Enago Academy

Research Recommendations – Guiding policy-makers for evidence-based decision making

' src=

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of exploration. In an era marked by rapid technological advancements and an ever-expanding knowledge base, refining the process of generating research recommendations becomes imperative.

But, what is a research recommendation?

Research recommendations are suggestions or advice provided to researchers to guide their study on a specific topic . They are typically given by experts in the field. Research recommendations are more action-oriented and provide specific guidance for decision-makers, unlike implications that are broader and focus on the broader significance and consequences of the research findings. However, both are crucial components of a research study.

Difference Between Research Recommendations and Implication

Although research recommendations and implications are distinct components of a research study, they are closely related. The differences between them are as follows:

Difference between research recommendation and implication

Types of Research Recommendations

Recommendations in research can take various forms, which are as follows:

These recommendations aim to assist researchers in navigating the vast landscape of academic knowledge.

Let us dive deeper to know about its key components and the steps to write an impactful research recommendation.

Key Components of Research Recommendations

The key components of research recommendations include defining the research question or objective, specifying research methods, outlining data collection and analysis processes, presenting results and conclusions, addressing limitations, and suggesting areas for future research. Here are some characteristics of research recommendations:

Characteristics of research recommendation

Research recommendations offer various advantages and play a crucial role in ensuring that research findings contribute to positive outcomes in various fields. However, they also have few limitations which highlights the significance of a well-crafted research recommendation in offering the promised advantages.

Advantages and limitations of a research recommendation

The importance of research recommendations ranges in various fields, influencing policy-making, program development, product development, marketing strategies, medical practice, and scientific research. Their purpose is to transfer knowledge from researchers to practitioners, policymakers, or stakeholders, facilitating informed decision-making and improving outcomes in different domains.

How to Write Research Recommendations?

Research recommendations can be generated through various means, including algorithmic approaches, expert opinions, or collaborative filtering techniques. Here is a step-wise guide to build your understanding on the development of research recommendations.

1. Understand the Research Question:

Understand the research question and objectives before writing recommendations. Also, ensure that your recommendations are relevant and directly address the goals of the study.

2. Review Existing Literature:

Familiarize yourself with relevant existing literature to help you identify gaps , and offer informed recommendations that contribute to the existing body of research.

3. Consider Research Methods:

Evaluate the appropriateness of different research methods in addressing the research question. Also, consider the nature of the data, the study design, and the specific objectives.

4. Identify Data Collection Techniques:

Gather dataset from diverse authentic sources. Include information such as keywords, abstracts, authors, publication dates, and citation metrics to provide a rich foundation for analysis.

5. Propose Data Analysis Methods:

Suggest appropriate data analysis methods based on the type of data collected. Consider whether statistical analysis, qualitative analysis, or a mixed-methods approach is most suitable.

6. Consider Limitations and Ethical Considerations:

Acknowledge any limitations and potential ethical considerations of the study. Furthermore, address these limitations or mitigate ethical concerns to ensure responsible research.

7. Justify Recommendations:

Explain how your recommendation contributes to addressing the research question or objective. Provide a strong rationale to help researchers understand the importance of following your suggestions.

8. Summarize Recommendations:

Provide a concise summary at the end of the report to emphasize how following these recommendations will contribute to the overall success of the research project.

By following these steps, you can create research recommendations that are actionable and contribute meaningfully to the success of the research project.

Download now to unlock some tips to improve your journey of writing research recommendations.

Example of a Research Recommendation

Here is an example of a research recommendation based on a hypothetical research to improve your understanding.

Research Recommendation: Enhancing Student Learning through Integrated Learning Platforms

Background:

The research study investigated the impact of an integrated learning platform on student learning outcomes in high school mathematics classes. The findings revealed a statistically significant improvement in student performance and engagement when compared to traditional teaching methods.

Recommendation:

In light of the research findings, it is recommended that educational institutions consider adopting and integrating the identified learning platform into their mathematics curriculum. The following specific recommendations are provided:

  • Implementation of the Integrated Learning Platform:

Schools are encouraged to adopt the integrated learning platform in mathematics classrooms, ensuring proper training for teachers on its effective utilization.

  • Professional Development for Educators:

Develop and implement professional programs to train educators in the effective use of the integrated learning platform to address any challenges teachers may face during the transition.

  • Monitoring and Evaluation:

Establish a monitoring and evaluation system to track the impact of the integrated learning platform on student performance over time.

  • Resource Allocation:

Allocate sufficient resources, both financial and technical, to support the widespread implementation of the integrated learning platform.

By implementing these recommendations, educational institutions can harness the potential of the integrated learning platform and enhance student learning experiences and academic achievements in mathematics.

This example covers the components of a research recommendation, providing specific actions based on the research findings, identifying the target audience, and outlining practical steps for implementation.

Using AI in Research Recommendation Writing

Enhancing research recommendations is an ongoing endeavor that requires the integration of cutting-edge technologies, collaborative efforts, and ethical considerations. By embracing data-driven approaches and leveraging advanced technologies, the research community can create more effective and personalized recommendation systems. However, it is accompanied by several limitations. Therefore, it is essential to approach the use of AI in research with a critical mindset, and complement its capabilities with human expertise and judgment.

Here are some limitations of integrating AI in writing research recommendation and some ways on how to counter them.

1. Data Bias

AI systems rely heavily on data for training. If the training data is biased or incomplete, the AI model may produce biased results or recommendations.

How to tackle: Audit regularly the model’s performance to identify any discrepancies and adjust the training data and algorithms accordingly.

2. Lack of Understanding of Context:

AI models may struggle to understand the nuanced context of a particular research problem. They may misinterpret information, leading to inaccurate recommendations.

How to tackle: Use AI to characterize research articles and topics. Employ them to extract features like keywords, authorship patterns and content-based details.

3. Ethical Considerations:

AI models might stereotype certain concepts or generate recommendations that could have negative consequences for certain individuals or groups.

How to tackle: Incorporate user feedback mechanisms to reduce redundancies. Establish an ethics review process for AI models in research recommendation writing.

4. Lack of Creativity and Intuition:

AI may struggle with tasks that require a deep understanding of the underlying principles or the ability to think outside the box.

How to tackle: Hybrid approaches can be employed by integrating AI in data analysis and identifying patterns for accelerating the data interpretation process.

5. Interpretability:

Many AI models, especially complex deep learning models, lack transparency on how the model arrived at a particular recommendation.

How to tackle: Implement models like decision trees or linear models. Provide clear explanation of the model architecture, training process, and decision-making criteria.

6. Dynamic Nature of Research:

Research fields are dynamic, and new information is constantly emerging. AI models may struggle to keep up with the rapidly changing landscape and may not be able to adapt to new developments.

How to tackle: Establish a feedback loop for continuous improvement. Regularly update the recommendation system based on user feedback and emerging research trends.

The integration of AI in research recommendation writing holds great promise for advancing knowledge and streamlining the research process. However, navigating these concerns is pivotal in ensuring the responsible deployment of these technologies. Researchers need to understand the use of responsible use of AI in research and must be aware of the ethical considerations.

Exploring research recommendations plays a critical role in shaping the trajectory of scientific inquiry. It serves as a compass, guiding researchers toward more robust methodologies, collaborative endeavors, and innovative approaches. Embracing these suggestions not only enhances the quality of individual studies but also contributes to the collective advancement of human understanding.

Frequently Asked Questions

The purpose of recommendations in research is to provide practical and actionable suggestions based on the study's findings, guiding future actions, policies, or interventions in a specific field or context. Recommendations bridges the gap between research outcomes and their real-world application.

To make a research recommendation, analyze your findings, identify key insights, and propose specific, evidence-based actions. Include the relevance of the recommendations to the study's objectives and provide practical steps for implementation.

Begin a recommendation by succinctly summarizing the key findings of the research. Clearly state the purpose of the recommendation and its intended impact. Use a direct and actionable language to convey the suggested course of action.

Rate this article Cancel Reply

Your email address will not be published.

what is recommendation in a research

Enago Academy's Most Popular Articles

AI in Academia: The need for unified guidelines in research and writing

  • Industry News
  • Publishing News

Unified AI Guidelines Crucial as Academic Writing Embraces Generative Tools

As generative artificial intelligence (AI) tools like ChatGPT are advancing at an accelerating pace, their…

PDF Citation Guide for APA, MLA, AMA and Chicago Style

  • Reporting Research

How to Effectively Cite a PDF (APA, MLA, AMA, and Chicago Style)

The pressure to “publish or perish” is a well-known reality for academics, striking fear into…

AI in journal selection

  • AI in Academia
  • Trending Now

Using AI for Journal Selection — Simplifying your academic publishing journey in the smart way

Strategic journal selection plays a pivotal role in maximizing the impact of one’s scholarly work.…

Understand Academic Burnout: Spot the Signs & Reclaim Your Focus

  • Career Corner

Recognizing the signs: A guide to overcoming academic burnout

As the sun set over the campus, casting long shadows through the library windows, Alex…

How to Promote an Inclusive and Equitable Lab Environment

  • Diversity and Inclusion

Reassessing the Lab Environment to Create an Equitable and Inclusive Space

The pursuit of scientific discovery has long been fueled by diverse minds and perspectives. Yet…

How to Optimize Your Research Process: A step-by-step guide

Digital Citations: A comprehensive guide to citing of websites in APA, MLA, and CMOS…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

what is recommendation in a research

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

what is recommendation in a research

As a researcher, what do you consider most when choosing an image manipulation detector?

  • Privacy Policy

Research Method

Home » Research Recommendations – Examples and Writing Guide

Research Recommendations – Examples and Writing Guide

Table of Contents

Research Recommendations

Research Recommendations

Definition:

Research recommendations refer to suggestions or advice given to someone who is looking to conduct research on a specific topic or area. These recommendations may include suggestions for research methods, data collection techniques, sources of information, and other factors that can help to ensure that the research is conducted in a rigorous and effective manner. Research recommendations may be provided by experts in the field, such as professors, researchers, or consultants, and are intended to help guide the researcher towards the most appropriate and effective approach to their research project.

Parts of Research Recommendations

Research recommendations can vary depending on the specific project or area of research, but typically they will include some or all of the following parts:

  • Research question or objective : This is the overarching goal or purpose of the research project.
  • Research methods : This includes the specific techniques and strategies that will be used to collect and analyze data. The methods will depend on the research question and the type of data being collected.
  • Data collection: This refers to the process of gathering information or data that will be used to answer the research question. This can involve a range of different methods, including surveys, interviews, observations, or experiments.
  • Data analysis : This involves the process of examining and interpreting the data that has been collected. This can involve statistical analysis, qualitative analysis, or a combination of both.
  • Results and conclusions: This section summarizes the findings of the research and presents any conclusions or recommendations based on those findings.
  • Limitations and future research: This section discusses any limitations of the study and suggests areas for future research that could build on the findings of the current project.

How to Write Research Recommendations

Writing research recommendations involves providing specific suggestions or advice to a researcher on how to conduct their study. Here are some steps to consider when writing research recommendations:

  • Understand the research question: Before writing research recommendations, it is important to have a clear understanding of the research question and the objectives of the study. This will help to ensure that the recommendations are relevant and appropriate.
  • Consider the research methods: Consider the most appropriate research methods that could be used to collect and analyze data that will address the research question. Identify the strengths and weaknesses of the different methods and how they might apply to the specific research question.
  • Provide specific recommendations: Provide specific and actionable recommendations that the researcher can implement in their study. This can include recommendations related to sample size, data collection techniques, research instruments, data analysis methods, or other relevant factors.
  • Justify recommendations : Justify why each recommendation is being made and how it will help to address the research question or objective. It is important to provide a clear rationale for each recommendation to help the researcher understand why it is important.
  • Consider limitations and ethical considerations : Consider any limitations or potential ethical considerations that may arise in conducting the research. Provide recommendations for addressing these issues or mitigating their impact.
  • Summarize recommendations: Provide a summary of the recommendations at the end of the report or document, highlighting the most important points and emphasizing how the recommendations will contribute to the overall success of the research project.

Example of Research Recommendations

Example of Research Recommendations sample for students:

  • Further investigate the effects of X on Y by conducting a larger-scale randomized controlled trial with a diverse population.
  • Explore the relationship between A and B by conducting qualitative interviews with individuals who have experience with both.
  • Investigate the long-term effects of intervention C by conducting a follow-up study with participants one year after completion.
  • Examine the effectiveness of intervention D in a real-world setting by conducting a field study in a naturalistic environment.
  • Compare and contrast the results of this study with those of previous research on the same topic to identify any discrepancies or inconsistencies in the findings.
  • Expand upon the limitations of this study by addressing potential confounding variables and conducting further analyses to control for them.
  • Investigate the relationship between E and F by conducting a meta-analysis of existing literature on the topic.
  • Explore the potential moderating effects of variable G on the relationship between H and I by conducting subgroup analyses.
  • Identify potential areas for future research based on the gaps in current literature and the findings of this study.
  • Conduct a replication study to validate the results of this study and further establish the generalizability of the findings.

Applications of Research Recommendations

Research recommendations are important as they provide guidance on how to improve or solve a problem. The applications of research recommendations are numerous and can be used in various fields. Some of the applications of research recommendations include:

  • Policy-making: Research recommendations can be used to develop policies that address specific issues. For example, recommendations from research on climate change can be used to develop policies that reduce carbon emissions and promote sustainability.
  • Program development: Research recommendations can guide the development of programs that address specific issues. For example, recommendations from research on education can be used to develop programs that improve student achievement.
  • Product development : Research recommendations can guide the development of products that meet specific needs. For example, recommendations from research on consumer behavior can be used to develop products that appeal to consumers.
  • Marketing strategies: Research recommendations can be used to develop effective marketing strategies. For example, recommendations from research on target audiences can be used to develop marketing strategies that effectively reach specific demographic groups.
  • Medical practice : Research recommendations can guide medical practitioners in providing the best possible care to patients. For example, recommendations from research on treatments for specific conditions can be used to improve patient outcomes.
  • Scientific research: Research recommendations can guide future research in a specific field. For example, recommendations from research on a specific disease can be used to guide future research on treatments and cures for that disease.

Purpose of Research Recommendations

The purpose of research recommendations is to provide guidance on how to improve or solve a problem based on the findings of research. Research recommendations are typically made at the end of a research study and are based on the conclusions drawn from the research data. The purpose of research recommendations is to provide actionable advice to individuals or organizations that can help them make informed decisions, develop effective strategies, or implement changes that address the issues identified in the research.

The main purpose of research recommendations is to facilitate the transfer of knowledge from researchers to practitioners, policymakers, or other stakeholders who can benefit from the research findings. Recommendations can help bridge the gap between research and practice by providing specific actions that can be taken based on the research results. By providing clear and actionable recommendations, researchers can help ensure that their findings are put into practice, leading to improvements in various fields, such as healthcare, education, business, and public policy.

Characteristics of Research Recommendations

Research recommendations are a key component of research studies and are intended to provide practical guidance on how to apply research findings to real-world problems. The following are some of the key characteristics of research recommendations:

  • Actionable : Research recommendations should be specific and actionable, providing clear guidance on what actions should be taken to address the problem identified in the research.
  • Evidence-based: Research recommendations should be based on the findings of the research study, supported by the data collected and analyzed.
  • Contextual: Research recommendations should be tailored to the specific context in which they will be implemented, taking into account the unique circumstances and constraints of the situation.
  • Feasible : Research recommendations should be realistic and feasible, taking into account the available resources, time constraints, and other factors that may impact their implementation.
  • Prioritized: Research recommendations should be prioritized based on their potential impact and feasibility, with the most important recommendations given the highest priority.
  • Communicated effectively: Research recommendations should be communicated clearly and effectively, using language that is understandable to the target audience.
  • Evaluated : Research recommendations should be evaluated to determine their effectiveness in addressing the problem identified in the research, and to identify opportunities for improvement.

