Review Board (IRB) or IEC. They (‘internal’ Ethics Committees) can assess research proposals first and approve before submitting to national bodies. The approval may also go in parallel with DCGI approval. It is responsible for the supervision and protection of rights, safety and welfare of human subjects. During the progress of the trial, the IEC reviews safety reports, any significant violation/deviations in the protocol and for any amendments in the study protocol or informed consent.[ 2 , 7 ]

If IEC is not available in the institution, proposals can be sent independent ethics committee outside the institution (‘external’ Ethics Committees).[ 2 ] The ICMR suggests the establishment of registered Independent Ethics Committees (I nd EC) without institutional affiliation, functioning as per national guidelines. Proposals can also be sent to another institution, following established protocol, including providing a ‘no objection certificate’ and allow the external IEC necessary access.[ 2 ] When there is a large load of research, multiple ECs can function in the same institution as also subcommittees (e.g., subcommittees on adverse event, data safety monitoring, expedited review, etc.,).

The IRB consists of 7–15 members and at least five members are required to form the quorum to make a decision on the research [ Table 2 ].[ 2 ]

Composition of Institution Ethics Committee

An external file that holds a picture, illustration, etc.
Object name is IJA-60-646-g002.jpg

All the research involving human participants should follow four basic ethical principles;[ 2 ] (a) Respect for persons autonomy, (b) beneficence (balance the risks against benefits bearing in mind the welfare of the research participant[s]), (c) nonmaleficence (no harm or reduce exposure to greater harm) and (d) Justice (distribution of research subjects equitably in all groups, for example, social, economic demographic, etc).

Informed consent is a process by which a subject confirms his/her willingness to participate in a clinical study.[ 4 ] It protects the individual's freedom of choice and respect for individual's autonomy. It ensures proper regulations in clinical trials and assures patient safety by dealing with both legal and ethical basis.[ 7 ] The process of informed consent consists of providing relevant information, its comprehension and voluntariness.[ 2 ] The details of the clinical study are explained to the subject in a simple and easily understandable language. The ‘subject/participant information sheet’ should include research aspect of the study, sponsor of the study, purpose and procedure, side effects, risks and discomforts, benefits, compensation for any study-related injury, alternatives to participation, right to withdraw, confidentiality of records and contact information of the investigators and IRB.[ 2 , 6 ] The informed and written consent form is duly signed by the subject in a document called ‘informed consent form’.[ 1 , 2 , 3 ] The documents consisting of patient/participant information sheet and informed consent form should be reviewed and approved by the IEC before enrolment of the participants.

A legal authorised representative (LAR) should be involved in the decision-making of vulnerable subjects who lack the ability to consent. The consent is taken from parent/LAR (in kids <7 years) and consent of parent/LAR along with assent form (oral/written) in children aged 7–18 years.[ 2 ] Audio/audio-visual recording of the informed consent process may be required in case of certain regulatory, clinical trials.[ 2 ] After the completion/termination of the study, all records within the IEC must be archived for at least 3 years; those related to regulatory, clinical trials must be archived for 5 years as per CDSCO regulation. Longer preservation may be needed as required by the sponsors/regulatory bodies.

Many finer aspects of the legal and ethical issues in research are discussed by Yip et al in this issue of IJA.[ 8 ]

The ethical duty of confidentiality refers to the obligation of an individual or organisation to safeguard entrusted information of the research data. It is essential for the integrity of the research project and protects information from unauthorised access, use, disclosure, modification, loss or theft.[ 6 , 7 ]

Data related to any of the studies of individual participant can be disclosed only under the following circumstances:

(a) Threat to a person's life, (b) Communication with drug registration authority in cases of severe adverse reaction, (c) Communication to health authority whenever there is risk to public health, (d) In a court of law under the orders of the presiding judge and (e) As a requirement for government agencies or regulatory authorities.[ 2 ]

DATA COLLECTION

‘Data’ includes the information that is systematically collected by the investigator during the study. The primary data are those which are originally done for the first time. The secondary data are a compilation of information done by someone else and have already been passed through the statistical process. A Data Monitoring Committee or Data and Safety Monitoring Board may be appointed, independent of IEC for interim analysis; their report forms the basis for early termination of planned study when there is compelling evidence of beneficial effectiveness or harmful side effects or for major flaws in the study.

