• Search Menu
  • Editor's Choice
  • Author Guidelines
  • Publish with us
  • Submission Site
  • Open Access
  • Self-Archiving Policy
  • About Clean Energy
  • About the National Institute of Clean and Low-Carbon Energy
  • Editorial Board
  • Instructions for Reviewers
  • Advertising & Corporate Services
  • Journals Career Network
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

Introduction, 1 installed capacity and application of solar energy worldwide, 2 the role of solar energy in sustainable development, 3 the perspective of solar energy, 4 conclusions, conflict of interest statement.

  • < Previous

Solar energy technology and its roles in sustainable development

ORCID logo

  • Article contents
  • Figures & tables
  • Supplementary Data

Ali O M Maka, Jamal M Alabid, Solar energy technology and its roles in sustainable development, Clean Energy , Volume 6, Issue 3, June 2022, Pages 476–483, https://doi.org/10.1093/ce/zkac023

  • Permissions Icon Permissions

Solar energy is environmentally friendly technology, a great energy supply and one of the most significant renewable and green energy sources. It plays a substantial role in achieving sustainable development energy solutions. Therefore, the massive amount of solar energy attainable daily makes it a very attractive resource for generating electricity. Both technologies, applications of concentrated solar power or solar photovoltaics, are always under continuous development to fulfil our energy needs. Hence, a large installed capacity of solar energy applications worldwide, in the same context, supports the energy sector and meets the employment market to gain sufficient development. This paper highlights solar energy applications and their role in sustainable development and considers renewable energy’s overall employment potential. Thus, it provides insights and analysis on solar energy sustainability, including environmental and economic development. Furthermore, it has identified the contributions of solar energy applications in sustainable development by providing energy needs, creating jobs opportunities and enhancing environmental protection. Finally, the perspective of solar energy technology is drawn up in the application of the energy sector and affords a vision of future development in this domain.

graphic

With reference to the recommendations of the UN, the Climate Change Conference, COP26, was held in Glasgow , UK, in 2021. They reached an agreement through the representatives of the 197 countries, where they concurred to move towards reducing dependency on coal and fossil-fuel sources. Furthermore, the conference stated ‘the various opportunities for governments to prioritize health and equity in the international climate movement and sustainable development agenda’. Also, one of the testaments is the necessity to ‘create energy systems that protect and improve climate and health’ [ 1 , 2 ].

The Paris Climate Accords is a worldwide agreement on climate change signed in 2015, which addressed the mitigation of climate change, adaptation and finance. Consequently, the representatives of 196 countries concurred to decrease their greenhouse gas emissions [ 3 ]. The Paris Agreement is essential for present and future generations to attain a more secure and stable environment. In essence, the Paris Agreement has been about safeguarding people from such an uncertain and progressively dangerous environment and ensuring everyone can have the right to live in a healthy, pollutant-free environment without the negative impacts of climate change [ 3 , 4 ].

In recent decades, there has been an increase in demand for cleaner energy resources. Based on that, decision-makers of all countries have drawn up plans that depend on renewable sources through a long-term strategy. Thus, such plans reduce the reliance of dependence on traditional energy sources and substitute traditional energy sources with alternative energy technology. As a result, the global community is starting to shift towards utilizing sustainable energy sources and reducing dependence on traditional fossil fuels as a source of energy [ 5 , 6 ].

In 2015, the UN adopted the sustainable development goals (SDGs) and recognized them as international legislation, which demands a global effort to end poverty, safeguard the environment and guarantee that by 2030, humanity lives in prosperity and peace. Consequently, progress needs to be balanced among economic, social and environmental sustainability models [ 7 ].

Many national and international regulations have been established to control the gas emissions and pollutants that impact the environment [ 8 ]. However, the negative effects of increased carbon in the atmosphere have grown in the last 10 years. Production and use of fossil fuels emit methane (CH 4 ), carbon dioxide (CO 2 ) and carbon monoxide (CO), which are the most significant contributors to environmental emissions on our planet. Additionally, coal and oil, including gasoline, coal, oil and methane, are commonly used in energy for transport or for generating electricity. Therefore, burning these fossil fuel s is deemed the largest emitter when used for electricity generation, transport, etc. However, these energy resources are considered depleted energy sources being consumed to an unsustainable degree [ 9–11 ].

Energy is an essential need for the existence and growth of human communities. Consequently, the need for energy has increased gradually as human civilization has progressed. Additionally, in the past few decades, the rapid rise of the world’s population and its reliance on technological developments have increased energy demands. Furthermore, green technology sources play an important role in sustainably providing energy supplies, especially in mitigating climate change [ 5 , 6 , 8 ].

Currently, fossil fuels remain dominant and will continue to be the primary source of large-scale energy for the foreseeable future; however, renewable energy should play a vital role in the future of global energy. The global energy system is undergoing a movement towards more sustainable sources of energy [ 12 , 13 ].

Power generation by fossil-fuel resources has peaked, whilst solar energy is predicted to be at the vanguard of energy generation in the near future. Moreover, it is predicted that by 2050, the generation of solar energy will have increased to 48% due to economic and industrial growth [ 13 , 14 ].

In recent years, it has become increasingly obvious that the globe must decrease greenhouse gas emissions by 2050, ideally towards net zero, if we are to fulfil the Paris Agreement’s goal to reduce global temperature increases [ 3 , 4 ]. The net-zero emissions complement the scenario of sustainable development assessment by 2050. According to the agreed scenario of sustainable development, many industrialized economies must achieve net-zero emissions by 2050. However, the net-zero emissions 2050 brought the first detailed International Energy Agency (IEA) modelling of what strategy will be required over the next 10 years to achieve net-zero carbon emissions worldwide by 2050 [ 15–17 ].

The global statistics of greenhouse gas emissions have been identified; in 2019, there was a 1% decrease in CO 2 emissions from the power industry; that figure dropped by 7% in 2020 due to the COVID-19 crisis, thus indicating a drop in coal-fired energy generation that is being squeezed by decreasing energy needs, growth of renewables and the shift away from fossil fuels. As a result, in 2020, the energy industry was expected to generate ~13 Gt CO 2 , representing ~40% of total world energy sector emissions related to CO 2 . The annual electricity generation stepped back to pre-crisis levels by 2021, although due to a changing ‘fuel mix’, the CO 2 emissions in the power sector will grow just a little before remaining roughly steady until 2030 [ 15 ].

Therefore, based on the information mentioned above, the advantages of solar energy technology are a renewable and clean energy source that is plentiful, cheaper costs, less maintenance and environmentally friendly, to name but a few. The significance of this paper is to highlight solar energy applications to ensure sustainable development; thus, it is vital to researchers, engineers and customers alike. The article’s primary aim is to raise public awareness and disseminate the culture of solar energy usage in daily life, since moving forward, it is the best. The scope of this paper is as follows. Section 1 represents a summary of the introduction. Section 2 represents a summary of installed capacity and the application of solar energy worldwide. Section 3 presents the role of solar energy in the sustainable development and employment of renewable energy. Section 4 represents the perspective of solar energy. Finally, Section 5 outlines the conclusions and recommendations for future work.

1.1 Installed capacity of solar energy

The history of solar energy can be traced back to the seventh century when mirrors with solar power were used. In 1893, the photovoltaic (PV) effect was discovered; after many decades, scientists developed this technology for electricity generation [ 18 ]. Based on that, after many years of research and development from scientists worldwide, solar energy technology is classified into two key applications: solar thermal and solar PV.

PV systems convert the Sun’s energy into electricity by utilizing solar panels. These PV devices have quickly become the cheapest option for new electricity generation in numerous world locations due to their ubiquitous deployment. For example, during the period from 2010 to 2018, the cost of generating electricity by solar PV plants decreased by 77%. However, solar PV installed capacity progress expanded 100-fold between 2005 and 2018. Consequently, solar PV has emerged as a key component in the low-carbon sustainable energy system required to provide access to affordable and dependable electricity, assisting in fulfilling the Paris climate agreement and in achieving the 2030 SDG targets [ 19 ].

The installed capacity of solar energy worldwide has been rapidly increased to meet energy demands. The installed capacity of PV technology from 2010 to 2020 increased from 40 334 to 709 674 MW, whereas the installed capacity of concentrated solar power (CSP) applications, which was 1266 MW in 2010, after 10 years had increased to 6479 MW. Therefore, solar PV technology has more deployed installations than CSP applications. So, the stand-alone solar PV and large-scale grid-connected PV plants are widely used worldwide and used in space applications. Fig. 1 represents the installation of solar energy worldwide.

Installation capacity of solar energy worldwide [20].

Installation capacity of solar energy worldwide [ 20 ].

1.2 Application of solar energy

Energy can be obtained directly from the Sun—so-called solar energy. Globally, there has been growth in solar energy applications, as it can be used to generate electricity, desalinate water and generate heat, etc. The taxonomy of applications of solar energy is as follows: (i) PVs and (ii) CSP. Fig. 2 details the taxonomy of solar energy applications.

The taxonomy of solar energy applications.

The taxonomy of solar energy applications.

Solar cells are devices that convert sunlight directly into electricity; typical semiconductor materials are utilized to form a PV solar cell device. These materials’ characteristics are based on atoms with four electrons in their outer orbit or shell. Semiconductor materials are from the periodic table’s group ‘IV’ or a mixture of groups ‘IV’ and ‘II’, the latter known as ‘II–VI’ semiconductors [ 21 ]. Additionally, a periodic table mixture of elements from groups ‘III’ and ‘V’ can create ‘III–V’ materials [ 22 ].

PV devices, sometimes called solar cells, are electronic devices that convert sunlight into electrical power. PVs are also one of the rapidly growing renewable-energy technologies of today. It is therefore anticipated to play a significant role in the long-term world electricity-generating mixture moving forward.

Solar PV systems can be incorporated to supply electricity on a commercial level or installed in smaller clusters for mini-grids or individual usage. Utilizing PV modules to power mini-grids is a great way to offer electricity to those who do not live close to power-transmission lines, especially in developing countries with abundant solar energy resources. In the most recent decade, the cost of producing PV modules has dropped drastically, giving them not only accessibility but sometimes making them the least expensive energy form. PV arrays have a 30-year lifetime and come in various shades based on the type of material utilized in their production.

The most typical method for solar PV desalination technology that is used for desalinating sea or salty water is electrodialysis (ED). Therefore, solar PV modules are directly connected to the desalination process. This technique employs the direct-current electricity to remove salt from the sea or salty water.

The technology of PV–thermal (PV–T) comprises conventional solar PV modules coupled with a thermal collector mounted on the rear side of the PV module to pre-heat domestic hot water. Accordingly, this enables a larger portion of the incident solar energy on the collector to be converted into beneficial electrical and thermal energy.

A zero-energy building is a building that is designed for zero net energy emissions and emits no carbon dioxide. Building-integrated PV (BIPV) technology is coupled with solar energy sources and devices in buildings that are utilized to supply energy needs. Thus, building-integrated PVs utilizing thermal energy (BIPV/T) incorporate creative technologies such as solar cooling [ 23 ].

A PV water-pumping system is typically used to pump water in rural, isolated and desert areas. The system consists of PV modules to power a water pump to the location of water need. The water-pumping rate depends on many factors such as pumping head, solar intensity, etc.

A PV-powered cathodic protection (CP) system is designed to supply a CP system to control the corrosion of a metal surface. This technique is based on the impressive current acquired from PV solar energy systems and is utilized for burying pipelines, tanks, concrete structures, etc.

Concentrated PV (CPV) technology uses either the refractive or the reflective concentrators to increase sunlight to PV cells [ 24 , 25 ]. High-efficiency solar cells are usually used, consisting of many layers of semiconductor materials that stack on top of each other. This technology has an efficiency of >47%. In addition, the devices produce electricity and the heat can be used for other purposes [ 26 , 27 ].

For CSP systems, the solar rays are concentrated using mirrors in this application. These rays will heat a fluid, resulting in steam used to power a turbine and generate electricity. Large-scale power stations employ CSP to generate electricity. A field of mirrors typically redirect rays to a tall thin tower in a CSP power station. Thus, numerous large flat heliostats (mirrors) are used to track the Sun and concentrate its light onto a receiver in power tower systems, sometimes known as central receivers. The hot fluid could be utilized right away to produce steam or stored for later usage. Another of the great benefits of a CSP power station is that it may be built with molten salts to store heat and generate electricity outside of daylight hours.

Mirrored dishes are used in dish engine systems to focus and concentrate sunlight onto a receiver. The dish assembly tracks the Sun’s movement to capture as much solar energy as possible. The engine includes thin tubes that work outside the four-piston cylinders and it opens into the cylinders containing hydrogen or helium gas. The pistons are driven by the expanding gas. Finally, the pistons drive an electric generator by turning a crankshaft.

A further water-treatment technique, using reverse osmosis, depends on the solar-thermal and using solar concentrated power through the parabolic trough technique. The desalination employs CSP technology that utilizes hybrid integration and thermal storage allows continuous operation and is a cost-effective solution. Solar thermal can be used for domestic purposes such as a dryer. In some countries or societies, the so-called food dehydration is traditionally used to preserve some food materials such as meats, fruits and vegetables.

Sustainable energy development is defined as the development of the energy sector in terms of energy generating, distributing and utilizing that are based on sustainability rules [ 28 ]. Energy systems will significantly impact the environment in both developed and developing countries. Consequently, the global sustainable energy system must optimize efficiency and reduce emissions [ 29 ].

The sustainable development scenario is built based on the economic perspective. It also examines what activities will be required to meet shared long-term climate benefits, clean air and energy access targets. The short-term details are based on the IEA’s sustainable recovery strategy, which aims to promote economies and employment through developing a cleaner and more reliable energy infrastructure [ 15 ]. In addition, sustainable development includes utilizing renewable-energy applications, smart-grid technologies, energy security, and energy pricing, and having a sound energy policy [ 29 ].

The demand-side response can help meet the flexibility requirements in electricity systems by moving demand over time. As a result, the integration of renewable technologies for helping facilitate the peak demand is reduced, system stability is maintained, and total costs and CO 2 emissions are reduced. The demand-side response is currently used mostly in Europe and North America, where it is primarily aimed at huge commercial and industrial electricity customers [ 15 ].

International standards are an essential component of high-quality infrastructure. Establishing legislative convergence, increasing competition and supporting innovation will allow participants to take part in a global world PV market [ 30 ]. Numerous additional countries might benefit from more actively engaging in developing global solar PV standards. The leading countries in solar PV manufacturing and deployment have embraced global standards for PV systems and highly contributed to clean-energy development. Additional assistance and capacity-building to enhance quality infrastructure in developing economies might also help support wider implementation and compliance with international solar PV standards. Thus, support can bring legal requirements and frameworks into consistency and give additional impetus for the trade of secure and high-quality solar PV products [ 19 ].

Continuous trade-led dissemination of solar PV and other renewable technologies will strengthen the national infrastructure. For instance, off-grid solar energy alternatives, such as stand-alone systems and mini-grids, could be easily deployed to assist healthcare facilities in improving their degree of services and powering portable testing sites and vaccination coolers. In addition to helping in the immediate medical crisis, trade-led solar PV adoption could aid in the improving economy from the COVID-19 outbreak, not least by providing jobs in the renewable-energy sector, which are estimated to reach >40 million by 2050 [ 19 ].

The framework for energy sustainability development, by the application of solar energy, is one way to achieve that goal. With the large availability of solar energy resources for PV and CSP energy applications, we can move towards energy sustainability. Fig. 3 illustrates plans for solar energy sustainability.

Framework for solar energy applications in energy sustainability.

Framework for solar energy applications in energy sustainability.

The environmental consideration of such applications, including an aspect of the environmental conditions, operating conditions, etc., have been assessed. It is clean, friendly to the environment and also energy-saving. Moreover, this technology has no removable parts, low maintenance procedures and longevity.

Economic and social development are considered by offering job opportunities to the community and providing cheaper energy options. It can also improve people’s income; in turn, living standards will be enhanced. Therefore, energy is paramount, considered to be the most vital element of human life, society’s progress and economic development.

As efforts are made to increase the energy transition towards sustainable energy systems, it is anticipated that the next decade will see a continued booming of solar energy and all clean-energy technology. Scholars worldwide consider research and innovation to be substantial drivers to enhance the potency of such solar application technology.

2.1 Employment from renewable energy

The employment market has also boomed with the deployment of renewable-energy technology. Renewable-energy technology applications have created >12 million jobs worldwide. The solar PV application came as the pioneer, which created >3 million jobs. At the same time, while the solar thermal applications (solar heating and cooling) created >819 000 jobs, the CSP attained >31 000 jobs [ 20 ].

According to the reports, although top markets such as the USA, the EU and China had the highest investment in renewables jobs, other Asian countries have emerged as players in the solar PV panel manufacturers’ industry [ 31 ].

Solar energy employment has offered more employment than other renewable sources. For example, in the developing countries, there was a growth in employment chances in solar applications that powered ‘micro-enterprises’. Hence, it has been significant in eliminating poverty, which is considered the key goal of sustainable energy development. Therefore, solar energy plays a critical part in fulfilling the sustainability targets for a better plant and environment [ 31 , 32 ]. Fig. 4 illustrates distributions of world renewable-energy employment.

World renewable-energy employment [20].

World renewable-energy employment [ 20 ].

The world distribution of PV jobs is disseminated across the continents as follows. There was 70% employment in PV applications available in Asia, while 10% is available in North America, 10% available in South America and 10% availability in Europe. Table 1 details the top 10 countries that have relevant jobs in Asia, North America, South America and Europe.

List of the top 10 countries that created jobs in solar PV applications [ 19 , 33 ]

Solar energy investments can meet energy targets and environmental protection by reducing carbon emissions while having no detrimental influence on the country’s development [ 32 , 34 ]. In countries located in the ‘Sunbelt’, there is huge potential for solar energy, where there is a year-round abundance of solar global horizontal irradiation. Consequently, these countries, including the Middle East, Australia, North Africa, China, the USA and Southern Africa, to name a few, have a lot of potential for solar energy technology. The average yearly solar intensity is >2800 kWh/m 2 and the average daily solar intensity is >7.5 kWh/m 2 . Fig. 5 illustrates the optimum areas for global solar irradiation.

World global solar irradiation map [35].

World global solar irradiation map [ 35 ].

The distribution of solar radiation and its intensity are two important factors that influence the efficiency of solar PV technology and these two parameters vary among different countries. Therefore, it is essential to realize that some solar energy is wasted since it is not utilized. On the other hand, solar radiation is abundant in several countries, especially in developing ones, which makes it invaluable [ 36 , 37 ].

Worldwide, the PV industry has benefited recently from globalization, which has allowed huge improvements in economies of scale, while vertical integration has created strong value chains: as manufacturers source materials from an increasing number of suppliers, prices have dropped while quality has been maintained. Furthermore, the worldwide incorporated PV solar device market is growing fast, creating opportunities enabling solar energy firms to benefit from significant government help with underwriting, subsides, beneficial trading licences and training of a competent workforce, while the increased rivalry has reinforced the motivation to continue investing in research and development, both public and private [ 19 , 33 ].

The global outbreak of COVID-19 has impacted ‘cross-border supply chains’ and those investors working in the renewable-energy sector. As a result, more diversity of solar PV supply-chain processes may be required in the future to enhance long-term flexibility versus exogenous shocks [ 19 , 33 ].

It is vital to establish a well-functioning quality infrastructure to expand the distribution of solar PV technologies beyond borders and make it easier for new enterprises to enter solar PV value chains. In addition, a strong quality infrastructure system is a significant instrument for assisting local firms in meeting the demands of trade markets. Furthermore, high-quality infrastructure can help reduce associated risks with the worldwide PV project value chain, such as underperforming, inefficient and failing goods, limiting the development, improvement and export of these technologies. Governments worldwide are, at various levels, creating quality infrastructure, including the usage of metrology i.e. the science of measurement and its application, regulations, testing procedures, accreditation, certification and market monitoring [ 33 , 38 ].

The perspective is based on a continuous process of technological advancement and learning. Its speed is determined by its deployment, which varies depending on the scenario [ 39 , 40 ]. The expense trends support policy preferences for low-carbon energy sources, particularly in increased energy-alteration scenarios. Emerging technologies are introduced and implemented as quickly as they ever have been before in energy history [ 15 , 33 ].

The CSP stations have been in use since the early 1980s and are currently found all over the world. The CSP power stations in the USA currently produce >800 MW of electricity yearly, which is sufficient to power ~500 000 houses. New CSP heat-transfer fluids being developed can function at ~1288 o C, which is greater than existing fluids, to improve the efficiency of CSP systems and, as a result, to lower the cost of energy generated using this technology. Thus, as a result, CSP is considered to have a bright future, with the ability to offer large-scale renewable energy that can supplement and soon replace traditional electricity-production technologies [ 41 ]. The DESERTEC project has drawn out the possibility of CSP in the Sahara Desert regions. When completed, this investment project will have the world’s biggest energy-generation capacity through the CSP plant, which aims to transport energy from North Africa to Europe [ 42 , 43 ].

The costs of manufacturing materials for PV devices have recently decreased, which is predicted to compensate for the requirements and increase the globe’s electricity demand [ 44 ]. Solar energy is a renewable, clean and environmentally friendly source of energy. Therefore, solar PV application techniques should be widely utilized. Although PV technology has always been under development for a variety of purposes, the fact that PV solar cells convert the radiant energy from the Sun directly into electrical power means it can be applied in space and in terrestrial applications [ 38 , 45 ].

In one way or another, the whole renewable-energy sector has a benefit over other energy industries. A long-term energy development plan needs an energy source that is inexhaustible, virtually accessible and simple to gather. The Sun rises over the horizon every day around the globe and leaves behind ~108–1018 kWh of energy; consequently, it is more than humanity will ever require to fulfil its desire for electricity [ 46 ].

The technology that converts solar radiation into electricity is well known and utilizes PV cells, which are already in use worldwide. In addition, various solar PV technologies are available today, including hybrid solar cells, inorganic solar cells and organic solar cells. So far, solar PV devices made from silicon have led the solar market; however, these PVs have certain drawbacks, such as expenditure of material, time-consuming production, etc. It is important to mention here the operational challenges of solar energy in that it does not work at night, has less output in cloudy weather and does not work in sandstorm conditions. PV battery storage is widely used to reduce the challenges to gain high reliability. Therefore, attempts have been made to find alternative materials to address these constraints. Currently, this domination is challenged by the evolution of the emerging generation of solar PV devices based on perovskite, organic and organic/inorganic hybrid materials.