Advantages of Research Recommendations

Research recommendations have several advantages, including:

  • Providing practical guidance: Research recommendations provide practical guidance on how to apply research findings to real-world problems, helping to bridge the gap between research and practice.
  • Improving decision-making: Research recommendations help decision-makers make informed decisions based on the findings of research, leading to better outcomes and improved performance.
  • Enhancing accountability : Research recommendations can help enhance accountability by providing clear guidance on what actions should be taken, and by providing a basis for evaluating progress and outcomes.
  • Informing policy development : Research recommendations can inform the development of policies that are evidence-based and tailored to the specific needs of a given situation.
  • Enhancing knowledge transfer: Research recommendations help facilitate the transfer of knowledge from researchers to practitioners, policymakers, or other stakeholders who can benefit from the research findings.
  • Encouraging further research : Research recommendations can help identify gaps in knowledge and areas for further research, encouraging continued exploration and discovery.
  • Promoting innovation: Research recommendations can help identify innovative solutions to complex problems, leading to new ideas and approaches.

Limitations of Research Recommendations

While research recommendations have several advantages, there are also some limitations to consider. These limitations include:

  • Context-specific: Research recommendations may be context-specific and may not be applicable in all situations. Recommendations developed in one context may not be suitable for another context, requiring adaptation or modification.
  • I mplementation challenges: Implementation of research recommendations may face challenges, such as lack of resources, resistance to change, or lack of buy-in from stakeholders.
  • Limited scope: Research recommendations may be limited in scope, focusing only on a specific issue or aspect of a problem, while other important factors may be overlooked.
  • Uncertainty : Research recommendations may be uncertain, particularly when the research findings are inconclusive or when the recommendations are based on limited data.
  • Bias : Research recommendations may be influenced by researcher bias or conflicts of interest, leading to recommendations that are not in the best interests of stakeholders.
  • Timing : Research recommendations may be time-sensitive, requiring timely action to be effective. Delayed action may result in missed opportunities or reduced effectiveness.
  • Lack of evaluation: Research recommendations may not be evaluated to determine their effectiveness or impact, making it difficult to assess whether they are successful or not.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

The Ultimate Guide to Crafting Impactful Recommendations in Research

Harish M

Are you ready to take your research to the next level? Crafting impactful recommendations is the key to unlocking the full potential of your study. By providing clear, actionable suggestions based on your findings, you can bridge the gap between research and real-world application.

In this ultimate guide, we'll show you how to write recommendations that make a difference in your research report or paper.

You'll learn how to craft specific, actionable recommendations that connect seamlessly with your research findings. Whether you're a student, writer, teacher, or journalist, this guide will help you master the art of writing recommendations in research. Let's get started and make your research count!

Understanding the Purpose of Recommendations

Recommendations in research serve as a vital bridge between your findings and their real-world applications. They provide specific, action-oriented suggestions to guide future studies and decision-making processes. Let's dive into the key purposes of crafting effective recommendations:

Guiding Future Research

Research recommendations play a crucial role in steering scholars and researchers towards promising avenues of exploration. By highlighting gaps in current knowledge and proposing new research questions, recommendations help advance the field and drive innovation.

Influencing Decision-Making

Well-crafted recommendations have the power to shape policies, programs, and strategies across various domains, such as:

  • Policy-making
  • Product development
  • Marketing strategies
  • Medical practice

By providing clear, evidence-based suggestions, recommendations facilitate informed decision-making and improve outcomes.

Connecting Research to Practice

Recommendations act as a conduit for transferring knowledge from researchers to practitioners, policymakers, and stakeholders. They bridge the gap between academic findings and their practical applications, ensuring that research insights are effectively translated into real-world solutions.

Enhancing Research Impact

By crafting impactful recommendations, you can amplify the reach and influence of your research, attracting attention from peers, funding agencies, and decision-makers.

Addressing Limitations

Recommendations provide an opportunity to acknowledge and address the limitations of your study. By suggesting concrete and actionable possibilities for future research, you demonstrate a thorough understanding of your work's scope and potential areas for improvement.

Identifying Areas for Future Research

Discovering research gaps is a crucial step in crafting impactful recommendations. It involves reviewing existing studies and identifying unanswered questions or problems that warrant further investigation. Here are some strategies to help you identify areas for future research:

Explore Research Limitations

Take a close look at the limitations section of relevant studies. These limitations often provide valuable insights into potential areas for future research. Consider how addressing these limitations could enhance our understanding of the topic at hand.

Critically Analyze Discussion and Future Research Sections

When reading articles, pay special attention to the discussion and future research sections. These sections often highlight gaps in the current knowledge base and propose avenues for further exploration. Take note of any recurring themes or unanswered questions that emerge across multiple studies.

Utilize Targeted Search Terms

To streamline your search for research gaps, use targeted search terms such as "literature gap" or "future research" in combination with your subject keywords. This approach can help you quickly identify articles that explicitly discuss areas for future investigation.

Seek Guidance from Experts

Don't hesitate to reach out to your research advisor or other experts in your field. Their wealth of knowledge and experience can provide valuable insights into potential research gaps and emerging trends.

By employing these strategies, you'll be well-equipped to identify research gaps and craft recommendations that push the boundaries of current knowledge. Remember, the goal is to refine your research questions and focus your efforts on areas where more understanding is needed.

Structuring Your Recommendations

When it comes to structuring your recommendations, it's essential to keep them concise, organized, and tailored to your audience. Here are some key tips to help you craft impactful recommendations:

Prioritize and Organize

  • Limit your recommendations to the most relevant and targeted suggestions for your peers or colleagues in the field.
  • Place your recommendations at the end of the report, as they are often top of mind for readers.
  • Write your recommendations in order of priority, with the most important ones for decision-makers coming first.

Use a Clear and Actionable Format

  • Write recommendations in a clear, concise manner using actionable words derived from the data analyzed in your research.
  • Use bullet points instead of long paragraphs for clarity and readability.
  • Ensure that your recommendations are specific, measurable, attainable, relevant, and timely (SMART).

Connect Recommendations to Research

By following this simple formula, you can ensure that your recommendations are directly connected to your research and supported by a clear rationale.

Tailor to Your Audience

  • Consider the needs and interests of your target audience when crafting your recommendations.
  • Explain how your recommendations can solve the issues explored in your research.
  • Acknowledge any limitations or constraints of your study that may impact the implementation of your recommendations.

Avoid Common Pitfalls

  • Don't undermine your own work by suggesting incomplete or unnecessary recommendations.
  • Avoid using recommendations as a place for self-criticism or introducing new information not covered in your research.
  • Ensure that your recommendations are achievable and comprehensive, offering practical solutions for the issues considered in your paper.

By structuring your recommendations effectively, you can enhance the reliability and validity of your research findings, provide valuable strategies and suggestions for future research, and deliver impactful solutions to real-world problems.

Crafting Actionable and Specific Recommendations

Crafting actionable and specific recommendations is the key to ensuring your research findings have a real-world impact. Here are some essential tips to keep in mind:

Embrace Flexibility and Feasibility

Your recommendations should be open to discussion and new information, rather than being set in stone. Consider the following:

  • Be realistic and considerate of your team's capabilities when making recommendations.
  • Prioritize recommendations based on impact and reach, but be prepared to adjust based on team effort levels.
  • Focus on solutions that require the fewest changes first, adopting an MVP (Minimum Viable Product) approach.

Provide Detailed and Justified Recommendations

To avoid vagueness and misinterpretation, ensure your recommendations are:

  • Detailed, including photos, videos, or screenshots whenever possible.
  • Justified based on research findings, providing alternatives when findings don't align with expectations or business goals.

Use this formula when writing recommendations:

Observed problem/pain point/unmet need + consequence + potential solution

Adopt a Solution-Oriented Approach

Foster collaboration and participation.

  • Promote staff education on current research and create strategies to encourage adoption of promising clinical protocols.
  • Include representatives from the treatment community in the development of the research initiative and the review of proposals.
  • Require active, early, and permanent participation of treatment staff in the development, implementation, and interpretation of the study.

Tailor Recommendations to the Opportunity

When writing recommendations for a specific opportunity or program:

  • Highlight the strengths and qualifications of the researcher.
  • Provide specific examples of their work and accomplishments.
  • Explain how their research has contributed to the field.
  • Emphasize the researcher's potential for future success and their unique contributions.

By following these guidelines, you'll craft actionable and specific recommendations that drive meaningful change and showcase the value of your research.

Connecting Recommendations with Research Findings

Connecting your recommendations with research findings is crucial for ensuring the credibility and impact of your suggestions. Here's how you can seamlessly link your recommendations to the evidence uncovered in your study:

Grounding Recommendations in Research

Your recommendations should be firmly rooted in the data and insights gathered during your research process. Avoid including measures or suggestions that were not discussed or supported by your study findings. This approach ensures that your recommendations are evidence-based and directly relevant to the research at hand.

Highlighting the Significance of Collaboration

Research collaborations offer a wealth of benefits that can enhance an agency's competitive position. Consider the following factors when discussing the importance of collaboration in your recommendations:

  • Organizational Development: Participation in research collaborations depends on an agency's stage of development, compatibility with its mission and culture, and financial stability.
  • Trust-Building: Long-term collaboration success often hinges on a history of increasing involvement and trust between partners.
  • Infrastructure: A permanent infrastructure that facilitates long-term development is key to successful collaborative programs.

Emphasizing Commitment and Participation

Fostering quality improvement and organizational learning.

In your recommendations, highlight the importance of enhancing quality improvement strategies and fostering organizational learning. Show sensitivity to the needs and constraints of community-based programs, as this understanding is crucial for effective collaboration and implementation.

Addressing Limitations and Implications

If not already addressed in the discussion section, your recommendations should mention the limitations of the study and their implications. Examples of limitations include:

  • Sample size or composition
  • Participant attrition
  • Study duration

By acknowledging these limitations, you demonstrate a comprehensive understanding of your research and its potential impact.

By connecting your recommendations with research findings, you provide a solid foundation for your suggestions, emphasize the significance of collaboration, and showcase the potential for future research and practical applications.

Crafting impactful recommendations is a vital skill for any researcher looking to bridge the gap between their findings and real-world applications. By understanding the purpose of recommendations, identifying areas for future research, structuring your suggestions effectively, and connecting them to your research findings, you can unlock the full potential of your study. Remember to prioritize actionable, specific, and evidence-based recommendations that foster collaboration and drive meaningful change.

As you embark on your research journey, embrace the power of well-crafted recommendations to amplify the impact of your work. By following the guidelines outlined in this ultimate guide, you'll be well-equipped to write recommendations that resonate with your audience, inspire further investigation, and contribute to the advancement of your field. So go forth, make your research count, and let your recommendations be the catalyst for positive change.

Q: What are the steps to formulating recommendations in research? A: To formulate recommendations in research, you should first gain a thorough understanding of the research question. Review the existing literature to inform your recommendations and consider the research methods that were used. Identify which data collection techniques were employed and propose suitable data analysis methods. It's also essential to consider any limitations and ethical considerations of your research. Justify your recommendations clearly and finally, provide a summary of your recommendations.

Q: Why are recommendations significant in research studies? A: Recommendations play a crucial role in research as they form a key part of the analysis phase. They provide specific suggestions for interventions or strategies that address the problems and limitations discovered during the study. Recommendations are a direct response to the main findings derived from data collection and analysis, and they can guide future actions or research.

Q: Can you outline the seven steps involved in writing a research paper? A: Certainly. The seven steps to writing an excellent research paper include:

  • Allowing yourself sufficient time to complete the paper.
  • Defining the scope of your essay and crafting a clear thesis statement.
  • Conducting a thorough yet focused search for relevant research materials.
  • Reading the research materials carefully and taking detailed notes.
  • Writing your paper based on the information you've gathered and analyzed.
  • Editing your paper to ensure clarity, coherence, and correctness.
  • Submitting your paper following the guidelines provided.

Q: What tips can help make a research paper more effective? A: To enhance the effectiveness of a research paper, plan for the extensive process ahead and understand your audience. Decide on the structure your research writing will take and describe your methodology clearly. Write in a straightforward and clear manner, avoiding the use of clichés or overly complex language.

Sign up for more like this.

Grad Coach

Research Implications & Recommendations

A Plain-Language Explainer With Examples + FREE Template

By: Derek Jansen (MBA) | Reviewers: Dr Eunice Rautenbach | May 2024

What are Implications and Recommendations in Research?

The research implications and recommendations are closely related but distinctly different concepts that often trip students up. Here, we’ll unpack them using plain language and loads of examples , so that you can approach your project with confidence.

Overview: Implications & Recommendations

  • What are research implications ?
  • What are research recommendations ?
  • Examples of implications and recommendations
  • The “ Big 3 ” categories
  • How to write the implications and recommendations
  • Template sentences for both sections
  • Key takeaways

Implications & Recommendations 101

Let’s start with the basics and define our terms.

At the simplest level, research implications refer to the possible effects or outcomes of a study’s findings. More specifically, they answer the question, “ What do these findings mean?” . In other words, the implications section is where you discuss the broader impact of your study’s findings on theory, practice and future research.

This discussion leads us to the recommendations section , which is where you’ll propose specific actions based on your study’s findings and answer the question, “ What should be done next?” . In other words, the recommendations are practical steps that stakeholders can take to address the key issues identified by your study.

In a nutshell, then, the research implications discuss the broader impact and significance of a study’s findings, while recommendations provide specific actions to take, based on those findings. So, while both of these components are deeply rooted in the findings of the study, they serve different functions within the write up.

Need a helping hand?

what is recommendation in a research

Examples: Implications & Recommendations

The distinction between research implications and research recommendations might still feel a bit conceptual, so let’s look at one or two practical examples:

Let’s assume that your study finds that interactive learning methods significantly improve student engagement compared to traditional lectures. In this case, one of your recommendations could be that schools incorporate more interactive learning techniques into their curriculums to enhance student engagement.

Let’s imagine that your study finds that patients who receive personalised care plans have better health outcomes than those with standard care plans. One of your recommendations might be that healthcare providers develop and implement personalised care plans for their patients.

Now, these are admittedly quite simplistic examples, but they demonstrate the difference (and connection ) between the research implications and the recommendations. Simply put, the implications are about the impact of the findings, while the recommendations are about proposed actions, based on the findings.

The implications discuss the broader impact and significance of a study’s findings, while recommendations propose specific actions.

The “Big 3” Categories

Now that we’ve defined our terms, let’s dig a little deeper into the implications – specifically, the different types or categories of research implications that exist.

Broadly speaking, implications can be divided into three categories – theoretical implications, practical implications and implications for future research .

Theoretical implications relate to how your study’s findings contribute to or challenge existing theories. For example, if a study on social behaviour uncovers new patterns, it might suggest that modifications to current psychological theories are necessary.

Practical implications , on the other hand, focus on how your study’s findings can be applied in real-world settings. For example, if your study demonstrated the effectiveness of a new teaching method, this would imply that educators should consider adopting this method to improve learning outcomes.

Practical implications can also involve policy reconsiderations . For example, if a study reveals significant health benefits from a particular diet, an implication might be that public health guidelines be re-evaluated.

Last but not least, there are the implications for future research . As the name suggests, this category of implications highlights the research gaps or new questions raised by your study. For example, if your study finds mixed results regarding a relationship between two variables, it might imply the need for further investigation to clarify these findings.

To recap then, the three types of implications are the theoretical, the practical and the implications on future research. Regardless of the category, these implications feed into and shape the recommendations , laying the foundation for the actions you’ll propose.

Implications can be divided into three categories: theoretical implications, practical implications and implications for future research.

How To Write The  Sections

Now that we’ve laid the foundations, it’s time to explore how to write up the implications and recommendations sections respectively.

Let’s start with the “ where ” before digging into the “ how ”. Typically, the implications will feature in the discussion section of your document, while the recommendations will be located in the conclusion . That said, layouts can vary between disciplines and institutions, so be sure to check with your university what their preferences are.

For the implications section, a common approach is to structure the write-up based on the three categories we looked at earlier – theoretical, practical and future research implications. In practical terms, this discussion will usually follow a fairly formulaic sentence structure – for example:

This research provides new insights into [theoretical aspect], indicating that…

The study’s outcomes highlight the potential benefits of adopting [specific practice] in..

This study raises several questions that warrant further investigation, such as…

Moving onto the recommendations section, you could again structure your recommendations using the three categories. Alternatively, you could structure the discussion per stakeholder group – for example, policymakers, organisations, researchers, etc.

Again, you’ll likely use a fairly formulaic sentence structure for this section. Here are some examples for your inspiration: 

Based on the findings, [specific group] should consider adopting [new method] to improve…

To address the issues identified, it is recommended that legislation should be introduced to…

Researchers should consider examining [specific variable] to build on the current study’s findings.