The two main types of data are qualitative and quantitative, and most studies will have a combination of both. While quantitative data are easy to analyse and fairly reliable, qualitative data provide more depth in the description of the sample.[ 9 ]

Data collection methods [ Figure 1 ]:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-646-g003.jpg

Methods of data collection

  • Interview: This method allows face to face contact with respondents, exploring the topic in depth. It allows the interviewer to explain or help to clarify questions increasing the usefulness of a response. It can be of different types-structured, unstructured (informal, conversational approach), semi-structured, focused and standardised.[ 9 , 10 , 11 ] There can be disadvantages-interviewer clarifications can lead to inconsistencies and influence the responses; the subject may distort information through recall error, selective perceptions and in the desire to please the interviewer.[ 10 ] Sometimes, the data may be too voluminous to record or reduce it
  • Observation: This method provides direct information about the behaviour of individuals and groups. It allows the investigator to understand the situation and context. It could be ‘Participant’ observation: The observer takes part in the situation he or she observes or ‘Nonparticipant’ observation: The observer watches the situation, openly or concealed, but does not participate[ 9 , 10 , 11 ]
  • Questionnaire: It is a simple and inexpensive method not even requiring any research assistants. More honest responses may be available when anonymity is provided. Written questions are presented that are to be answered by the respondents. A written questionnaire can be administered in different ways, such as by sending questionnaires by mail with clear instructions on how to answer the questions and asking for mailed responses; gathering all or part of the respondents in one place at one time, giving oral or written instructions, and letting the respondents fill out the questionnaires; or hand-delivering questionnaires to respondents and collecting them later.[ 10 , 11 ] The disadvantage of this method are observer bias and breach in confidentiality; also, this cannot be used on illiterate subjects. As with other types of outcome measurements, questionnaires and interviews are to be assessed for validity (accuracy) and for reproducibility (precision)-using ‘face validity, content validity and construct validity’
  • Documents: It is an inexpensive and unobtrusive method of data collection from locally available records or documents (existing research, hospital records, databases, videotapes, etc.).[ 9 , 10 , 11 ] There is disadvantage of accuracy, authenticity and availability (missing data/omission of needed data). Anaesthesia information management systems used in modern practice have the ability to collect data automatically, in large volumes, which can be converted for specific, focused outcome assessments for research purposes.

Compilation of data includes systematic arrangement of data to facilitate the presentation and analysis.[ 12 ] The data collected are entered in a database where the information about subjects and variables are stored. Simple study database can be maintained in a spreadsheet (MS Excel © ) or statistical software (e.g., Statistical Analysis System (SAS ® ) (NC, USA), IBM SPSS (Statistical Package for the Social Sciences) Statistics ® (IBM Inc., NY, USA). More complex database require integrated database management software (e.g., Access © (Windows) and Filemaker © Pro (Apple Inc.,).[ 13 ] Database ‘queries’ sort and filter the data as well as calculate values based on the raw data fields.[ 12 , 13 ] Queries are used to monitor data entry, report on study progress and format the results for analysis. Data must be stored in ‘secure servers’ so that confidentiality is maintained.[ 13 ] Backup files and off-site storage may be necessary to prevent any data loss. Common methods of summarising and presenting data are tables, pie charts, bar charts, histograms, frequency and cumulative frequency curves, dot plots and x-y scatterplots.[ 13 , 14 , 15 ]

RESEARCH TOOLS: DEVELOPMENT AND VALIDATION

‘Research tool’ is the means of collecting information for the purpose of a study. Observation forms, interview schedules, questionnaires are all classified as research tools. The first practical step in doing a research process is to construct a research tool. Four stage process is involved in developing a research tool.[ 9 , 10 , 11 , 12 ]

  • Concept development: The researcher should understand the basic knowledge pertaining to the study
  • Specification of concept dimensions: The researcher should be able to build in a dimension based on the concept of the study
  • Selection of indicators: Once the concept and its dimensions are developed, each concept element is measured by indicators (respondent's knowledge, opinion, expectation, etc., are measured with scales, devices). More than one indicator increases the score and validity of the study
  • Formation of index: Dimension of a concept or different measurements of a dimension are then put into an overall index.

The error may occur at any stage of research, i.e., from selection to interpretation of data to conclusion. Two types of error can occur – random and systematic error. The random error must be reduced as far as possible, and the systemic error should be eliminated. Errors can occur from three sources:[ 16 , 17 , 18 , 19 ]

  • Investigator: Due to ignorance, incompetence and bias
  • Instrument: Due to variability, calibration, problems and malfunctioning
  • Subject: Due to bias, noncompliance and biological variation in response.