This paper highlights the significance of sustainable energy development. Solar energy would help steady energy prices and give numerous social, environmental and economic benefits. This has been indicated by solar energy’s contribution to achieving sustainable development through meeting energy demands, creating jobs and protecting the environment. Hence, a paramount critical component of long-term sustainability should be investigated. Based on the current condition of fossil-fuel resources, which are deemed to be depleting energy sources, finding an innovative technique to deploy clean-energy technology is both essential and expected. Notwithstanding, solar energy has yet to reach maturity in development, especially CSP technology. Also, with growing developments in PV systems, there has been a huge rise in demand for PV technology applications all over the globe. Further work needs to be undertaken to develop energy sustainably and consider other clean energy resources. Moreover, a comprehensive experimental and validation process for such applications is required to develop cleaner energy sources to decarbonize our planet.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

World Health Organization . COP26 Special Report on Climate Change and Health: The Health Argument for Climate Action. Geneva : World Health Organization , 2021 .

Google Scholar

Google Preview

Hunter DB , Salzman JE , Zaelke D . Glasgow Climate Summit: COP26. UCLA School of Law, Public Law Research Paper No. 22-02. 2021 . doi: org/10.2139/ssrn.4005648 30 March 2022 , date last accessed).

UNFCCC . Paris Agreement-Status of Ratification, United Nations Framework Convention on Climate , 2016 . https://unfccc.int/process/the-paris-agreement/status-of-ratification ( 25 January 2022 , date last accessed).

UNFCCC . The Paris Agreement. Archived from the original on 19 March 2021 . Retrieved 18 September 2021 . https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement ( 2 February 2022 , date last accessed).

Watts RG. Engineering Response to Climate Change. 2nd edn. Boca Raton, FL : CRC Press , 2013 .

Sorensen B. Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning . 4th edn. London : Academic Press , 2010 .

IEA, IRENA, WMO, WBG, WHO . Tracking SDG7: The Energy Progress Report 2021. Washington, DC : The World Bank , 2021 .

Edenhofer O , Pichs-Madruga R , Sokona Y , et al.  Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge : Cambridge University Press , 2011 .

Roaf S , Roaf S , Crichton D , et al.  Adapting buildings and Cities for Climate Change: A 21st Century Survival Guide . 2nd edn. Oxford : Architectural Press , 2009 .

Sims RE . Renewable energy: a response to climate change . Solar Energy , 2004 , 76 : 9 – 17 .

Muneer T. Solar Radiation and Daylight Models. 2nd edn, London : Routledge , 2004 .

Martin J . ‘Green growth’: from a growing eco-industry to economic sustainability . Energy Policy , 2012 , 48 : 13 – 21 .

IRENA. A Roadmap to 2050: International Renewable Energy Agency: Global energy Transformation. Abu Dhabi : IRENA , 2018 .

Kost C , Mayer JN , Thomsen J , et al.  Levelized Cost of Electricity Renewable Energy Technologies. Freiburg : Fraunhofer Institute for Solar Energy Systems (ISE), 2013 , 144 .

Cozzi L , Gould T , Bouckart S , et al.  World Energy Outlook 2020. Paris : International Energy Agency , 2020 .

Ku AY , de Souza A , McRobie J , et al.  Zero-emission public transit could be a catalyst for decarbonization of the transportation and power sectors . Clean Energy , 2021 , 5 : 492 – 504 .

Bouckaert S , Pales AF , McGlade C , et al.  Net Zero by 2050: A Roadmap for the Global Energy Sector. Paris : International Energy Agency , 2021 .

Fraas LM . History of solar cell development . Low-cost Solar Electric Power. 2014 : 1 – 12 . doi: 10.1007/978-3-319-07530-31 .

Gahrens S , Alessandra S , Steinfatt K. Trading Into a Bright Energy Future. The Case for Open, High-Quality Solar Photovoltaic Markets . Abu Dhabi : IRENA , 2021 , 1 – 44 . https://irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jul/IRENA_WTO_Trading_Energy_Future_2021.pdf ( 21 April 2022 , date last accessed).

IRENA . Solar Energy—International Renewable Energy Agency . 2021 . www.irena.org/solar ( 2 February 2022 , date last accessed).

Honsberg C , Bowden S . Sun Position Calculator . 2014 . http://pveducation org/pvcdrom/properties-of-sunlight/sun-position-calculator ( 25 January 2022 , date last accessed).

Green MA , Hishikawa Y , Dunlop ED , et al.  Solar cell efficiency tables (version 52) . Progress in Photovoltaics , 2018 , 26 : 427 – 436 .

Kylili A , Fokaides PA . Investigation of building integrated photovoltaics potential in achieving the zero energy building target . Indoor Built Environment , 2014 , 23 : 92 – 106 .

Maka AO , O’Donovan TS . A review of thermal load and performance characterisation of a high concentrating photovoltaic (HCPV) solar receiver assembly . Solar Energy , 2020 , 206 : 35 – 51 .

Mohamed ET , Maka AO , Mehmood M , et al.  Performance simulation of single and dual-junction GaInP/GaAs tandem solar cells using AMPS-1D . Sustainable Energy Technologies Assessments , 2021 , 44 : 101067 .

Maka AO , O’Donovan TS . Dynamic performance analysis of solar concentrating photovoltaic receiver by coupling of weather data with the thermal-electrical model . Thermal Science Engineering Progress , 2021 , 24 : 100923 .

Maka AO , O’Donovan TS . Transient thermal-electrical performance modelling of solar concentrating photovoltaic (CPV) receiver . Solar Energy , 2020 , 211 : 897 – 907 .

Radovanovic M , Popov S , Dodic S. Sustainable Energy Management. Cambridge, MA : Academic Press , 2012 .

Salvarli MS , Salvarli H . For sustainable development: future trends in renewable energy and enabling technologies . In: Al Al Qubeissi M, El-kharouf A, Soyhan HS (eds). Qubeissi M , El-kharouf A , Soyhan HS (eds). Renewable Energy-Resources, Challenges and Applications . London : IntechOpen , 2020 .

Maka AO , Salem S , Mehmood M . Solar photovoltaic (PV) applications in Libya: challenges, potential, opportunities and future perspectives . Cleaner Engineering Technology , 2021 , 51 : 100267 .

IRENA . Renewable Energy and Jobs—Annual Review 2021, (REJ) . 2021 . https://www.irena.org/publications/2021/Oct/Renewable-Energy-and-Jobs-Annual-Review-2021 ( 2 January 2022 , date last accessed).

Obaideen K , AlMallahi MN , Alami AH , et al.  On the contribution of solar energy to sustainable developments goals: case study on Mohammed bin Rashid Al Maktoum Solar Park . International Journal of Thermofluids , 2021 , 12 : 100123 .

IRENA . International Renewable Energy Agency, Renewable Energy and Jobs—Annual Review 2020. Abu Dhabi : IRENA , 2020 .

Strielkowski W , Civín L , Tarkhanova E , et al.  Renewable energy in the sustainable development of electrical power sector: a review . Energies , 2021 , 14 : 8240 .

Grid-Arendal . Natural Resources—Solar Power (Potential) . 2008 . https://www.grida.no/resources/7308 ( 9 February 2022 , date last accessed).

Kannan N , Vakeesan D . Solar energy for future world: a review . Renewable Sustainable Energy Reviews , 2016 , 62 : 1092 – 1105 .

Löf GO , Duffie JA , Smith CO . World distribution of solar radiation . Solar Energy , 1966 , 10 : 27 – 37 .

Kabir E , Kumar P , Kumar S , et al.  Solar energy: potential and future prospects . Renewable Sustainable Energy Reviews , 2018 , 82 : 894 – 900 .

Johansson TB , Goldemberg J. Energy for Sustainable Development: A Policy Agenda. New York : United Nations Development Programme (UNDP) , 2002 .

Lowe R , Drummond P . Solar, wind and logistic substitution in global energy supply to 2050—barriers and implications . Renewable Sustainable Energy Reviews , 2022 , 153 : 111720 .

Asmelash E , Prakash G. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-economic Aspects . Abu Dhabi : IRENA , 2019 .

Griffiths S . Strategic considerations for deployment of solar photovoltaics in the Middle East and North Africa . Energy Strategy Reviews , 2013 , 2 : 125 – 131 .

Hafner M , Tagliapietra S , El Andaloussi EH . Outlook for Electricity and Renewable Energy in Southern and Eastern Mediterranean Countries. WP4b, Energy and Climate Change Mitigations, MEDPROTechnical Report No. 16/October 2012 . www.medpro-foresight.eu ( 25 January 2022 , date last accessed).

Martí A , Luque A. Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization . 1st edn. Boca Raton, FL : CRC Press , 2003 .

Dimroth F , Kurtz S . High-efficiency multijunction solar cells . MRS Bulletin , 2007 , 32 : 230 – 235 .

Kashmir J . Solar Energy for Sustainable Development . 2018 . https://www.dailyexcelsior.com/solar-energy-sustainable-development/ ( 15 January 2022 , date last accessed).

Email alerts

Citing articles via.

  • Advertising and Corporate Services

Affiliations

  • Online ISSN 2515-396X
  • Print ISSN 2515-4230
  • Copyright © 2024 National Institute of Clean-and-Low-Carbon Energy
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Future Energy Systems Center
  • Studies and reports
  • Funding opportunities
  • Basic energy science
  • Built environment and infrastructure
  • Climate and environment
  • Conventional energy
  • Developing world
  • Energy efficiency
  • Nuclear energy
  • Policy and economics
  • Power distribution and energy storage
  • Renewable energy
  • Transportation
  • Undergraduate education
  • Graduate & postdoctoral
  • Online education
  • Education research
  • Current members
  • Energy Futures
  • In the media
  • Affiliations

The Future of Solar Energy

Read the report.

solar energy research articles

Executive summary (PDF) Full report (PDF)

The Future of Solar Energy considers only the two widely recognized classes of technologies for converting solar energy into electricity — photovoltaics (PV) and concentrated solar power (CSP), sometimes called solar thermal) — in their current and plausible future forms. Because energy supply facilities typically last several decades, technologies in these classes will dominate solar-powered generation between now and 2050, and we do not attempt to look beyond that date. In contrast to some earlier Future of studies, we also present no forecasts — for two reasons. First, expanding the solar industry dramatically from its relatively tiny current scale may produce changes we do not pretend to be able to foresee today. Second, we recognize that future solar deployment will depend heavily on uncertain future market conditions and public policies — including but not limited to policies aimed at mitigating global climate change.

As in other studies in this series, our primary aim is to inform decision-makers in the developed world, particularly the United States. We concentrate on the use of grid-connected solar-powered generators to replace conventional sources of electricity. For the more than one billion people in the developing world who lack access to a reliable electric grid, the cost of small-scale PV generation is often outweighed by the very high value of access to electricity for lighting and charging mobile telephone and radio batteries. In addition, in some developing nations it may be economic to use solar generation to reduce reliance on imported oil, particularly if that oil must be moved by truck to remote generator sites. A companion working paper discusses both these valuable roles for solar energy in the developing world.

Related publications

Shaping photovoltaic array output to align with changing wholesale electricity price profiles

December 2019

Spatial and temporal variation in the value of solar power across United States electricity markets

Solar heating for residential and industrial processes

Related news

solar energy research articles

MIT Energy Initiative Director Robert Armstrong shares perspectives on past successes and ongoing and future energy projects at the Institute.

solar energy research articles

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Researchers find benefits of solar photovoltaics outweigh costs

Press contact :.

Utility-scale photovoltaic arrays are an economic investment across most of the United States when health and climate benefits are taken into account, concludes an analysis by MITEI postdoc Patrick Brown and Senior Lecturer Francis O’Sullivan. Their results show the importance of providing accurate price signals to generators and consumers and of adopting policies that reward installation of sol...

Previous image Next image

Over the past decade, the cost of solar photovoltaic (PV) arrays has fallen rapidly. But at the same time, the value of PV power has declined in areas that have installed significant PV generating capacity. Operators of utility-scale PV systems have seen electricity prices drop as more PV generators come online. Over the same time period, many coal-fired power plants were required to install emissions-control systems, resulting in declines in air pollution nationally and regionally. The result has been improved public health — but also a decrease in the potential health benefits from offsetting coal generation with PV generation.

Given those competing trends, do the benefits of PV generation outweigh the costs? Answering that question requires balancing the up-front capital costs against the lifetime benefits of a PV system. Determining the former is fairly straightforward. But assessing the latter is challenging because the benefits differ across time and place. “The differences aren’t just due to variation in the amount of sunlight a given location receives throughout the year,” says  Patrick R. Brown PhD ’16, a postdoc at the MIT Energy Initiative. “They’re also due to variability in electricity prices and pollutant emissions.”

The drop in the price paid for utility-scale PV power stems in part from how electricity is bought and sold on wholesale electricity markets. On the “day-ahead” market, generators and customers submit bids specifying how much they’ll sell or buy at various price levels at a given hour on the following day. The lowest-cost generators are chosen first. Since the variable operating cost of PV systems is near zero, they’re almost always chosen, taking the place of the most expensive generator then in the lineup. The price paid to every selected generator is set by the highest-cost operator on the system, so as more PV power comes on, more high-cost generators come off, and the price drops for everyone. As a result, in the middle of the day, when solar is generating the most, prices paid to electricity generators are at their lowest.

Brown notes that some generators may even bid negative prices. “They’re effectively paying consumers to take their power to ensure that they are dispatched,” he explains. For example, inflexible coal and nuclear plants may bid negative prices to avoid frequent shutdown and startup events that would result in extra fuel and maintenance costs. Renewable generators may also bid negative prices to obtain larger subsidies that are rewarded based on production. 

Health benefits also differ over time and place. The health effects of deploying PV power are greater in a heavily populated area that relies on coal power than in a less-populated region that has access to plenty of clean hydropower or wind. And the local health benefits of PV power can be higher when there’s congestion on transmission lines that leaves a region stuck with whatever high-polluting sources are available nearby. The social costs of air pollution are largely “externalized,” that is, they are mostly unaccounted for in electricity markets. But they can be quantified using statistical methods, so health benefits resulting from reduced emissions can be incorporated when assessing the cost-competitiveness of PV generation.

The contribution of fossil-fueled generators to climate change is another externality not accounted for by most electricity markets. Some U.S. markets, particularly in California and the Northeast, have implemented cap-and-trade programs, but the carbon dioxide (CO 2 ) prices in those markets are much lower than estimates of the social cost of CO 2 , and other markets don’t price carbon at all. A full accounting of the benefits of PV power thus requires determining the CO 2  emissions displaced by PV generation and then multiplying that value by a uniform carbon price representing the damage that those emissions would have caused.

Calculating PV costs and benefits

To examine the changing value of solar power, Brown and his colleague Francis M. O’Sullivan, the senior vice president of strategy at Ørsted Onshore North America and a senior lecturer at the MIT Sloan School of Management, developed a methodology to assess the costs and benefits of PV power across the U.S. power grid annually from 2010 to 2017. 

The researchers focused on six “independent system operators” (ISOs) in California, Texas, the Midwest, the Mid-Atlantic, New York, and New England. Each ISO sets electricity prices at hundreds of “pricing nodes” along the transmission network in their region. The researchers performed analyses at more than 10,000 of those pricing nodes.

For each node, they simulated the operation of a utility-scale PV array that tilts to follow the sun throughout the day. They calculated how much electricity it would generate and the benefits that each kilowatt would provide, factoring in energy and “capacity” revenues as well as avoided health and climate change costs associated with the displacement of fossil fuel emissions. (Capacity revenues are paid to generators for being available to deliver electricity at times of peak demand.) They focused on emissions of CO 2 , which contributes to climate change, and of nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and particulate matter called PM 2.5 — fine particles that can cause serious health problems and can be emitted or formed in the atmosphere from NO x  and SO 2 .

The results of the analysis showed that the wholesale energy value of PV generation varied significantly from place to place, even within the region of a given ISO. For example, in New York City and Long Island, where population density is high and adding transmission lines is difficult, the market value of solar was at times 50 percent higher than across the state as a whole. 

The public health benefits associated with SO 2 , NO x , and PM 2.5  emissions reductions declined over the study period but were still substantial in 2017. Monetizing the health benefits of PV generation in 2017 would add almost 75 percent to energy revenues in the Midwest and New York and fully 100 percent in the Mid-Atlantic, thanks to the large amount of coal generation in the Midwest and Mid-Atlantic and the high population density on the Eastern Seaboard. 

Based on the calculated energy and capacity revenues and health and climate benefits for 2017, the researchers asked: Given that combination of private and public benefits, what upfront PV system cost would be needed to make the PV installation “break even” over its lifetime, assuming that grid conditions in that year persist for the life of the installation? In other words, says Brown, “At what capital cost would an investment in a PV system be paid back in benefits over the lifetime of the array?” 

Assuming 2017 values for energy and capacity market revenues alone, an unsubsidized PV investment at 2017 costs doesn’t break even. Add in the health benefit, and PV breaks even at 30 percent of the pricing nodes modeled. Assuming a carbon price of $50 per ton, the investment breaks even at about 70 percent of the nodes, and with a carbon price of $100 per ton (which is still less than the price estimated to be needed to limit global temperature rise to under 2 degrees Celsius), PV breaks even at all of the modeled nodes. 

That wasn’t the case just two years earlier: At 2015 PV costs, PV would only have broken even in 2017 at about 65 percent of the nodes counting market revenues, health benefits, and a $100 per ton carbon price. “Since 2010, solar has gone from one of the most expensive sources of electricity to one of the cheapest, and it now breaks even across the majority of the U.S. when considering the full slate of values that it provides,” says Brown. 

Based on their findings, the researchers conclude that the decline in PV costs over the studied period outpaced the decline in value, such that in 2017 the market, health, and climate benefits outweighed the cost of PV systems at the majority of locations modeled. “So the amount of solar that’s competitive is still increasing year by year,” says Brown. 

The findings underscore the importance of considering health and climate benefits as well as market revenues. “If you’re going to add another megawatt of PV power, it’s best to put it where it’ll make the most difference, not only in terms of revenues but also health and CO 2 ,” says Brown. 

Unfortunately, today’s policies don’t reward that behavior. Some states do provide renewable energy subsidies for solar investments, but they reward generation equally everywhere. Yet in states such as New York, the public health benefits would have been far higher at some nodes than at others. State-level or regional reward mechanisms could be tailored to reflect such variation in node-to-node benefits of PV generation, providing incentives for installing PV systems where they’ll be most valuable. Providing time-varying price signals (including the cost of emissions) not only to utility-scale generators, but also to residential and commercial electricity generators and customers, would similarly guide PV investment to areas where it provides the most benefit. 

Time-shifting PV output to maximize revenues 

The analysis provides some guidance that might help would-be PV installers maximize their revenues. For example, it identifies certain “hot spots” where PV generation is especially valuable. At some high-electricity-demand nodes along the East Coast, for instance, persistent grid congestion has meant that the projected revenue of a PV generator has been high for more than a decade. The analysis also shows that the sunniest site may not always be the most profitable choice. A PV system in Texas would generate about 20 percent more power than one in the Northeast, yet energy revenues were greater at nodes in the Northeast than in Texas in some of the years analyzed. 

To help potential PV owners maximize their future revenues, Brown and O’Sullivan performed a follow-on study focusing on ways to shift the output of PV arrays to align with times of higher prices on the wholesale market. For this analysis, they considered the value of solar on the day-ahead market and also on the “real-time market,” which dispatches generators to correct for discrepancies between supply and demand. They explored three options for shaping the output of PV generators, with a focus on the California real-time market in 2017, when high PV penetration led to a large reduction in midday prices compared to morning and evening prices.

  • Curtailing output when prices are negative: During negative-price hours, a PV operator can simply turn off generation. In California in 2017, curtailment would have increased revenues by 9 percent on the real-time market compared to “must-run” operation.
  • Changing the orientation of “fixed-tilt” (stationary) solar panels: The general rule of thumb in the Northern Hemisphere is to orient solar panels toward the south, maximizing production over the year. But peak production then occurs at about noon, when electricity prices in markets with high solar penetration are at their lowest. Pointing panels toward the west moves generation further into the afternoon. On the California real-time market in 2017, optimizing the orientation would have increased revenues by 13 percent, or 20 percent in conjunction with curtailment.
  • Using 1-axis tracking: For larger utility-scale installations, solar panels are frequently installed on automatic solar trackers, rotating throughout the day from east in the morning to west in the evening. Using such 1-axis tracking on the California system in 2017 would have increased revenues by 32 percent over a fixed-tilt installation, and using tracking plus curtailment would have increased revenues by 42 percent.

The researchers were surprised to see how much the optimal orientation changed in California over the period of their study. “In 2010, the best orientation for a fixed array was about 10 degrees west of south,” says Brown. “In 2017, it’s about 55 degrees west of south.” That adjustment is due to changes in market prices that accompany significant growth in PV generation — changes that will occur in other regions as they start to ramp up their solar generation.

The researchers stress that conditions are constantly changing on power grids and electricity markets. With that in mind, they made their database and computer code openly available so that others can readily use them to calculate updated estimates of the net benefits of PV power and other distributed energy resources.

They also emphasize the importance of getting time-varying prices to all market participants and of adapting installation and dispatch strategies to changing power system conditions. A law set to take effect in California in 2020 will require all new homes to have solar panels. Installing the usual south-facing panels with uncurtailable output could further saturate the electricity market at times when other PV installations are already generating.

“If new rooftop arrays instead use west-facing panels that can be switched off during negative price times, it’s better for the whole system,” says Brown. “Rather than just adding more solar at times when the price is already low and the electricity mix is already clean, the new PV installations would displace expensive and dirty gas generators in the evening. Enabling that outcome is a win all around.”

Patrick Brown and this research were supported by a U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award through the EERE Solar Energy Technologies Office. The computer code and data repositories are available here and here .

This article appears in the  Spring 2020  issue of  Energy Futures, the magazine of the MIT Energy Initiative. 

Share this news article on:

Related links.

  • Paper: “Shaping photovoltaic array output to align with changing wholesale electricity price profiles.”
  • Paper: “Spatial and temporal variation in the value of solar power across United States electricity markets.”
  • Report: “The Future of Solar Energy”
  • Patrick Brown
  • MIT Energy Initiative
  • Energy Futures magazine

Related Topics

  • MIT Sloan School of Management
  • Climate change
  • Photovoltaics
  • Environment
  • Sustainability
  • Renewable energy

Related Articles

An MIT study shows that electrical vehicle batteries could have a useful and profitable second life as backup storage for grid-scale solar photovoltaic installations, where they could perform for more than a decade in this less demanding role. This image shows a ‘cut-away’ view of a lithium-ion battery over a background of cars and solar panels.

Solar energy farms could offer second life for electric vehicle batteries

Currently, 90 percent of the world’s solar panels are made from crystalline silicon, and the industry continues to grow at a rate of about 30 percent per year.