Remember, you can grab a copy of our tried and tested templates for both the discussion and conclusion sections over on the Grad Coach blog. You can find the links to those, as well as loads of other free resources, in the description 🙂

FAQs: Implications & Recommendations

How do i determine the implications of my study.

To do this, you’ll need to consider how your findings address gaps in the existing literature, how they could influence theory, practice, or policy, and the potential societal or economic impacts.

When thinking about your findings, it’s also a good idea to revisit your introduction chapter, where you would have discussed the potential significance of your study more broadly. This section can help spark some additional ideas about what your findings mean in relation to your original research aims. 

Should I discuss both positive and negative implications?

Absolutely. You’ll need to discuss both the positive and negative implications to provide a balanced view of how your findings affect the field and any limitations or potential downsides.

Can my research implications be speculative?

Yes and no. While implications are somewhat more speculative than recommendations and can suggest potential future outcomes, they should be grounded in your data and analysis. So, be careful to avoid overly speculative claims.

How do I formulate recommendations?

Ideally, you should base your recommendations on the limitations and implications of your study’s findings. So, consider what further research is needed, how policies could be adapted, or how practices could be improved – and make proposals in this respect.

How specific should my recommendations be?

Your recommendations should be as specific as possible, providing clear guidance on what actions or research should be taken next. As mentioned earlier, the implications can be relatively broad, but the recommendations should be very specific and actionable. Ideally, you should apply the SMART framework to your recommendations.

Can I recommend future research in my recommendations?

Absolutely. Highlighting areas where further research is needed is a key aspect of the recommendations section. Naturally, these recommendations should link to the respective section of your implications (i.e., implications for future research).

Wrapping Up: Key Takeaways

We’ve covered quite a bit of ground here, so let’s quickly recap.

  • Research implications refer to the possible effects or outcomes of a study’s findings.
  • The recommendations section, on the other hand, is where you’ll propose specific actions based on those findings.
  • You can structure your implications section based on the three overarching categories – theoretical, practical and future research implications.
  • You can carry this structure through to the recommendations as well, or you can group your recommendations by stakeholder.

Remember to grab a copy of our tried and tested free dissertation template, which covers both the implications and recommendations sections. If you’d like 1:1 help with your research project, be sure to check out our private coaching service, where we hold your hand throughout the research journey, step by step.

what is recommendation in a research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Inferential stats 101

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • - Google Chrome

Intended for healthcare professionals

  • Access provided by Google Indexer
  • My email alerts
  • BMA member login
  • Username * Password * Forgot your log in details? Need to activate BMA Member Log In Log in via OpenAthens Log in via your institution

Home

Search form

  • Advanced search
  • Search responses
  • Search blogs
  • How to formulate...

How to formulate research recommendations

  • Related content
  • Peer review
  • Polly Brown ( pbrown{at}bmjgroup.com ) , publishing manager 1 ,
  • Klara Brunnhuber , clinical editor 1 ,
  • Kalipso Chalkidou , associate director, research and development 2 ,
  • Iain Chalmers , director 3 ,
  • Mike Clarke , director 4 ,
  • Mark Fenton , editor 3 ,
  • Carol Forbes , reviews manager 5 ,
  • Julie Glanville , associate director/information service manager 5 ,
  • Nicholas J Hicks , consultant in public health medicine 6 ,
  • Janet Moody , identification and prioritisation manager 6 ,
  • Sara Twaddle , director 7 ,
  • Hazim Timimi , systems developer 8 ,
  • Pamela Young , senior programme manager 6
  • 1 BMJ Publishing Group, London WC1H 9JR,
  • 2 National Institute for Health and Clinical Excellence, London WC1V 6NA,
  • 3 Database of Uncertainties about the Effects of Treatments, James Lind Alliance Secretariat, James Lind Initiative, Oxford OX2 7LG,
  • 4 UK Cochrane Centre, Oxford OX2 7LG,
  • 5 Centre for Reviews and Dissemination, University of York, York YO10 5DD,
  • 6 National Coordinating Centre for Health Technology Assessment, University of Southampton, Southampton SO16 7PX,
  • 7 Scottish Intercollegiate Guidelines Network, Edinburgh EH2 1EN,
  • 8 Update Software, Oxford OX2 7LG
  • Correspondence to: PBrown
  • Accepted 22 September 2006

“More research is needed” is a conclusion that fits most systematic reviews. But authors need to be more specific about what exactly is required

Long awaited reports of new research, systematic reviews, and clinical guidelines are too often a disappointing anticlimax for those wishing to use them to direct future research. After many months or years of effort and intellectual energy put into these projects, authors miss the opportunity to identify unanswered questions and outstanding gaps in the evidence. Most reports contain only a less than helpful, general research recommendation. This means that the potential value of these recommendations is lost.

Current recommendations

In 2005, representatives of organisations commissioning and summarising research, including the BMJ Publishing Group, the Centre for Reviews and Dissemination, the National Coordinating Centre for Health Technology Assessment, the National Institute for Health and Clinical Excellence, the Scottish Intercollegiate Guidelines Network, and the UK Cochrane Centre, met as members of the development group for the Database of Uncertainties about the Effects of Treatments (see bmj.com for details on all participating organisations). Our aim was to discuss the state of research recommendations within our organisations and to develop guidelines for improving the presentation of proposals for further research. All organisations had found weaknesses in the way researchers and authors of systematic reviews and clinical guidelines stated the need for further research. As part of the project, a member of the Centre for Reviews and Dissemination under-took a rapid literature search to identify information on research recommendation models, which found some individual methods but no group initiatives to attempt to standardise recommendations.

Suggested format for research recommendations on the effects of treatments

Core elements.

E Evidence (What is the current state of the evidence?)

P Population (What is the population of interest?)

I Intervention (What are the interventions of interest?)

C Comparison (What are the comparisons of interest?)

O Outcome (What are the outcomes of interest?)

T Time stamp (Date of recommendation)

Optional elements

d Disease burden or relevance

t Time aspect of core elements of EPICOT

s Appropriate study type according to local need

In January 2006, the National Coordinating Centre for Health Technology Assessment presented the findings of an initial comparative analysis of how different organisations currently structure their research recommendations. The National Institute for Health and Clinical Excellence and the National Coordinating Centre for Health Technology Assessment request authors to present recommendations in a four component format for formulating well built clinical questions around treatments: population, intervention, comparison, and outcomes (PICO). 1 In addition, the research recommendation is dated and authors are asked to provide the current state of the evidence to support the proposal.

Clinical Evidence , although not directly standardising its sections for research recommendations, presents gaps in the evidence using a slightly extended version of the PICO format: evidence, population, intervention, comparison, outcomes, and time (EPICOT). Clinical Evidence has used this inherent structure to feed research recommendations on interventions categorised as “unknown effectiveness” back to the National Coordinating Centre for Health Technology Assessment and for inclusion in the Database of Uncertainties about the Effects of Treatments ( http://www.duets.nhs.uk/ ).

We decided to propose the EPICOT format as the basis for its statement on formulating research recommendations and tested this proposal through discussion and example. We agreed that this set of components provided enough context for formulating research recommendations without limiting researchers. In order for the proposed framework to be flexible and more widely applicable, the group discussed using several optional components when they seemed relevant or were proposed by one or more of the group members. The final outcome of discussions resulted in the proposed EPICOT+ format (box).

A recent BMJ article highlighted how lack of research hinders the applicability of existing guidelines to patients in primary care who have had a stroke or transient ischaemic attack. 2 Most research in the area had been conducted in younger patients with a recent episode and in a hospital setting. The authors concluded that “further evidence should be collected on the efficacy and adverse effects of intensive blood pressure lowering in representative populations before we implement this guidance [from national and international guidelines] in primary care.” Table 1 outlines how their recommendations could be formulated using the EPICOT+ format. The decision on whether additional research is indeed clinically and ethically warranted will still lie with the organisation considering commissioning the research.

Research recommendation based on gap in the evidence identified by a cross sectional study of clinical guidelines for management of patients who have had a stroke

  • View inline

Table 2 shows the use of EPICOT+ for an unanswered question on the effectiveness of compliance therapy in people with schizophrenia, identified by the Database of Uncertainties about the Effects of Treatments.

Research recommendation based on a gap in the evidence on treatment of schizophrenia identified by the Database of Uncertainties about the Effects of Treatments

Discussions around optional elements

Although the group agreed that the PICO elements should be core requirements for a research recommendation, intense discussion centred on the inclusion of factors defining a more detailed context, such as current state of evidence (E), appropriate study type (s), disease burden and relevance (d), and timeliness (t).

Initially, group members interpreted E differently. Some viewed it as the supporting evidence for a research recommendation and others as the suggested study type for a research recommendation. After discussion, we agreed that E should be used to refer to the amount and quality of research supporting the recommendation. However, the issue remained contentious as some of us thought that if a systematic review was available, its reference would sufficiently identify the strength of the existing evidence. Others thought that adding evidence to the set of core elements was important as it provided a summary of the supporting evidence, particularly as the recommendation was likely to be abstracted and used separately from the review or research that led to its formulation. In contrast, the suggested study type (s) was left as an optional element.

A research recommendation will rarely have an absolute value in itself. Its relative priority will be influenced by the burden of ill health (d), which is itself dependent on factors such as local prevalence, disease severity, relevant risk factors, and the priorities of the organisation considering commissioning the research.

Similarly, the issue of time (t) could be seen to be relevant to each of the core elements in varying ways—for example, duration of treatment, length of follow-up. The group therefore agreed that time had a subsidiary role within each core item; however, T as the date of the recommendation served to define its shelf life and therefore retained individual importance.

Applicability and usability

The proposed statement on research recommendations applies to uncertainties of the effects of any form of health intervention or treatment and is intended for research in humans rather than basic scientific research. Further investigation is required to assess the applicability of the format for questions around diagnosis, signs and symptoms, prognosis, investigations, and patient preference.

When the proposed format is applied to a specific research recommendation, the emphasis placed on the relevant part(s) of the EPICOT+ format may vary by author, audience, and intended purpose. For example, a recommendation for research into treatments for transient ischaemic attack may or may not define valid outcome measures to assess quality of life or gather data on adverse effects. Among many other factors, its implementation will also depend on the strength of current findings—that is, strong evidence may support a tightly focused recommendation whereas a lack of evidence would result in a more general recommendation.

The controversy within the group, especially around the optional components, reflects the different perspectives of the participating organisations—whether they were involved in commissioning, undertaking, or summarising research. Further issues will arise during the implementation of the proposed format, and we welcome feedback and discussion.

Summary points

No common guidelines exist for the formulation of recommendations for research on the effects of treatments

Major organisations involved in commissioning or summarising research compared their approaches and agreed on core questions

The essential items can be summarised as EPICOT+ (evidence, population, intervention, comparison, outcome, and time)

Further details, such as disease burden and appropriate study type, should be considered as required

We thank Patricia Atkinson and Jeremy Wyatt.

Contributors and sources All authors contributed to manuscript preparation and approved the final draft. NJH is the guarantor.

Competing interests None declared.

  • Richardson WS ,
  • Wilson MC ,
  • Nishikawa J ,
  • Hayward RSA
  • McManus RJ ,
  • Leonardi-Bee J ,
  • PROGRESS Collaborative Group
  • Warburton E
  • Rothwell P ,
  • McIntosh AM ,
  • Lawrie SM ,
  • Stanfield AC
  • O'Donnell C ,
  • Donohoe G ,
  • Sharkey L ,
  • Jablensky A ,
  • Sartorius N ,
  • Ernberg G ,

what is recommendation in a research

Implications or Recommendations in Research: What's the Difference?

  • Peer Review

High-quality research articles that get many citations contain both implications and recommendations. Implications are the impact your research makes, whereas recommendations are specific actions that can then be taken based on your findings, such as for more research or for policymaking.

Updated on August 23, 2022

yellow sign reading opportunity ahead

That seems clear enough, but the two are commonly confused.

This confusion is especially true if you come from a so-called high-context culture in which information is often implied based on the situation, as in many Asian cultures. High-context cultures are different from low-context cultures where information is more direct and explicit (as in North America and many European cultures).

Let's set these two straight in a low-context way; i.e., we'll be specific and direct! This is the best way to be in English academic writing because you're writing for the world.

Implications and recommendations in a research article

The standard format of STEM research articles is what's called IMRaD:

  • Introduction
  • Discussion/conclusions

Some journals call for a separate conclusions section, while others have the conclusions as the last part of the discussion. You'll write these four (or five) sections in the same sequence, though, no matter the journal.

The discussion section is typically where you restate your results and how well they confirmed your hypotheses. Give readers the answer to the questions for which they're looking to you for an answer.

At this point, many researchers assume their paper is finished. After all, aren't the results the most important part? As you might have guessed, no, you're not quite done yet.

The discussion/conclusions section is where to say what happened and what should now happen

The discussion/conclusions section of every good scientific article should contain the implications and recommendations.

The implications, first of all, are the impact your results have on your specific field. A high-impact, highly cited article will also broaden the scope here and provide implications to other fields. This is what makes research cross-disciplinary.

Recommendations, however, are suggestions to improve your field based on your results.

These two aspects help the reader understand your broader content: How and why your work is important to the world. They also tell the reader what can be changed in the future based on your results.

These aspects are what editors are looking for when selecting papers for peer review.

how to write the conclusion section of a research manuscript

Implications and recommendations are, thus, written at the end of the discussion section, and before the concluding paragraph. They help to “wrap up” your paper. Once your reader understands what you found, the next logical step is what those results mean and what should come next.

Then they can take the baton, in the form of your work, and run with it. That gets you cited and extends your impact!

The order of implications and recommendations also matters. Both are written after you've summarized your main findings in the discussion section. Then, those results are interpreted based on ongoing work in the field. After this, the implications are stated, followed by the recommendations.

Writing an academic research paper is a bit like running a race. Finish strong, with your most important conclusion (recommendation) at the end. Leave readers with an understanding of your work's importance. Avoid generic, obvious phrases like "more research is needed to fully address this issue." Be specific.

The main differences between implications and recommendations (table)

 the differences between implications and recommendations

Now let's dig a bit deeper into actually how to write these parts.

What are implications?

Research implications tell us how and why your results are important for the field at large. They help answer the question of “what does it mean?” Implications tell us how your work contributes to your field and what it adds to it. They're used when you want to tell your peers why your research is important for ongoing theory, practice, policymaking, and for future research.

Crucially, your implications must be evidence-based. This means they must be derived from the results in the paper.

Implications are written after you've summarized your main findings in the discussion section. They come before the recommendations and before the concluding paragraph. There is no specific section dedicated to implications. They must be integrated into your discussion so that the reader understands why the results are meaningful and what they add to the field.

A good strategy is to separate your implications into types. Implications can be social, political, technological, related to policies, or others, depending on your topic. The most frequently used types are theoretical and practical. Theoretical implications relate to how your findings connect to other theories or ideas in your field, while practical implications are related to what we can do with the results.

Key features of implications

  • State the impact your research makes
  • Helps us understand why your results are important
  • Must be evidence-based
  • Written in the discussion, before recommendations
  • Can be theoretical, practical, or other (social, political, etc.)

Examples of implications

Let's take a look at some examples of research results below with their implications.

The result : one study found that learning items over time improves memory more than cramming material in a bunch of information at once .

The implications : This result suggests memory is better when studying is spread out over time, which could be due to memory consolidation processes.

The result : an intervention study found that mindfulness helps improve mental health if you have anxiety.

The implications : This result has implications for the role of executive functions on anxiety.

The result : a study found that musical learning helps language learning in children .

The implications : these findings suggest that language and music may work together to aid development.

What are recommendations?

As noted above, explaining how your results contribute to the real world is an important part of a successful article.

Likewise, stating how your findings can be used to improve something in future research is equally important. This brings us to the recommendations.

Research recommendations are suggestions and solutions you give for certain situations based on your results. Once the reader understands what your results mean with the implications, the next question they need to know is "what's next?"

Recommendations are calls to action on ways certain things in the field can be improved in the future based on your results. Recommendations are used when you want to convey that something different should be done based on what your analyses revealed.

Similar to implications, recommendations are also evidence-based. This means that your recommendations to the field must be drawn directly from your results.