Any research can be affected by factors that can invalidate the findings. A good research tool should meet the tests of validity, reliability and practicality.

Validity refers to the extent to which a test measures what we actually wish to measure. Reliability refers to accuracy and precision of a measurement procedure.

The practicality characteristic of a measuring instrument can be judged in terms of economy, convenience and interpretability.

Determining validity can be viewed as constructing an evidence-based argument regarding how well a tool measures what it is supposed to do.

USES OF VALIDITY IN SCIENTIFIC METHODS

External validity refers to generalising the study results to other population groups with similar risk factors, settings, measurement and treatment variables.

Internal validity implies that the differences observed between the treatment groups, apart from random error, are only due to the treatments under investigation.[ 9 ]

Validity assessment can be performed in three ways:

  • Content validity is the extent to which a measuring tool provides adequate coverage of all the aspects of the topic under study. (e.g., quality of pain relief to include measurement of analgesia, haemodynamics, sedation, etc.). ‘Face validity’ assesses whether the measurements appear reasonable; a measure of how representative a research project is ‘at face value’, and whether it appears to be a good project
  • Construct validity refers to the degree to which a measurement conforms to theoretical constructs. Convergent validity tests whether and how well those ‘constructs’ that are expected to be related are, in fact, related. Discriminant validity or divergent validity tests those ‘constructs’ that should have no relationship do, in fact, not have any relationship
  • Criterion validity assesses the degree to which a new measurement correlates with well-accepted existing measures. Predictive validity is a strong variety of criterion validity, representing the ability of the measurement to predict an outcome.

Other Types: Concurrent validity refers to the degree of correlation of two measures of the same concept administered at the same time. Consensual validity is a process by which a panel of experts judge the validity.[ 1 , 16 , 17 , 18 , 19 ]

A measuring instrument is reliable if it provides consistent results.[ 1 , 11 ]

The stability aspect refers to securing consistent results with repeated measurements of the same person and with the same instrument. Determination of the degree of stability by comparing the results of repeated measurements.

The equivalence aspect considers how much error may get introduced by different investigators or different samples of the items being studied.

PRACTICALITY

Measuring instrument practicality is tested in terms of economy, convenience and interpretability.

Economy consideration suggests that some trade-off is needed between the ideal research project and that which the budget can afford.

Convenience test suggests that the measuring instrument should be easy to administer. Interpretability consideration is especially important when persons other than the designers of the test are to interpret the results.

ANALYSIS PLAN: QUALITY AND APPROPRIATENESS OF ANALYSIS

The statistics in research functions as a tool in designing research, analysing its data and drawing conclusions from it.[ 20 , 21 ] Descriptive statistics are the development of certain indices from the raw data, summarised in tables, charts or numerical forms. The inferential analysis is undertaken to apply various tests of significance to test hypotheses of a research question so as to validate conclusions. An essential part of presenting any type of inferential data is by probability ( P value) which reassures the reader that the outcome was secondary to the effect of the studied variable and has not occurred purely by chance.[ 22 ] P < 5% is considered statistically significant. Statistical tests are used for testing the significance. Various parametric tests (variable normally distributed) and nonparametric tests (variables are not normally distributed) are used to meet the objective of the study [ Table 3 ].[ 19 , 20 ] ‘Basic Statistical Tools in Research and Data analysis’ in this issue of IJA by Zulfiqar Ali describe these tests in detail.[ 23 ]

Tests of significance

An external file that holds a picture, illustration, etc.
Object name is IJA-60-646-g004.jpg

The ‘methodology’ in a research strategy outlines the steps involved in research process. The research problem is identified, aims and objectives are formulated, sample size is calculated; Ethics Committee approval and informed consent from the subject are taken; data collected are summarised. The research design is planned, and the collected data are then analysed using appropriate statistical tests. The derived evidence is put into clinical practice once the reader is convinced that the clinical study is valid and reliable.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