For cheaper solar cells, thinner really is better

Solar panels on a grassy ridge

MITEI releases report on the future of solar energy

Previous item Next item

More MIT News

In the center is a brain. Around the brain, the word “hello” is written in the language French, Japanese, Spanish, Vietnamese, Hindi, Chinese, and English.

For people who speak many languages, there’s something special about their native tongue

Read full story →

A blue-tinted human eye has a robotic-like overlay. The edges of the image have yellow circles showing scenes like people smiling, flowers, and a truck. These circles get blurrier the further away from the eyeball they are.

Researchers enhance peripheral vision in AI models

A coronal cross-section of a mouse brain is stained blue. The entire outer edge and occasional points further inside are speckled with yellow-green dots.

How sensory gamma rhythm stimulation clears amyloid in Alzheimer’s mice

Close-up of a dress neckline on a mannequin being targeted by a laser

Is this the future of fashion?

12 astronauts in blue jumpsuits appear on stage. Several are clapping or waving at the crowd.

Three MIT alumni graduate from NASA astronaut training

Illustration shows a pink woman breathing in, and a blue woman singing. Pink arrows point toward them, and blue arrows point away.

How the brain coordinates speaking and breathing

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram
  • Open access
  • Published: 17 July 2023

Recent advances in solar photovoltaic materials and systems for energy storage applications: a review

  • Modupeola Dada   ORCID: orcid.org/0000-0002-9227-197X 1 &
  • Patricia Popoola 1  

Beni-Suef University Journal of Basic and Applied Sciences volume  12 , Article number:  66 ( 2023 ) Cite this article

8154 Accesses

10 Citations

Metrics details

In recent years, solar photovoltaic technology has experienced significant advances in both materials and systems, leading to improvements in efficiency, cost, and energy storage capacity. These advances have made solar photovoltaic technology a more viable option for renewable energy generation and energy storage. However, intermittent is a major limitation of solar energy, and energy storage systems are the preferred solution to these challenges where electric power generation is applicable. Hence, the type of energy storage system depends on the technology used for electrical generation. Furthermore, the growing need for renewable energy sources and the necessity for long-term energy solutions have fueled research into novel materials for solar photovoltaic systems. Researchers have concentrated on increasing the efficiency of solar cells by creating novel materials that can collect and convert sunlight into power.

Main body of the abstract

This study provides an overview of the recent research and development of materials for solar photovoltaic devices. The use of renewable energy sources, such as solar power, is becoming increasingly important to address the growing energy demand and mitigate the impact of climate change. Hence, the development of materials with superior properties, such as higher efficiency, lower cost, and improved durability, can significantly enhance the performance of solar panels and enable the creation of new, more efficient photovoltaic devices. This review discusses recent progress in the field of materials for solar photovoltaic devices. The challenges and opportunities associated with these materials are also explored, including scalability, stability, and economic feasibility.

The development of novel materials for solar photovoltaic devices holds great potential to revolutionize the field of renewable energy. With ongoing research and technological advancements, scientists and engineers have been able to design materials with superior properties such as higher efficiency, lower cost, and improved durability. These materials can be used to enhance the performance of existing solar panels and enable the creation of new, more efficient photovoltaic devices. The adoption of these materials could have significant implications for the transition toward a more sustainable and environmentally friendly energy system. However, there are still challenges to be addressed, such as scalability, stability, potential environmental effects, and economic feasibility, before these materials can be widely implemented. Nonetheless, the progress made in this field is promising and continued reports on the research and development of materials for solar photovoltaic devices are crucial for achieving a sustainable future. The adoption of novel materials in solar photovoltaic devices could lead to a more sustainable and environmentally friendly energy system, but further research and development are needed to overcome current limitations and enable large-scale implementation.

1 Background

Energy and environmental problems are at the top of the list of challenges in the world, attributed to the need to replace the combustion exhaust of fossil fuels, which has resulted in environmental contamination and the greenhouse effect as opposed to renewable energy sources [ 1 ]. This replacement will be achieved while keeping pace with the increasing consumption of energy resulting from an increase in population and rising demand from developing countries since the use of non-renewable energy sources would not meet the energy demand because they are an exhaustible and limited source of energy [ 2 ]. Thus, the search for clean and sustainable renewable energy resources has become an urgent priority. Researchers regard solar energy as one of the alternative sustainable energy resources that is low-cost, non-exhaustible, and abundantly available, giving solid and increasing output efficiencies compared to other sources of energy solutions and energy sources of renewable energy [ 3 ]. The sun radiates at 3.8 1023 kW, intercepting the Earth at 1.8 1014 kW, while the remaining energy is scattered, reflected, and taken in by clouds [ 4 ]. 1.7 × 1022 J of the energy from the sun in 1.5 days is equal to the energy produced from three trillion barrels of oil reserves on Earth [ 5 ]. The total annual energy used by the world in 1 year is 4 s.6 × 1020 J, and the sun provides this energy in 1 h [ 5 ]. The solar photovoltaic (SPV) industry heavily depends on solar radiation distribution and intensity. Solar radiation amounts to 3.8 million EJ/year, which is approximately 10,000 times more than the current energy needs [ 6 ]. Solar energy is used whether in solar thermal applications where solar energy is the source of heat or indirectly as a source of electricity in concentrated solar power plants, photo-assisted fuel cells, generating electricity in SPVs, hydrocarbons from CO 2 reduction, and fuels such as hydrogen [ 7 ].

Each technology harvests sunlight rays and converts them into different end forms. For instance, solar energy can be naturally converted into solar fuel through the process of photosynthesis. Also, through photosynthesis, plants store energy from the sun, where protons and electrons are produced, which can be further metabolized to produce H 2 and CH 4. Thus, 11% of solar energy is utilized in the natural photosynthesis of biomass [ 8 ]. Photovoltaics convert photons into electrons to get electrical energy, while in solar thermal applications, the photons are absorbed and their energy is converted into tangible heat [ 9 ]. This heat is used to heat a working fluid that can be directly collected and used for space and water heating [ 10 ].

However, the energy converted may be too low for consumption, and production efficiency can be improved by producing fuel from water and carbon dioxide through artificial bio-inspired nanoscale assemblies, connecting natural photosynthetic pathways in novel configurations, and using genetic engineering to facilitate biomass production [ 11 ]. One of the major challenges for photovoltaic (PV) systems remains matching intermittent energy production with dynamic power demand [ 12 , 13 ]. A solution to this challenge is to add a storage element to these intermittent power sources [ 14 , 15 ].

Furthermore, intermittent sources like SPV are allowed to address timely load demands and add flexibility to storage devices like batteries [ 16 , 17 ]. Nonetheless, compared with the photosynthesis process, which has conversion efficiencies of 5–10%, photovoltaic cells have better solar conversion efficiencies of approximately 22.5% [ 6 , 18 ]. There are other technologies used for enhancing the efficiency of PV systems encountered by temperature changes, which include floating tracking concentrating cooling systems (FTCC), hybrid solar photovoltaic/thermal systems (PV/T) cooled by water spraying, hybrid solar photovoltaic/thermoelectric (PV/TE) systems cooled by a heat sink, hybrid solar photovoltaic/thermal systems cooled by forced water circulation, improving the performance of solar panels through the use of phase change materials, and solar panels with water immersion cooling techniques [ 19 , 20 ]. SPV panels with transparent covering (photonic crystal cooling), hybrid solar photovoltaic/thermal systems (PV/T) having forced air circulation, and SPV panels with thermoelectric cooling [ 21 ]

This review discusses the latest advancements in the field of novel materials for solar photovoltaic devices, including emerging technologies such as perovskite solar cells. It evaluates the efficiency and durability of different generations of materials in solar photovoltaic devices and compares them with traditional materials. It investigates the scalability and cost-effectiveness of producing novel materials for solar photovoltaic devices and identifies the key challenges and opportunities associated with the development and implementation of novel materials in solar photovoltaic devices, such as stability, toxicity, and economic feasibility. Hence, proposing strategies to overcome current limitations and promote the large-scale implementation of novel materials in solar photovoltaic devices, including manufacturing processes and material characterization techniques, while assessing the potential environmental impact of using novel materials in solar photovoltaic devices, including the sustainability and carbon footprint of the production process.

2 Main text

2.1 solar photovoltaic systems.

Solar energy is used in two different ways: one through the solar thermal route using solar collectors, heaters, dryers, etc., and the other through the solar electricity route using SPV, as shown in Fig.  1 . A SPV system consists of arrays and combinations of PV panels, a charge controller for direct current (DC) and alternating current (AC); (DC to DC), a DC-to-AC inverter, a power meter, a breaker, and a battery or an array of batteries depending on the size of the system [ 22 , 23 ].

figure 1

Schematic diagram of the solar photovoltaic systems

This technology converts sunlight directly into electricity, with no interface for conversion. It is pollutant-free during operation, rugged and simple in design, diminishes global warming issues, is modular, has a lower operational cost, offers minimal maintenance, can generate power from microwatts to megawatts, and has the highest power density compared to the other renewable energy technologies [ 24 , 25 ]. A high rate of 100 megawatts (MW) of capacity installed per day in 2013 has been used to illustrate the rise in research interest in PV systems, with a record of 177 gigawatts (GW) of overall PV capacity taking place in 2015 [ 26 , 27 ]. However, according to Nadia et al. [ 19 ], solar photovoltaic systems have considerable limitations, including high prices as compared to fossil fuel energy resources, low efficiency, and intermittent operation. Hence, the solar tracker systems shown in Fig.  2 were designed to mitigate some of these challenges by keeping the solar devices at the optimal angle to track the sun’s position for maximum power production.

figure 2

Solar tracking systems

Various environmental pressures and characteristics, such as angle of photon incidence, panel orientation, photovoltaic module conductivity, the material of solar cells, and time to measure the direction of the sun, can all impact the output of solar panel cells; therefore, before using tracker systems, a large number of measurement results are necessary [ 29 ]. There are active and passive tracking systems. Active tracking systems move the solar panel toward the sun using motors and gear trains, while passive tracking systems rely on a low-boiling-point compressed gas fluid through canisters generated by solar heat [ 30 ]. The disadvantages of passive solar tracking systems are their reliance on weather conditions and the selection of the right gas and glass to develop an efficient passive solar tracking system since the glass absorption levels depend on the color, strength, and chemical properties of the glass. While active solar is high maintenance and reduces power output if the panel is not directly under the sun [ 31 ]. There are also single- and double-axis solar trackers and closed- and open-loop solar trackers. Some trackers use electro-optical units, while others use microprocessor units [ 32 ]. However, the initial cost and running cost of the tracking system, coupled with the cost of energy generated by a PV tracking system, are greater than the cost of energy generated by a fixed system, making their tracking system’s economic advantages unclear. Thus, most recent research on tracking systems has concentrated solely on the optimization of tracking technologies, with little attention devoted to all other critical elements influencing cost and efficiency, PV cell materials, temperature, solar radiation levels, transport, auxiliary equipment, and storage techniques [ 6 ]. Hence, the future outlook on tracking systems includes developing innovative ways for tracking the sun cost-effectively and efficiently. Jamroen et al. [ 32 ] proposed the design and execution of a low-cost dual-axis solar tracking system based on digital logic design and pseudo-azimuthal mounting systems. Their findings reveal that the suggested tracking system improves electrical energy efficiency by 44.89% on average with power costs of 0.2 $/kWh and 0.3 $/kWh, which is relatively low when compared to other tracking methods. Chowdhury et al. [ 35 ], on an 8-bit microcontroller architecture, developed a stand-alone low-cost yet high-precision dual-axis closed-loop sun-tracking system based on the sun position algorithm. Their simulation results showed a very high prediction rate and a very low mean square error, which was concluded to be better than neutral and fuzzy network principles as photovoltaic energy sources.

2.1.1 Photovoltaic energy sources

Photovoltaic energy sources are used as grid-connected systems and stand-alone systems. Their applications include battery charging, water pumping, home power supplies, refrigeration, street lighting, swimming pools, hybrid vehicles, heating systems, telecommunications, satellite power systems, military space, and hydrogen production [ 28 , 29 ]. SPV and storage systems are classified into grid-tied or grid-direct PV systems, off-grid PV systems, and grid/hybrid or grid interaction systems with energy storage [ 30 , 31 ]. The grid-tied solar PV system does not have a battery bank for storage, but a grid-tied inverter is used to convert the DC generated into AC; hence, power can be generated and utilized only during the daytime, which may also be a limiting factor [ 31 , 32 ]. However, the disadvantage of only using the system during the day can be overcome by using a battery bank to store the generated power during the daytime, but this new setup will eventually increase the cost of the system [ 6 , 34 ]. Hence, just using this system during the day makes the grid-tied SPV system very cost-effective, simple to design, easily manageable, and requires less maintenance. Furthermore, solar panels mostly produce more electricity than is required by the loads. Hence, this excess electricity can be given back to the grid instead of being stored in batteries [ 35 , 36 ].

The off-grid PV system, on the other hand, uses a battery for the storage of the generated electricity during the daytime, which can be used in the future or during any emergency. This is beneficial when the load cannot be easily connected to the grid [ 37 , 38 ]. This system not only gives sufficient energy to a household, but it can also power places that are far away from the grid; hence, these systems use more components and are comparatively more expensive than grid-direct systems. Grid-connected PV systems run in parallel and are linked to the electric utility grid [ 39 , 40 ]. The power conditioning unit (PCU) or inverter is the main component of grid-connected PV systems, converting the DC power produced by the PV array into AC power that meets the voltage and power quality requirements of the utility grid for either direct use of appliances or sending to the utility grid to earn feed-in tariff compensation [ 41 , 42 ]. Grid-connected PV systems without backup energy storage (ES) are environmentally friendly, while systems with backup ES are usually interconnected with the utility grid [ 43 , 44 ].

Essential characteristics of PV technology are the operating range of 1 kW up to 300 MW, which can be used as fuel on residential, commercial, and utility scales. The efficiency of PV cells is about 12–16% for crystalline silicon, 11–14% for thin film, and 6–7% for organic cells [ 44 ]. There is no direct environmental impact due to the lack of CO 2 , CO, and NO x emissions. These systems have low operating and maintenance costs. The few drawbacks are higher installation costs, fluctuating output power due to the variation in weather patterns, and the need for mechanical and electronic tracking devices and backup storage for maximum efficiency. Installation costs can vary from 600 to 1300 USD/kW, while operation and maintenance annual costs vary from 0.004 and 0.07 USD/kWh (ac) for utility-scale generation and grid-connected residential systems, respectively [ 21 ].

3 Solar photovoltaic materials

Solar photovoltaic materials shown in Fig.  3 , when exposed to light, absorb the light and transform the energy of the light photons into electrical energy. Commercially available photovoltaic systems are based on inorganic materials, which require costly and energy-intensive processing techniques.

figure 3

Schematic diagram of the solar photovoltaic materials

Moreover, some of those materials, like CdTe, are toxic and have a limited natural abundance. These problems are preventable by using organic photovoltaics. Nonetheless, the effectiveness of organic-based photovoltaic cells is still far below that of solely inorganic-based photovoltaic systems. Photovoltaic devices usually employ semiconductor materials to generate energy, with silicon-based solar cells being the most popular. Photovoltaic (PV) cells or modules made of crystalline silicon (c-Si), whether single-crystalline (sc-Si) or multi-crystalline (c-Si) (mcSi). PV modules, which are fundamental components, can function in harsh outdoor environments and deliver high energy density to electronic loads. These are the most common forms of solar cells, accounting for over 90% of the PV industry. PV modules must have an efficiency of at least 14%, a price of less than 0.4 USD/Wp, and a service life of at least 15 years [ 22 ]. Now, wafer-based crystalline silicon technologies have best satisfied the criteria because of their high efficiency, cheap cost, and extended service life, and they are projected to dominate future PV power generation due to the abundance of materials. The greatest known energy conversion efficiency for research on crystalline silicon PV cells is 25%, although ordinary industrial cells are restricted to 15–18%. Optimizing these cells is a hard undertaking; hence, novel solutions to break past the efficiency barrier of 25% are wafer-slicing technologies and equipment for ultrathin (50 m) wafer technologies, and equipment for direct slicing ultrathin wafers with negligible kerf loss, solar cell and module manufacturing technologies and equipment based on ultrathin wafers. High-quality polycrystalline ingot technologies that outperform monocrystalline cells, contact-forming processes, and materials that are less expensive than screen-printed and burned silver paste are used. To reduce overall PV system costs, low-concentration, and high-efficiency module technologies are used [ 22 , 23 ].

Crystalline silicon solar cells are spectrally selective absorbers that are semiconductor devices. The percentage of incident solar irradiance absorbed by the cell is the absorption factor of a PV cell. Under operational settings, this absorption factor is one of the key criteria controlling cell temperature. The absorption factor may be calculated experimentally using reflection and transmission data. According to Santbergen et al. [ 23 ], using a two-dimensional (2D) computational model that agrees with experimental results, the AM1.5 absorption factor of a typical encapsulated c-Si photovoltaic cell can reach 90.5%. The existence of an appropriate steepness texture at the front of the c-Si wafer was used to obtain such a high absorption factor. As a result, by limiting reflecting losses over the solar spectrum, c-Si cell AM1.5 absorption may potentially be improved to 93.0%. Notably, there is widespread use of c-Si bifacial PV devices compared to their monofacial counterparts due to their potential to achieve a higher annual energy yield. Factors that promote these devices are the bifacial PV performance measurement method/standard for indoor characterization and comprehensive simulation models for outdoor performance characterization [ 24 ]. Non-commercial 3D tools such as PC3D, an open-source numerical analysis program for simulating the internal operation of silicon solar cells, have been reported to provide accurate simulation results that are only ≈1.7% different from their commercial counterparts [ 25 ]. In recent studies, Sun et al. [ 27 ] studied the high-efficiency silicon heterojunction solar cells, which were reported to be the next generation of crystalline silicon cells. The authors reported that increasing the efficiency limits can be achieved by increasing the short-circuit current while maintaining its high open-circuit voltage, and for mass production, there should be minimal consumption of indium and silver. Ibarra et al. [ 6 ] stated that high water quality is now commonplace for crystalline silicon ( c -Si)-based solar cells, meaning that the cell's efficiency potential is largely dictated by the effectiveness of its carrier-selective contacts based on highly doped-silicon, which can introduce negative side effects such as parasitic absorption. According to Chee et al. [ 37 ], carrier-selective crystalline silicon heterojunction (SHJ) solar cells have already achieved remarkable lab-scale efficiencies, with SiOx/heavily doped polycrystalline silicon (n + -/p + -poly-Si) creating the most attractive polysilicon-on-oxide (POLO) junctions.

As a result, industry trends will shift away from p-Si passivated emitter and rear polysilicon (PERPoly) designs and toward TOPCon architectures. Costals et al. [ 38 ] described how vanadium oxide films provide excellent surface passivation with effective lifetime values of up to 800 s and solar cells with efficiencies greater than 18%, shedding light on the possibilities of transition metal oxides deposited using the atomic layer deposition technique. To solve the challenge of realizing a high aspect ratio (AR) of the metal fingers in a bifacial (BF) copper-plated crystalline silicon solar cell, Han et al. [ 31 ] created a new type of hybrid-shaped Cu finger device, electromagnetically fabricated in a 2-step deposition BF plating process, which shows a front-side efficiency of 22.1% and a BF factor of 0.99. Finally, using a grading technique to increase the efficiency of c-Si solar cells, Pham et al. [ 32 ] attained a conversion efficiency of 22%.

Other materials currently in use are low-cost solar cells based on hybrid polymer semiconductor materials containing a light-harvesting material, which absorbs photons with energy equal to or greater than the energy of the band gap ( E g). This leads to the creation of excitons (bound electron–hole pairs) ranging from 5 to 15 nm in most organic semiconductors, which diffuse in the material and may either undergo dissociation to the separate charge carriers or recombination with the emission of energy [ 32 ]. To improve the dissociation of excitons and enhance the efficiency of the PV cell, the photoactive material is combined with a strong acceptor of electrons of high electron affinity. Then, the separated electrons and holes migrate through different materials in the internal electric field generated across the device and are accommodated by the appropriate collecting electrodes. Organic particle–polymer (PCBM-P3HT) solar cells’ conversion efficiencies are much lower than those obtained for semiconductor devices [ 6 ]. Recent research on hybrid cells discusses performance analysis and the parameter optimization of hybrid PV cells [ 34 , 35 ], while porous organic polymer cells have received current research attention for drug delivery and biomedical applications [ 36 , 37 , 38 ].

Thin films (TF) only represent 10% of the global PV market. However, researchers around the world are exploring other options to produce electricity more efficiently using solar cells; hence, R&D for developing new materials is currently going on. A strategic approach to tuning absorbance, grain size rearrangement, conductivity, morphology, topography, and stoichiometric compositions for absorber layer solar cell applications is the incorporation of foreign dopants in the CdSe host lattice. Chasta et al. [ 18 ] using the thermal-evaporation approach, thin films of CdSe:Cu alloys with 1%, 3%, and 5% Cu contents were grown and annealed at 350 °C. Because of their efficiency, simplicity of manufacturing, and low cost, hybrid organic–inorganic halides are regarded as excellent materials when utilized as the absorber layer in perovskite solar cells (PSCs). According to Marí-Guaita et al. [ 39 ], its lower efficiency using MASnI3 as an absorber is more stable, which could be improved by enhancing the bandgap alignment of MaSnI3 [ 39 ]. Tarbi et al. [ 40 ] stated that the physical parameters of the absorption coefficients are more related to the variation of pressure than the temperature variation and deformation of a double-junction solar cell (Jsc) equal to 47.03 mA/cm 2 , and this results in a shift from maximum current density to low voltages while retaining its maximum value of 36.03 mW/m 2 . According to Chaudhry et al. [ 49 ], improving the optical absorption and current density in an active layer, under the standard AM-1.5 solar spectra, is achieved through the inclusion of semiconductor nanoparticles (NPs). The efficiencies were raised by 10% for the aluminum nanoparticles (NPs) design and by 21% and 30% for solar cells with and without anti-reflective thin film coating, respectively. In another study, Al- and Cu-doped ZnO nanostructured films were deposited using a sputtering technique, and doping resulted in enhanced conductivity as well as improved mobility in Al–ZnO and Cu–ZnO films in comparison with pure ZnO films, resulting in efficiencies of 0.492% and 0.559% for Al–ZnO- and Cu–ZnO-based solar cells, respectively.

