Random Assignment in Psychology: Definition & Examples

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, Ph.D., is a qualified psychology teacher with over 18 years experience of working in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

In psychology, random assignment refers to the practice of allocating participants to different experimental groups in a study in a completely unbiased way, ensuring each participant has an equal chance of being assigned to any group.

In experimental research, random assignment, or random placement, organizes participants from your sample into different groups using randomization. 

Random assignment uses chance procedures to ensure that each participant has an equal opportunity of being assigned to either a control or experimental group.

The control group does not receive the treatment in question, whereas the experimental group does receive the treatment.

When using random assignment, neither the researcher nor the participant can choose the group to which the participant is assigned. This ensures that any differences between and within the groups are not systematic at the onset of the study. 

In a study to test the success of a weight-loss program, investigators randomly assigned a pool of participants to one of two groups.

Group A participants participated in the weight-loss program for 10 weeks and took a class where they learned about the benefits of healthy eating and exercise.

Group B participants read a 200-page book that explains the benefits of weight loss. The investigator randomly assigned participants to one of the two groups.

The researchers found that those who participated in the program and took the class were more likely to lose weight than those in the other group that received only the book.

Importance 

Random assignment ensures that each group in the experiment is identical before applying the independent variable.

In experiments , researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. Random assignment increases the likelihood that the treatment groups are the same at the onset of a study.

Thus, any changes that result from the independent variable can be assumed to be a result of the treatment of interest. This is particularly important for eliminating sources of bias and strengthening the internal validity of an experiment.

Random assignment is the best method for inferring a causal relationship between a treatment and an outcome.

Random Selection vs. Random Assignment 

Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study.

On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. 

Random selection ensures that everyone in the population has an equal chance of being selected for the study. Once the pool of participants has been chosen, experimenters use random assignment to assign participants into groups. 

Random assignment is only used in between-subjects experimental designs, while random selection can be used in a variety of study designs.

Random Assignment vs Random Sampling

Random sampling refers to selecting participants from a population so that each individual has an equal chance of being chosen. This method enhances the representativeness of the sample.

Random assignment, on the other hand, is used in experimental designs once participants are selected. It involves allocating these participants to different experimental groups or conditions randomly.

This helps ensure that any differences in results across groups are due to manipulating the independent variable, not preexisting differences among participants.

When to Use Random Assignment

Random assignment is used in experiments with a between-groups or independent measures design.

In these research designs, researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables.

There is usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable at the onset of the study.

How to Use Random Assignment

There are a variety of ways to assign participants into study groups randomly. Here are a handful of popular methods: 

  • Random Number Generator : Give each member of the sample a unique number; use a computer program to randomly generate a number from the list for each group.
  • Lottery : Give each member of the sample a unique number. Place all numbers in a hat or bucket and draw numbers at random for each group.
  • Flipping a Coin : Flip a coin for each participant to decide if they will be in the control group or experimental group (this method can only be used when you have just two groups) 
  • Roll a Die : For each number on the list, roll a dice to decide which of the groups they will be in. For example, assume that rolling 1, 2, or 3 places them in a control group and rolling 3, 4, 5 lands them in an experimental group.

When is Random Assignment not used?

  • When it is not ethically permissible: Randomization is only ethical if the researcher has no evidence that one treatment is superior to the other or that one treatment might have harmful side effects. 
  • When answering non-causal questions : If the researcher is just interested in predicting the probability of an event, the causal relationship between the variables is not important and observational designs would be more suitable than random assignment. 
  • When studying the effect of variables that cannot be manipulated: Some risk factors cannot be manipulated and so it would not make any sense to study them in a randomized trial. For example, we cannot randomly assign participants into categories based on age, gender, or genetic factors.

Drawbacks of Random Assignment

While randomization assures an unbiased assignment of participants to groups, it does not guarantee the equality of these groups. There could still be extraneous variables that differ between groups or group differences that arise from chance. Additionally, there is still an element of luck with random assignments.

Thus, researchers can not produce perfectly equal groups for each specific study. Differences between the treatment group and control group might still exist, and the results of a randomized trial may sometimes be wrong, but this is absolutely okay.

Scientific evidence is a long and continuous process, and the groups will tend to be equal in the long run when data is aggregated in a meta-analysis.