IMAGES

  1. (PDF) Exploring Research Methodology: Review Article

    research methodology journal article

  2. Methodology Sample In Research : Research Support: Research Methodology

    research methodology journal article

  3. (PDF) Publishing a Methodological Mixed Methods Research Article

    research methodology journal article

  4. Using a Scientific Journal Article to Write a Critical Review

    research methodology journal article

  5. (PDF) Research methodology and characteristics of journal articles with

    research methodology journal article

  6. Types of Research Methodology: Uses, Types & Benefits

    research methodology journal article

VIDEO

  1. Chin Journal Entry 1

  2. BUS4043 SEC06 : RESEARCH METHODOLOGY JOURNAL ARTICLE

  3. The content of the methodology

  4. Methodological Reviews

  5. SOME IMPORTANT ISSUES ON SCIENTIFIC WRITING. Lecture at National Chiayi University, Taiwan, 2023

  6. B Com 3 3 Research Methodology & Project Report 2nd unit explanation By Abdullah Baswaid M.C.A

COMMENTS

  1. Literature review as a research methodology: An ...

    Her research interest relates to service innovation, customer creativity, deviant customer behavior, and value co-creation as well as a special interest in literature review methodology. She has published in the Journal of Business Research, European Journal of Marketing, Journal of Service Management and International Journal of Nursing Studies.

  2. Planning Qualitative Research: Design and Decision Making for New

    While many books and articles guide various qualitative research methods and analyses, there is currently no concise resource that explains and differentiates among the most common qualitative approaches. We believe novice qualitative researchers, students planning the design of a qualitative study or taking an introductory qualitative research course, and faculty teaching such courses can ...

  3. A tutorial on methodological studies: the what, when, how and why

    Background Methodological studies - studies that evaluate the design, analysis or reporting of other research-related reports - play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste. Main body We provide an overview of some of the key aspects of ...

  4. Full article: Methodology or method? A critical review of qualitative

    In Table III, we present the 34 case studies grouped by journal, and categorized by research topic, including health sciences, social sciences and anthropology, and methods research. There was a discrepancy in categorization of one article on pedagogy and a new teaching method published in Qualitative Inquiry (Jorrín-Abellán, Rubia-Avi ...

  5. Reviewing the research methods literature: principles and strategies

    An important reality affecting identification and selection in overviews of the methods literature is the increased likelihood for relevant publications to be located in sources other than journal articles (which is usually not the case for overviews of empirical research, where journal articles generally represent the primary publication type).

  6. How to use and assess qualitative research methods

    Abstract. This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions ...

  7. Criteria for Good Qualitative Research: A Comprehensive Review

    This review aims to synthesize a published set of evaluative criteria for good qualitative research. The aim is to shed light on existing standards for assessing the rigor of qualitative research encompassing a range of epistemological and ontological standpoints. Using a systematic search strategy, published journal articles that deliberate criteria for rigorous research were identified. Then ...

  8. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  9. Methodology for research I

    INTRODUCTION. Research is a process for acquiring new knowledge in systematic approach involving diligent planning and interventions for discovery or interpretation of the new-gained information.[1,2] The outcome reliability and validity of a study would depend on well-designed study with objective, reliable, repeatable methodology with appropriate conduct, data collection and its analysis ...

  10. Methodological Innovations: Sage Journals

    Methodological Innovations is an international, open access journal and the principal venue for publishing peer-reviewed, social-research methods articles. Methodological Innovations is the forum for methodological advances and debates in social research … | View full journal description. This journal is a member of the Committee on ...

  11. Research Methods & Evaluation

    Sage Research Methods & Evaluation is at the forefront of research and scholarship, providing classic and cutting-edge books, video collections, reference materials, cases built on real research, key journals, and our online platform for the community Methodspace.. Download special issues, collections, and a selection of most read articles.Browse our journal portfolio.

  12. (PDF) Research Methods and Methodology

    Research Methods: The Basics is an accessible, user-friendly introduction to the different aspects of research theory, methods and practice. ... Advances in Social Sciences Research Journal, 7(3 ...

  13. (PDF) Research Methodology

    A research approach is a plan of action that gives direction to conduct research. systematically and efficientl y. There are three main research approaches as (Creswell 2009): i) quantitative ...

  14. Full article: Why methodology matters

    Understanding the methodology employed in an article is the key to becoming an "unofficial" critical article reviewer. When academicians embark on a study, they are trying to answer a research question. Therefore, they already know what they want to study and why. In order to arrive at a credible answer, however, they need to design a how.

  15. The Use of Research Methods in Psychological Research: A Systematised

    Therefore, this systematised review aimed to determine what research methods are being used, how these methods are being used and for what topics in the field. Our review of 999 articles from five journals over a period of 5 years indicated that psychology research is conducted in 10 topics via predominantly quantitative research methods.