Dye-sensitized solar cells (DSC) shown in Fig.  4 are an alternative concept to present-day p–n junction photovoltaic devices for optoelectronics applications. DSC is made up of a cathode, a photoactive layer, an electrolyte, and an anode [ 53 ]. The functional layers for flexible DSC, notably the electrodes that also serve as active layer substrates, must be flexible. In contrast to typical systems in which the semiconductor performs both light absorption and charge carrier transport, light is absorbed by a sensitizer attached to the surface of a wide-band semiconductor in this system [ 54 ]. The dye sensitizer absorbs incoming sunlight and uses the energy to initiate a vectorial electron transfer process. Around 10% of overall solar-to-current conversion efficiencies (IPCE) have been achieved [ 55 ]. However, DSC has no practical conversion efficiency breakthrough and suffers from low mechanical stability and problematic sealing, but enhancing the properties of the sensitizers, metal oxide/semiconductor film, substrate, redox electrolyte, and counter electrode (CE) accelerates DSC applications [ 56 ].

figure 4

Schematic diagram of the dye-sensitized solar cells (DSC)

The N3 dye was reported to be stable as a pure solid in the air up to 280 °C, where decarboxylation occurs. It lasts 108 redox cycles under long-term light with no obvious loss of function. Metal oxides, such as TiO 2 , SnO 2 , ZnO 2 , In 2 O 3 , CeO 3 , and NbO 3 , have been employed as photoanodes to investigate materials for effective photoanodes [ 57 ]. Hence, the breakthrough in DSC was the use of a high-surface-area nanoporous TiO 2 layer, and the outstanding stability is the very rapid deactivation of its excited state via charge injection into the TiO 2 , which occurs in the femtosecond time domain [ 58 ].

TiO 2 became the preferred semiconductor because of its low cost, non-toxicity, and abundance. Although the N3/N3 + pair exhibits reversible electrochemical activity in various organic solvents, showing that the lifespan of N3 + is at least several seconds under these conditions, the oxidized form of N3 + , the dye created by electron injection, is significantly less stable [ 59 ]. However, when maintained in the oxidized state, the dye degrades through the loss of sulfur. To avoid this undesirable side reaction, regeneration of the N3 in the photovoltaic cell should occur quickly, i.e., within nanoseconds or microseconds [ 60 ]. Cell failure may occur due to the circumstances of the dye renewal. Recent advances in the field of sensitizers for these devices have resulted in dyes that absorb over the visible spectrum, resulting in better efficiencies. The DSC may be based on a huge internal interface prepared in a simple laboratory environment without strict demands on the purity of the materials or the absence of a built-in electric field. DSC offers low production costs and, interestingly, much lower investment costs compared with conventional PV technologies. It offers flexibility, lightweight, and design opportunities, such as transparency and multicolor options (building integration, consumer products, etc.). There is feedstock availability to reach the terawatt scale, and there is also a short energy payback time (< 1 year), where the enhanced performance is under real outdoor conditions, which are relatively better than competitors at diffuse light and higher temperatures [ 61 ].

In high-efficiency DSCs, ruthenium (Ru) complex dyes and organic solvent-based electrolytes such as N719, N3, and black dye are commonly utilized. Ru dyes, on the other hand, are costly and require a complicated chemical method. Its products, such as ruthenium oxide (RuO 4 ), are also very poisonous and volatile. Organic solvents are also poisonous, ecologically dangerous, and explosive, and their low surface tension can cause leakage difficulties [ 48 , 50 , 52 ]. Hence, organic solvents and Ru-based complex dyes may need to be replaced to realize low-cost, biocompatible, and environmentally benign devices. Water and natural dyes derived from plants could be excellent alternatives, according to Kim et al. [ 56 ]. Yadav et al. [ 60 ] assembled TiO 2  nanorod (NR)-based hibiscus dye with different counter electrodes such as carbon, graphite, and gold. The authors measured efficiencies of 0.07%, 0.10%, and 0.23%, respectively. The key to the breakthrough for DSCs in 1991 was the use of a mesoporous TiO 2 electrode with a high internal surface area to support the monolayer of a sensitizer and the increase in surface area by using mesoporous electrodes [ 42 ]. The standard DSC dye was tris (2,2′-bipyridyl-4,4′-carboxylate) ruthenium (II) (N3 dye), and the carboxylate group in the dye attaches the semiconductor oxide substrate by chemisorption; hence, when the photon is absorbed, the excited state of the dye molecule will relax by electron injection to the semiconductor conduction band. Since 1993, the photovoltaic performance of N3 dye has been irreplaceable by other dye complexes [ 42 ]. Bandara et al. [ 43 ] mentioned that recent developments comprising textile DSCs are being looked at for their sustainability, flexibility, pliability, and lightweight properties, as well as the possibility of using large-scale industrial manufacturing methods (e.g., weaving and screen printing) [ 62 ].

A conducting polymer such as pyrrole was electrochemically polymerized on a porous nanocrystalline TiO 2 electrode, which was sensitized by N3 dye. Polypyrrole successfully worked as a whole transport layer, connecting dye molecules anchored on TiO2 to the counter electrode. Conducting polyaniline has also been used in solid-state solar cells sensitized with methylene blue.

Light-emitting diodes based on halide perovskites have limited practical uses [ 63 ]. Additional drawbacks of the technique include a lack of knowledge of the influence of the electric field on mobile ions present in perovskite materials, a drop in external quantum efficiency at high current density, and limited device lifetimes [ 63 , 64 ]. Nonetheless, the technology has advanced rapidly in recent years, and it can currently provide external quantum efficiencies of more than 21%, equivalent to silicon solar cells [ 64 ]. Perovskite solar cells (PSCs) were created in the same way as other SPV materials like organic photovoltaics, dye-sensitized solar cells, and vacuum-processed PVs such as CdTe and CIGSOne. PSCs have a high open-circuit voltage (VOC), which distinguishes them from all other photovoltaics (PVs). The loss in VOC induced by non-radiative recombination in the case of PSCs is significantly low, even as low as that reported for vacuum-processed Si. By enhancing the high open-circuit voltage VOC, all-inorganic and tin-based perovskites have the potential to exceed the Shockley–Queisser (S–Q) limitations [ 65 ]. Luo et al. [ 80 ] used a (FAPbI 3 )0.95(MAPbBr 3 )0.05 perovskite to produce a VOC of 1.11 V and an efficiency of 21.73% using a new fluorinated iron (III) porphine dopant for PTAA. Unlike Wu et al. [ 81 ], who achieved a 1.59 eV hybrid perovskite, the Jen group obtained a VOC of 1.21 V and a high efficiency of 22.31%.

Carbon nanotubes (CNTs) have demonstrated a significant potential for enhancing polymer material characteristics. CNTs have better electrical and thermal conductivity, they are highly stiff, robust, and tough. Combining CNTs with brittle materials allows one to convey some of the CNTs' appealing mechanical qualities to the resultant composites, making CNT a good choice for reinforcement in polymeric materials. Zhu et al. [ 109 ] used carbon nanotubes (CNTs) with single walls to strengthen the epoxy Epon 862 matrix. The molecular dynamics method is used to investigate three periodic systems: a long CNT-reinforced Epon 862 composite, a short CNT-reinforced Epon 862 composite, and the Epon 862 matrix itself. The stress–strain relationships and elastic Young's moduli along the longitudinal direction (parallel to CNT) are simulated, and the results are compared to those obtained using the rule-of-mixture. Their findings reveal that when longitudinal strain rises, the Young's modulus of CNT increases whereas that of the Epon 862 composite or matrix drops. Furthermore, a long CNT may significantly increase the Epon 862 composite's Young's modulus (approximately 10 times stiffer), which is consistent with the prediction based on the rule-of-mixture at low strain level. Even a short CNT can improve the Young's modulus of the Epon 862 composite, with a 20% increase when compared to the Epon 862 matrix. Sui et al. [ 110 ] made CNT/NR composites after CNTs were treated in an acid bath and then ball-milled using HRH bonding methods. The thermal properties, vulcanization properties, and mechanical properties of CNT/NR composites were studied. When compared to CB, the absorption of CNTs into NR was quicker and consumed less energy. CNT/NR composites' over-curing reversion was reduced. The dispersion of CNTs in the rubber matrix and the interaction between CNTs and the matrix enhanced after acid treatment and ball milling. When compared to plain NR and CB/NR composites, the addition of treated CNTs improved the performance of the CNT/reinforced NR composites. Medupin et al. [ 111 ] used multi-walled carbon nanotube (WMCNT) reinforced natural rubber (NR) polymer nanocomposite (PNC) for prosthetic foot applications. On an open two-roll mill, the components were mixed according to the ASTM D-3182 standard during vulcanization. The nanocomposites (NCs) were cured in an electrically heated hydraulic press for 10 min at a temperature of 1502 °C and a pressure of 0.2 MPa. Mechanical testing found that NR/ MWCNT-3 had the maximum tensile and dynamic loading capability (449.79 MPa). It also had better filler dispersion, which increased crystallinity and cross-linking. The newly created prosthetic material is also said to have better wear resistance than conventional prosthetic materials as shown in Fig.  5 . The developed nanocomposite from MWCNTs for reinforced natural rubber is suited for the construction of the anthropomorphic prosthetic foot.

figure 5

Wear rate of the carbon nanotube composites

4 Efficiency, stability, and scalability of solar photovoltaic materials

4.1 economic feasibility.

The economic feasibility of solar photovoltaic devices refers to their cost-effectiveness compared to other sources of energy. In the past, solar panels were relatively expensive, and their high cost made them less attractive to many consumers. However, in recent years, the cost of solar panels has dropped significantly, making them much more affordable. Recent advances in SPV technologies have driven this cost reduction in manufacturing technology and economies of scale. Additionally, many governments around the world offer incentives and subsidies to encourage the use of renewable energy sources like solar power, further increasing their economic feasibility. Angmo et al. [ 77 ] prepared polymer solar cell modules directly on thin flexible barrier polyethylene terephthalate foil, which is a cost-effective alternative to ITO-based devices with potential applications in information, communications, and mobile technology (ICT) where low humidity (50%) and lower temperatures (65 °C) are expected and operational lifetimes over one year are estimated.

4.2 PV device efficiencies

Several procedures are required to generate electricity from PVs. Strongly bonded holes and electron pairs, known as photo-produced excitons, are formed by incoming light and separated at the interface between the donor and acceptor. Materials with a greater electron affinity take electrons, while materials with a low electronization potential admit holes. The produced electrons and holes are then carried through the p-type and n-type material phases, respectively, toward both electrodes, resulting in an external photocurrent flow. Hence, the efficiency of power conversion in organic solar cells is determined by the combination of the following steps: dissociation of electron–hole pairs at the p-n interface; exciton formation following incoming solar light absorption; charge collection at the electrodes; and transport of electrons and holes to both electrodes. The first-generation solar cell has a recorded performance of around 15–20%, as displayed in Fig.  6 . The second-generation solar cell is made of amorphous silicon, CdTe, and CIGS and has a 4–15% efficiency. Because second-generation technologies do not rely on silicon wafers, they are less expensive than first-generation technologies.

figure 6

Solar photovoltaic materials and their efficiencies

Hence, first-generation solar cells have higher reported efficiencies than thin-film solar cells, but they are more expensive due to the use of pure silicon in the production process. Thin-film solar cells, on the other hand, use less material, take less time, and are less expensive. Solar cells of the first generation are non-toxic and bountiful in nature. Second-generation solar cells have a lower per-watt price and efficiency when compared to other technologies. Organic materials and polymers are used in the third-generation solar cell. As compared to other varieties, the third-generation solar cell is more efficient and less expensive. The process for producing third-generation cells is simple and unique, but it has yet to be verified. The third-generation new kind of solar cell technology, the perovskite solar cell, has a record efficiency of more than 25% [ 78 ]. Nevertheless, UV light, oxygen, and moisture can all contribute to the poor stability of polycrystalline perovskite materials, the most pressing issue that must be addressed before the application of perovskite photovoltaic technology is the long-term stability of PSCs [ 79 ].

4.3 Stability of photovoltaics

The stability of solar photovoltaic devices refers to their ability to maintain their efficiency and reliability over time. In the past, solar panels had a reputation for being unreliable due to their sensitivity to weather and the environment. However, modern solar panels are much more stable and durable than earlier versions. They can withstand extreme temperatures and harsh weather conditions, making them suitable for use in a wide range of environments. Additionally, advances in solar panel technology have made them more efficient, which means they produce more energy for longer periods. However, increasing the long-term stability of perovskite solar cells is currently one of the most crucial concerns. According to Lee et al. [ 94 ], nanoscale metal–organic frameworks (MOFs) with chemically, moistly, and thermally stable nanostructures have better PSCs’ stability as well as higher device performance, which has increased the interest of the perovskite photovoltaic community in recent times. This can be attributed to MOF’s flexible structure, considerable pore volume, high surface area, high concentration of active metal sites, controllable topology, and tuneable pore diameters [ 81 ]. MOFs are used to improve device stability in applications such as gas separation and storage, optoelectronics, and catalysis devices [ 67 , 82 , 83 ]. Furthermore, to improve operational stability in hybrid perovskite solar cells, a thorough understanding of photodegradation and thermal degradation processes is required [ 84 ]. Additionally, interfacial engineering with hydrophobic materials, or the 2D/3D concept, has significantly improved long-term stability.

4.4 Scalability of photovoltaics

Furthermore, the ability of solar photovoltaic devices to meet rising energy demands is referred to as their scalability. Solar panels can be installed on a wide range of structures, from homes to commercial and industrial structures. They can also be scaled up for utility-scale power generation, allowing solar energy to power entire communities. Furthermore, advancements in solar panel manufacturing have increased their efficiency, allowing them to be more scalable in terms of the amount of energy they can produce from a given surface area. The challenges for scaling up perovskite solar cells include developing scalable deposition strategies for the uniform coating of all device layers over large-area substrates, including the perovskite photoactive layer, electron-transport layer (ETL), hole-transport layer (HTL), and electrodes. Other challenges include developing procedures for fabrication and achieving better control of film formation across the device stack at large scales by improving the precursor chemistry to match the processing methods. Nonetheless, despite the challenges, in 2019, a stable solid-state perovskite solar cell with a certified power conversion efficiency (PCE) of 25.2% was recorded [ 75 ]. Although small-area cells are extremely efficient, scaling-up technology is required for commercialization. Scalable Technologies is now focused on high-efficiency module production and large-area perovskite coating, where dimethyl sulfoxide or N, N-dimethylformamide (DMF), which are perovskite precursor solutions used for spin coating and scalable depositions, may not be feasible due to sluggish evaporation and significant interactions with Lewis acid precursors. For producing a homogeneous perovskite coating over a large area substrate, Park [ 87 ] suggested using acetonitrile or 2-methoxyethanol solvents, while Li et al. [ 89 ] mentioned blade coating, meniscus coating, slot-die coating, spray coating, screen-printing, inkjet printing, and electrodeposition as scalable solution deposition processes for perovskite development. Altinkaya et al. [ 90 ] reported that tin oxide (SnO 2 ) is a scalable alternative to mesoporous titanium dioxide (TiO 2 )/compact TiO 2 stacks as electron-selective layers (ESLs) due to its wide bandgap, high carrier mobility, high optical transmission, decent chemical stability, and suitable band alignment with perovskites.

Finally, the scalability, stability, and economic feasibility of solar photovoltaic devices have all improved significantly in recent years. Advances in technology and manufacturing have made solar panels more efficient and affordable, while incentives and subsidies have encouraged their use. As a result, solar energy is becoming an increasingly popular source of renewable energy capable of meeting growing energy demands sustainably and reliably.

5 Environmental effects of solar photovoltaics

PV systems are recognized as clean and long-term energy sources. Although PV systems may generate little pollution while in operation, the environmental effects of such systems observed from manufacture through disposal must not be disregarded. The environmental problems of PV systems include the generation of hazardous chemicals, the pollution of water resources, and the emission of air pollutants during the production process, and the impact of PV installations on land utilization. According to Tawalbeh et al. [ 68 ], by improving PV design, recycling solar cell materials to reduce GHG emissions by up to 42%, creating novel materials with improved properties, improving cell lifespans, avoiding hazardous components, recycling, and making careful site selection, the negative environmental impacts of PV systems may be considerably reduced. These mitigation actions will reduce greenhouse gas (GHG) emissions, restrict solid waste accumulation, and save essential water resources. PV systems have a carbon footprint of 14–73 CO 2 -eq/kWh, which is 10 to 53 orders of magnitude lower than the emissions observed from oil burning (742 CO2-eq/kWh from oil). The carbon footprint of the PV system might be lowered by using novel production materials. When compared to traditional solid oxide fuel cells (SOFCs), Smith et al. [ 69 ] proposed the use of these novel material combinations leads to a reduction in embodied materials and toxicological impact, but a higher electrical energy consumption during manufacturing. Their findings provide support for the drive to reduce the operating temperatures of SOFCs using unique material designs, resulting in a lower overall environmental impact due to the lower operational energy from the constituents of the selected material. Blanco et al. [ 70 ] reported that thin-film silicon and dye-sensitized cells lead the way in terms of total environmental impact, followed by thin-film chalcogenide, organic, and silicon. Chetyrkina et al. [ 71 ] analyzed the constituents of perovskite cells for their environmental hazards: lead, tin, or bismuth iodide on the one hand, and methylammonium, formamidinium, or cesium iodide on the other. The authors stated that bismuth iodide was the least hazardous in the first round of cell testing. Cesium and formamidinium iodides were less harmful to cells than methylammonium iodide. This study argued that their reports show that perovskite cells will fully phase out silicon-based cells since the former is not as toxic as the latter [ 72 ].

6 Summary and outlook

Covalent organic frameworks (COFs) have been reported to exhibit covalent bond-supported crystallinity as well as capture and mass transport characteristics [ 90 ]. Organic semiconductors are gaining popularity in research, and materials for organic electronics are currently intensively researched for other purposes, such as organic photovoltaics, large-area devices, and thin-film transistors, benefiting from the emergence of non-fullerene acceptors (NFAs) and the organic light-emitting diode (OLED) [ 91 ]. There have also been reports of issues arising from applications such as displays on flexible substrates, OLED lighting, huge area displays, and printable or solution processible greater area solar cells. Inorganic halide templates in carbon nanotubes of 1.2 nm, which are currently the smallest halide perovskite structures, have been reported to function as solar cells [ 92 ]. While other research has developed strategies to increase the durability of perovskites by using computer models based on density functional theory (DFT) to determine which molecules would be best at bridging the perovskite layer and the charge transport layers since the interface between the perovskite layer and the next layers is a critical location of vulnerability in perovskite solar cells. The results showed that inverted perovskite solar cells containing 1,3-bis(diphenylphosphine)propane, or DPPP, had the best performance because the cell's total power conversion efficiency remained high for around 3,500 h [ 93 ].

There are also environmental problems with PV systems, from production through installation and disposal [ 94 ]. Moreso, because perovskites are unstable, they must be protected with transparent polymers. Perovskite decomposes into chemicals that may pose environmental and human health hazards when this protection deteriorates [ 95 ]. Hence, PV solar systems have a carbon footprint of 14–73 g CO 2 -eq/kWh, which is lower than gas (607.6 CO 2 -eq/kWh), oil (742.1 CO 2 -eq/kWh), and coal-fired (975.3 g CO 2 -eq/kWh) power plants. New materials and/or recycled silicon material can reduce GHG emissions by up to 50% [ 96 ]. Floating PV systems and self-cleaning installations offer the benefit of using less water during the cleaning process. Except during installation, the PV modules have little noise and visual impact [ 97 ]. The life cycle analysis revealed that PV systems cannot be considered zero-emission technology due to the potential environmental effects imposed by land use, air quality, water use, the inclusion of hazardous materials, and possible noise/visual pollution; however, these effects can be mitigated by novel technologies such as hybrid power systems and/or floating PV systems [ 98 , 99 , 100 ]. Overall, future materials for solar photovoltaic devices must balance efficiency, cost, durability, toxicity, availability, and integration to provide a sustainable and cost-effective source of renewable energy [ 100 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 ].

7 Conclusion

Recent advancements in solar photovoltaic (PV) materials and systems have resulted in considerable efficiency, cost, and durability improvements. PV has become a more realistic choice for a wide range of applications, including power production, water pumping, and space exploration, as a result of these advancements. The creation of high-efficiency crystalline silicon (c-Si) solar cells has been one of the most significant recent developments in PV technology. C-Si solar cells can currently convert more than 20% of the sun's energy into electricity.

This is a huge advance over early c-Si solar cells, which could only convert roughly 10% of the sun's energy into power. The creation of thin-film solar cells is another significant recent advancement in PV technology. Thin-film solar cells are constructed from substantially thinner materials than c-Si solar cells. As a result, they are lighter and less expensive to produce. Thin-film solar cells are also more flexible than c-Si solar cells, allowing them to be used in a broader range of applications. In addition to advancements in PV materials, substantial advancements in PV systems have occurred. PV systems today feature a number of components that aid in efficiency, durability, and dependability.

Solar trackers, inverters, and batteries are among the components. PV has become a more realistic choice for a wide range of applications due to advancements in PV materials and systems. PV is currently used to power homes and businesses, as well as to pump water and power satellites and other spacecraft. PV technology is expected to become more commonly employed in the future as it improves.

Other recent advances in solar PV materials and systems include the development of new materials, such as perovskites, that have the potential to achieve even higher efficiencies than c-Si solar cells, the development of new manufacturing processes that can lower the cost of PV modules, and the development of new PV applications, such as solar-powered cars and homes. These advancements make solar PV a more appealing alternative for a broader range of applications. As the cost of PV continues to fall, solar PV is anticipated to become the major form of renewable energy in the future.

Availability of data and material

Not applicable.