Additionally, external validity (i.e., the extent to which the researcher can use the results of the study to generalize to the larger population) is compromised with random assignment.

Random assignment is challenging to implement outside of controlled laboratory conditions and might not represent what would happen in the real world at the population level. 

Random assignment can also be more costly than simple observational studies, where an investigator is just observing events without intervening with the population.

Randomization also can be time-consuming and challenging, especially when participants refuse to receive the assigned treatment or do not adhere to recommendations. 

What is the difference between random sampling and random assignment?

Random sampling refers to randomly selecting a sample of participants from a population. Random assignment refers to randomly assigning participants to treatment groups from the selected sample.

Does random assignment increase internal validity?

Yes, random assignment ensures that there are no systematic differences between the participants in each group, enhancing the study’s internal validity .

Does random assignment reduce sampling error?

Yes, with random assignment, participants have an equal chance of being assigned to either a control group or an experimental group, resulting in a sample that is, in theory, representative of the population.

Random assignment does not completely eliminate sampling error because a sample only approximates the population from which it is drawn. However, random sampling is a way to minimize sampling errors. 

When is random assignment not possible?

Random assignment is not possible when the experimenters cannot control the treatment or independent variable.

For example, if you want to compare how men and women perform on a test, you cannot randomly assign subjects to these groups.

Participants are not randomly assigned to different groups in this study, but instead assigned based on their characteristics.

Does random assignment eliminate confounding variables?

Yes, random assignment eliminates the influence of any confounding variables on the treatment because it distributes them at random among the study groups. Randomization invalidates any relationship between a confounding variable and the treatment.

Why is random assignment of participants to treatment conditions in an experiment used?

Random assignment is used to ensure that all groups are comparable at the start of a study. This allows researchers to conclude that the outcomes of the study can be attributed to the intervention at hand and to rule out alternative explanations for study results.

Further Reading

  • Bogomolnaia, A., & Moulin, H. (2001). A new solution to the random assignment problem .  Journal of Economic theory ,  100 (2), 295-328.
  • Krause, M. S., & Howard, K. I. (2003). What random assignment does and does not do .  Journal of Clinical Psychology ,  59 (7), 751-766.

Print Friendly, PDF & Email

  • Yale Directories

Institution for Social and Policy Studies

Advancing research • shaping policy • developing leaders, why randomize.

About Randomized Field Experiments Randomized field experiments allow researchers to scientifically measure the impact of an intervention on a particular outcome of interest.

What is a randomized field experiment? In a randomized experiment, a study sample is divided into one group that will receive the intervention being studied (the treatment group) and another group that will not receive the intervention (the control group). For instance, a study sample might consist of all registered voters in a particular city. This sample will then be randomly divided into treatment and control groups. Perhaps 40% of the sample will be on a campaign’s Get-Out-the-Vote (GOTV) mailing list and the other 60% of the sample will not receive the GOTV mailings. The outcome measured –voter turnout– can then be compared in the two groups. The difference in turnout will reflect the effectiveness of the intervention.

What does random assignment mean? The key to randomized experimental research design is in the random assignment of study subjects – for example, individual voters, precincts, media markets or some other group – into treatment or control groups. Randomization has a very specific meaning in this context. It does not refer to haphazard or casual choosing of some and not others. Randomization in this context means that care is taken to ensure that no pattern exists between the assignment of subjects into groups and any characteristics of those subjects. Every subject is as likely as any other to be assigned to the treatment (or control) group. Randomization is generally achieved by employing a computer program containing a random number generator. Randomization procedures differ based upon the research design of the experiment. Individuals or groups may be randomly assigned to treatment or control groups. Some research designs stratify subjects by geographic, demographic or other factors prior to random assignment in order to maximize the statistical power of the estimated effect of the treatment (e.g., GOTV intervention). Information about the randomization procedure is included in each experiment summary on the site.