The goal of the recommendations is to make clear, specific, and realistic suggestions to future researchers before they conduct a similar experiment. No matter what area your research is in, there will always be further research to do. Try to think about what would be helpful for other researchers to know before starting their work.

Recommendations are also written in the discussion section. They come after the implications and before the concluding paragraphs. Similar to the implications, there is usually no specific section dedicated to the recommendations. However, depending on how many solutions you want to suggest to the field, they may be written as a subsection.

Key features of recommendations

  • Statements about what can be done differently in the field based on your findings
  • Must be realistic and specific
  • Written in the discussion, after implications and before conclusions
  • Related to both your field and, preferably, a wider context to the research

Examples of recommendations

Here are some research results and their recommendations.

A meta-analysis found that actively recalling material from your memory is better than simply re-reading it .

  • The recommendation: Based on these findings, teachers and other educators should encourage students to practice active recall strategies.

A medical intervention found that daily exercise helps prevent cardiovascular disease .

  • The recommendation: Based on these results, physicians are recommended to encourage patients to exercise and walk regularly. Also recommended is to encourage more walking through public health offices in communities.

A study found that many research articles do not contain the sample sizes needed to statistically confirm their findings .

The recommendation: To improve the current state of the field, researchers should consider doing power analysis based on their experiment's design.

What else is important about implications and recommendations?

When writing recommendations and implications, be careful not to overstate the impact of your results. It can be tempting for researchers to inflate the importance of their findings and make grandiose statements about what their work means.

Remember that implications and recommendations must be coming directly from your results. Therefore, they must be straightforward, realistic, and plausible.

Another good thing to remember is to make sure the implications and recommendations are stated clearly and separately. Do not attach them to the endings of other paragraphs just to add them in. Use similar example phrases as those listed in the table when starting your sentences to clearly indicate when it's an implication and when it's a recommendation.

When your peers, or brand-new readers, read your paper, they shouldn't have to hunt through your discussion to find the implications and recommendations. They should be clear, visible, and understandable on their own.

That'll get you cited more, and you'll make a greater contribution to your area of science while extending the life and impact of your work.

The AJE Team

The AJE Team

See our "Privacy Policy"

Research Recommendations Process and Methods Guide [Internet]

  • PMID: 27466642
  • Bookshelf ID: NBK310373

The foundation of NICE guidance is the synthesis of evidence primarily through the process of systematic reviewing and, if appropriate, modelling and cost effectiveness decision analysis. The results of these analyses are then discussed by independent committees. These committees include NHS staff, healthcare professionals, social care practitioners, commissioners and providers of care, patients, service users and carers, industry and academics. Stakeholders have the opportunity to comment on draft recommendations before they are finalised. Not only does this process explicitly describe the evidence base, it also identifies where there are gaps, uncertainties or conflicts in the existing evidence.

Many of these uncertainties, although interesting to resolve, are unlikely to affect people’s care or NICE’s ability to produce guidance. However, if these uncertainties may have an effect on NICE’s recommendations it is important for NICE to liaise with the research community to ensure they are addressed. NICE does this by making recommendations for research, which are communicated to researchers and funders. At the time guidance is issued, NICE’s staff and committees have a thorough understanding of the current evidence and valuable insights into uncertainties that need to be resolved. It is important that these are capitalised on.

To undertake its national role effectively, NICE needs to ensure that:

the process of developing the research recommendations is robust, transparent and involves stakeholders

we identify research priorities

we make all research recommendations clearly identifiable in the guidance

the research recommendations provide the information necessary to support research commissioning

the research recommendations are available to researchers and funders by promoting them (for example through the research recommendations database)

the research recommendations are relevant to current practice

we communicate well with the research community.

This process and methods guide has been developed to help guidance-producing centres make research recommendations. It describes a step-by-step approach to identifying uncertainties, formulating research recommendations and research questions, prioritising them and communicating them to the NICE Science Policy and Research (SP&R) team, researchers and funders. It has been developed based on the SP&R team’s interactions with research funders and researchers, as well as with guidance developers.

Keywords: research gaps; uncertainties; research recommendations; NICE Process and Methods Guides.

Copyright © 2015 National Institute for Health and Clinical Excellence, unless otherwise stated. All rights reserved.

Publication types

  • Table of Contents

AI, Ethics & Human Agency

Collaboration, information literacy, writing process.

  • Recommendation Reports
  • © 2023 by Joseph M. Moxley - University of South Florida , Julie Staggers - Washington State University

Recommendation reports are texts that advise audiences about the best ways to solve a problem. Recommendation reports are a type of formal report that is widely used across disciplines and professions. Subject Matter Experts aim to make recommendations based on the best available theory, research and practice.

Different disciplines and professions have different research methods for assessing knowledge claims and defining knowledge . Thus, there is no one perfect way to write a recommendation report.

As always, when composing—especially when you’re planning your report—it’s strategic to focus on your audience, rhetorical analysis, and rhetorical reasoning. At center, keep the focus on what you want your audience to feel, think, and do.

While writers, speakers, and knowledge workers . . . may choose a variety of ways to organize their reports, below are some fairly traditional sections to formal recommendations reports:

  • Letter of transmittal
  • Problem Definition
  • Potential solutions to the problem
  • Empirical Research Methods used to investigate the problem
  • Recommendations
  • List of Illustrations

Report Body

Note: your specific rhetorical context will determine what headings you use in your Recommendation Report. That said, the following sections are fairly typical for this genre, and they are required, as appropriate, for this assignment.

Report back matter

Collect material for the appendices as you go. The report back matter will include:

  • Bibliography, which is sometimes referred to as Works Cited or References (Use a citation format appropriate for your field (APA, MLA, Chicago, IEEE, etc.)
  • Appendices, if necessary (e.g., letters of support, financial projections)

Formatting and design

Employ a professional writing style throughout, including:

  • Page layout: Appropriate to audience, purpose, and context. 8.5 x 11 with 1-inch margins is a fail-safe default.
  • Typography: Choose business-friendly fonts appropriate to your audience, purpose, and context; Arial for headers and Times New Roman for body text is a safe, neutral default.
  • Headings and subheadings: Use a numbered heading and subheading system, formatted using the Styles function on your word processor.
  • Bulleted and numbered lists: Use lists that are formatted correctly using the list buttons on your word processor with a blank line before the first bullet and after the last bullet
  • Graphics and figures: Support data findings and arguments with appropriate visuals – charts, tables, graphics;  Include numbered titles and captions
  • Page numbering: use lower-case Roman numerals for pages before the table of contents, Arabic numerals; no page number on the TOC.

Additional Resources

  • Final Reports by Angela Eward-Mangione   and Katherine McGee
  • Professional Writing Style

Brevity - Say More with Less

Brevity - Say More with Less

Clarity (in Speech and Writing)

Clarity (in Speech and Writing)

Coherence - How to Achieve Coherence in Writing

Coherence - How to Achieve Coherence in Writing

Diction

Flow - How to Create Flow in Writing

Inclusivity - Inclusive Language

Inclusivity - Inclusive Language

Simplicity

The Elements of Style - The DNA of Powerful Writing

Unity

Suggested Edits

  • Please select the purpose of your message. * - Corrections, Typos, or Edits Technical Support/Problems using the site Advertising with Writing Commons Copyright Issues I am contacting you about something else
  • Your full name
  • Your email address *
  • Page URL needing edits *
  • Name This field is for validation purposes and should be left unchanged.

Other Topics:

Citation - Definition - Introduction to Citation in Academic & Professional Writing

Citation - Definition - Introduction to Citation in Academic & Professional Writing

  • Joseph M. Moxley

Explore the different ways to cite sources in academic and professional writing, including in-text (Parenthetical), numerical, and note citations.

Collaboration - What is the Role of Collaboration in Academic & Professional Writing?

Collaboration - What is the Role of Collaboration in Academic & Professional Writing?

Collaboration refers to the act of working with others or AI to solve problems, coauthor texts, and develop products and services. Collaboration is a highly prized workplace competency in academic...

Genre

Genre may reference a type of writing, art, or musical composition; socially-agreed upon expectations about how writers and speakers should respond to particular rhetorical situations; the cultural values; the epistemological assumptions...

Grammar

Grammar refers to the rules that inform how people and discourse communities use language (e.g., written or spoken English, body language, or visual language) to communicate. Learn about the rhetorical...

Information Literacy - Discerning Quality Information from Noise

Information Literacy - Discerning Quality Information from Noise

Information Literacy refers to the competencies associated with locating, evaluating, using, and archiving information. In order to thrive, much less survive in a global information economy — an economy where information functions as a...

Mindset

Mindset refers to a person or community’s way of feeling, thinking, and acting about a topic. The mindsets you hold, consciously or subconsciously, shape how you feel, think, and act–and...

Rhetoric: Exploring Its Definition and Impact on Modern Communication

Rhetoric: Exploring Its Definition and Impact on Modern Communication

Learn about rhetoric and rhetorical practices (e.g., rhetorical analysis, rhetorical reasoning,  rhetorical situation, and rhetorical stance) so that you can strategically manage how you compose and subsequently produce a text...

Style

Style, most simply, refers to how you say something as opposed to what you say. The style of your writing matters because audiences are unlikely to read your work or...

The Writing Process - Research on Composing

The Writing Process - Research on Composing

The writing process refers to everything you do in order to complete a writing project. Over the last six decades, researchers have studied and theorized about how writers go about...

Writing Studies

Writing Studies

Writing studies refers to an interdisciplinary community of scholars and researchers who study writing. Writing studies also refers to an academic, interdisciplinary discipline – a subject of study. Students in...

Featured Articles

Student engrossed in reading on her laptop, surrounded by a stack of books

Academic Writing – How to Write for the Academic Community

what is recommendation in a research

Professional Writing – How to Write for the Professional World

what is recommendation in a research

Credibility & Authority – How to Be Credible & Authoritative in Speech & Writing

National Academies Press: OpenBook

Conducting Biosocial Surveys: Collecting, Storing, Accessing, and Protecting Biospecimens and Biodata (2010)

Chapter: 5 findings, conclusions, and recommendations, 5 findings, conclusions, and recommendations.

A s the preceding chapters have made clear, incorporating biological specimens into social science surveys holds great scientific potential, but also adds a variety of complications to the tasks of both individual researchers and institutions. These complications arise in a number of areas, including collecting, storing, using, and distributing biospecimens; sharing data while protecting privacy; obtaining informed consent from participants; and engaging with Institutional Review Boards (IRBs). Any effort to make such research easier and more effective will need to address the issues in these areas.

In considering its recommendations, the panel found it useful to think of two categories: (1) recommendations that apply to individual investigators, and (2) recommendations that are addressed to the National Institute on Aging (NIA) or other institutions, particularly funding agencies. Researchers who wish to collect biological specimens with social science data will need to develop new skills in a variety of areas, such as the logistics of specimen storage and management, the development of more diverse informed consent forms, and ways of dealing with the disclosure risks associated with sharing biogenetic data. At the same time, NIA and other funding agencies must provide researchers the tools they need to succeed. These tools include such things as biorepositories for maintaining and distributing specimens, better guidance on informed consent policies, and better ways to share data without risking confidentiality.

TAKING ADVANTAGE OF EXISTING EXPERTISE

Although working with biological specimens will be new and unfamiliar to many social scientists, it is an area in which biomedical researchers have a great deal of expertise and experience. Many existing documents describe recommended procedures and laboratory practices for the handling of biospecimens. These documents provide an excellent starting point for any social scientist who is interested in adding biospecimens to survey research.

Recommendation 1: Social scientists who are planning to add biological specimens to their survey research should familiarize themselves with existing best practices for the collection, storage, use, and distribution of biospecimens. First and foremost, the design of the protocol for collec tion must ensure the safety of both participants and survey staff (data and specimen collectors and handlers).

Although existing best-practice documents were not developed with social science surveys in mind, their guidelines have been field-tested and approved by numerous IRBs and ethical oversight committees. The most useful best-practice documents are updated frequently to reflect growing knowledge and changing opinions about the best ways to collect, store, use, and distribute biological specimens. At the same time, however, many issues arising from the inclusion of biospecimens in social science surveys are not fully addressed in the best-practice documents intended for biomedical researchers. For guidance on these issues, it will be necessary to seek out information aimed more specifically at researchers at the intersection of social science and biomedicine.

COLLECTING, STORING, USING, AND DISTRIBUTING BIOSPECIMENS

As described in Chapter 2 , the collection, storage, use, and distribution of biospecimens and biodata are tasks that are likely to be unfamiliar to many social scientists and that raise a number of issues with which even specialists are still grappling. For example, which biospecimens in a repository should be shared, given that in most cases the amount of each specimen is limited? And given that the available technology for cost-efficient analysis of biospecimens, particularly genetic analysis, is rapidly improving, how much of any specimen should be used for immediate research and analysis, and how much should be stored for analysis at a later date? Collecting, storing, using, and distributing biological specimens also present significant practical and financial challenges for social scientists. Many of the questions they must address, such as exactly what should be held, where it should be held, and what should be shared or distributed, have not yet been resolved.

Developing Data Sharing Plans

An important decision concerns who has access to any leftover biospecimens. This is a problem more for biospecimens than for biodata because in most cases, biospecimens can be exhausted. Should access be determined according to the principle of first funded, first served? Should there be a formal application process for reviewing the scientific merits of a particular investigation? For studies that involve international collaboration, should foreign investigators have access? And how exactly should these decisions be made? Recognizing that some proposed analyses may lie beyond the competence of the original investigators, as well as the possibility that principal investigators may have a conflict of interest in deciding how to use any remaining biospecimens, one option is for a principal investigator to assemble a small scientific committee to judge the merits of each application, including the relevance of the proposed study to the parent study and the capacities of the investigators. Such committees should publish their review criteria to help prospective applicants. A potential problem with such an approach, however, is that many projects may not have adequate funding to carry out such tasks.

Recommendation 2: Early in the planning process, principal investigators who will be collecting biospecimens as part of a social science survey should develop a complete data sharing plan.

This plan should spell out the criteria for allowing other researchers to use (and therefore deplete) the available stock of biospecimens, as well as to gain access to any data derived therefrom. To avoid any appearance of self-interest, a project might empower an external advisory board to make decisions about access to its data. The data sharing plan should also include provisions for the storage and retrieval of biospecimens and clarify how the succession of responsibility for and control of the biospecimens will be handled at the conclusion of the project.

Recommendation 3: NIA (or preferably the National Institutes of Health [NIH]) should publish guidelines for principal investigators containing a list of points that need to be considered for an acceptable data sharing plan. In addition to staff review, Scientific Review Panels should read and comment on all proposed data sharing plans. In much the same way as an unacceptable human subjects plan, an inadequate data sharing plan should hold up an otherwise acceptable proposal.

Supporting Social Scientists in the Storage of Biospecimens

The panel believes that many social scientists who decide to add the collection of biospecimens to their surveys may be ill equipped to provide for the storage and distribution of the specimens.

Conclusion: The issues related to the storage and distribution of biospecimens are too complex and involve too many hidden costs to assume that social scientists without suitable knowledge, experience, and resources can handle them without assistance.

Investigators should therefore have the option of delegating the storage and distribution of biospecimens collected as part of social science surveys to a centralized biorepository. Depending on the circumstances, a project might choose to utilize such a facility for immediate use, long-term or archival storage, or not at all.

Recommendation 4: NIA and other relevant funding agencies should support at least one central facility for the storage and distribution of biospecimens collected as part of the research they support.

PROTECTING PRIVACY AND CONFIDENTIALITY: SHARING DIGITAL REPRESENTATIONS OF BIOLOGICAL AND SOCIAL DATA

Several different types of data must be kept confidential: survey data, data derived from biospecimens, and all administrative and operational data. In the discussion of protecting confidentiality and privacy, this report has focused on biodata, but the panel believes it is important to protect all the data collected from survey participants. For many participants, for example, data on wealth, earnings, or sexual behavior can be as or more sensitive than genetic data.

Conclusion: Although biodata tend to receive more attention in discussions of privacy and confidentiality, social science and operational data can be sensitive in their own right and deserve similar attention in such discussions.

Protecting the participants in a social science survey that collects biospecimens requires securing the data, but data are most valuable when they are made available to researchers as widely as possible. Thus there is an inherent tension between the desire to protect the privacy of the participants and the desire to derive as much scientific value from the data as possible, particularly since the costs of data collection and analysis are so high. The following recommendations regarding confidentiality are made in the spirit of balancing these equally important needs.