Abbreviations

  • Solar photovoltaic

Photovoltaic

Floating tracking concentrating cooling system

Hybrid solar photovoltaic/thermal system

Hybrid solar photovoltaic/thermoelectric

Hybrid solar photovoltaic/thermal

Direct current

Alternating current

Power conditioning unit

  • Energy storage

Two-dimensional

Three-dimensional)

Silicon heterojunction

Polysilicon-on-oxide

Perovskite solar cells

Open-circuit voltage

Junction solar cell

Nanoparticles

Dye-sensitized solar cells

Counter electrode

Shockley–Queisser

Information and communications and mobile technology

Ultraviolet

Metal–organic frameworks

Electron-transport layer

Hole-transport layer

Power conversion efficiency

N-dimethylformamide

Electron-selective layers

Solid oxide fuel cells

Covalent organic frameworks

Non-fullerene acceptors

Organic light-emitting diode

Density functional theory

1,3 Bis(diphenylphosphino)propane

Greenhouse gas

Gong J, Liang J, Sumathy K (2012) Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew Sustain Energy Rev 16(8):5848–5860

Article   CAS   Google Scholar  

Dubacheva GV, Liang CK, Bassani DM (2012) Functional monolayers from carbon nanostructures–fullerenes, carbon nanotubes, and graphene–as novel materials for solar energy conversion. Coord Chem Rev 256(21–22):2628–2639

Lim EL, Yap CC, Jumali MHH, Teridi MAM, Teh CH (2018) A mini review: can graphene be a novel material for perovskite solar cell applications? Nano-micro Lett 10:1–12

Article   Google Scholar  

Ohshita Y, Suzuki H, Kojima N, Tanaka T, Honda T, Inagaki M, Yamaguchi M (2011) Novel material for super high efficiency multi-junction solar cells. J Cryst Growth 318(1):328–331

Chen J, Cao Y (2009) Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res 42(11):1709–1718

Article   CAS   PubMed   Google Scholar  

Hayat MB, Ali D, Monyake KC, Alagha L, Ahmed N (2019) Solar energy—a look into power generation, challenges, and a solar-powered future. Int J Energy Res 43(3):1049–1067

Casper F, Graf T, Chadov S, Balke B, Felser C (2012) Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond Sci Technol 27(6):063001

Mozer AJ, Sariciftci NS (2006) Conjugated polymer photovoltaic devices and materials. C R Chim 9(5–6):568–577

Kannan N, Vakeesan D (2016) Solar energy for future world: a review. Renew Sustain Energy Rev 62:1092–1105

Meinel AB, Meinel MP (1977) Applied solar energy: an introduction. NASA STI/Recon Tech Report A 77:33445

Google Scholar  

Gordon J, Gordon JM (eds) (2001) Solar energy: the state of the art: ISES position papers

Chen CJ (2011) Physics of solar energy. Wiley

Book   Google Scholar  

Sayigh AAM (ed) (2012) Solar energy engineering. Elsevier

Gong J, Li C, Wasielewski MR (2019) Advances in solar energy conversion. Chem Soc Rev 48(7):1862–1864

Fang B, Xing Z, Sun D, Li Z, Zhou W (2022) Hollow semiconductor photocatalysts for solar energy conversion. Adv Powder Mater 1(2):100021

Rabaia MKH, Abdelkareem MA, Sayed ET, Elsaid K, Chae KJ, Wilberforce T, Olabi AG (2021) Environmental impacts of solar energy systems: a review. Sci Total Environ 754:141989

Sodiqjon K, Begyor S, Aleksandr K, Farrukh D, Mukhtasar M, Akbarjon A (2022) Prospective aspects of using solar energy. J New Century Innovat 18(1):142–148

Chasta G, Suthar D, Thakur A, Kannan MD, Dhaka MS (2022) Comprehensive investigation on influence of copper doping on physical properties of CdSe thin films for solar cell applications. Mater Res Bull 152:111845

Ding T, Zhou Y, Ong WL, Ho GW (2021) Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization. Mater Today 42:178–191

Hoeven MVD (2015) Technology roadmap: solar photovoltaic energy. International Energy Agency, Paris, France

Siecker J, Kusakana K, Numbi EB (2017) A review of solar photovoltaic systems cooling technologies. Renew Sustain Energy Rev 79:192–203

Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2(3):96–102

Santbergen R, van Zolingen RC (2008) The absorption factor of crystalline silicon PV cells: a numerical and experimental study. Sol Energy Mater Sol Cells 92(4):432–444

Liang TS, Pravettoni M, Deline C, Stein JS, Kopecek R, Singh JP, Luo W, Wang Y, Aberle AG, Khoo YS (2019) A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ Sci 12(1):116–148

Zhao J, Xu Z, Law MK, Heidari H, Abdellatif SO, Imran MA, Ghannam R (2021) Simulation of crystalline silicon photovoltaic cells for wearable applications. IEEE Access 9:20868–20877

Benda V, Černá L (2020) PV cells and modules–State of the art, limits and trends. Heliyon 6(12):e05666

Article   PubMed   PubMed Central   Google Scholar  

Sun Z, Chen X, He Y, Li J, Wang J, Yan H, Zhang Y (2022) Toward efficiency limits of crystalline silicon solar cells: recent progress in high-efficiency silicon heterojunction solar cells. Adv Energy Mater 12(23):2200015

Nadia AR, Isa NAM, Desa MKM (2018) Advances in solar photovoltaic tracking systems: a review. Renew Sustain Energy Rev 82:2548–2569

Hightower M, Pierce SA (2008) The energy challenge. Nature 452(7185):285–286

Chong KK, Wong CW (2009) General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector. Sol Energy 83(3):298–305

Nsengiyumva W, Chen SG, Hu L, Chen X (2018) Recent advancements and challenges in solar tracking systems (STS): a review. Renew Sustain Energy Rev 81:250–279

Jamroen C, Komkum P, Kohsri S, Himananto W, Panupintu S, Unkat S (2020) A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustain Energy Technol Assessm 37:100618

Ibarra Michel J, Dréon J, Boccard M, Bullock J, Macco B (2023) Carrier-selective contacts using metal compounds for crystalline silicon solar cells. Progress Photovoltaics Res Appl 31(4):380–413

Jamroen C, Komkum P, Kohsri S, Himananto W, Panupintu S, Unkat S (2020) A low-cost dual-axis solar tracking system based on digital logic design: design and implementation. Sustain Energy Technol Assess 37:100618

Chowdhury ME, Khandakar A, Hossain B, Abouhasera R (2019) A low-cost closed-loop solar tracking system based on the sun position algorithm. J Sensors

Chee KW, Ghosh BK, Saad I, Hong Y, Xia QH, Gao P, Ye J, Ding ZJ (2022) Recent advancements in carrier-selective contacts for high-efficiency crystalline silicon solar cells: Industrially evolving approach. Nano Energy 95:106899

Costals ER, Masmitjà G, Almache E, Pusay B, Tiwari K, Saucedo E, Raj CJ, Kim BC, Puigdollers J, Martin I, Voz C (2022) Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells. Mater Adv 3(1):337–345

Han C, Yang G, Procel P, O’Connor D, Zhao Y, Gopalakrishnan A, Zhang X, Zeman M, Mazzarella L, Isabella O (2022) Controllable simultaneous bifacial Cu-plating for high-efficiency crystalline silicon solar cells. Solar RRL 6(6):2100810

Pham DP, Yi J (2022) Dopant-grading proposal for polysilicon passivating contact in crystalline silicon solar cells. J Power Sources 522:231005

.Skompska, M. (2010) Hybrid conjugated polymer/semiconductor photovoltaic cells. Synth Met 160(1–2):1–15

Singh A, Sharma A, Rajput S, Bose A, Hu X (2022) An investigation on hybrid particle swarm optimization algorithms for parameter optimization of PV cells. Electronics 11(6):909

Cotfas DT, Cotfas PA, Mahmoudinezhad S, Louzazni M (2022) Critical factors and parameters for hybrid photovoltaic-thermoelectric systems; review. Appl Therm Eng, p 118977

Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Song W (2022) Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater Sci

Kim JH, Kang DW, Yun H, Kang M, Singh N, Kim JS, Hong CS (2022) Post-synthetic modifications in porous organic polymers for biomedical and related applications. Chem Soc Rev 51(1):43–56

Zhu Y, Xu P, Zhang X, Wu D (2022) Emerging porous organic polymers for biomedical applications. Chem Soc Rev 51(4):1377–1414

Marí-Guaita J, Bouich A, Shafi MA, Bouich A, Marí B (2022) Investigation on the stability and efficiency of MAPbI3 and MASnI3 thin films for solar cells. Phys Status Solidi 219(5):2100664

Tarbi A, Chtouki T, Bouich A, Elkouari Y, Erguig H, Migalska-Zalas A, Aissat A (2022) InP/InGaAsP thin films based solar cells: lattice mismatch impact on efficiency. Opt Mater 131:112704

Chaudhry FA, Escandell L, López-Fraguas E, Vergaz R, Sánchez-Pena JM, García-Cámara B (2022) Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles. Sci Rep 12(1):9240

Article   CAS   PubMed   PubMed Central   Google Scholar  

O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. Nature 353(6346):737–740

Bandara TMWJ, Hansadi JMC, Bella F (2022) A review of textile dye-sensitized solar cells for wearable electronics. Ionics 28(6):2563–2583

Shahzad N, Perveen T, Pugliese D, Haq S, Fatima N, Salman SM, Tagliaferro A, Shahzad MI (2022) Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells. Renew Sustain Energy Rev 159:112196

Alizadeh A, Roudgar-Amoli M, Bonyad-Shekalgourabi SM, Shariatinia Z, Mahmoudi M, Saadat F (2022) Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: a review. Renew Sustain Energy Rev 157:112047

Venkatesan S, Lin WH, Hsu TH, Teng H, Lee YL (2022) Indoor dye-sensitized solar cells with efficiencies surpassing 26% using polymeric counter electrodes. ACS Sustain Chem Eng 10(7):2473–2483

Devadiga D, Selvakumar M, Shetty P, Santosh MS (2022) The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: a review. Renew Sustain Energy Rev 159:112252

Kim JH, Kim DH, So JH, Koo HJ (2022) Toward eco-friendly dye-sensitized solar cells (DSSCs): natural dyes and aqueous electrolytes. Energies 15(1):219

De Freitas ES, Da Silva PB, Chorilli M, Batista AA, Lopes EDO, da Silva MM, Leite CQF, Pavan FR (2014) Nanostructured lipid systems as a strategy to improve the in vitro cytotoxicity of ruthenium (II) compounds. Molecules 19(5):5999–6008

Dragutan I, Dragutan V, Demonceau A (2017) Special issue on ruthenium complexes. Molecules 22(2):255

Tojo G, Fernández M, Tojo G, Fernández M (2007) Ruthenium tetroxide and other ruthenium compounds. Oxidation of primary alcohols to carboxylic acids: a guide to current common practice, pp 61–78

Yadav SC, Sharma A, Devan RS, Shirage PM (2022) Role of different counter electrodes on performance of TiO 2 based dye-sensitized solar cell (DSSC) fabricated with dye extracted from Hibiscus Sabdariffa as sensitizer. Opt Mater 124:112066

Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol, C 4(2):145–153

Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

Wei D (2010) Dye sensitized solar cells. Int J Mol Sci 11(3):1103–1113

Kalyanasundaram K (2010) Dye-sensitized solar cells. CRC Press

Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85(6):1172–1178

Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye-sensitized solar cells with conversion efficiency of 111%. Jpn J Appl Phys 45(7L):L638

Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6(3):162–169

Tawalbeh M, Al-Othman A, Kafiah F, Abdelsalam E, Almomani F, Alkasrawi M (2021) Environmental impacts of solar photovoltaic systems: a critical review of recent progress and future outlook. Sci Total Environ 759:143528

Smith L, Ibn-Mohammed T, Yang F, Reaney IM, Sinclair DC, Koh SL (2019) Comparative environmental profile assessments of commercial and novel material structures for solid oxide fuel cells. Appl Energy 235:1300–1313

Blanco CF, Cucurachi S, Peijnenburg WJ, Beames A, Vijver MG (2020) Are technological developments improving the environmental sustainability of photovoltaic electricity? Energ Technol 8(11):1901064

Chetyrkina MR, Kameneva L, Mishchenko DV, Klimanova EN, Sashenkova TE, Allayarova UY, Kostyuk SV, Frolova LA, Aldoshin SM, Troshin PA (2023) Lead, tin, bismuth or organics: assessment of potential environmental and human health hazards originating from mature perovskite PV technology. Sol Energy Mater Sol Cells 252:112177

Li C, Wang X, Bi E, Jiang F, Park SM, Li Y, Chen L, Wang Z, Zeng L, Chen H, Liu Y (2023) Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379(6633):690–694

Ning Z, Fu Y, Tian H (2010) Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy Environ Sci 3(9):1170–1181

Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459

Kashtiban RJ, Patrick CE, Ramasse Q, Walton RI, Sloan J (2022) Picoperovskites: the smallest conceivable isolated halide perovskite structures formed within carbon nanotubes. Adv Mater, 2208575

Tan S, Huang T, Yavuz I, Wang R, Yoon TW, Xu M, Xing Q, Park K, Lee DK, Chen CH, Zheng R (2022) Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605(7909):268–273

Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, Wu J, Xiao K, Chen B, Park SM, Chen G (2022) All-perovskite tandem solar cells with improved grain surface passivation. Nature 603(7899):73–78

Li H, Zhou J, Tan L, Li M, Jiang C, Wang S, Zhao X, Liu Y, Zhang Y, Ye Y, Tress W (2022) Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci Adv 8(28):eabo7422

Article   PubMed   Google Scholar  

DuBose JT, Kamat PV (2022) Efficacy of perovskite photocatalysis: challenges to overcome. ACS Energy Lett 7(6):1994–2011

Luo J, Lin F, Xia J, Yang H, Zhang R, Malik HA, Shu H, Wan Z, Han K, Wang R, Yao X (2021) An efficient and hydrophobic molecular doping in perovskite solar cells. Nano Energy 82:105751

Wu S, Zhang J, Li Z, Liu D, Qin M, Cheung SH, Lu X, Lei D, So SK, Zhu Z, Jen AKY (2020) Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 4(6):1248–1262

Friederich P, Fediai A, Kaiser S, Konrad M, Jung N, Wenzel W (2019) Toward design of novel materials for organic electronics. Adv Mater 31(26):1808256

Yang Y, Börjesson K (2022) Electroactive covalent organic frameworks: a new choice for organic electronics. Trends Chem 4(1):60–75

Tareen AK, Khan K, Rehman S, Iqbal M, Yu J, Zhou Z, Yin J, Zhang H (2022) Recent development in emerging phosphorene based novel materials: progress, challenges, prospects and their fascinating sensing applications. Prog Solid State Chem 65:100336

Mahato N, Sharma K, Sinha M, Baral ER, Koteswararao R, Dhyani A, Cho MH, Cho S (2020) Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: a review. J Adv Res 23:61–82

Verduci R, Romano V, Brunetti G, Yaghoobi Nia N, Di Carlo A, D’Angelo G, Ciminelli C (2022) Solar energy in space applications: review and technology perspectives. Adv Energy Mater 12(29):2200125

Park NG (2020) Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv Energy Mater 10(13):1903106

Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2021) Solar cell efficiency tables (version 57). Prog Photovoltaics Res Appl 29(1):3–15

Li Z, Klein TR, Kim DH, Yang M, Berry JJ, Van Hest MF, Zhu K (2018) Scalable fabrication of perovskite solar cells. Nat Rev Mater 3(4):1–20

Altinkaya C, Aydin E, Ugur E, Isikgor FH, Subbiah AS, De Bastiani M, Liu J, Babayigit A, Allen TG, Laquai F, Yildiz A (2021) Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Adv Mater 33(15):2005504

Angmo D, Gevorgyan SA, Larsen-Olsen TT, Søndergaard RR, Hösel M, Jørgensen M, Gupta R, Kulkarni GU, Krebs FC (2013) Scalability and stability of very thin, roll-to-roll processed, large area, indium-tin-oxide free polymer solar cell modules. Org Electron 14(3):984–994

Kim M, Jeong J, Lu H, Lee TK, Eickemeyer FT, Liu Y, Choi IW, Choi SJ, Jo Y, Kim HB, Mo SI (2022) Conformal quantum dot–SnO 2 layers as electron transporters for efficient perovskite solar cells. Science 375(6578):302–306

Wang HP, Li S, Liu X, Shi Z, Fang X, He JH (2021) Low-dimensional metal halide Perovskite photodetectors. Adv Mater 33(7):2003309

Lee CC, Chen CI, Liao YT, Wu KCW, Chueh CC (2019) Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv Sci 6(5):1801715

Exposing unsaturated Cu 1 -O 2 sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution

Zou YH, Huang YB, Si DH, Yin Q, Wu QJ, Weng Z, Cao R (2021) Porous metal–organic framework liquids for enhanced CO 2 adsorption and catalytic conversion. Angew Chem 133(38):21083–21088

Ehrling S, Reynolds EM, Bon V, Senkovska I, Gorelik TE, Evans JD, Rauche M, Mendt M, Weiss MS, Pöppl A, Brunner E (2021) Adaptive response of a metal–organic framework through reversible disorder–disorder transitions. Nat Chem 13(6):568–574

Nicks J, Sasitharan K, Prasad RR, Ashworth DJ, Foster JA (2021) Metal–organic framework nanosheets: programmable 2D materials for catalysis, sensing, electronics, and separation applications. Adv Func Mater 31(42):2103723

Juarez-Perez EJ, Ono LK, Maeda M, Jiang Y, Hawash Z, Qi Y (2018) Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J Mater Chem A 6(20):9604–9612

Ueoka N, Oku T (2018) Stability characterization of PbI2-added CH3NH3PbI3–x Cl x photovoltaic devices. ACS Appl Mater Interfaces 10(51):44443–44451

Rajvikram M, Leoponraj S (2018) A method to attain power optimality and efficiency in solar panel. Beni-Suef Univ J Basic Appl Sci 7(4):705–708

Abouelregal AE, Akgöz B, Civalek Ö (2023) Magneto-thermoelastic interactions in an unbounded orthotropic viscoelastic solid under the Hall current effect by the fourth-order Moore–Gibson–Thompson equation. Comput Math Appl 141:102–115

Civalek Ö, Uzun B, Yaylı MÖ (2022) An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Comput Appl Math 41(2):67

Jalaei MH, Thai HT, Civalek Ӧ (2022) On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int J Eng Sci 172:103629

Numanoğlu HM, Ersoy H, Akgöz B, Civalek Ö (2022) A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math Methods Appl Sci 45(5):2592–2614

Abouelregal AE, Ersoy H, Civalek Ö (2021) Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9(13):1536

Akgöz B, Civalek Ö (2022) Buckling analysis of functionally graded tapered microbeams via Rayleigh-Ritz method. Mathematics 10(23):4429

Dastjerdi S, Akgöz B, Civalek Ö (2020) On the effect of viscoelasticity on behavior of gyroscopes. Int J Eng Sci 149:103236

Ashery MH, Elnouby M, EL-Maghraby EM, Elsehly EM (2023) Structural control of V 2 O 5 nanoparticles via a thermal decomposition method for prospective photocatalytic applications. Beni-Suef Univ J Basic Appl Sci 12(1):1–15

Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng, A 447(1–2):51–57

Sui G, Zhong W, Yang X, Zhao S (2007) Processing and material characteristics of a carbon-nanotube-reinforced natural rubber. Macromol Mater Eng 292(9):1020–1026

Medupin RO, Abubakre OK, Abdulkareem AS, Muriana RA, Abdulrahman AS (2019) Carbon nanotube reinforced natural rubber nanocomposite for anthropomorphic prosthetic foot purpose. Sci Rep 9(1):1–11

Download references

Acknowledgements

The authors acknowledge the Surface Engineering Research Laboratory (SERL)

Author information

Authors and affiliations.

Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, 0183, South Africa

Modupeola Dada & Patricia Popoola

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Modupeola Dada .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

Authors declare that there are no conflicting interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Dada, M., Popoola, P. Recent advances in solar photovoltaic materials and systems for energy storage applications: a review. Beni-Suef Univ J Basic Appl Sci 12 , 66 (2023). https://doi.org/10.1186/s43088-023-00405-5

Download citation

Received : 31 March 2023

Accepted : 06 July 2023

Published : 17 July 2023

DOI : https://doi.org/10.1186/s43088-023-00405-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Laser metal deposition
  • Arc melting

solar energy research articles

ScienceDaily

Researchers improve the stability of perovskite solar cells

They utilized crown ether b18c6 with interfacial passivation action to prevent lead leakage and degradation of perovskite due to moisture.

Perovskite solar cells are thought of as the strongest contender to replace the conventional silicon solar cells in next-generation photovoltaics. They are made of an A + cation, a B 2+ divalent cation, and an X - halide. Generally containing Pb 2+ or Sn 2+ , they achieve high power conversion energy that is suitable for commercial use. Unfortunately, the presence of lead ions causes issues such as lead leakage, which is a hazard for the environment. Moreover, in the presence of moisture, the perovskite tends to get corroded. Multiple approaches have been suggested to resolve this issue, including encapsulating the device and compositional engineering of the perovskite light absorbers.

Now, a team of researchers from Pusan National University in South Korea have published a study in Volume 92 of the Journal of Energy Chemistry in this direction. It was made available online on 1February 2024 and has been published in the May 2024 edition. The researchers tested many crown ethers in this study to improve the stability of perovskite solar cells. When asked about the relevance of this study, lead researcher Assistant Professor Ji-Youn Seo from the team says, "This study emphasizes the efficacy of interface passivation by achieving increased power conversion efficiency, and demonstrates that crown ether not only blocks lead leakage through the formation of host-guest complexes with lead ions but also imparts strong resistance to moisture to the treated films, showing improved long-term stability in high humidity environments compared to existing solutions. This research highlights the potential of crown ether to simultaneously address lead leakage and long-term stability for sustainable perovskite solar cells ready to advance commercialization and renewable energy applications."

The team found that B18C6 was the best ether for interfacial passivation. With B18C6, there was an increased charge carrier lifetime (or the time spent by an electron in the conduction band of a semiconductor and a hole in the valence band of a semiconductor) seen within the perovskite. The work function (or the minimum energy required to move an electron from a metal's surface) between the hole transfer material and the perovskite was also improved. Thus, the researchers obtained an exceptional power conversion efficiency of 21.7% with B18C6. Compared to untreated perovskites that showed signs of lead leakage, the perovskites with B18C6 showed no signs of lead leakage when a depth profile of all layers was conducted. Furthermore, while normal perovskites showed lead iodide formation when exposed to 95% humidity at room temperature for 300 hours, no such issue was observed for the perovskite passivated by B18C6.

Within the next five years, perovskite solar cell technology, as a type of next generation emerging solar technology, is positioned to potentially replace the globally prevalent silicon solar cells. This technology can enhance photoelectric conversion efficiency to over 30% when used alongside existing silicon solar cells, thereby increasing the possibility of replacing fossil fuel-based energy sources and contributing to the achievement of carbon neutrality. Additionally, perovskite solar cells exhibit superior photoelectric conversion efficiency even under indoor lighting, making them applicable to electronic devices and the Internet of Things (IoT), thus offering significant energy-saving opportunities.

"In ten years, this technology could be applied to the energy, display, and semiconductor materials industries through the heterojunction structure. If leveraged effectively, it could lead to the development of high-efficiency hydrogen production devices, high-brightness, flexible displays, and the development of three-dimensional organic and inorganic semiconductor materials and devices, contributing to leading the advancement of high-tech nations," says Dr. Seo about the long-term implications of this study.

  • Solar Energy
  • Energy and Resources
  • Energy Technology
  • Energy and the Environment
  • Renewable Energy
  • Environmental Science
  • Sustainability
  • Alternative fuel vehicle
  • Renewable energy
  • Solar power
  • Radiant energy
  • Deforestation
  • Power station

Story Source:

Materials provided by Pusan National University . Note: Content may be edited for style and length.