  16. Research methodology and characteristics of journal articles with

    Background The research community reacted rapidly to the emergence of COVID-19. We aimed to assess characteristics of journal articles, preprint articles, and registered trial protocols about COVID-19 and its causal agent SARS-CoV-2. Methods We analyzed characteristics of journal articles with original data indexed by March 19, 2020, in World Health Organization (WHO) COVID-19 collection ...

  17. Clarification of research design, research methods, and research

    Although the existence of multiple approaches is a powerful source in the development of a research design, new public administration (PA) researchers and students may see it as a source of confusion because there is a lack of clarity in the literature about the approaches to research design, research methods, and research methodology in the ...

  18. PDF Review Article Exploring Research Methodology: Review Article

    International Journal of Research and Review www.ijrrjournal.com E-ISSN: 2349-9788; P-ISSN: 2454-2237 Review Article Exploring Research Methodology: Review Article Mimansha Patel1, Nitin Patel2 1Executive QA, Department of Quality Assurance, Mylan Laboratories Ltd. Sarigam,

  19. Accounting for Competing Risks in Clinical Research

    Conventional statistical methods for the analysis of survival data typically aim to estimate the probability of the event of interest over time or the effect of a risk factor or treatment on that probability or on the intensity with which events occur. These methods require modification in the presence of competing risks.

  20. Functional connectivity changes in the brain of adolescents with

    Search strategy and selection process. A systematic search was conducted up until April 2023 from two sources of database, PubMed and PsycINFO, using a range of terms relevant to the title and research questions (see full list of search terms in S1 Appendix).All the searched articles can be accessed in the S1 Data.The eligible articles were selected according to the inclusion and exclusion ...

  21. We are all in it!: Phenomenological Qualitative Research and

    The practical implementation of phenomenological key concepts is important in working with phenomenology as a research methodology. Core concepts such as "bracketing" seems to be particularly important in PR. ... International Journal of Qualitative Methods, 3(1), 42-55. Crossref. Google Scholar. Heidegger M. (1927/1962/2008). Being and ...

  22. Environmental Science: Water Research & Technology

    The evaluation of different extraction methods demonstrated that an automatic paramagnetic bead-based method performs better than the column-based method tested. In addition, we compared the quantification between RT-qPCR and RT-dPCR, and while both perform well, we document that RT-dPCR has a lower LOD and can provide more accurate data.

  23. A tutorial on methodological studies: the what, when, how and why

    Authors' expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. ... Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, ...

  24. Overweight in Adolescence and Young Adulthood in ...

    Free Access Research Article. PDF/EPUB. ... METHODS: This study includes 10 491 people (5185 women) from the Northern Finland Birth Cohort 1966. Height, weight, and BMI were measured at ages 14 and 31 years. ... eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments ...

  25. COVID-19 Death Determination Methods, Minnesota, USA, 2020-2022 1

    Research COVID-19 Death Determination Methods, Minnesota, USA, 2020-2022 1. Lydia J. Fess , Ashley Fell, Siobhan O'Toole, Paige D'Heilly, Stacy Holzbauer, Leslie ... findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services ...

  26. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  27. Research design: the methodology for interdisciplinary research

    Research as a process in the methodology in interdisciplinary research framework. The Methodology for Interdisciplinary Research (MIR) framework was built on the process approach (Kumar 1999), because in the process approach, the research question or hypothesis is leading for all decisions in the various stages of research.That means that it helps the MIR framework to put the common goal of ...

  28. Xylitol is prothrombotic and associated with cardiovascular risk

    Journal Article. Xylitol is prothrombotic and associated with cardiovascular risk ... Methods. More extensive details for all methods can be found in Supplementary data online, Methods. ... has received research funds from Zehna Therapeutics, Proctor & Gamble, Pfizer, and Roche Diagnostics; and is eligible to receive royalty payments for ...

  29. Methodology for research II

    The 'methodology' in a research strategy outlines the steps involved in research process. The research problem is identified, aims and objectives are formulated, sample size is calculated; Ethics Committee approval and informed consent from the subject are taken; data collected are summarised. ... Articles from Indian Journal of Anaesthesia ...

  30. Research methods in palliative care

    Research in palliative care is challenging and complex and it uses a range of research designs and research methods, derived from many different scientific disciplines: from medicine and nursing over health sciences, communication sciences, ethics, psychology, sociology, epidemiology, and anthropology. 1 Becoming a good researcher in palliative care entails a proper understanding of two ...