Genomic data present a particular challenge. Several researchers have demonstrated that it is possible to identify individuals with even modest amounts of such data. When combined with social science data, genomic data may pose an even greater risk to confidentiality. It is difficult to know how much or which genomic data, when combined with social science data, could become critical identifiers in the future. Although the problem is most significant with genomic data, similar challenges can arise with other kinds of data derived from biospecimens.

Conclusion: Unrestricted distribution of genetic and other biodata risks violating promises of confidentiality made to research participants.

There are two basic approaches to protecting confidentiality: restricting data and restricting access. Restricting data—for example, by stripping individual and spatial identifiers and modifying the data to make it difficult or impossible to trace them back to their source—usually makes it possible to release social science data widely. In the case of biodata, however, there is no answer to how little data is required to make a participant uniquely identifiable. Consequently, any release of biodata must be carefully managed to protect confidentiality.

Recommendation 5: No individual-level data containing uniquely identify ing variables, such as genomic data, should be publicly released without explicit informed consent.

Recommendation 6: Genomic data and other individual-level data con taining uniquely identifying variables that are stored or in active use by investigators on their institutional or personal computers should be encrypted at all times.

Even if specific identifying variables, such as names and addresses, are stripped from data, it is still often possible to identify the individuals associated with the data by other means, such as using the variables that remain (age, sex, marital status, family income, etc.) to zero in on possible candidates. In the case of biodata that do not uniquely identify individuals and can change with time, such as blood pressure and physical measurements, it may be possible to share the data with no more protection than stripping identifying variables. Even these data, however, if known to intruders, can increase identification disclosure risk when combined with enough other data. With sufficient characteristics to match, intruders can uniquely identify individuals in shared data if given access to another data source that contains the same information plus identifiers.

Conclusion: Even nonunique biodata, if combined with social science data, may pose a serious risk of reidentification.

In the case of high-dimensional genomic data, standard disclosure limitation techniques, such as data perturbation, are not effective with respect to preserving the utility of the data because they involve such extreme alterations that they would severely distort analyses aimed at determining gene–gene and gene–environment interactions. Standard disclosure limitation methods could be used to generate public-use data sets that would enable low-dimensional analyses involving genes, for example, one gene at a time. However, with several such public releases, it may be possible for a key match to be used to construct a data set with higher-dimensional genomic data.

Conclusion: At present, no data restriction strategy has been demonstrated to protect confidentiality while preserving the usefulness of the data for drawing inferences involving high-dimensional interactions among genomic and social science variables, which are increasingly the target of research. Providing public-use genomic data requires such intense data masking to protect confidentiality that it would distort the high-dimensional analyses that could result in ground-breaking research progress.

Recommendation 7: Both rich genomic data acquired for research and sensitive and potentially identifiable social science data that do not change (or change very little) with time should be shared only under restricted circumstances, such as licensing and (actual or virtual) data enclaves.

As discussed in Chapter 3 , the four basic ways to restrict access to data are licensing, remote execution centers, data enclaves, and virtual data enclaves. Each has its advantages and disadvantages. 1 Licensing, for example, is the least restrictive for a researcher in terms of access to the data, but the licensing process itself can be lengthy and burdensome. Thus it would be useful if the licensing process could be facilitated.

Recommendation 8: NIA (or preferably NIH) should develop new stan dards and procedures for licensing confidential data in ways that will maximize timely access while maintaining security and that can be used by data repositories and by projects that distribute data.

Ways to improve the other approaches to restricted access are needed as well. For example, improving the convenience and availability of virtual data enclaves could increase the use of combined social science and biodata without

a significant increase in risk to confidentiality. The panel notes that much of the discussion of the confidentiality risk posed by the various approaches is theoretical; no one has a clear idea of just what disclosure risks are associated with the various ways of sharing data. It is important to learn more about these disclosure risks for a variety of reasons—determining how to minimize the risks, for instance, or knowing which approaches to sharing data pose the least risk. It would also be useful to be able to describe disclosure risks more accurately to survey participants.

Recommendation 9: NIA and other funding agencies should assess the strength of confidentiality protections through periodic expert audits of confidentiality and computer security. Willingness to participate in such audits should be a condition for receipt of NIA support. Beyond enforce ment, the purpose of such audits would be to identify challenges and solutions.

Evaluating risks and applying protection methods, whether they involve restricted access or restricted data, is a complex process requiring expertise in disclosure protection methods that exceeds what individual principal investigators and their institutions usually possess. Currently, not enough is known to be able to represent these risks either fully or accurately. The NIH requirement for data sharing necessitates a large investment of resources to anticipate which variables are potentially available to intruders and to alter data in ways that reduce disclosure risks while maintaining the utility of the data. Such resources are better spent by principal investigators on collecting and analyzing the data.

Recommendation 10: NIH should consider funding Centers of Excellence to explore new ways of protecting digital representations of data and to assist principal investigators wishing to share data with others. NIH should also support research on disclosure risks and limitations.

Principal investigators could send digital data to these centers, which would organize and manage any restricted access or restricted data policies or provide advisory services to investigators. NIH would maintain the authority to penalize those who violated any confidentiality agreements, for example, by denying them or their home institution NIH funding. Models for these centers include the Inter-university Consortium for Political and Social Research (ICPSR) and its projects supported by NIH and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the UK data sharing archive. The centers would alleviate the burden of data sharing as mandated of principal investigators by NIH and place it in expert hands. However, excellence in the design of data access and control systems

is likely to require intimate knowledge of each specific data resource, so data producers should be involved in the systems’ development.

INFORMED CONSENT

As described in Chapter 4 , informed consent is a complex subject involving many issues that are still being debated; the growing power of genetic analysis techniques and bioinformatics has only added to this complexity. Given the rapid pace of advances in scientific knowledge and in the technology used to analyze biological materials, it is impossible to predict what information might be gleaned from biological specimens just a few years hence; accordingly, it is impossible, even in theory, to talk about perfectly informed consent. The best one can hope for is relatively well-informed consent from a study’s participants, but knowing precisely what that means is difficult. Determining the scope of informed consent adds another layer of complexity. Will new analyses be covered under the existing consent, for example? There are no clear guidelines on such questions, yet specific details on the scope of consent will likely affect an IRB’s reaction to a study proposal.

What Individual Researchers Need to Know and Do Regarding Informed Consent

To be sure, there is a wide range of views about the practicality of providing adequate protection to participants while proceeding with the scientific enterprise, from assertions that it is simply not possible to provide adequate protection to offers of numerous procedural safeguards but no iron-clad guarantees. This report takes the latter position—that investigators should do their best to communicate adequately and accurately with participants, to provide procedural safeguards to the extent possible, and not to promise what is not possible. 2 Social science researchers need to know that adding the collection of biospecimens to social science surveys changes the nature of informed consent. Informed consent for a traditional social science survey may entail little more than reading a short script over the phone and asking whether the participant is willing to continue; obtaining informed consent for the collection and use of biospecimens and biodata is generally a much more involved process.

Conclusion: Social scientists should be made aware that the process of obtaining informed consent for the use of biospecimens and biodata typically differs from social science norms.

If participants are to provide truly informed consent to taking part in any study, they must be given a certain minimum amount of information. They should be told, for example, what the purpose of the study is, how it is to be carried out, and what participants’ roles are. In addition, because of the unique risks associated with providing biospecimens, participants in a social science survey that involves the collection of such specimens should be provided with other types of information as well. In particular, they should be given detail on the storage and use of the specimens that relates to those risks and can assist them in determining whether to take part in the study.

Recommendation 11: In designing a consent form for the collection of biospecimens, in addition to those elements that are common to social science and biomedical research, investigators should ensure that certain other information is provided to participants:

how long researchers intend to retain their biospecimens and the genomic and other biodata that may be derived from them;

both the risks associated with genomic data and the limits of what they can reveal;

which other researchers will have access to their specimens, to the data derived therefrom, and to information collected in a survey questionnaire;

the limits on researchers’ ability to maintain confidentiality;

any potential limits on participants’ ability to withdraw their speci mens or data from the research;

the penalties 3 that may be imposed on researchers for various types of breaches of confidentiality; and

what plans have been put in place to return to them any medically relevant findings.

Researchers who fail to properly plan for and handle all of these issues before proceeding with a study are in essence compromising assurances under informed consent. The literature on informed consent emphasizes the importance of ensuring that participants understand reasonably well what they are consenting to. This understanding cannot be taken for granted, particularly as it pertains to the use of biological specimens and the data derived therefrom.

While it is not possible to guarantee that participants have a complete understanding of the scientific uses of their specimens or all the possible risks of their participation, they should be able to make a relatively well-informed decision about whether to take part in the study. Thus the ability of various participants to understand the research and the informed consent process must be considered. Even impaired individuals may be able to participate in research if their interests are protected and they can do so only through proxy consent. 4

Recommendation 12: NIA should locate and publicize positive examples of the documentation of consent processes for the collection of biospeci mens. In particular, these examples should take into account the special needs of certain individuals, such as those with sensory problems and the cognitively impaired.

Participants in a biosocial survey are likely to have different levels of comfort concerning how their biospecimens and data will be used. Some may be willing to provide only answers to questions, for example, while others may both answer questions and provide specimens. Among those who provide specimens, some may be willing for the specimens to be used only for the current study, while others may consent to their use in future studies. One effective way to deal with these different comfort levels is to offer a tiered approach to consent that allows participants to determine just how their specimens and data will be used. Tiers might include participating in the survey, providing specimens for genetic and/or nongenetic analysis in a particular study, and allowing the specimens and data to be stored for future uses (genetic and/or nongenetic). For those participants who are willing to have their specimens and data used in future studies, researchers should tell them what sort of approval will be obtained for such use. For example, an IRB may demand reconsent, in which case participants may have to be contacted again before their specimens and data can be used. Ideally, researchers should design their consent forms to avoid the possibility that an IRB will demand a costly or infeasible reconsent process.

Recommendation 13: Researchers should consider adopting a tiered approach to obtaining consent. Participants who are willing to have their specimens and data used in future studies should be informed about the process that will be used to obtain approval for such uses.

What Institutions Should Do Regarding Informed Consent

Because the details of informed consent vary from study to study, individual investigators must bear ultimate responsibility for determining the details of informed consent for any particular study. Thus researchers must understand the various issues and concerns surrounding informed consent and be prepared to make decisions about the appropriate approach for their research in consultation with staff of survey organizations. These decisions should be addressed in the training of survey interviewers. As noted above, however, the issues surrounding informed consent are complex and not completely resolved, and researchers have few options for learning about informed consent as it applies to social science studies that collect biospecimens. Thus it makes sense for agencies funding this research, the Office for Human Research Protection (OHRP), or other appropriate organizations (for example, Public Responsibility in Medicine and Research [PRIM&R]) to provide opportunities for such learning, taking into account the fact that the issues arising in biosocial research do not arise in the standard informed consent situations encountered in social science research. It should also be made clear that the researchers’ institution is usually deemed (e.g., in the courts) to bear much of the responsibility for informed consent.

Recommendation 14: NIA, OHRP, and other appropriate organizations should sponsor training programs, create training modules, and hold informational workshops on informed consent for investigators, staff of survey organizations, including field staff, administrators, and mem bers of IRBs who oversee surveys that collect social science data and biospecimens.

The Return of Medically Relevant Information

An issue related to informed consent is how much information to provide to survey participants once their biological specimens have been analyzed and in particular, how to deal with medically relevant information that may arise from the analysis. What, for example, should a researcher do if a survey participant is found to have a genetic disease that does not appear until later in life? Should the participant be notified? Should participants be asked as part of the initial interview whether they wish to be notified about such a discovery? At this time, there are no generally agreed-upon answers to such questions, but researchers should expect to have to deal with these issues as they analyze the data derived from biological specimens.

Recommendation 15: NIH should direct investigators to formulate a plan in advance concerning the return of any medically relevant findings to

survey participants and to implement that plan in the design and conduct of their informed consent procedures.

INSTITUTIONAL REVIEW BOARDS

Investigators seeking IRB approval for biosocial research face a number of challenges. Few IRBs are familiar with both social and biological science; thus, investigators may find themselves trying to justify standard social science protocols to a biologically oriented IRB or explaining standard biological protocols to an IRB that is used to dealing with social science—or sometimes both. Researchers can expect these obstacles, which arise from the interdisciplinary nature of their work, to be exacerbated by a number of other factors that are characteristic of IRBs in general (see Chapter 4 ).

Recommendation 16: In institutions that have separate biomedical and social science IRBs, mechanisms should be created for sharing expertise during the review of biosocial protocols. 5

What Individual Researchers Need to Do Regarding IRBs

Because the collection of biospecimens as part of social science surveys is still relatively unfamiliar to many IRBs, researchers planning such a study can expect their interactions with the IRB overseeing the research to involve a certain learning curve. The IRB may need extra time to become familiar and comfortable with the proposed practices of the survey, and conversely, the researchers will need time to learn what the IRB will require. Thus it will be advantageous if researchers conducting such studies plan from the beginning to devote additional time to working with their IRBs.

Recommendation 17: Investigators considering collecting biospecimens as part of a social science survey should consult with their IRBs early and often.

What Research Agencies Should Do Regarding IRBs

One way to improve the IRB process would be to give members of IRBs an opportunity to learn more about biosocial research and the risks it entails.

This could be done by individual institutions, but it would be more effective if a national funding agency took the lead (see Recommendation 14).

It is the panel’s hope that its recommendations will support the incorporation of social science and biological data into empirical models, allowing researchers to better document the linkages among social, behavioral, and biological processes that affect health and other measures of well-being while avoiding or minimizing many of the challenges that may arise. Implementing these recommendations will require the combined efforts of both individual investigators and the agencies that support them.

This page intentionally left blank.

Recent years have seen a growing tendency for social scientists to collect biological specimens such as blood, urine, and saliva as part of large-scale household surveys. By combining biological and social data, scientists are opening up new fields of inquiry and are able for the first time to address many new questions and connections. But including biospecimens in social surveys also adds a great deal of complexity and cost to the investigator's task. Along with the usual concerns about informed consent, privacy issues, and the best ways to collect, store, and share data, researchers now face a variety of issues that are much less familiar or that appear in a new light.

In particular, collecting and storing human biological materials for use in social science research raises additional legal, ethical, and social issues, as well as practical issues related to the storage, retrieval, and sharing of data. For example, acquiring biological data and linking them to social science databases requires a more complex informed consent process, the development of a biorepository, the establishment of data sharing policies, and the creation of a process for deciding how the data are going to be shared and used for secondary analysis--all of which add cost to a survey and require additional time and attention from the investigators. These issues also are likely to be unfamiliar to social scientists who have not worked with biological specimens in the past. Adding to the attraction of collecting biospecimens but also to the complexity of sharing and protecting the data is the fact that this is an era of incredibly rapid gains in our understanding of complex biological and physiological phenomena. Thus the tradeoffs between the risks and opportunities of expanding access to research data are constantly changing.

Conducting Biosocial Surveys offers findings and recommendations concerning the best approaches to the collection, storage, use, and sharing of biospecimens gathered in social science surveys and the digital representations of biological data derived therefrom. It is aimed at researchers interested in carrying out such surveys, their institutions, and their funding agencies.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

msevans3’s Site

How to write recommendations in a research paper

Many students put in a lot of effort and write a good report however they are not able to give proper recommendations. Recommendations in the research paper should be included in your research. As a researcher, you display a deep understanding of the topic of research. Therefore you should be able to give recommendations. Here are a few tips that will help you to give appropriate recommendations. 

Recommendations in the research paper should be the objective of the research. Therefore at least one of your objectives of the paper is to provide recommendations to the parties associated or the parties that will benefit from your research. For example, to encourage higher employee engagement HR department should make strategies that invest in the well-being of employees. Additionally, the HR department should also collect regular feedback through online surveys.

Recommendations in the research paper should come from your review and analysis For example It was observed that coaches interviewed were associated with the club were working with the club from the past 2-3 years only. This shows that the attrition rate of coaches is high and therefore clubs should work on reducing the turnover of coaches.

Recommendations in the research paper should also come from the data you have analysed. For example, the research found that people over 65 years of age are at greater risk of social isolation. Therefore, it is recommended that policies that are made for combating social isolation should target this specific group.