Journal Reference :

  • Sun-Ju Kim, YeonJu Kim, Ramesh Kumar Chitumalla, Gayoung Ham, Thanh-Danh Nguyen, Joonkyung Jang, Hyojung Cha, Jovana Milić, Jun-Ho Yum, Kevin Sivula, Ji-Youn Seo. Interfacial engineering through lead binding using crown ethers in perovskite solar cells . Journal of Energy Chemistry , 2024; 92: 263 DOI: 10.1016/j.jechem.2024.01.042

Cite This Page :

  • Making Quantum Bits Fly
  • Artificial Building Blocks of Life
  • Making AI Act More Like a Scientist
  • Lack of Focus Doesn't Equal Lack of Intelligence
  • Animals: Extinction Risk Due to Climate
  • Loss of Nature: High Cost
  • Earth's Earliest Forest
  • 'Full Recovery' of Reef Growth Within 4 Years
  • Signal Linked to Aliens? Just a Truck
  • Healable Solid-State Lithium-Sulfur Batteries
  • International edition
  • Australia edition
  • Europe edition

Workers lift a solar panel on to the roof of a house in San Diego, California, US.

‘Revolutionary’ solar power cell innovations break key energy threshold

Next generation cells surpass limits of today’s cells and will accelerate rollout of cheaper, more efficient solar power

Solar power cells have raced past the key milestone of 30% energy efficiency, after innovations by multiple research groups around the world. The feat makes this a “revolutionary” year, according to one expert, and could accelerate the rollout of solar power.

Today’s solar panels use silicon-based cells but are rapidly approaching their maximum conversion of sunlight to electricity of 29%. At the same time, the installation rate of solar power needs to increase tenfold in order to tackle the climate crisis, according to scientists.

The breakthrough is adding a layer of perovskite, another semiconductor, on top of the silicon layer. This captures blue light from the visible spectrum, while the silicon captures red light, boosting the total light captured overall. With more energy absorbed per cell, the cost of solar electricity is even cheaper, and deployment can proceed faster to help keep global heating under control.

The perovskite-silicon “tandem” cells have been under research for about a decade, but recent technical improvements have now pushed them past the 30% milestone. Experts said that if the scaling-up of production of the tandem cells proceeds smoothly, they could be commercially available within five years, about the same time silicon-only cells reach their maximum efficiency.

Two groups published the details of their efficiency breakthroughs in the journal Science on Thursday, and at least two others are known to have pushed well beyond 30%.

“This year is a revolutionary year,” said Prof Stefaan De Wolf, at King Abdullah University of Science and Technology in Saudi Arabia. “It’s very exciting that things are moving rapidly with multiple groups.”

The current efficiency record for silicon-only solar cells is 24.5% in commercial cells and 27% in the laboratory. The latter may well be as close the cells can practically get to the theoretical maximum of 29%.

But one group, led by Prof Steve Albrecht at the Helmholtz Center Berlin for Materials and Energy in Germany, has now published information about how they achieved efficiencies of up to 32.5% for silicon-perovskite cells. The other group, led by Dr Xin Yu Chin at the Federal Institute of Technology in Lausanne, Switzerland, demonstrated an efficiency of 31.25% and said tandem cells had the “potential for both high efficiency and low manufacturing costs”.

“What these two groups have shown are really milestones,” said De Wolf. His own group achieved 33.7% efficiency with a tandem cell in June, but has yet to publish the results in a journal. All the efficiency measurements were independently verified.

“Overcoming the 30% threshold provides confidence that high performance, low-cost PVs can be brought to the market,” said De Wolf. Global solar power capacity reached 1.2 terawatts (TW) in 2022. “Yet to avert the catastrophic scenarios associated with global warming, the total capacity needs to increase to about 75TW by 2050,” he said.

The solar industry is also part of the race to high efficiency. Chinese company LONGi, the world’s biggest producer of solar cells, announced in June they had reached 33.5% in their research. “Reducing the cost of electricity remains the perpetual theme driving the development of the photovoltaic industry,” said Li Zhenguo, the president of LONGi.

“The industry is running very, very fast,” De Wolf said. “And I’m sure that multiple companies are working on this in China.” Europe and the US need to increase its research and development funding to keep up and contribute to an accelerating roll out of solar power, he said.

A worker produces solar photovoltaic modules used for solar panels at a factory in China’s eastern Jiangsu province in May 2023.

All of the high-efficiency tandem cells above 30% efficiency are small so far, measuring 1cm by 1cm. They now need to be scaled up to the size of commercial cells, which are 15cm squares or larger.

The scale-up is already under way with UK company Oxford PV announcing in May a record 28.6% efficiency for a commercial-size cell . “Solar is already one of the least expensive and cleanest forms of energy available, and our technology will make it even more affordable,” said Chris Case, chief technology officer at Oxford PV.

The Oxford PV cell was made using the same production line that is already producing commercial-sized tandem cells with 27% efficiency in increasing volumes. Tandem cells may prove to be more expensive than silicon-only cells, but the cells are only a small part of the cost of producing and installing solar panels, De Wolf said.

One issue that remains to be resolved is how fast the tandem cells degrade over time in real-world conditions. Today’s solar cells still have 80-90% of their capacity after 25 years and De Wolf said tandems would have to match that, but that there was only limited data on their stability to date.

The key to the higher efficiencies of the tandem cells from the German and Swiss groups was tackling tiny defects on the surface of the perovskite layer. These allow some electrons liberated by solar photons to flow back into the perovskite, rather than contributing to the cell’s electrical current and therefore reducing its efficiency.

The solution was to put a layer of organic molecules between the perovskite and the conducting layer through which the current flows, which compensated for the defects.

Significantly, all the groups used different methods to address the problem, giving more options in the search for the best commercial design, said De Wolf. “There’s still lots of room to go further,” he said. “I believe that the practical limit is well beyond 35%.”

Prof Rob Gross, director of the UK Energy Research Centre, said: “Solar is already a low-cost way to generate electricity and has a wide resource base across the world. The cost reductions already achieved are the main reason solar now plays such a large role in scenarios of decarbonised energy systems. Improvements in efficiency have the potential to increase the output of solar and therefore will help to reinforce that effect.”

There are other technologies, such as multi-junction cells, which can have efficiencies as high as 47% , but these are very expensive to produce and would only be suitable for niche uses such as on space satellites or when sunlight is highly concentrated on to the cells .

  • Solar power
  • Climate crisis
  • Renewable energy

Most viewed

Solar Energy

Solar energy is created by nuclear fusion that takes place in the sun. It is necessary for life on Earth, and can be harvested for human uses such as electricity.

Earth Science, Engineering, Physics

Loading ...

Solar energy is any type of energy generated by the sun . Solar energy is created by nuclear fusion that takes place in the sun. Fusion occurs when protons of hydrogen atoms violently collide in the sun’s core and fuse to create a helium atom. This process, known as a PP (proton-proton) chain reaction, emits an enormous amount of energy. In its core, the sun fuses about 620 million metric tons of hydrogen every second. The PP chain reaction occurs in other stars that are about the size of our sun, and provides them with continuous energy and heat. The temperature for these stars is around 4 million degrees on the Kelvin scale (about 4 million degrees Celsius, 7 million degrees Fahrenheit). In stars that are about 1.3 times bigger than the sun, the CNO cycle drives the creation of energy. The CNO cycle also converts hydrogen to helium, but relies on carbon, nitrogen, and oxygen (C, N, and O) to do so. Currently , less than two percent of the sun’s energy is created by the CNO cycle. Nuclear fusion by the PP chain reaction or CNO cycle releases tremendous amounts of energy in the form of waves and particles. Solar energy is constantly flowing away from the sun and throughout the solar system . Solar energy warms Earth, causes wind and weather , and sustains plant and animal life. The energy, heat, and light from the sun flow away in the form of electromagnetic radiation (EMR). The electromagnetic spectrum exists as waves of different frequencies and wavelengths. The frequency of a wave represents how many times the wave repeats itself in a certain unit of time. Waves with very short wavelengths repeat themselves several times in a given unit of time, so they are high-frequency. In contrast, low-frequency waves have much longer wavelengths. The vast majority of electromagnetic waves are invisible to us. The most high-frequency waves emitted by the sun are gamma rays, X-rays, and ultraviolet radiation (UV rays). The most harmful UV rays are almost completely absorbed by Earth’s atmosphere . Less potent UV rays travel through the atmosphere, and can cause sunburn. The sun also emits infrared radiation , whose waves are much lower-frequency. Most heat from the sun arrives as infrared energy. Sandwiched between infrared and UV is the visible spectrum, which contains all the colors we see on Earth. The color red has the longest wavelengths (closest to infrared), and violet (closest to UV) the shortest. Natural Solar Energy Greenhouse Effect The infrared, visible, and UV waves that reach Earth take part in a process of warming the planet and making life possible—the so-called “greenhouse effect.” About 30 percent of the solar energy that reaches Earth is reflected back into space. The rest is absorbed into Earth’s atmosphere. The radiation warms Earth’s surface, and the surface radiates some of the energy back out in the form of infrared waves. As they rise through the atmosphere, they are intercepted by greenhouse gases , such as water vapor and carbon dioxide.

Greenhouse gases trap the heat that reflects back up into the atmosphere. In this way, they act like the glass walls of a greenhouse. This greenhouse effect keeps Earth warm enough to sustain life. Photosynthesis Almost all life on Earth relies on solar energy for food, either directly or indirectly. Producers rely directly on solar energy. They absorb sunlight and convert it into nutrients through a process called photosynthesis. Producers, also called autotrophs , include plants, algae, bacteria, and fungi. Autotrophs are the foundation of the food web . Consumers rely on producers for nutrients. Herbivores, carnivores, omnivores, and detritivores rely on solar energy indirectly. Herbivores eat plants and other producers. Carnivores and omnivores eat both producers and herbivores. Detritivores decompose plant and animal matter by consuming it. Fossil Fuels Photosynthesis is also responsible for all of the fossil fuels on Earth. Scientists estimate that about three billion years ago, the first autotrophs evolved in aquatic settings. Sunlight allowed plant life to thrive and evolve. After the autotrophs died, they decomposed and shifted deeper into the Earth, sometimes thousands of meters. This process continued for millions of years. Under intense pressure and high temperatures, these remains became what we know as fossil fuels. Microorganisms became petroleum, natural gas, and coal. People have developed processes for extracting these fossil fuels and using them for energy. However, fossil fuels are a nonrenewable resource . They take millions of years to form. Harnessing Solar Energy Solar energy is a renewable resource , and many technologies can harvest it directly for use in homes, businesses, schools, and hospitals. Some solar energy technologies include photovoltaic cells and panels, concentrated solar energy , and solar architecture . There are different ways of capturing solar radiation and converting it into usable energy. The methods use either active solar energy or passive solar energy . Active solar technologies use electrical or mechanical devices to actively convert solar energy into another form of energy, most often heat or electricity. Passive solar technologies do not use any external devices. Instead, they take advantage of the local climate to heat structures during the winter, and reflect heat during the summer. Photovoltaics Photovoltaics is a form of active solar technology that was discovered in 1839 by 19-year-old French physicist Alexandre-Edmond Becquerel. Becquerel discovered that when he placed silver-chloride in an acidic solution and exposed it to sunlight, the platinum electrodes attached to it generated an electric current. This process of generating electricity directly from solar radiation is called the photovoltaic effect, or photovoltaics.

Today, photovoltaics is probably the most familiar way to harness solar energy. Photovoltaic arrays usually involve solar panels , a collection of dozens or even hundreds of solar cells. Each solar cell contains a semiconductor , usually made of silicon. When the semiconductor absorbs sunlight, it knocks electrons loose. An electrical field directs these loose electrons into an electric current, flowing in one direction. Metal contacts at the top and bottom of a solar cell direct that current to an external object. The external object can be as small as a solar-powered calculator or as large as a power station. Photovoltaics was first widely used on spacecraft. Many satellites , including the International Space Station (ISS), feature wide, reflective “wings” of solar panels. The ISS has two solar array wings (SAWs), each using about 33,000 solar cells. These photovoltaic cells supply all electricity to the ISS, allowing astronauts to operate the station, safely live in space for months at a time, and conduct scientific and engineering experiments. Photovoltaic power stations have been built all over the world. The largest stations are in the United States, India, and China. These power stations emit hundreds of megawatts of electricity, used to supply homes, businesses, schools, and hospitals. Photovoltaic technology can also be installed on a smaller scale. Solar panels and cells can be fixed to the roofs or exterior walls of buildings, supplying electricity for the structure. They can be placed along roads to light highways. Solar cells are small enough to power even smaller devices, such as calculators, parking meters, trash compactors, and water pumps. Concentrated Solar Energy Another type of active solar technology is concentrated solar energy or concentrated solar power (CSP). CSP technology uses lenses and mirrors to focus (concentrate) sunlight from a large area into a much smaller area. This intense area of radiation heats a fluid, which in turn generates electricity or fuels another process. Solar furnaces are an example of concentrated solar power. There are many different types of solar furnaces, including solar power towers , parabolic troughs, and Fresnel reflectors. They use the same general method to capture and convert energy. Solar power towers use heliostats , flat mirrors that turn to follow the sun’s arc through the sky. The mirrors are arranged around a central “collector tower,” and reflect sunlight into a concentrated ray of light that shines on a focal point on the tower. In previous designs of solar power towers, the concentrated sunlight heated a container of water, which produced steam that powered a turbine . More recently, some solar power towers use liquid sodium, which has a higher heat capacity and retains heat for a longer period of time. This means that the fluid not only reaches temperatures of 773 to 1,273K (500° to 1,000° C or 932° to 1,832° F), but it can continue to boil water and generate power even when the sun is not shining. Parabolic troughs and Fresnel reflectors also use CSP, but their mirrors are shaped differently. Parabolic mirrors are curved, with a shape similar to a saddle. Fresnel reflectors use flat, thin strips of mirror to capture sunlight and direct it onto a tube of liquid. Fresnel reflectors have more surface area than parabolic troughs and can concentrate the sun’s energy to about 30 times its normal intensity. Concentrated solar power plants were first developed in the 1980s. The largest facility in the world is a series of plants in Mojave Desert in the U.S. state of California. This Solar Energy Generating System (SEGS) generates more than 650 gigawatt-hours of electricity every year. Other large and effective plants have been developed in Spain and India.

Concentrated solar power can also be used on a smaller scale. It can generate heat for solar cookers , for instance. People in villages all over the world use solar cookers to boil water for sanitation and to cook food. Solar cookers provide many advantages over wood-burning stoves: They are not a fire hazard, do not produce smoke, do not require fuel, and reduce habitat loss in forests where trees would be harvested for fuel. Solar cookers also allow villagers to pursue time for education, business, health, or family during time that was previously used for gathering firewood. Solar cookers are used in areas as diverse as Chad, Israel, India, and Peru. Solar Architecture Throughout the course of a day, solar energy is part of the process of thermal convection , or the movement of heat from a warmer space to a cooler one. When the sun rises, it begins to warm objects and material on Earth. Throughout the day, these materials absorb heat from solar radiation. At night, when the sun sets and the atmosphere has cooled, the materials release their heat back into the atmosphere. Passive solar energy techniques take advantage of this natural heating and cooling process. Homes and other buildings use passive solar energy to distribute heat efficiently and inexpensively. Calculating a building’s “ thermal mass ” is an example of this. A building’s thermal mass is the bulk of material heated throughout the day. Examples of a building’s thermal mass are wood, metal, concrete, clay, stone, or mud. At night, the thermal mass releases its heat back into the room. Effective ventilation systems—hallways, windows, and air ducts—distribute the warmed air and maintain a moderate, consistent indoor temperature. Passive solar technology is often involved in the design of a building. For example, in the planning stage of construction, the engineer or architect may align the building with the sun’s daily path to receive desirable amounts of sunlight. This method takes into account the latitude , altitude , and typical cloud cover of a specific area. In addition, buildings can be constructed or retrofitted to have thermal insulation, thermal mass, or extra shading. Other examples of passive solar architecture are cool roofs, radiant barriers , and green roofs . Cool roofs are painted white, and reflect the sun’s radiation instead of absorbing it. The white surface reduces the amount of heat that reaches the interior of the building, which in turn reduces the amount of energy that is needed to cool the building. Radiant barriers work similarly to cool roofs. They provide insulation with highly reflective materials, such as aluminum foil. The foil reflects, instead of absorbs, heat, and can reduce cooling costs up to 10 percent. In addition to roofs and attics, radiant barriers may also be installed beneath floors. Green roofs are roofs that are completely covered with vegetation . They require soil and irrigation to support the plants, and a waterproof layer beneath. Green roofs not only reduce the amount of heat that is absorbed or lost, but also provide vegetation. Through photosynthesis, the plants on green roofs absorb carbon dioxide and emit oxygen. They filter pollutants out of rainwater and air, and offset some of the effects of energy use in that space. Green roofs have been a tradition in Scandinavia for centuries, and have recently become popular in Australia, Western Europe, Canada, and the United States. For example, the Ford Motor Company covered 42,000 square meters (450,000 square feet) of its assembly plant roofs in Dearborn, Michigan, with vegetation. In addition to reducing greenhouse gas emissions, the roofs reduce stormwater runoff by absorbing several centimeters of rainfall.

Green roofs and cool roofs can also counteract the “ urban heat island ” effect. In busy cities, the temperature can be consistently higher than the surrounding areas. Many factors contribute to this: Cities are constructed of materials such as asphalt and concrete that absorb heat; tall buildings block wind and its cooling effects; and high amounts of waste heat is generated by industry, traffic, and high populations. Using the available space on the roof to plant trees, or reflecting heat with white roofs, can partially alleviate local temperature increases in urban areas. Solar Energy and People Since sunlight only shines for about half of the day in most parts of the world, solar energy technologies have to include methods of storing the energy during dark hours. Thermal mass systems use paraffin wax or various forms of salt to store the energy in the form of heat. Photovoltaic systems can send excess electricity to the local power grid , or store the energy in rechargeable batteries. There are many pros and cons to using solar energy. Advantages A major advantage to using solar energy is that it is a renewable resource. We will have a steady, limitless supply of sunlight for another five billion years. In one hour, Earth’s atmosphere receives enough sunlight to power the electricity needs of every human being on Earth for a year. Solar energy is clean. After the solar technology equipment is constructed and put in place, solar energy does not need fuel to work. It also does not emit greenhouse gases or toxic materials. Using solar energy can drastically reduce the impact we have on the environment. There are locations where solar energy is practical . Homes and buildings in areas with high amounts of sunlight and low cloud cover have the opportunity to harness the sun’s abundant energy. Solar cookers provide an excellent alternative to cooking with wood-fired stoves—on which two billion people still rely. Solar cookers provide a cleaner and safer way to sanitize water and cook food. Solar energy complements other renewable sources of energy, such as wind or hydroelectric energy . Homes or businesses that install successful solar panels can actually produce excess electricity. These homeowners or businessowners can sell energy back to the electric provider, reducing or even eliminating power bills. Disadvantages The main deterrent to using solar energy is the required equipment. Solar technology equipment is expensive. Purchasing and installing the equipment can cost tens of thousands of dollars for individual homes. Although the government often offers reduced taxes to people and businesses using solar energy, and the technology can eliminate electricity bills, the initial cost is too steep for many to consider. Solar energy equipment is also heavy. In order to retrofit or install solar panels on the roof of a building, the roof must be strong, large, and oriented toward the sun’s path. Both active and passive solar technology depend on factors that are out of our control, such as climate and cloud cover. Local areas must be studied to determine whether or not solar power would be effective in that area. Sunlight must be abundant and consistent for solar energy to be an efficient choice. In most places on Earth, sunlight’s variability makes it difficult to implement as the only source of energy.

Agua Caliente The Agua Caliente Solar Project, in Yuma, Arizona, United States, is the world's largest array of photovoltaic panels. Agua Caliente has more than five million photovoltaic modules, and generates more than 600 gigawatt-hours of electricity.

Green Chicago Millennium Park in Chicago, Illinois, United States, has one of the most expansive green roofs in the world almost 100,000 square meters (more than a million square feet). Vegetation at ground level covers 24.5 acres of an underground parking garage, and includes gardens, picnic areas, and an outdoor concert facility.

Solar Decathlon The Solar Decathlon is a biannual international event presented by the U.S. Department of Energy. Teams compete to design, build, and operate the most attractive, effective, and energy-efficient solar-powered house.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrator

Last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

solar energy research articles

  • Articles in Press
  • Current Issue

Journal Archive

Facts and Figures

Journal of Solar Energy Research (JSER) is a quarterly, international, and open-access journal. This journal aims to publish peer-reviewed high-quality original research articles, review papers, and letters that contribute to the advancement of any aspect of solar energy. 

Journal of Solar Energy Research (JSER) was granted publication permission following a series of successful international conferences on solar energy held at the University of Tehran and continues to be published since 2016. 

Papers accepted for publication in the Journal of Solar Energy Research (JSER) are Indexed by the Islamic World Science Citation Center (ISC) .

It is our honor to announce that the Journal of Solar Energy Research (JSER) is indexed by SCOPUS and also licensed by the I.R.Iran Ministry of Science, Research, and Technology and has received the Scientific-Research (Elmi-Pajouheshi) License.    

ISO Abbreviation:  J Energy Res

Frequency:  Quarterly 

Language:  English

Average Time to First Decision: 1 Week

Peer Review Policy:  Double Blind Peer Review

Last Scopus CiteScore: 1.1

                                                                                                                                                     

solar energy research articles

A Combination of SWHs and PVs Mounted on the Façade of a Building to Reduce Energy-Consuming

Pages 1728-1744

10.22059/jser.2024.364971.1347

Narges Loghmani; Ayoub Khosravi

  • View Article
  • PDF 982.27 K

Fault Tolerant Multilevel Inverter Using Artificial Neural Network

Pages 1745-1752

10.22059/jser.2024.359461.1309

Ehsan Najafi; Roozbeh Rajabi; Nima Bayat

  • PDF 786.35 K

Publication Information

Indexing and abstracting.

SCOPUS

Keywords Cloud

solar energy research articles

Journal of Materials Chemistry A

Introduction to emerging materials for solar energy harvesting.

ORCID logo

* Corresponding authors

a School of Materials Science and Engineering, Nanyang Technological University, Singapore E-mail: [email protected]

b Department of Chemistry, University of California, Davis, USA

A graphical abstract is available for this content

Graphical abstract: Introduction to emerging materials for solar energy harvesting

  • This article is part of the themed collection: Emerging Materials for Solar Energy Harvesting

Article information

Download citation, permissions.

solar energy research articles

J. M. R. Tan, F. E. Osterloh and L. Wong, J. Mater. Chem. A , 2024, Advance Article , DOI: 10.1039/D4TA90038C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page .

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page .

Read more about how to correctly acknowledge RSC content .