What are the advantages of randomized experimental designs? Randomized experimental design yields the most accurate analysis of the effect of an intervention (e.g., a voter mobilization phone drive or a visit from a GOTV canvasser, on voter behavior). By randomly assigning subjects to be in the group that receives the treatment or to be in the control group, researchers can measure the effect of the mobilization method regardless of other factors that may make some people or groups more likely to participate in the political process. To provide a simple example, say we are testing the effectiveness of a voter education program on high school seniors. If we allow students from the class to volunteer to participate in the program, and we then compare the volunteers’ voting behavior against those who did not participate, our results will reflect something other than the effects of the voter education intervention. This is because there are, no doubt, qualities about those volunteers that make them different from students who do not volunteer. And, most important for our work, those differences may very well correlate with propensity to vote. Instead of letting students self-select, or even letting teachers select students (as teachers may have biases in who they choose), we could randomly assign all students in a given class to be in either a treatment or control group. This would ensure that those in the treatment and control groups differ solely due to chance. The value of randomization may also be seen in the use of walk lists for door-to-door canvassers. If canvassers choose which houses they will go to and which they will skip, they may choose houses that seem more inviting or they may choose houses that are placed closely together rather than those that are more spread out. These differences could conceivably correlate with voter turnout. Or if house numbers are chosen by selecting those on the first half of a ten page list, they may be clustered in neighborhoods that differ in important ways from neighborhoods in the second half of the list. Random assignment controls for both known and unknown variables that can creep in with other selection processes to confound analyses. Randomized experimental design is a powerful tool for drawing valid inferences about cause and effect. The use of randomized experimental design should allow a degree of certainty that the research findings cited in studies that employ this methodology reflect the effects of the interventions being measured and not some other underlying variable or variables.

Statistical Thinking: A Simulation Approach to Modeling Uncertainty (UM STAT 216 edition)

3.6 causation and random assignment.

Medical researchers may be interested in showing that a drug helps improve people’s health (the cause of improvement is the drug), while educational researchers may be interested in showing a curricular innovation improves students’ learning (the curricular innovation causes improved learning).

To attribute a causal relationship, there are three criteria a researcher needs to establish:

  • Association of the Cause and Effect: There needs to be a association between the cause and effect.
  • Timing: The cause needs to happen BEFORE the effect.
  • No Plausible Alternative Explanations: ALL other possible explanations for the effect need to be ruled out.

Please read more about each of these criteria at the Web Center for Social Research Methods .

The third criterion can be quite difficult to meet. To rule out ALL other possible explanations for the effect, we want to compare the world with the cause applied to the world without the cause. In practice, we do this by comparing two different groups: a “treatment” group that gets the cause applied to them, and a “control” group that does not. To rule out alternative explanations, the groups need to be “identical” with respect to every possible characteristic (aside from the treatment) that could explain differences. This way the only characteristic that will be different is that the treatment group gets the treatment and the control group doesn’t. If there are differences in the outcome, then it must be attributable to the treatment, because the other possible explanations are ruled out.

So, the key is to make the control and treatment groups “identical” when you are forming them. One thing that makes this task (slightly) easier is that they don’t have to be exactly identical, only probabilistically equivalent . This means, for example, that if you were matching groups on age that you don’t need the two groups to have identical age distributions; they would only need to have roughly the same AVERAGE age. Here roughly means “the average ages should be the same within what we expect because of sampling error.”

Now we just need to create the groups so that they have, on average, the same characteristics … for EVERY POSSIBLE CHARCTERISTIC that could explain differences in the outcome.

It turns out that creating probabilistically equivalent groups is a really difficult problem. One method that works pretty well for doing this is to randomly assign participants to the groups. This works best when you have large sample sizes, but even with small sample sizes random assignment has the advantage of at least removing the systematic bias between the two groups (any differences are due to chance and will probably even out between the groups). As Wikipedia’s page on random assignment points out,

Random assignment of participants helps to ensure that any differences between and within the groups are not systematic at the outset of the experiment. Thus, any differences between groups recorded at the end of the experiment can be more confidently attributed to the experimental procedures or treatment. … Random assignment does not guarantee that the groups are matched or equivalent. The groups may still differ on some preexisting attribute due to chance. The use of random assignment cannot eliminate this possibility, but it greatly reduces it.

We use the term internal validity to describe the degree to which cause-and-effect inferences are accurate and meaningful. Causal attribution is the goal for many researchers. Thus, by using random assignment we have a pretty high degree of evidence for internal validity; we have a much higher belief in causal inferences. Much like evidence used in a court of law, it is useful to think about validity evidence on a continuum. For example, a visualization of the internal validity evidence for a study that employed random assignment in the design might be:

why do we need random assignment

The degree of internal validity evidence is high (in the upper-third). How high depends on other factors such as sample size.