Recommendations in the research paper should also come from observation. For example, it is observed that Lenovo’s income is stable and gross revenue has displayed a negative turn. Therefore the company should analyse its marketing and branding strategy.

Recommendations in the research paper should be written in the order of priority. The most important recommendations for decision-makers should come first. However, if the recommendations are of equal importance then it should come in the sequence in which the topic is approached in the research. 

Recommendations in a research paper if associated with different categories then you should categorize them. For example, you have separate recommendations for policymakers, educators, and administrators then you can categorize the recommendations. 

Recommendations in the research paper should come purely from your research. For example, you have written research on the impact on HR strategies on motivation. However, nowhere you have discussed Reward and recognition. Then you should not give recommendations for using rewards and recognition measures to boost employee motivation.

The use of bullet points offers better clarity rather than using long paragraphs. For example this paragraph “ It is recommended  that Britannia Biscuit should launch and promote sugar-free options apart from the existing product range. Promotion efforts should be directed at creating a fresh and healthy image. A campaign that conveys a sense of health and vitality to the consumer while enjoying biscuit  is recommended” can be written as:

  • The company should launch and promote sugar-free options
  • The company should work towards creating s fresh and healthy image
  • The company should run a campaign to convey its healthy image

The inclusion of an action plan along with recommendation adds more weightage to your recommendation. Recommendations should be clear and conscience and written using actionable words. Recommendations should display a solution-oriented approach and in some cases should highlight the scope for further research. 

We use cookies on this site to enhance your experience

By clicking any link on this page you are giving your consent for us to set cookies.

A link to reset your password has been sent to your email.

Back to login

We need additional information from you. Please complete your profile first before placing your order.

Thank you. payment completed., you will receive an email from us to confirm your registration, please click the link in the email to activate your account., there was error during payment, orcid profile found in public registry, download history, difference between implications and recommendations in a research paper.

  • Charlesworth Author Services
  • 15 February, 2022

Authors report their findings objectively in the Results section of a paper, while they elaborate on the underlying meaning of their work in the Discussion section . The Discussion section provides the interpretation of the obtained results vis-à-vis previous studies and an overall future outlook. In addition, the Discussion section typically includes a sub-section for, or some account of, the authors’ implications and recommendations.

Implications and recommendations

Implications and recommendations are usually written after the study has been completed, and both appear at the end of the research paper, in the Discussion section. Note that the recommendations usually follow the implications . Let’s explore them in more detail.

what is recommendation in a research

A research paper usually has implications followed by recommendations

Implications of research

An implication in a research paper is a conclusion that can be inferred from the study findings . Implications may be theoretical or practical.

  • Theoretical implications constitute new additions to existing theories or form the basis for new theories.
  • Practical implications are potential ramifications of this study for practice. 

Recommendations from research

A recommendation is a suggestion or proposal for something that should be done, as derived from the findings . Recommendations can include:

  • Improvements in a study approach or methodology
  • Policy suggestions
  • Worthwhile directions for further research

For instance, a study may have uncovered new knowledge gaps . Recommendations would provide cues for future studies to address such problems.

Implication versus recommendation

As both are written in the Discussion section and have an element of ‘ what next ’, it is easy to confuse the two. So, let us examine how implications differ from recommendations.

  • Implied vs. proposed : Simply put, an implication is an implicit outcome of your study, while a recommendation is what you propose based on the outcome. 
  • Potential impact vs. specific action s: In a research paper, implications discuss how the findings of the study may be important or how your research impacts the study area or study subject(s). Meanwhile, recommendations are specific actions or subsequent steps that, in your opinion, need to be taken because your findings support them.

Implication versus recommendation: Example

Here is an example to explain the difference.

Suppose you investigated the use of millets in developing novel snack foods. You discovered certain under-utilised millet species with great nutrient profiles — far better than those of wheat and maize — and found that they yield nutritious and tasty food products. However, you also found that these millet species need extra pre-treatment steps to eliminate inhibitors and toxins, and to enhance flavours and increase nutrient bioavailability.

The implications from such a study would be as below.

Your recommendations based on your findings could be as below.

Final notes

While writing the implications and recommendations, you should be mindful of the facts and avoid overstating or overgeneralising the findings . Both the implications and the recommendations must be rooted in evidence , as clearly demonstrated through the data, analysis, results and findings of the study itself.

Charlesworth Author Services , a trusted brand supporting the world’s leading academic publishers, institutions and authors since 1928. 

To know more about our services, visit: Our Services

Visit our new Researcher Education Portal that offers articles and webinars covering all aspects of your research to publication journey! And sign up for our newsletter on the Portal to stay updated on all essential researcher knowledge and information!

Register now: Researcher Education Portal

Maximise your publication success with Charlesworth Author Services.

Share with your colleagues

Related articles.

what is recommendation in a research

Writing an effective Discussion section in a scientific paper

Charlesworth Author Services 27/10/2021 00:00:00

what is recommendation in a research

Strategies for writing the Results section in a scientific paper

what is recommendation in a research

Difference between Methodology and Method

Charlesworth Author Services 15/12/2021 00:00:00

Related webinars

what is recommendation in a research

Bitesize Webinar: How to write and structure your academic article for publication: Module 4: Prepare to write your academic paper

Charlesworth Author Services 04/03/2021 00:00:00

what is recommendation in a research

Bitesize Webinar: How to write and structure your academic article for publication: Module 9:Write a strong results and discussion section

Charlesworth Author Services 05/03/2021 00:00:00

what is recommendation in a research

Bitesize Webinar: How to write and structure your academic article for publication: Module 11: Know when your article is ready for submission

what is recommendation in a research

Bitesize Webinar: How to write and structure your academic article for publication - Module 14: Increase your chances for publication

Charlesworth Author Services 20/04/2021 00:00:00

Paper sections

what is recommendation in a research

How to write an Introduction to an academic article

Charlesworth Author Services 17/08/2020 00:00:00

what is recommendation in a research

Writing a strong Methods section

Charlesworth Author Services 12/03/2021 00:00:00

what is recommendation in a research

Writing an Abstract: Purpose and Tips

Understanding Artificial Intelligence with the IRB: Recommendations from SACHRP

Understanding artificial intelligence with the irb: recommendations from the secretary's advisory committee on human research protections, as ai is used in research, the united states department of health and human services (hhs) shares considerations to ensure transparency of information between the irb and primary investigators (pis)..

Text displaying the name of the blog series

The Secretary's Advisory Committee on Human Research Protections (SACHRP) provides expert advice and recommendations to the Secretary of HHS on issues about the protection of human subjects in research. SACHRP provided several resources, listed below. TC IRB will expand upon, where applicable with specific guidance for TC IRB researchers. 

Under what conditions would a collection of data for AI or AI validation activities meet the Common Rule definition of research that is “designed to develop or contribute to generalizable knowledge”?

  • TC IRB Reviewers will ask that ​​researchers identify the technology (AI, bot, etc.) they plan to use for research purposes and what type of engagement that technology will have with human subjects (e.g., recruitment, data collection, data analysis, etc.). For any technology not already approved by TC IT, researchers will have to contact TC IT for data security before TC IRB approval. Researchers may also be asked to include the privacy and confidentiality statement from the technology’s website. IRB Reviewers may ask the PI to list any data or privacy statements on the informed consent form.
  • Researchers may also be asked to provide an information sheet to supplement their IRB application and elaborate on the technology in order for TC IRB Reviewers to thoroughly understand and assess any potential risk factors in making human subjects research determinations. A TC IRB Reviewer may also ask the ​​researcher to provide a participant-centered information sheet if the technology is new or nuanced. 

When AI involves research involving private identifiable information (PII), when are those persons human subjects? Does the research capture the “about whom” part of the HS definition? Are there other ethical considerations for these persons?

  • TC researchers can review the guide on identifiers and confidentiality considerations .
  • TC IRB Reviewers may ask the researcher to present the AI or technology mission statement, confidentiality or privacy statement, or any data use statements that would apply to subject protection. Such language may be reviewed by TC IT or General Counsel to ensure that the technology does not violate any institutional, city, state, or federal policies in place for human subjects research protection. 

When would the collection of data for AI or AI validation activities typically be exempt under the Common Rule?

  • For information on exempt review categories, researchers can review this series on the topic .  
  • TC IRB Reviewers may ask researchers to elaborate on the use of AI in their studies and to differentiate between instances when the technology would be used closely and indirectly with human subjects (e.g., direct engagement with the AI or sharing of subject information with the AI) or for researcher-led initiatives (e.g., manuscript support)

For studies requiring review under the Common Rule, what human protection action considerations are most prominent for the humans whose information is included in datasets used and shared for AI development? Do those considerations differ where the research is focused on the testing or validating of AI? Are other ethical considerations relevant for those who are not human subjects?

  • For information on expedited review categories, researchers can review this series on the topic .
  • TC IRB Reviewers aim to mitigate risk in human subjects research. If the researcher uses AI or other technology, but that use/engagement does not involve a human or the human’s data it may not need IRB oversight. TC IRB Reviewers need to understand the parameters of the study when technology is/is not used and how that use may impact a study subject. Depending on the scenario IRB may or may not be needed. Describing these nuances will aid the TC IRB Reviewer in their determinations. 

Are there existing frameworks or tools that funding agencies, investigators, Human Research Protection Program (HRPP) staff, and IRBs can use to illuminate and mitigate ethical concerns with human-focused AI research and development?

  • Researchers should consult TC IRB Reviewers and any grantors who may be involved in the research project to discuss the parameters of the study and risk mitigation strategies.

Are there considerations specific to AI that impact the adequacy of disclosure of research activities in the research informed consent form.

  • Visit these resources for a guide on informed consent forms .

What is “unique” about research that includes AI that would require the IRB to think about and determine the applicability of the Common Rule that isn’t already considered for all human subject’s research?

  • Researchers may be asked to provide an information sheet or meet with TC IRB Reviewers to clarify the proposed AI use and how it weaves into the study protocol. 

What specific sections of 45 CFR 46.111 would need special attention in research with AI; i.e., privacy and confidentiality; informed and consent; risks?

  • Researchers can review our guide to understand risks in research . 

What are the specific considerations regarding AI that are pertinent to institutional /HRPP responsibilities, versus responsibilities for other studies under the purview of the IRB?

  • Researchers should continually uphold the highest ethical standards in research with human subjects and report any protocol deviations or adverse events promptly. 

Is there a larger potential for bias and/or flaws in the use of AI in research and how should IRBs think about this potential in their review? (i.e. facial recognition algorithms could be heavily based on dominant populations, but the researchers “using the algorithm” might not be aware of this.)

  • Researchers should consider the ethical ramifications of the use of AI and include any potential risks in the informed consent form or information sheets presented to the participants. 

AI strives to be a reliable tool for researchers but there are still many facets that have not been fully analyzed. To protect the reputation and integrity of research, AI in its current state must be used sparingly and with extreme caution. For further information about the ethics of using AI in research, please refer to the next part of the series: Ethics and Risks Involved Using Artificial Intelligence (AI) in Research . The IRB’s most significant priority is the protection of human subjects, which includes securing their data and reducing risks in all research studies. As AI continues to develop and improve, PIs may soon encounter sturdy and trustworthy technologies that ensure the safety of their participants. 

Office for Human Research Protections (2022, August 26) . Considerations for IRB review of  research involving artificial intelligence. United States Department of Health and Human Services. https://www.hhs.gov/ohrp/sachrp-committee/recommendations/attachment-e-july-25-2022-letter/index.html

— Diana Bae, B.A. & Myra Luna-Lucero, Ed.D.

Published Tuesday, Apr 30, 2024

Institutional Review Board

Address: Russell Hall, Room 13

* Phone: 212-678-4105 * Email:   [email protected]

Appointments are available by request . Make sure to have your IRB protocol number (e.g., 19-011) available.  If you are unable to access any of the downloadable resources, please contact  OASID via email [email protected] .

Artificial intelligence in strategy

Can machines automate strategy development? The short answer is no. However, there are numerous aspects of strategists’ work where AI and advanced analytics tools can already bring enormous value. Yuval Atsmon is a senior partner who leads the new McKinsey Center for Strategy Innovation, which studies ways new technologies can augment the timeless principles of strategy. In this episode of the Inside the Strategy Room podcast, he explains how artificial intelligence is already transforming strategy and what’s on the horizon. This is an edited transcript of the discussion. For more conversations on the strategy issues that matter, follow the series on your preferred podcast platform .

Joanna Pachner: What does artificial intelligence mean in the context of strategy?

Yuval Atsmon: When people talk about artificial intelligence, they include everything to do with analytics, automation, and data analysis. Marvin Minsky, the pioneer of artificial intelligence research in the 1960s, talked about AI as a “suitcase word”—a term into which you can stuff whatever you want—and that still seems to be the case. We are comfortable with that because we think companies should use all the capabilities of more traditional analysis while increasing automation in strategy that can free up management or analyst time and, gradually, introducing tools that can augment human thinking.

Joanna Pachner: AI has been embraced by many business functions, but strategy seems to be largely immune to its charms. Why do you think that is?

Subscribe to the Inside the Strategy Room podcast

Yuval Atsmon: You’re right about the limited adoption. Only 7 percent of respondents to our survey about the use of AI say they use it in strategy or even financial planning, whereas in areas like marketing, supply chain, and service operations, it’s 25 or 30 percent. One reason adoption is lagging is that strategy is one of the most integrative conceptual practices. When executives think about strategy automation, many are looking too far ahead—at AI capabilities that would decide, in place of the business leader, what the right strategy is. They are missing opportunities to use AI in the building blocks of strategy that could significantly improve outcomes.

I like to use the analogy to virtual assistants. Many of us use Alexa or Siri but very few people use these tools to do more than dictate a text message or shut off the lights. We don’t feel comfortable with the technology’s ability to understand the context in more sophisticated applications. AI in strategy is similar: it’s hard for AI to know everything an executive knows, but it can help executives with certain tasks.

When executives think about strategy automation, many are looking too far ahead—at AI deciding the right strategy. They are missing opportunities to use AI in the building blocks of strategy.

Joanna Pachner: What kind of tasks can AI help strategists execute today?

Yuval Atsmon: We talk about six stages of AI development. The earliest is simple analytics, which we refer to as descriptive intelligence. Companies use dashboards for competitive analysis or to study performance in different parts of the business that are automatically updated. Some have interactive capabilities for refinement and testing.

The second level is diagnostic intelligence, which is the ability to look backward at the business and understand root causes and drivers of performance. The level after that is predictive intelligence: being able to anticipate certain scenarios or options and the value of things in the future based on momentum from the past as well as signals picked in the market. Both diagnostics and prediction are areas that AI can greatly improve today. The tools can augment executives’ analysis and become areas where you develop capabilities. For example, on diagnostic intelligence, you can organize your portfolio into segments to understand granularly where performance is coming from and do it in a much more continuous way than analysts could. You can try 20 different ways in an hour versus deploying one hundred analysts to tackle the problem.

Predictive AI is both more difficult and more risky. Executives shouldn’t fully rely on predictive AI, but it provides another systematic viewpoint in the room. Because strategic decisions have significant consequences, a key consideration is to use AI transparently in the sense of understanding why it is making a certain prediction and what extrapolations it is making from which information. You can then assess if you trust the prediction or not. You can even use AI to track the evolution of the assumptions for that prediction.

Those are the levels available today. The next three levels will take time to develop. There are some early examples of AI advising actions for executives’ consideration that would be value-creating based on the analysis. From there, you go to delegating certain decision authority to AI, with constraints and supervision. Eventually, there is the point where fully autonomous AI analyzes and decides with no human interaction.

Because strategic decisions have significant consequences, you need to understand why AI is making a certain prediction and what extrapolations it’s making from which information.

Joanna Pachner: What kind of businesses or industries could gain the greatest benefits from embracing AI at its current level of sophistication?

Yuval Atsmon: Every business probably has some opportunity to use AI more than it does today. The first thing to look at is the availability of data. Do you have performance data that can be organized in a systematic way? Companies that have deep data on their portfolios down to business line, SKU, inventory, and raw ingredients have the biggest opportunities to use machines to gain granular insights that humans could not.