Social activity

Search articles by author.

This article has not yet been cited.

Advertisements

Advertisement

Supported by

How China Came to Dominate the World in Solar Energy

Beijing is set to further increase its manufacturing and installation of solar panels as it seeks to master global markets and wean itself from imports.

  • Share full article

Keith Bradsher

By Keith Bradsher

Reporting from Beijing

China unleashed the full might of its solar energy industry last year. It installed more solar panels than the United States has in its history. It cut the wholesale price of panels it sells by nearly half. And its exports of fully assembled solar panels climbed 38 percent while its exports of key components almost doubled.

Get ready for an even bigger display of China’s solar energy dominance.

While the United States and Europe are trying to revive renewable energy production and help companies fend off bankruptcy, China is racing far ahead.

At the annual session of China’s legislature this week, Premier Li Qiang, the country’s second-highest official after Xi Jinping, announced that the country would accelerate the construction of solar panel farms as well as wind and hydroelectric projects.

With China’s economy stumbling, the ramped-up spending on renewable energy, mainly solar, is a cornerstone of a big bet on emerging technologies. China’s leaders say that a “new trio” of industries — solar panels, electric cars and lithium batteries — has replaced an “old trio” of clothing, furniture and appliances.

The goal is to help offset a steep slump in China’s housing construction sector. China hopes to harness emerging industries like solar power, which Mr. Xi likes to describe as “new productive forces,” to re-energize an economy that has slowed for more than a decade.

The emphasis on solar power is the latest installment in a two-decade program to make China less dependent on energy imports.

China’s solar exports have already drawn urgent responses. In the United States, the Biden administration has introduced subsidies that cover much of the cost of making solar panels and part of the much higher cost of installing them.

The alarm in Europe is particularly great. Officials are bitter that a dozen years ago, China subsidized its factories to make solar panels while European governments offered subsidies to buy panels made anywhere. That led to an explosion of consumer purchases from China that hurt Europe’s solar industry.

A wave of bankruptcies swept the European industry, leaving the continent largely dependent on Chinese products.

“We have not forgotten how China’s unfair trade practices affected our solar industry — many young businesses were pushed out by heavily subsidized Chinese competitors,” Ursula von der Leyen, president of the European Commission, said in her State of the Union address last September.

The remnants of Europe’s solar industry are now fading away. Norwegian Crystals, an important European producer of raw materials for solar panels, filed for bankruptcy last summer. Meyer Burger, a Swiss company, announced on Feb. 23 that it would halt production in the first half of March at its factory in Freiberg, Germany, and would try to raise money to complete factories in Colorado and Arizona.

The company’s U.S. projects could tap renewable energy manufacturing subsidies provided by President Biden’s Inflation Reduction Act .

China’s cost advantage is formidable. A research unit of the European Commission calculated in a report in January that Chinese companies could make solar panels for 16 to 18.9 cents per watt of generating capacity. By contrast, it cost European companies 24.3 to 30 cents per watt, and American companies about 28 cents.

The difference partly reflects lower wages in China. Chinese cities have also provided land for solar panel factories at a fraction of market prices. State-owned banks have lent heavily at low interest rates even though solar companies have lost money and some went bankrupt . And Chinese companies have figured out how to build and equip factories inexpensively.

Low electricity prices in China make a big difference.

Manufacturing the main raw material for solar panels, polysilicon, requires huge amounts of energy. Solar panels typically must generate electricity for at least seven months to recoup the electricity that was needed to make them.

Rows of solar panels stretch from the foreground to the background, in a desert region with mountains in the distance.

Coal provides two-thirds of China’s electricity at low cost. But Chinese companies are reducing costs further by installing solar farms in the deserts of western China, where public land is essentially free. Companies then use the electricity from those farms to make more polysilicon.

By contrast, Europe has costly electricity, particularly after it stopped buying natural gas from Russia during the Ukraine war. Land used in Europe for solar farms is expensive. In the Southwestern United States, environmental concerns have slowed the installation of solar farms, while zoning issues have blocked permits for the transmission of renewable energy.

China’s coal consumption has made it the world’s largest annual contributor to greenhouse gas emissions. But the country’s pioneering role in making solar panels less expensive has slowed the increase in emissions.

“If the Chinese manufacturers had not brought down the cost of panels by more than 95 percent, we could not see so many installations across the world,” said Kevin Tu, a Beijing energy expert and nonresident fellow with the Center on Global Energy Policy at Columbia University.

Annual solar panel installations have nearly quadrupled worldwide since 2018.

Some of the new solar farms generating electricity for polysilicon production are in two provinces in southwestern China, Qinghai and Yunnan. But much of the polysilicon is made in the Xinjiang region of northwestern China. The United States bans imports made with materials or components manufactured by forced labor in Xinjiang , where China has repressed predominantly Muslim minorities like the Uyghurs .

That has led the United States to block some shipments of solar panels from China , while the European Union has been considering similar action.

Chinese companies increasingly do the initial, high-value stages of solar panel manufacturing in China, and then ship the components to overseas factories for final assembly. This allows the shipments to avoid trade barriers, like tariffs imposed on many Chinese imports by President Donald J. Trump. Several of China’s biggest solar panel manufacturers are building final assembly plants in the United States to tap subsidies offered as part of the Inflation Reduction Act.

The law includes extensive subsidies to revive the American solar panel industry, which almost completely collapsed a decade ago in the face of low-cost imports from China. But building an industry that can stand on its own will be difficult.

China produces practically all of the world’s equipment for making solar panels, and almost all of the supply of every component of solar panels, from wafers to special glass.

“There is know-how to it, and it’s all in China,” said Ocean Yuan, the chief executive of Grape Solar, a company in Eugene, Ore., that works with Chinese solar companies that are setting up assembly operations in the United States.

That know-how used to be in the United States. As recently as 2010, Chinese producers of solar panels relied mainly on imported equipment, and faced long and costly delays if anything broke down.

“It took days or weeks to get replacement parts and engineers,” said Frank Haugwitz, a longtime solar energy consultant specializing in the Chinese industry.

In 2010, Applied Materials, a Silicon Valley company, built two extensive labs in Xi’an, the city in western China famous for terra-cotta warriors. Each lab was the size of two football fields. They were intended to do final testing for assembly lines with robots that could churn out solar panels with practically no human labor.

But within several years, Chinese companies had figured out how to do it themselves. Applied Materials considerably cut back its production of solar panel tooling and focused on making similar equipment that makes semiconductors.

Today anyone who tries to make solar panels outside China faces potential delays in installing or fixing equipment.

While Europe is mulling whether to follow the United States’ example with its own subsidies and import restrictions on solar products, Mr. Haugwitz said, “It will remain a challenge for Europeans to compete.”

Joy Dong and Li You contributed research.

Keith Bradsher is the Beijing bureau chief for The Times. He previously served as bureau chief in Shanghai, Hong Kong and Detroit and as a Washington correspondent. He has lived and reported in mainland China through the pandemic. More about Keith Bradsher

  • Rooftop Solar
  • Utility-Scale Solar
  • Community Solar
  • Regulatory Policy
  • Climate Change
  • Diversity & Inclusion
  • Low-Income Solar
  • Environmental Justice
  • Workforce Development
  • Land Use & Solar Development
  • Circular Economy
  • Consumer Protection
  • Health & Safety
  • Domestic Manufacturing
  • International Trade
  • About Solar Energy
  • Solar + Storage
  • Cybersecurity
  • News Center
  • Upcoming Events
  • Take Action
  • Connect With Peers
  • State-By-State Map

Solar Market Insight Report 2023 Year in Review

1.    key figures.

  • In 2023, the US solar market installed 32.4 GWdc of capacity, a remarkable 51% increase from 2022. This was the industry’s biggest year by far, exceeding 30 GWdc of capacity for the first time.  
  • Solar accounted for 53% of all new electricity-generating capacity added to the US grid in 2023, making up over half of new generating capacity for the first time.
  • The residential segment set another annual record at 6.8 GWdc installed in 2023, growing 13% over 2022. However, installations declined both quarter-over-quarter and year-over-year in Q4 as the large pipeline of California projects sold under more beneficial net metering rules in early 2023 was built out. Excluding California, the residential segment remained flat quarter-over-quarter.
  • The commercial solar segment broke an annual record that has stood since 2017, with 1,851 MWdc installed, growing 19% over 2022. Fourth quarter volumes in California doubled from their typical range as the commercial sector started to see the same surge of installations caused by the switch to net billing.   
  • The community solar segment installed 1,148 MWdc, a 3% increase over 2022. New York, the largest community solar market that has driven the sector’s growth for several years, declined slightly from 2022. Interconnection delays and permitting challenges continue to limit deployment in other mature markets. 
  • The utility-scale segment installed a record-breaking 22.5 GWdc in 2023, representing 77% annual growth and nearly 10 GWdc more than 2022. More than 10 GWdc was installed in the fourth quarter. This growth underscores the market impact of supply chain constraints in 2022. Many of the projects completed in 2023 represent delayed buildout of 2022 pipelines.  
  • Texas beat California to claim the top spot for solar capacity installed in 2023. This is only the second time that Texas has outranked California for annual installations, which also happened in 2021. This is being driven by utility-scale installations in Texas, which amounted to nearly 4 GWdc in Q4 2023 alone.  
  • Our annual Year in Review report includes extended 10-year outlooks for every segment. The total US solar fleet is expected to nearly quadruple from 177 GWdc installed at year-end 2023, to 673 GWdc installed by 2034. By 2040, solar is expected to make up the largest share of electric generating capacity in the US.  
  • In this report, we have also included our alternative scenarios (a Bull case and a Bear case). The US solar industry currently faces several uncertainties, including policy outcomes of the upcoming presidential election. Our Bull case considers a future with fewer supply chain constraints, more projects qualifying for tax credit adders, favorable financing conditions, and faster interconnection queue reform, amongst several other factors. This is expected to result in 85 additional GWdc installed through 2034, 17% more than in our Base case. Our Bear case generally considers the opposite conditions, which would reduce our outlook by 24% through 2034, amounting to nearly 120 GWdc less solar capacity. More details and data can be found in the full report.

2.    Introduction  

The US solar industry installed 32.4 gigawatts-direct current (GWdc) of capacity in 2023, a remarkable 51% increase over 2022. This was the industry’s biggest year by far, exceeding 30 GWdc of capacity for the first time. Every single segment set annual installation records except for community solar, which was within 5 MWdc of an annual record. 

Growth in 2023 was due to slightly different factors for each segment. Residential solar grew 12%, adding 6.8 GWdc of capacity as installations surged in California as customers rushed to take advantage of more favorable net metering rules before the switch to net billing in April. This helped to offset declines in other states mostly due to interest rate increases. Commercial solar saw a similar increase in California, leading to national growth of 19% over 2022. Community solar grew just 3% compared to 2022. While this segment continues to struggle with interconnection delays and permitting challenges, strong pipelines in states like Illinois, New Jersey, and New York helped contribute to year-over-year growth. Finally, utility-scale installations spiked to 22.5 GWdc of capacity, a 77% increase over 2022. Module import volumes increased over the course of the year as importers worked with Customs and Border Protection (CBP) to demonstrate compliance with the Uyghur Forced Labor Prevention Act (UFLPA). The temporary moratorium on new anticircumvention tariffs applicable to certain imports from four Southeast Asian countries also brought some stability to the solar supply chain. That moratorium ends in June 2024.    Overall, photovoltaic (PV) solar accounted for 53% of all new electricity-generating capacity additions in 2023, making up more than half of new generating capacity for the first time.

Figure 1

2023 was a year of recovery for the US solar industry. After installation volumes shrank 9% in 2022 due to various trade actions impacting solar imports, supply chain stability helped the industry get back to business in 2023. We expect this momentum to continue into 2024, albeit at a lower growth rate since 2023 installations were record-shattering due to delayed 2022 projects coming to fruition in 2023. 

Our growth-rate expectations for the commercial, community, and utility-scale segments are 19%, 15%, and 26% for 2024, respectively. There are healthy pipelines of late-stage and under construction projects in each of these segments that will translate to installation growth.  Residential solar, however, is expected to decline by 13% in 2024. The impacts of California’s shift to net billing will manifest in lower installation volumes in 2024, as we’ve predicted since late 2022. While installers report there are still NEM 2.0 projects in their backlogs, installation declines began in the fourth quarter – volumes were down 17% year-over-year and 35% quarter-over-quarter in the state. Additionally, the negative impacts of higher interest rates are expected to continue this year, lowering both sales and installations in other states. 

Looking at all the segments combined, we’re expecting roughly 5 GWdc more to be installed in 2024 compared to 2023, for a total of nearly 38 GWdc. 

A Bull case with increased supply chain stability, more tax credit financing, and lower interest rates would increase the outlook by 17%

For this year’s alternative scenarios, our analysts considered several economic and policy factors that could impact the future of the US solar market. There are always numerous uncertainties to navigate in the solar industry, particularly in a presidential election year. 

Our Bull case envisions a future with fewer supply chain constraints on solar equipment. In this scenario, we assume CBP allows increasingly more shipments of modules made with non-Xinjiang Chinese polysilicon to enter the country. Sources of supply that aren’t subject to anticircumvention tariffs, such as wafer manufacturing facilities in Southeast Asia, continue to increase. This could impact domestic manufacturing – manufacturing capacity, particularly for modules, will continue to increase but will be challenged by the oversupply environment. Overall, increased supply will help prevent project delays. 

When it comes to the Inflation Reduction Act (IRA), our Bull case assumes that qualifying for and financing tax credits is simple and straightforward. We assume an accelerated expansion of tax credit financing availability – more corporations become tax equity providers and the tax credit transferability market grows rapidly, facilitating more transactions. The tax credit levels for the production tax credit and investment tax credit remain the same, but clear and straightforward guidance from Treasury helps more projects qualify for tax credit adders. 

We also assume a more optimistic picture for transmission capacity buildout and interconnection reform. In the Bull scenario, transmission projects are fast-tracked, and grid operators implement effective interconnection reforms quickly. This helps speed the approval and installation of solar projects.   

Finally, our Bull case assumes that interest rates decline and then stabilize faster than in our Base case. We assume the Federal Reserve cuts rates several times this year and next, with rates stabilizing at 3% by the end of 2026. This helps reduce the cost of capital, bringing down solar project costs.

Our Bull case results in a 17% increase in total solar installations through 2034 relative to the Base case, translating to an additional 86 GWdc of capacity. On an annual basis, the increase is smaller in the near-term, averaging 13% over the next five years. Near-term installations are less sensitive to our assumptions given typical project timelines, particularly for utility-scale solar. But this annual increase grows to roughly 30% by the end of the outlook.

A Bear case with supply chain constraints, less tax credit financing, and static interest rates would decrease the outlook by 24%

Our Bear case flips many of the Bull case assumptions in the opposite direction. Firstly, the Bear case envisions an increase in trade actions and other measures that limit supply of solar equipment. This constrains supply to the extent that utility-scale solar (which is more reliant on imported modules than the distributed segments) is limited in the near-term before more domestic manufacturing comes online. But after a few years, supply constraints are mitigated by an acceleration of domestic manufacturing buildout, particularly for cells and wafers. 

The Bear case assumes the environment for tax credit qualification and financing is uncertain and limited. We assume tax credit financing availability doesn’t keep up with demand. The transferability market faces unforeseen challenges, minimizing availability of financing through tax credit transfers. Guidance issued by the Treasury is released at a slow pace and doesn’t address current uncertainties related to credit qualification. It remains challenging to qualify for the domestic content adder. 

In our Bear case, transmission projects are even more burdened by development hurdles than they are today. Large projects are delayed or cancelled outright. Interconnection reforms don’t address queue backlogs, further delaying project development.  

Lastly, the Bear case assumes that interest rates stay static at their current levels through the outlook. This keeps the cost of capital higher, and thus project economics do not improve at the same rates as they would in the Base case or the Bull case. 

The Bear case results in a 24% decrease in total solar installations through 2034 compared to the Base case, a reduction of 120 GWdc. Similar to the Bull case, the annual decreases are smaller in the near term, but result in more than 40% lower capacity in some of the latter years of the outlook. 

Figure 2

Solar deployments to quadruple by 2034

In our Base case outlook, total solar deployment is set to grow to more than 670 GWdc by 2034, nearly quadrupling from today’s level. While we expect about 38 GWdc of capacity installations in 2024, typical volumes will be in the 48-50 GWdc range from 2030 onward. This is a reduction from our expectations in our last Year in Review report. While solar has an incredibly strong outlook, interconnection challenges are the main driver of lower expectations in the latter half of our outlook. 

While this industry is larger than it has ever been, annual growth over the next 10 years will average 4% compared to 25% for the prior decade. The challenges that currently limit growth in this industry–particularly transmission and interconnection limitations–will only become more heightened over time. Addressing these limitations is key to meeting both decarbonization goals and growing power demand. 

Figure 3

3.    Market segment outlooks

3.1.    residential pv  .

  • 6.8 GWdc installed in 2023, 1,533 MWdc in Q4 2023
  • Up 13% from 2022

The residential solar market hit another record in 2023 but is set to decline in 2024

2023 was a tumultuous year for the residential solar industry, but it resulted in the segment’s fifth consecutive year of record installed capacity. Installation backlogs from a robust year of sales in 2022 supported growth at the beginning of 2023. However, high interest rates hampered sales throughout 2023, impacting installation volumes more significantly as the year progressed. Although California installations increased through the first three quarters of 2023, the state saw a 35% quarterly drop in capacity in Q4 as installers depleted backlogs of sales made under NEM 2.0. Nationally, the residential segment installed 1,533 MWdc in Q4 to reach 6.8 GWdc of annual installed capacity, a 13% increase from 2022. But Q4 was the lowest quarter of capacity volume since Q2 2022. 

Installers continued to face challenging market conditions through the fourth quarter of 2023, with many experiencing a more distinct seasonal dip in sales than in recent years. Although many installers report that pricing and financing terms remained steady, several other factors continued to strain their cash flow, such as delayed milestone payments and permitting and interconnection delays in some areas of the country. Thirty-one states and Puerto Rico saw year-over-year growth in 2023, but many installers experienced sales declines throughout the year. Some installers reported 30-50% declines in sales year-over-year in some markets in the fourth quarter, which will result in lower installation volumes in the next few quarters.

Figure 5

3.2.    Commercial PV 

  • 1,851 MWdc installed in 2023, 638 MWdc in Q4 2023
  • Up 19% from 2022

Note on market segmentation: Commercial solar encompasses distributed solar projects with commercial, industrial, agricultural, school, government, or nonprofit offtakers, including remotely net-metered projects. This excludes community solar (covered in the following section).

California’s NEM 2.0 installed capacity drives record quarter and year for commercial solar

Commercial solar had a record-breaking year with 1.9 GWdc of new capacity installed in 2023, a 19% increase compared to 2022. California accounted for 35% of the national installed capacity in 2023, with installations growing 34% year-over-year. Additionally, the continued easing of supply chain constraints and lower system costs supported development throughout the year.

The commercial segment grew by 71% quarter-over-quarter in Q4 2023, driven mainly by a surge of NEM 2.0 installations in California. There were 302 MWdc of installed capacity added in California during Q4 2023, making up half the total quarterly volume. Commercial solar growth has typically come from a few key markets, such as California, New Jersey, New York, Illinois, and Massachusetts. However, both large and small markets contributed to the segment’s growth last year. In 2023, installation volumes in 19 states grew by over 50% year-over-year. Non-traditional states like Georgia and Texas have become particularly attractive for many developers due to low development costs, low building penetration, and ample land. 

Figure 7

3.3.    Community solar PV 

  • 1,148 MWdc installed in 2023, 315 MWdc installed in Q4 2023
  • Up 3% from 2022

Note on market segmentation: Community solar projects are part of formal programs where multiple residential and non-residential customers can subscribe to the power produced by a local solar project and receive credits on their utility bills.

Annual community solar capacity additions break 1 GWdc for a third consecutive year 

Community solar installations increased by 3% year-over-year in 2023, resulting in 1,148 MWdc of new capacity. Annual installation volumes exceeded our previous expectations by 1.5%, and 2023 marks the third consecutive year national annual capacity exceeded 1 GWdc. Wood Mackenzie currently forecasts 15 community solar state markets, 10 of which experienced year-over-year growth. Maryland and New Jersey had particularly strong years, with capacity additions increasing by 169% and 608% compared to 2022, respectively. Installation volumes in New York decreased slightly in 2023 compared to 2022, but annual additions in the state still comprised 45% of total national installations.

Despite year-over-year growth, obstacles persist in mature state markets. Installed capacity in Massachusetts, for example, declined 72% from 2022 as developers continue to wait on siting, permitting, and interconnection reform. Interconnection delays are also impacting newer state markets. Developers anticipated having projects online in Virginia and Delaware by the end of 2023; however, only a single project in Virginia reached completion. Despite these interconnection delays, development pipelines in newer state markets remain very strong, supporting our expectation for 15% annual growth nationally in 2024.

Overall, we expect the national community solar market to grow by 7% annually on average through 2028. Large development pipelines in both new and mature state markets bolster near-term growth. Longer-term, Solar for All funding and the availability of the ITC adders will support lasting growth. We also continue to closely monitor implementation of community solar legislation in California, the result of which will be a significant factor in future changes to our national forecast. Additionally, the establishment of new state markets provides room for upside in our five-year outlook. Pre-development pipelines in Ohio, Wisconsin, Michigan, and Pennsylvania exceed 1 GWdc, and there is interest in introducing or expanding community solar legislation in several additional states.  

Figure 8

3.4.    Utility PV

  • 22.5 GWdc installed in 2023, record-high of 10.5 GWdc installed in Q4 2023
  • More than 343 GWdc of utility-scale solar will be added over the next 10 years in our Base case

Utility-scale segment rebounds in 2023

The utility-scale solar segment rebounded in 2023 from the downturn observed in 2022. The sector grew by 77% in installed capacity compared to 2022, with a total of 22.5 GWdc interconnected last year. This growth was acute in Q4 2023, which was a record quarter for the segment by over 4 GWdc. This growth can be largely attributed to module supply chain stabilization within the past year and the subsequent buildout of delayed projects.  

Although supply chain stabilization allowed the sector to regain momentum in project installations, high interest rates, tighter financing conditions, and interconnection uncertainty slowed contract negotiations. This resulted in a 64% decrease in contracted capacity in 2023 compared to 2022. Only 693 MWdc of projects were contracted in Q4 2023, a record-low quarter that has resulted in the project pipeline dipping below the 90 GWdc threshold at 83 GWdc. This decline is mainly driven by the opposing dynamics of contracting new projects and building projects in the current pipeline. Many developers are focusing on materializing current pipeline with existing module stock before the end of the two-year tariff moratorium in June 2024.

In our Base case outlook, Wood Mackenzie forecasts that the utility-scale segment will add 148 GWdc of installed capacity between 2024 and 2028 and 343 GWdc over the next decade. Interest in the segment will remain strong throughout the forecast period as utility procurements, corporate clean energy goals, and state mandated targets continue to drive growth. The different buildout levels presented in the alternative scenarios in the full report are mainly driven by tax credit adders, tax equity availability, labor availability, supply chain dynamics, and interconnection reforms.

Figure 8

4.    US solar PV forecasts

Figure 10

5.    National solar PV system pricing

  • Residential system pricing is down 2% year-over-year
  • Commercial system pricing is down 6% year-over-year
  • Utility-scale system pricing is up 9% for fixed-tilt and 11% for single-axis tracking year-over-year

Note: In November 2023, Wood Mackenzie published a refreshed customer acquisition cost analysis (US distributed solar customer acquisition cost outlook 2023). Therefore, there are changes to the modeled residential customer acquisition costs and overall national average turnkey pricing in this report compared to past quarters.

Figure 11

The rapid decline in module prices for the distributed generation segments resulted in both quarterly and annual system cost decreases for the residential and commercial segments. As residential solar demand declined faster than installers anticipated throughout 2023, the segment experienced an oversupply of modules, which then sold at significant discounts towards the end of the year as demand slumped. As a result, average module prices decreased by 43% and 34% year-over-year for the residential and commercial segments, respectively. The average residential PV system price was down by 2% (with module cost declines partially offset by increases in customer acquisition costs), and the commercial PV system price decreased by 6% year-over-year in Q4 2023. By contrast, the one-year lag in module procurement and the rising balance of plant and labor costs resulted in a 10% year-over-year increase in average utility PV system prices.  

Ownership rights

This report ("Report") and all Solar Market Insight® ("SMI")TM reports are jointly owned by Wood Mackenzie and the SEIA® (jointly, "Owners") and are protected by United States copyright and trademark laws and international copyright/intellectual property laws under applicable treaties and/or conventions. Purchaser of Report or other person obtaining a copy legally ("User") agrees not to export Report into a country that does not have copyright/intellectual property laws that will protect rights of Owners therein.

Grant of license rights

Owners hereby grant user a non-exclusive, non-refundable, non-transferable Enterprise License, which allows you to (i) distribute the report within your organization across multiple locations to its representatives, employees or agents who are authorized by the organization to view the report in support of the organization’s internal business purposes, and (ii) display the report within your organization’s privately hosted internal intranet in support of your organization’s internal business purposes. Your right to distribute the report under an Enterprise License allows distribution among multiple locations or facilities to Authorized Users within your organization. Owners retain exclusive and sole ownership of this report. User agrees not to permit any unauthorized use, reproduction, distribution, publication or electronic transmission of any report or the information/forecasts therein without the express written permission of Owners.

Disclaimer of warranty and liability

Owners have used their best efforts in collecting and preparing each report.

Owners, their employees, affiliates, agents, and licensors do not warrant the accuracy, completeness, correctness, non-infringement, merchantability, or fitness for a particular purpose of any reports covered by this agreement. Owners, their employees, affiliates, agents, or licensors shall not be liable to user or any third party for losses or injury caused in whole or part by our negligence or contingencies beyond Owners’ control in compiling, preparing or disseminating any report or for any decision made or action taken by user or any third party in reliance on such information or for any consequential, special, indirect or similar damages, even if Owners were advised of the possibility of the same. User agrees that the liability of Owners, their employees, affiliates, agents and licensors, if any, arising out of any kind of legal claim (whether in contract, tort or otherwise) in connection with its goods/services under this agreement shall not exceed the amount you paid to Owners for use of the report in question.

solar energy research articles

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • News & Views
  • Published: 20 January 2022

SUSTAINABLE ENERGY

Solar power challenges

  • Timothy Laing   ORCID: orcid.org/0000-0002-3750-323X 1  

Nature Sustainability volume  5 ,  pages 285–286 ( 2022 ) Cite this article

1063 Accesses

4 Citations

14 Altmetric

Metrics details

  • Energy and society
  • Environmental impact
  • Environmental social sciences
  • Photovoltaics
  • Sustainability

The transition to a low-carbon energy system requires a huge range of materials for the technologies needed. Now a study highlights how large the demand for aluminium could be with rapid photovoltaic adoption, which could have a massive carbon footprint if action is not taken in the sector.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

111,21 € per year

only 9,27 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

solar energy research articles

dowell / Getty Images

Hund, K., La Porta, D., Fabregas, T. P., Laing, T. & Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition (World Bank, 2020).

The Role of Critical Minerals in Clean Energy Transitions (IEA, 2021); https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions

Lennon, A., Lunardi, M., Hallam, B. & Dias, P. R. Nat. Sustain . https://doi.org/10.1038/s41893-021-00838-9 (2022).

Ziemann, S., Müller, D. B., Schebek, L. & Weil, M. Resour. Conserv. Recycl. 133 , 76–85 (2018).

Article   Google Scholar  

Alves Dias, P., Blagoeva, D., Pavel, C. & Arvanitidis, N. Cobalt: Demand-Supply Balances in the Transition to Electric Mobility EUR 29381 EN (Publications Office of the European Union, 2018).

Moss, R. L., Tzimas, E., Kara, H., Willis, P. & Kooroshy, J. Energy Policy 55 , 556–564 (2013).

Article   CAS   Google Scholar  

Tokimatsu, K. et al. Appl. Energy 225 , 1158–1175 (2018).

Heffron, R. J. Extr. Ind. Soc. 7 , 855–863 (2020).

Google Scholar  

Kalantzakos, S. Int. Spect. 55 , 1–16 (2020).

Download references

Author information

Authors and affiliations.

School of Business and Law, University of Brighton, Brighton, UK

Timothy Laing

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Timothy Laing .

Ethics declarations

Competing interests.

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Laing, T. Solar power challenges. Nat Sustain 5 , 285–286 (2022). https://doi.org/10.1038/s41893-021-00845-w

Download citation

Published : 20 January 2022

Issue Date : April 2022

DOI : https://doi.org/10.1038/s41893-021-00845-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

solar energy research articles

She built one of the most energy-efficient homes in D.C. Here’s how.

Lessons from the city’s first ‘net-zero’ accessory dwelling unit.

solar energy research articles

In the spring of 2020, Aurora Ferrari looked at the plot of land sandwiched between her D.C. backyard and an alley, and saw potential. Today, it’s the site of the city’s first “net-zero” accessory dwelling unit — meaning the 600-square-foot apartment that Ferrari built there produces more energy than it consumes.

The 50-year-old native of Italy has long been interested in sustainable design, and as the owner of a business that imports Italian cabinetry and fixtures , she’s well versed in the world of building and renovating. The idea to create the net-zero structure — the type of eco-friendly construction she hopes will one day become mainstream in the United States — came to Ferrari after attending a local exhibit about the city’s alleys. It argued that the oft-neglected spaces offered promise as sites of new housing.

“It pains me seeing so much energy wasted, even in my own house,” says Ferrari, who shares her Cleveland Park home with her husband and four children. She wants the unit in their backyard to be “an example that can inspire other people” and show that energy-efficient building is doable. “It just requires deliberate planning and deliberate thought.”

Ferrari managed the project herself, acquiring the slice of land with crumbling stone walls from a family who had owned it for many years, then merging it with her own property. She assembled a team of architects, energy consultants and other experts to begin the process of developing it into an accessory dwelling unit, commonly known as an ADU. (In addition to structures like Ferrari’s, converted garages, tiny homes, in-law suites and English basements are all considered ADUs — secondary places to live on a residential lot — in D.C.)

The finished product’s Corten steel exterior and long windows give it a modern look. Ferrari also incorporated the existing historic stone wall into the design — the remnants of a garage from the 1920s. The ADU includes one bedroom, plus a full bathroom, kitchen and sun-filled sitting area. Thirteen solar panels on its flat roof help fuel the all-electric appliances, and the building’s airtight construction conserves energy. It’s currently occupied by renters.

After putting the structure through a rigorous energy evaluation, the city determined last year that it did indeed qualify as the first net-zero ADU within the District. The achievement didn’t come easy. It took the better part of two years to come to fruition, including around nine months to obtain the necessary permits and roughly seven months to actually construct it. Ferrari says the project ran about $330 per square foot, or about $200,000 in all. That amount doesn’t count the hundreds of hours she devoted to researching the best materials and techniques and coordinating all the experts involved.

Ferrari hopes some of what she learned might simplify the process for others on a similar mission. Here are some of the bigger takeaways from her and the consultants who helped her along the way.

Research possible incentives

There are a slew of resources available for green building. Tax breaks, rebates and subsidies abound at the federal level, especially after the passage of the Inflation Reduction Act, including for buying electric appliances such as heat pumps and electric water heaters. You might find additional resources at the state or municipal level, too.

These incentives could influence which kind of certifications you try to seek. Aside from net-zero certification, for example, another common one is “passive house” certification, which entails reducing the need for energy through insulation and airtightness. Certain jurisdictions offer more or fewer incentives for particular certifications. D.C., for instance, offers thousands of dollars in incentives and help navigating the permitting process specifically for net-zero building and retrofitting.

Materials matter

Eco-friendly building materials don’t have to be exotic. If you’re building a new structure, Mariela Buendia-Corrochano, a design architect who collaborated on Ferrari’s project, suggests using recycled woods, aluminum and steel, which you can often source locally. Relying on repurposed materials reduces waste sent to landfills and consumes less energy, especially if they’re acquired nearby. As an added benefit, older products are often more durable.

Durability is part of the reason Ferrari chose Corten steel, also known as weathering steel. Among sheet metals, Corten is especially resistant to corrosion and doesn’t need finishing because it achieves a natural, rusted patina within six months.

While Ferrari was working on the design, she focused on ensuring “the suppliers I was using were friendly to the environment,” paying particular attention to companies that employed solar energy and didn’t use plastic wrapping to ship their goods. She also favored products made of recycled materials, such as Fenix , a recycled laminate she used for the kitchen counters.

Build for your climate and your site

The more extreme the climate, the more energy it takes to keep the home comfortable. In D.C., Ed May, a partner at consulting firm BLDGtyp who helped with Ferrari’s project, sees more challenges than strengths — mostly because of the humidity, which creates unwelcome moisture and discomfort, and the dramatic swing in seasons. It’s relatively cold in the winter but incredibly hot in the summer, which means you have to be especially careful about window placement (more on that below).

Of course, the physical attributes of your site might bring complications, too. For Ferrari, those included the historic stone walls she incorporated into the design. They were more difficult to insulate than if the entire ADU had been built from scratch. On the flip side, stone is good at absorbing and storing heat, and it can flatten outside temperature fluctuations.

Work with the sun

The sun plays a key role in energy-efficient building. Ferrari relies on solar panels, but she was also strategic about her windows, opting for ones made of double-glazed fiberglass, specially designed to limit how much of the sun’s heat can enter. They keep her building from turning into an oven when it’s warm, even without air conditioning. Despite the large size of the windows, “there has never been any problems with the heat or cold,” she says.

Placement of windows is also crucial. Generally, says May, you want to be careful with west-facing windows in hot climates, because they’ll face a low, late-afternoon sun in the summer, the intensity of which is tough to mitigate with shading. South-facing windows are easier to manage, at least in the Northern Hemisphere, because the light they get is easier to block.

“It’s just a matter of limiting the amount of direct sunlight and then maybe compensating in other areas where the sunlight isn’t hitting so much,” says Bryant Cordero, a design architect who worked on Ferrari’s ADU.

If you’re building from scratch, you can orient your structure in an optimal way for the sun, or even position it to take advantage of nearby buildings, using them to block some of the harsher light.

Make your building airtight

May equates creating an airtight home to “building a really good thermos,” because the same principles apply. “The basic strategies are very, very simple and they’re incredibly boring,” he says. You have to make sure the building is well insulated, and that includes the windows. (How well a window insulates is measured by something called a U-factor, and the lower the number, the better.)

Ferrari’s ADU has double the insulation of a typical structure — the exterior is insulated with foam board, the interior walls with spray foam. She also used a membrane sourced from Germany to help seal the structure and protect the inner workings from moisture.

Another, more straightforward part of making a building airtight is eliminating unnecessary holes in the exterior. This may sound obvious, but Ferrari found that many of the contractors who came to service the ADU wanted to drill through it, for instance to bring in WiFi and electrical lines. She says it wouldn’t “even cross their mind, if [they’re] making another hole, they’re making my house less energy efficient.” On at least one occasion, she had to rush outside to prevent a worker from drilling. Ultimately, she got the cables in through the garage, which was less invasive. “It’s not ideal, but it’s the best thing that could be done,” she says.

Making a structure airtight, though, means you’ll also need to incorporate a dedicated fresh-air ventilation system — equipment that expels stale air and brings in fresh air, filtering out pollen and pollutants in the process. These systems come in different shapes, sizes and configurations, but May ballparks the average cost of one suited to a single-family home or an ADU like Ferrari’s at $8,000 to $10,000. (Ferrari’s comprises a 2-foot-by-2-foot box filled with foam and fans that connects to the ductwork throughout the structure.)

The path to creating an energy-efficient building is “not rocket science. It’s common sense,” says Ferrari. Whoever manages the project, though, needs to constantly prioritize that goal, she says, “because there are many, many players who come into your house to do the job and very, very few of them are trained in this.”

More from The Home You Own

The Home You Own is here to help you make sense of the home you live in.

DIYs you can actually do yourself: Don’t be intimidated by those home projects. Consider which renovations add the most value to your home (including the kitchen and bathroom ), what you can actually get done in a weekend , and everything in between.

Your home + climate change: Whether you’re trying to prepare your home for an electric vehicle or want to start composting , we’re here to help you live more sustainably .

Plants and pets: Your furry friends and greenery add more life to your spaces. For your green thumb, find tips for saving money on houseplants and how to keep your plants alive longer. Pets can make a house a home, but stopping your cats from scratching the furniture isn’t always easy.

Keeping your home clean and organized: We breakdown the essential cleaning supplies you need, and point out the 11 germy spots that are often overlooked. Plus, hear hacks from professional organizers on maximizing counter space ,

Maintaining your home: Necessary home maintenance can save your thousands in the long run. From gutter cleaning and preparing your fireplace for winter, to what to do if your basement floods .

Contact us: Looking to buy your first home? Do you have questions about home improvement or homeownership? We’re here to help with your next home project.

solar energy research articles

IMAGES

  1. Importance of Solar Energy in Day to Day Life by International Journal

    solar energy research articles

  2. (PDF) A Review on Solar Energy Research in Jordan

    solar energy research articles

  3. Solar System Installed at National Research Facility

    solar energy research articles

  4. ⚡ Renewable energy research topics. Top 35 Projects Based on Renewable

    solar energy research articles

  5. (PDF) A Review Paper on Solar Energy System

    solar energy research articles

  6. (PDF) Importance of Solar Energy Technologies for Development of Rural

    solar energy research articles

COMMENTS

  1. Solar energy

    Solar energy articles from across Nature Portfolio. Atom; RSS Feed; Featured. Carrier concentration resolved. ... Research Open Access 05 Mar 2024 Nature Communications. Volume: 15, P: 2002.

  2. The Future of Solar is Bright

    The Future of Solar is Bright. by Emily Kerr. figures by Abagail Burrus. The Sun emits enough power onto Earth each second to satisfy the entire human energy demand for over two hours. Given that it is readily available and renewable, solar power is an attractive source of energy. However, as of 2018, less than two percent of the world's ...

  3. Solar energy technology and its roles in sustainable development

    3 The perspective of solar energy. Solar energy investments can meet energy targets and environmental protection by reducing carbon emissions while having no detrimental influence on the country's development [32, 34].In countries located in the 'Sunbelt', there is huge potential for solar energy, where there is a year-round abundance of solar global horizontal irradiation.

  4. The Future of Solar Energy

    Full report (PDF) The Future of Solar Energy considers only the two widely recognized classes of technologies for converting solar energy into electricity — photovoltaics (PV) and concentrated solar power (CSP), sometimes called solar thermal) — in their current and plausible future forms. Because energy supply facilities typically last ...

  5. Solar energy

    Photocatalytic solar hydrogen production from water on a 100-m 2 scale. Carbon-neutral hydrogen can be produced through photocatalytic water splitting, as demonstrated here with a 100-m 2 array of ...

  6. Build solar-energy systems to last

    Solar energy systems are being installed in more diverse settings. New cell designs, materials, packaging and racking technologies are advancing to market within months. ... Research articles News ...

  7. Solar Energy Advances

    The journal covers research on integrated solar energy systems and their applications, optimised solar energy solutions and energy storage, hybrid energy systems including mini- and micro-power systems. Moreover, the Journal welcomes articles related to research and development in direct and indirect solar energy utilization, with special focus ...

  8. Solar energy status in the world: A comprehensive review

    The global installed solar capacity over the past ten years and the contributions of the top fourteen countries are depicted in Table 1, Table 2 (IRENA, 2023). Table 1 shows a tremendous increase of approximately 22% in solar energy installed capacity between 2021 and 2022. While China, the US, and Japan are the top three installers, China's relative contribution accounts for nearly 37% of the ...

  9. Solar Energy News -- ScienceDaily

    Revolutionary Breakthrough in Solar Energy: Most Efficient QD Solar Cells. Feb. 21, 2024 — A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic ...

  10. Solar Energy

    The Official Journal of the International Solar Energy Society® Solar Energy, the official journal of the International Solar Energy Society®, is devoted exclusively to the science and technology of solar energy applications. ISES is an UN-accredited membership-based NGO founded in 1954. For over 60 years, ISES members from more than 100 countries have undertaken the product research and ...

  11. Solar energy—A look into power generation, challenges, and a solar

    This article discusses the solar energy system as a whole and provides a comprehensive review on the direct and the indirect ways to produce electricity from solar energy and the direct uses of solar energy. ... Furthermore, a comprehensive list of future potential research directions in the field of direct and indirect electricity generation ...

  12. Frontiers in Energy Research

    Articles. Part of an innovative journal, this section covers direct energy conversion technologies, materials and device science necessary for large-scale deployment of cost-effective solar technologies.

  13. Researchers find benefits of solar photovoltaics outweigh costs

    Benefits of solar photovoltaic energy generation outweigh the costs, according to new research from the MIT Energy Initiative. Over a seven-year period, decline in PV costs outpaced decline in value; by 2017, market, health, and climate benefits outweighed the cost of PV systems.

  14. Recent advances in solar photovoltaic materials and systems for energy

    2.1 Solar photovoltaic systems. Solar energy is used in two different ways: one through the solar thermal route using solar collectors, heaters, dryers, etc., and the other through the solar electricity route using SPV, as shown in Fig. 1.A SPV system consists of arrays and combinations of PV panels, a charge controller for direct current (DC) and alternating current (AC); (DC to DC), a DC-to ...

  15. A systematic review of solar photovoltaic energy systems design

    People also read lists articles that other readers of this article have read. Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine. Cited by lists all citing articles based on Crossref citations. Articles with the Crossref icon will open in a new tab.

  16. Researchers improve the stability of perovskite solar cells

    Jan. 13, 2023 — The conversion of solar energy into hydrogen energy represents a promising and green technique for addressing the energy shortage and reducing fossil fuel emissions. A research ...

  17. Solar energy articles within Scientific Reports

    Read the latest Research articles in Solar energy from Scientific Reports ... Ultra-thin Ag/Si heterojunction hot-carrier photovoltaic conversion Schottky devices for harvesting solar energy at ...

  18. 'Revolutionary' solar power cell innovations break key energy threshold

    Solar power cells have raced past the key milestone of 30% energy efficiency, after innovations by multiple research groups around the world. The feat makes this a "revolutionary" year ...

  19. (PDF) Solar Energy Technology

    Solar Energy Technology. January 2020. Sumedha R.G Weliwaththage. Udara Arachchige. Jrte Journal. Energy resources can categorize as renewable energy resources and non-, renewable energy resources ...

  20. Solar Energy

    Solar energy is any type of energy generated by the sun. Solar energy is created by nuclear fusion that takes place in the sun. Fusion occurs when protons of hydrogen atoms violently collide in the sun's core and fuse to create a helium atom. This process, known as a PP (proton-proton) chain reaction, emits an enormous amount of energy.

  21. Solar energy for electricity and fuels

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of ...

  22. From Earthrise To Solar Rise: Powering A Green Future

    How does the U.S. compare with generating power from solar? Research from the Solar Energy Industry Association (SEIA) shows we're slowly tracking to achieve 30% by 2030.

  23. Journal of Solar Energy Research

    Journal of Solar Energy Research (JSER) is a quarterly, international, and open-access journal. This journal aims to publish peer-reviewed high-quality original research articles, review papers, and letters that contribute to the advancement of any aspect of solar energy. Journal of Solar Energy Research (JSER) was granted publication ...

  24. Introduction to emerging materials for solar energy harvesting

    Guest Editors Joel M. R. Tan, Frank E. Osterloh, and Lydia Wong introduce this Journal of Materials Chemistry A themed collection on emerging materials for solar energy harvesting. Emerging Materials for Solar Energy Harvesting

  25. A new kind of solar cell is coming: is it the future of green energy?

    Yet adding a perovskite cell produces a theoretical maximum efficiency of roughly 45%. "It's offering the potential to get 25-50% more power out of the panels. I think that's an exciting ...

  26. How China Came to Dominate the World in Solar Energy

    A research unit of the European Commission calculated in a report in January that Chinese companies could make solar panels for 16 to 18.9 cents per watt of generating capacity.

  27. Solar Market Insight Report 2023 Year in Review

    1. Key figuresIn 2023, the US solar market installed 32.4 GWdc of capacity, a remarkable 51% increase from 2022. This was the industry's biggest year by far, exceeding 30 GWdc of capacity for the first time. Solar accounted for 53% of all new electricity-generating capacity added to the US grid in 2023, making up over half of new generating capacity for the first time.The residential segment ...

  28. Solar energy had record 2023 in U.S., per SEIA and WoodMac

    Solar energy companies installed a record 32.4 GW of new generating capacity in the U.S. last year, leaping 51% year over year.. Why it matters: Federal incentives and falling prices in certain segments sparked a huge turnabout for a sector that saw growth fall off a cliff in 2022. State of play: Solar accounted for 53% of all new electric capacity added to U.S. grids in 2023 — the first ...

  29. Solar power challenges

    Solar power challenges. The transition to a low-carbon energy system requires a huge range of materials for the technologies needed. Now a study highlights how large the demand for aluminium could ...

  30. She built one of the most energy-efficient homes in DC. Here's how

    Thirteen solar panels on its flat roof help fuel the all-electric appliances, and the building's airtight construction conserves energy. It's currently occupied by renters.