Companies whose strategies rely on a few big decisions with limited data would get less from AI. Likewise, those facing a lot of volatility and vulnerability to external events would benefit less than companies with controlled and systematic portfolios, although they could deploy AI to better predict those external events and identify what they can and cannot control.

Third, the velocity of decisions matters. Most companies develop strategies every three to five years, which then become annual budgets. If you think about strategy in that way, the role of AI is relatively limited other than potentially accelerating analyses that are inputs into the strategy. However, some companies regularly revisit big decisions they made based on assumptions about the world that may have since changed, affecting the projected ROI of initiatives. Such shifts would affect how you deploy talent and executive time, how you spend money and focus sales efforts, and AI can be valuable in guiding that. The value of AI is even bigger when you can make decisions close to the time of deploying resources, because AI can signal that your previous assumptions have changed from when you made your plan.

Joanna Pachner: Can you provide any examples of companies employing AI to address specific strategic challenges?

Yuval Atsmon: Some of the most innovative users of AI, not coincidentally, are AI- and digital-native companies. Some of these companies have seen massive benefits from AI and have increased its usage in other areas of the business. One mobility player adjusts its financial planning based on pricing patterns it observes in the market. Its business has relatively high flexibility to demand but less so to supply, so the company uses AI to continuously signal back when pricing dynamics are trending in a way that would affect profitability or where demand is rising. This allows the company to quickly react to create more capacity because its profitability is highly sensitive to keeping demand and supply in equilibrium.

Joanna Pachner: Given how quickly things change today, doesn’t AI seem to be more a tactical than a strategic tool, providing time-sensitive input on isolated elements of strategy?

Yuval Atsmon: It’s interesting that you make the distinction between strategic and tactical. Of course, every decision can be broken down into smaller ones, and where AI can be affordably used in strategy today is for building blocks of the strategy. It might feel tactical, but it can make a massive difference. One of the world’s leading investment firms, for example, has started to use AI to scan for certain patterns rather than scanning individual companies directly. AI looks for consumer mobile usage that suggests a company’s technology is catching on quickly, giving the firm an opportunity to invest in that company before others do. That created a significant strategic edge for them, even though the tool itself may be relatively tactical.

Joanna Pachner: McKinsey has written a lot about cognitive biases  and social dynamics that can skew decision making. Can AI help with these challenges?

Yuval Atsmon: When we talk to executives about using AI in strategy development, the first reaction we get is, “Those are really big decisions; what if AI gets them wrong?” The first answer is that humans also get them wrong—a lot. [Amos] Tversky, [Daniel] Kahneman, and others have proven that some of those errors are systemic, observable, and predictable. The first thing AI can do is spot situations likely to give rise to biases. For example, imagine that AI is listening in on a strategy session where the CEO proposes something and everyone says “Aye” without debate and discussion. AI could inform the room, “We might have a sunflower bias here,” which could trigger more conversation and remind the CEO that it’s in their own interest to encourage some devil’s advocacy.

We also often see confirmation bias, where people focus their analysis on proving the wisdom of what they already want to do, as opposed to looking for a fact-based reality. Just having AI perform a default analysis that doesn’t aim to satisfy the boss is useful, and the team can then try to understand why that is different than the management hypothesis, triggering a much richer debate.

In terms of social dynamics, agency problems can create conflicts of interest. Every business unit [BU] leader thinks that their BU should get the most resources and will deliver the most value, or at least they feel they should advocate for their business. AI provides a neutral way based on systematic data to manage those debates. It’s also useful for executives with decision authority, since we all know that short-term pressures and the need to make the quarterly and annual numbers lead people to make different decisions on the 31st of December than they do on January 1st or October 1st. Like the story of Ulysses and the sirens, you can use AI to remind you that you wanted something different three months earlier. The CEO still decides; AI can just provide that extra nudge.

Joanna Pachner: It’s like you have Spock next to you, who is dispassionate and purely analytical.

Yuval Atsmon: That is not a bad analogy—for Star Trek fans anyway.

Joanna Pachner: Do you have a favorite application of AI in strategy?

Yuval Atsmon: I have worked a lot on resource allocation, and one of the challenges, which we call the hockey stick phenomenon, is that executives are always overly optimistic about what will happen. They know that resource allocation will inevitably be defined by what you believe about the future, not necessarily by past performance. AI can provide an objective prediction of performance starting from a default momentum case: based on everything that happened in the past and some indicators about the future, what is the forecast of performance if we do nothing? This is before we say, “But I will hire these people and develop this new product and improve my marketing”— things that every executive thinks will help them overdeliver relative to the past. The neutral momentum case, which AI can calculate in a cold, Spock-like manner, can change the dynamics of the resource allocation discussion. It’s a form of predictive intelligence accessible today and while it’s not meant to be definitive, it provides a basis for better decisions.

Joanna Pachner: Do you see access to technology talent as one of the obstacles to the adoption of AI in strategy, especially at large companies?

Yuval Atsmon: I would make a distinction. If you mean machine-learning and data science talent or software engineers who build the digital tools, they are definitely not easy to get. However, companies can increasingly use platforms that provide access to AI tools and require less from individual companies. Also, this domain of strategy is exciting—it’s cutting-edge, so it’s probably easier to get technology talent for that than it might be for manufacturing work.

The bigger challenge, ironically, is finding strategists or people with business expertise to contribute to the effort. You will not solve strategy problems with AI without the involvement of people who understand the customer experience and what you are trying to achieve. Those who know best, like senior executives, don’t have time to be product managers for the AI team. An even bigger constraint is that, in some cases, you are asking people to get involved in an initiative that may make their jobs less important. There could be plenty of opportunities for incorpo­rating AI into existing jobs, but it’s something companies need to reflect on. The best approach may be to create a digital factory where a different team tests and builds AI applications, with oversight from senior stakeholders.

The big challenge is finding strategists to contribute to the AI effort. You are asking people to get involved in an initiative that may make their jobs less important.

Joanna Pachner: Do you think this worry about job security and the potential that AI will automate strategy is realistic?

Yuval Atsmon: The question of whether AI will replace human judgment and put humanity out of its job is a big one that I would leave for other experts.

The pertinent question is shorter-term automation. Because of its complexity, strategy would be one of the later domains to be affected by automation, but we are seeing it in many other domains. However, the trend for more than two hundred years has been that automation creates new jobs, although ones requiring different skills. That doesn’t take away the fear some people have of a machine exposing their mistakes or doing their job better than they do it.

Joanna Pachner: We recently published an article about strategic courage in an age of volatility  that talked about three types of edge business leaders need to develop. One of them is an edge in insights. Do you think AI has a role to play in furnishing a proprietary insight edge?

Yuval Atsmon: One of the challenges most strategists face is the overwhelming complexity of the world we operate in—the number of unknowns, the information overload. At one level, it may seem that AI will provide another layer of complexity. In reality, it can be a sharp knife that cuts through some of the clutter. The question to ask is, Can AI simplify my life by giving me sharper, more timely insights more easily?

Joanna Pachner: You have been working in strategy for a long time. What sparked your interest in exploring this intersection of strategy and new technology?

Yuval Atsmon: I have always been intrigued by things at the boundaries of what seems possible. Science fiction writer Arthur C. Clarke’s second law is that to discover the limits of the possible, you have to venture a little past them into the impossible, and I find that particularly alluring in this arena.

AI in strategy is in very nascent stages but could be very consequential for companies and for the profession. For a top executive, strategic decisions are the biggest way to influence the business, other than maybe building the top team, and it is amazing how little technology is leveraged in that process today. It’s conceivable that competitive advantage will increasingly rest in having executives who know how to apply AI well. In some domains, like investment, that is already happening, and the difference in returns can be staggering. I find helping companies be part of that evolution very exciting.

Explore a career with us

Related articles.

Floating chess pieces

Strategic courage in an age of volatility

Bias Busters collection

Bias Busters Collection

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Research: What Companies Don’t Know About How Workers Use AI

  • Jeremie Brecheisen

what is recommendation in a research

Three Gallup studies shed light on when and why AI is being used at work — and how employees and customers really feel about it.

Leaders who are exploring how AI might fit into their business operations must not only navigate a vast and ever-changing landscape of tools, but they must also facilitate a significant cultural shift within their organizations. But research shows that leaders do not fully understand their employees’ use of, and readiness for, AI. In addition, a significant number of Americans do not trust business’ use of AI. This article offers three recommendations for leaders to find the right balance of control and trust around AI, including measuring how their employees currently use AI, cultivating trust by empowering managers, and adopting a purpose-led AI strategy that is driven by the company’s purpose instead of a rules-heavy strategy that is driven by fear.

If you’re a leader who wants to shift your workforce toward using AI, you need to do more than manage the implementation of new technologies. You need to initiate a profound cultural shift. At the heart of this cultural shift is trust. Whether the use case for AI is brief and experimental or sweeping and significant, a level of trust must exist between leaders and employees for the initiative to have any hope of success.

  • Jeremie Brecheisen is a partner and managing director of The Gallup CHRO Roundtable.

Partner Center

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here . By continuing to use our site, you accept our use of cookies, revised Privacy Policy and Terms of Service .

Zacks Investment Research Home

New to Zacks? Get started here.

Member Sign In

Don't Know Your Password?

Zacks

  • Zacks #1 Rank
  • Zacks Industry Rank
  • Zacks Sector Rank
  • Equity Research
  • Mutual Funds
  • Mutual Fund Screener
  • ETF Screener
  • Earnings Calendar
  • Earnings Releases
  • Earnings ESP
  • Earnings ESP Filter
  • Stock Screener
  • Premium Screens
  • Basic Screens
  • Research Wizard
  • Personal Finance
  • Money Management
  • Retirement Planning
  • Tax Information
  • My Portfolio
  • Create Portfolio
  • Style Scores
  • Testimonials
  • Zacks.com Tutorial

Services Overview

  • Zacks Ultimate
  • Zacks Investor Collection
  • Zacks Premium

Investor Services

  • ETF Investor
  • Home Run Investor
  • Income Investor
  • Stocks Under $10
  • Value Investor
  • Top 10 Stocks

Other Services

  • Method for Trading
  • Zacks Confidential

Trading Services

  • Black Box Trader
  • Counterstrike
  • Headline Trader
  • Insider Trader
  • Large-Cap Trader
  • Options Trader
  • Short Sell List
  • Surprise Trader
  • Alternative Energy

Zacks Investment Research Home

You are being directed to ZacksTrade, a division of LBMZ Securities and licensed broker-dealer. ZacksTrade and Zacks.com are separate companies. The web link between the two companies is not a solicitation or offer to invest in a particular security or type of security. ZacksTrade does not endorse or adopt any particular investment strategy, any analyst opinion/rating/report or any approach to evaluating individual securities.

If you wish to go to ZacksTrade, click OK . If you do not, click Cancel.

what is recommendation in a research

Image: Bigstock

Brokers Suggest Investing in Crocs (CROX): Read This Before Placing a Bet

Investors often turn to recommendations made by Wall Street analysts before making a Buy, Sell, or Hold decision about a stock. While media reports about rating changes by these brokerage-firm employed (or sell-side) analysts often affect a stock's price, do they really matter?

Before we discuss the reliability of brokerage recommendations and how to use them to your advantage, let's see what these Wall Street heavyweights think about Crocs ( CROX Quick Quote CROX - Free Report ) .

Crocs currently has an average brokerage recommendation (ABR) of 1.36, on a scale of 1 to 5 (Strong Buy to Strong Sell), calculated based on the actual recommendations (Buy, Hold, Sell, etc.) made by 11 brokerage firms. An ABR of 1.36 approximates between Strong Buy and Buy.

Of the 11 recommendations that derive the current ABR, nine are Strong Buy, representing 81.8% of all recommendations.

Brokerage Recommendation Trends for CROX

Broker Rating Breakdown Chart for CROX

This means that the interests of these institutions are not always aligned with those of retail investors, giving little insight into the direction of a stock's future price movement. It would therefore be best to use this information to validate your own analysis or a tool that has proven to be highly effective at predicting stock price movements.

With an impressive externally audited track record, our proprietary stock rating tool, the Zacks Rank, which classifies stocks into five groups, ranging from Zacks Rank #1 (Strong Buy) to Zacks Rank #5 (Strong Sell), is a reliable indicator of a stock's near -term price performance. So, validating the Zacks Rank with ABR could go a long way in making a profitable investment decision.

ABR Should Not Be Confused With Zacks Rank

Although both Zacks Rank and ABR are displayed in a range of 1-5, they are different measures altogether.

The ABR is calculated solely based on brokerage recommendations and is typically displayed with decimals (example: 1.28). In contrast, the Zacks Rank is a quantitative model allowing investors to harness the power of earnings estimate revisions. It is displayed in whole numbers -- 1 to 5.

Analysts employed by brokerage firms have been and continue to be overly optimistic with their recommendations. Since the ratings issued by these analysts are more favorable than their research would support because of the vested interest of their employers, they mislead investors far more often than they guide.

In contrast, the Zacks Rank is driven by earnings estimate revisions. And near-term stock price movements are strongly correlated with trends in earnings estimate revisions, according to empirical research.

In addition, the different Zacks Rank grades are applied proportionately to all stocks for which brokerage analysts provide current-year earnings estimates. In other words, this tool always maintains a balance among its five ranks.

Another key difference between the ABR and Zacks Rank is freshness. The ABR is not necessarily up-to-date when you look at it. But, since brokerage analysts keep revising their earnings estimates to account for a company's changing business trends, and their actions get reflected in the Zacks Rank quickly enough, it is always timely in indicating future price movements.

Is CROX a Good Investment?

In terms of earnings estimate revisions for Crocs, the Zacks Consensus Estimate for the current year has increased 1.6% over the past month to $12.66.

Analysts' growing optimism over the company's earnings prospects, as indicated by strong agreement among them in revising EPS estimates higher, could be a legitimate reason for the stock to soar in the near term.

The size of the recent change in the consensus estimate, along with three other factors related to earnings estimates, has resulted in a Zacks Rank #2 (Buy) for Crocs. You can see the complete list of today's Zacks Rank #1 (Strong Buy) stocks here >>>>

Therefore, the Buy-equivalent ABR for Crocs may serve as a useful guide for investors.

See More Zacks Research for These Tickers

Normally $25 each - click below to receive one report free:.

Crocs, Inc. (CROX) - free report >>

Published in

This file is used for Yahoo remarketing pixel add

what is recommendation in a research

Due to inactivity, you will be signed out in approximately:

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

O’Hara R, Johnson M, Hirst E, et al. A qualitative study of decision-making and safety in ambulance service transitions. Southampton (UK): NIHR Journals Library; 2014 Dec. (Health Services and Delivery Research, No. 2.56.)

Cover of A qualitative study of decision-making and safety in ambulance service transitions

A qualitative study of decision-making and safety in ambulance service transitions.

Chapter 8 conclusions and recommendations.

The aim of this study was to explore the range and nature of influences on safety in decision-making by ambulance service staff (paramedics). A qualitative approach was adopted using a range of complementary methods. The study has provided insights on the types of decisions that staff engage in on a day-to-day basis. It has also identified a range of system risk factors influencing decisions about patient care. Although this was a relatively small-scale exploratory study, confidence in the generalisability of the headline findings is enhanced by the high level of consistency in the findings, obtained using multiple methods, and the notable consensus among participants.

The seven predominant system influences identified should not be considered discrete but as overlapping and complementary issues. They also embody a range of subthemes that represent topics for future research and/or intervention.

The apparently high level of consistency across the participating trusts suggests that the issues identified may be generic and relevant to other ambulance service trusts.

In view of the remit of this study, aspects relating to system weaknesses and potential threats to patient safety dominate in the account of findings. However, it should be noted that respondent accounts also provided examples of systems that were said to be working well, for example specific care management pathways, local roles and ways of working and technological initiatives such as IBIS and the ePRF.

  • Implications for health care

The NHS system within which the ambulance service operates is characterised in our study as fragmented and inconsistent. For ambulance service staff the extent of variation across the geographical areas in which they work is problematic in terms of knowing what services are available and being able to access them. The lack of standardisation in practice guidelines, pathways and protocols across services and between areas makes it particularly challenging for staff to keep up to date with requirements in different parts of their own trust locations and when crossing trust boundaries. Although a degree of consistency across the network is likely to improve the situation, it is also desirable to have sufficient flexibility to accommodate the needs of specific local populations. There was some concern over the potential for further fragmentation with the increased number of CCGs.

Ambulance services are increasingly under pressure to focus on reducing conveyance rates to A&E; this arguably intensifies the need to ensure that crews are appropriately skilled to be able to make effective decisions over the need to convey or not to convey if associated risks to patients are to be minimised. Our findings highlight the challenges of developing staff and ensuring that their skills are utilised where they are most needed within the context of organisational resource constraints and operational demands. Decisions over non-conveyance to A&E are moderated by the availability of alternative care pathways and providers. There were widespread claims of local variability in this respect. Staff training and development, and access to alternatives to A&E, were identified as priorities for attention by workshop attendees.

One of the difficulties for ambulance services is that they operate as a 24/7 service within a wider urgent and emergency care network that, beyond A&E, operates a more restricted working day. The study findings identify this as problematic for two reasons. First, it fuels demand for ambulance service care as a route to timely treatment, when alternatives may involve delay. Second, it contributes to inappropriate conveyance to A&E because more appropriate options are unavailable or limited during out-of-hours periods. Ultimately, this restricts the scope for ensuring that patients are getting the right level of care at the right time and place. Study participants identified some patient populations as particularly poorly served in terms of alternatives to A&E (e.g. those with mental health issues, those at the end of life, older patients and those with chronic conditions).

The effectiveness of the paramedic role in facilitating access to appropriate care pathways hinges on relationships with other care providers (e.g. primary care, acute care, mental health care, community health care). An important element relates to the cultural profile of paramedics in the NHS, specifically, the extent to which other health professionals and care providers consider the clinical judgements/decisions made by paramedics as credible and actionable. Staff identified this as a barrier to access where the ambulance service is still viewed primarily as a transport service. Consideration could be given to ways of improving effective teamworking and communication across service and professional boundaries.

Although paramedics acknowledged the difficulties of telephone triage, they also identified how the limitations of this system impact on them. Over-triage at the initial call-handling stage places considerable demands on both staff and vehicle resources. A related concern is the limited information conveyed to crews following triage. Initial triage was suggested as an area that warrants attention to improve resource allocation.

The findings highlight the challenges faced by front-line ambulance service staff. It was apparent that the extent and nature of the demand for ambulance conveyance represents a notable source of strain and tension for individuals and at an organisational level. For example, there were widespread claims that meeting operational demands for ambulance services limits the time available for training and professional development, with this potentially representing a risk for patients and for staff. Staff perceptions of risk relating to patient safety extend to issues of secondary risk management, that is, personal and institutional liabilities, in particular risks associated with loss of professional registration. The belief that they are more likely to be blamed than supported by their organisation in the event of an incident was cited by staff as a source of additional anxiety when making more complex decisions. This perceived vulnerability can provoke excessively risk-averse decisions. These issues merit further attention to examine the workforce implication of service delivery changes, including how to ensure that staff are appropriately equipped and supported to deal effectively with the demands of their role.

Paramedics identified a degree of progress in relation to the profile of patient safety within their organisations but the apparent desire within trusts to prioritise safety improvement was felt to be constrained by service demands and available resources. Attempts to prioritise patient safety appear to focus on ensuring that formal systems are in place (e.g. reporting and communication). Concerns were expressed over how well these systems function to support improvement, for example how incident reports are responded to and whether lessons learned are communicated to ambulance staff within and between trusts. Consideration could be given to identifying ways of supporting ambulance service trusts to develop the safety culture within their organisation.

Service users attributed the increased demand for ambulance services to difficulties in identifying and accessing alternatives. They were receptive to non-conveyance options but felt that lack of awareness of staff roles and skills may cause concern when patients expect conveyance to A&E.

  • Recommendations for research

The workshop attendees identified a range of areas for attention in relation to intervention and research, which are provided in Chapter 6 (see Suggestions for potential interventions and research ). The following recommendations for research are based on the study findings:

  • Limited and variable access to services in the wider health and social care system is a significant barrier to reducing inappropriate conveyance to A&E. More research is needed to identify effective ways of improving the delivery of care across service boundaries, particularly for patients with limited options at present (e.g. those with mental health issues, those at the end of life and older patients). Research should address structural and attitudinal barriers and how these might be overcome.
  • Ambulance services are increasingly focused on reducing conveyance to A&E and they need to ensure that there is an appropriately skilled workforce to minimise the potential risk. The evidence points to at least two issues: (1) training and skills and (2) the cultural profile of paramedics in the NHS, that is, whether others view their decisions as credible. Research could explore the impact of enhanced skills on patient care and on staff, for example the impact of increased training in urgent rather than emergency care. This would also need to address potential cultural barriers to the effective use of new skills.
  • Research to explore the impact of different aspects of safety culture on ambulance service staff and the delivery of patient care (e.g. incident reporting, communication, teamworking, and training) could include comparisons across different staff groups and the identification of areas for improvement, as well as interventions that could potentially be tested.
  • The increased breadth of decision-making by ambulance service crews with advanced skills includes more diagnostics; therefore, there is a need to look at the diagnostic process and potential causes of error in this environment.
  • There is a need to explore whether there are efficient and safe ways of improving telephone triage decisions to reduce over-triage, particularly in relation to calls requiring an 8-minute response. This could include examining training and staffing levels, a higher level of clinician involvement or other forms of decision support.
  • There is a need to explore public awareness of, attitudes towards, beliefs about and expectations of the ambulance service and the wider urgent and emergency care network and the scope for behaviour change interventions, for example communication of information about access to and use of services; empowering the public through equipping them with the skills to directly access the services that best meet their needs; and informing the public about the self-management of chronic conditions.
  • A number of performance measures were identified engendering perverse motivations leading to suboptimal resource utilisation. An ongoing NIHR Programme Grant for Applied Research (RP-PG-0609–10195; ‘Pre-hospital Outcomes for Evidence-Based Evaluation’) aims to develop new ways of measuring ambulance service performance. It is important that evaluations of new performance metrics or other innovations (e.g. Make Ready ambulances, potential telehealth technologies or decision-support tools) address their potential impact on patient safety.

Included under terms of UK Non-commercial Government License .

  • Cite this Page O’Hara R, Johnson M, Hirst E, et al. A qualitative study of decision-making and safety in ambulance service transitions. Southampton (UK): NIHR Journals Library; 2014 Dec. (Health Services and Delivery Research, No. 2.56.) Chapter 8, Conclusions and recommendations.
  • PDF version of this title (1.5M)

In this Page

Other titles in this collection.

  • Health Services and Delivery Research

Recent Activity

  • Conclusions and recommendations - A qualitative study of decision-making and saf... Conclusions and recommendations - A qualitative study of decision-making and safety in ambulance service transitions

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

IMAGES

  1. How to Write Recommendations in Research

    what is recommendation in a research

  2. Summary of the Findings, Conclusion and Recommendation

    what is recommendation in a research

  3. ⇉Recommendation & Solution Essay Example

    what is recommendation in a research

  4. Recommendation Letter for Scholarship

    what is recommendation in a research

  5. Research Recommendation Sample Pdf

    what is recommendation in a research

  6. 💋 Example of recommendation in research paper. Chapter 5 Summary

    what is recommendation in a research

VIDEO

  1. 15 MIN TRADING STRATEGY 📊 #sharemarket#tradingstrategy

  2. 10 K TO 10 LAKH CHALLENGE 📊🤩.... #sharemarket #tradingchallenge

  3. HOW TO IDENTIFY TREND 🤔 #sharemarket #trader

  4. TRADING CHALLENGE 10K TO 10 LAKH ( DAY 12 ) #sharemarket #tradingchallenge

  5. TRADING CHALLENGE JOURNEY 10 K TO 10 LAKH #sharemarket

  6. 5 APRIL RBI CONFERENCE ..#sharemarketnews #trading

COMMENTS

  1. How to Write Recommendations in Research

    Recommendations for future research should be: Concrete and specific. Supported with a clear rationale. Directly connected to your research. Overall, strive to highlight ways other researchers can reproduce or replicate your results to draw further conclusions, and suggest different directions that future research can take, if applicable.

  2. How to Write Recommendations in Research

    Here is a step-wise guide to build your understanding on the development of research recommendations. 1. Understand the Research Question: Understand the research question and objectives before writing recommendations. Also, ensure that your recommendations are relevant and directly address the goals of the study. 2.

  3. Research Recommendations

    Research recommendations can vary depending on the specific project or area of research, but typically they will include some or all of the following parts: Research question or objective: This is the overarching goal or purpose of the research project.

  4. The Ultimate Guide to Crafting Impactful Recommendations in Research

    Crafting impactful recommendations is a vital skill for any researcher looking to bridge the gap between their findings and real-world applications. By understanding the purpose of recommendations, identifying areas for future research, structuring your suggestions effectively, and connecting them to your research findings, you can unlock the ...

  5. Research Implications & Recommendations

    Research implications refer to the possible effects or outcomes of a study's findings. The recommendations section, on the other hand, is where you'll propose specific actions based on those findings. You can structure your implications section based on the three overarching categories - theoretical, practical and future research ...

  6. What are Implications and Recommendations in Research? How to Write It

    Recommendation in research : The current study can be interpreted as a first step in the research on differentiated instructions. However, the results of this study should be treated with caution as the selected participants were more willing to make changes in their teaching models, limiting the generalizability of the model.

  7. How to formulate research recommendations

    How to formulate research recommendations. "More research is needed" is a conclusion that fits most systematic reviews. But authors need to be more specific about what exactly is required. Long awaited reports of new research, systematic reviews, and clinical guidelines are too often a disappointing anticlimax for those wishing to use them ...

  8. Draw conclusions and make recommendations (Chapter 6)

    This is the point everything has been leading up to. Having carried out the research and marshalled all the evidence, you are now faced with the problem of making sense of it all. Here you need to distinguish clearly between three different things: results, conclusions and recommendations. Results are what you have found through the research.

  9. Implications or Recommendations in Research: What's the Difference

    Examples of recommendations. Here are some research results and their recommendations. Example 1. A meta-analysis found that actively recalling material from your memory is better than simply re-reading it. The recommendation: Based on these findings, teachers and other educators should encourage students to practice active recall strategies ...

  10. Research Recommendations Process and Methods Guide

    the research recommendations are relevant to current practice. we communicate well with the research community. This process and methods guide has been developed to help guidance-producing centres make research recommendations. It describes a step-by-step approach to identifying uncertainties, formulating research recommendations and research ...

  11. PDF Writing Recommendations for Research and Practice That Make Change

    Research recommendations have several advantages, including: • Providing practical guidance: Research recommendations provide practical guidance on how to apply research findings to real-world problems, helping to bridge the gap between research and practice.

  12. Health research: How to formulate research recommendations

    The proposed statement on research recommendations applies to uncertainties of the effects of any form of health intervention or treatment and is intended for research in humans rather than basic scientific research. Further investigation is required to assess the applicability of the format for questions around diagnosis, signs and symptoms ...

  13. How to Write Recommendations in Research Paper

    Recommendations in a research paper: meaning and goals Before you start learning how to write recommendations in a research paper, the first thing is to clarify the meaning of this term. It is a significant element in the research paper structure, as it is critical to your discussion section and conclusion. While conducting research and ...

  14. Research Recommendations Process and Methods Guide [Internet]

    the research recommendations are relevant to current practice. we communicate well with the research community. This process and methods guide has been developed to help guidance-producing centres make research recommendations. It describes a step-by-step approach to identifying uncertainties, formulating research recommendations and research ...

  15. Conclusions and recommendations for future research

    Recommendations for further research. There are a number of gaps in our knowledge around public involvement in research that follow from our findings, and would benefit from further research, including realist evaluation to extend and further test the theory we have developed here:

  16. In research, what is the difference between implication and recommendation?

    88. Comment. Answer: Research implications basically refer to impact that your research might have on future research or policy decision or the relevant field of interest of your study. 'How will your research affect the targeted community or subject field' is the question that implications will answer. Recommendations are based on the results ...

  17. Recommendation Reports

    Recommendation reports are texts that advise audiences about the best ways to solve a problem. Recommendation reports are a type of formal report that is widely used across disciplines and professions. Subject Matter Experts aim to make recommendations based on the best available theory, research and practice. Different disciplines and professions have different research methods

  18. Findings, Conclusions, and Recommendations

    Recommendation 1: Social scientists who are planning to add biological specimens to their survey research should familiarize themselves with existing best practices for the collection, storage, use, and distribution of biospecimens. First and foremost, the design of the protocol for collection must ensure the safety of both participants and survey staff (data and specimen collectors and handlers).

  19. How to write recommendations in a research paper

    Recommendations in the research paper should come from your review and analysis For example It was observed that coaches interviewed were associated with the club were working with the club from the past 2-3 years only. This shows that the attrition rate of coaches is high and therefore clubs should work on reducing the turnover of coaches.

  20. Difference between Implications and Recommendations in a research paper

    Recommendations from research. A recommendation is a suggestion or proposal for something that should be done, as derived from the findings. Recommendations can include: Improvements in a study approach or methodology; Policy suggestions; Worthwhile directions for further research; For instance, a study may have uncovered new knowledge gaps ...

  21. (Pdf) Chapter 5 Summary, Conclusions, Implications and Recommendations

    The conclusions are as stated below: i. Students' use of language in the oral sessions depicted their beliefs and values. based on their intentions. The oral sessions prompted the students to be ...

  22. Improving the utility of non-significant results for educational

    Research question 1: what is the prevalence of non-significant results in educational research? In total, in the 50 journal articles, ... Recommendations for fit statistics. Journal of Research on Educational Effectiveness, 16 (2) (2023), pp. 250-375, 10.1080/19345747.2022.2118197.

  23. Understanding Artificial Intelligence with the IRB: Recommendations

    The Secretary's Advisory Committee on Human Research Protections (SACHRP) provides expert advice and recommendations to the Secretary of HHS on issues about the protection of human subjects in research. SACHRP provided several resources, listed below. TC IRB will expand upon, where applicable with specific guidance for TC IRB researchers.

  24. AAOS Updates Clinical Practice Guideline for the Management of

    The American Academy of Orthopaedic Surgeons (AAOS) issued an update to the Clinical Practice Guideline (CPG) for the Management of Osteoarthritis of the Hip, replacing the previous edition released in 2017. This CPG updated 14 of the 23 evidence-based recommendations for the non-operative treatment of hip osteoarthritis (OA) in adults, resulting in three strong and five moderate recommendations.

  25. Guideline Grading of Recommendations and Levels of Evidence

    RecommendationLevel of EvidenceAgency for Healthcare Research and Quality (AHRQ), 20117Strongly Recommended and Strongly Not Recommended= Evidence AModerately Recommended and Moderately Not Recommended= Evidence BRecommended and Not Recommended= Evidence CRecommended, No Recommendation and Not Recommended= Evidence I, (Consensus-based)A= Strong evidence base: two or more high-quality studiesB ...

  26. AI strategy in business: A guide for executives

    Yuval Atsmon is a senior partner who leads the new McKinsey Center for Strategy Innovation, which studies ways new technologies can augment the timeless principles of strategy. In this episode of the Inside the Strategy Room podcast, he explains how artificial intelligence is already transforming strategy and what's on the horizon.

  27. Research: What Companies Don't Know About How Workers Use AI

    This article offers three recommendations for leaders to find the right balance of control and trust around AI, including measuring how their employees currently use AI, cultivating trust by ...

  28. Brokers Suggest Investing in Crocs (CROX): Read This Before Placing a

    CROX - Free Report) . Crocs currently has an average brokerage recommendation (ABR) of 1.36, on a scale of 1 to 5 (Strong Buy to Strong Sell), calculated based on the actual recommendations (Buy ...

  29. Conclusions and recommendations

    The following recommendations for research are based on the study findings: Limited and variable access to services in the wider health and social care system is a significant barrier to reducing inappropriate conveyance to A&E. More research is needed to identify effective ways of improving the delivery of care across service boundaries ...

  30. AppLovin Co. (NASDAQ:APP) Receives Consensus Recommendation of

    Shares of AppLovin Co. (NASDAQ:APP - Get Free Report) have been given an average rating of "Moderate Buy" by the eighteen ratings firms that are currently covering the firm, Marketbeat reports.One equities research analyst has rated the stock with a sell recommendation, five have given a hold recommendation and twelve have given a buy recommendation to the company.