To learn more about random assignment, you can read the following:

  • The research report, Random Assignment Evaluation Studies: A Guide for Out-of-School Time Program Practitioners

3.6.1 Example: Does sleep deprivation cause an decrease in performance?

Let’s consider the criteria with respect to the sleep deprivation study we explored in class.

3.6.1.1 Association of cause and effect

First, we ask, Is there an association between the cause and the effect? In the sleep deprivation study, we would ask, “Is sleep deprivation associated with an decrease in performance?”

This is what a hypothesis test helps us answer! If the result is statistically significant , then we have an association between the cause and the effect. If the result is not statistically significant, then there is not sufficient evidence for an association between cause and effect.

In the case of the sleep deprivation experiment, the result was statistically significant, so we can say that sleep deprivation is associated with a decrease in performance.

3.6.1.2 Timing

Second, we ask, Did the cause come before the effect? In the sleep deprivation study, the answer is yes. The participants were sleep deprived before their performance was tested. It may seem like this is a silly question to ask, but as the link above describes, it is not always so clear to establish the timing. Thus, it is important to consider this question any time we are interested in establishing causality.

3.6.1.3 No plausible alternative explanations

Finally, we ask Are there any plausible alternative explanations for the observed effect? In the sleep deprivation study, we would ask, “Are there plausible alternative explanations for the observed difference between the groups, other than sleep deprivation?” Because this is a question about plausibility, human judgment comes into play. Researchers must make an argument about why there are no plausible alternatives. As described above, a strong study design can help to strengthen the argument.

At first, it may seem like there are a lot of plausible alternative explanations for the difference in performance. There are a lot of things that might affect someone’s performance on a visual task! Sleep deprivation is just one of them! For example, artists may be more adept at visual discrimination than other people. This is an example of a potential confounding variable. A confounding variable is a variable that might affect the results, other than the causal variable that we are interested in.

Here’s the thing though. We are not interested in figuring out why any particular person got the score that they did. Instead, we are interested in determining why one group was different from another group. In the sleep deprivation study, the participants were randomly assigned. This means that the there is no systematic difference between the groups, with respect to any confounding variables. Yes—artistic experience is a possible confounding variable, and it may be the reason why two people score differently. BUT: There is no systematic difference between the groups with respect to artistic experience, and so artistic experience is not a plausible explanation as to why the groups would be different. The same can be said for any possible confounding variable. Because the groups were randomly assigned, it is not plausible to say that the groups are different with respect to any confounding variable. Random assignment helps us rule out plausible alternatives.

3.6.1.4 Making a causal claim

Now, let’s see about make a causal claim for the sleep deprivation study:

  • Association: There is a statistically significant result, so the cause is associated with the effect
  • Timing: The participants were sleep deprived before their performance was measured, so the cause came before the effect
  • Plausible alternative explanations: The participants were randomly assigned, so the groups are not systematically different on any confounding variable. The only systematic difference between the groups was sleep deprivation. Thus, there are no plausible alternative explanations for the difference between the groups, other than sleep deprivation

Thus, the internal validity evidence for this study is high, and we can make a causal claim. For the participants in this study, we can say that sleep deprivation caused a decrease in performance.

Key points: Causation and internal validity

To make a cause-and-effect inference, you need to consider three criteria:

  • Association of the Cause and Effect: There needs to be a association between the cause and effect. This can be established by a hypothesis test.

Random assignment removes any systematic differences between the groups (other than the treatment), and thus helps to rule out plausible alternative explanations.

Internal validity describes the degree to which cause-and-effect inferences are accurate and meaningful.

Confounding variables are variables that might affect the results, other than the causal variable that we are interested in.

Probabilistic equivalence means that there is not a systematic difference between groups. The groups are the same on average.

How can we make "equivalent" experimental groups?

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

34.4 - creating random assignments.

We now turn our focus from randomly sampling a subset of observations from a data set to that of generating a random assignment of treatments to experimental units in a randomized, controlled experiment. The good news is that the techniques used to sample without replacement can easily be extended to generate such random assignment plans.

It's probably a good time to remind you of the existence of the PLAN procedure. As I mentioned earlier, due to time constraints of the course and the complexity of the PLAN procedure, we will not use it to accomplish any of our random assignments. You should be aware, however, of its existence should you want to explore it on your own in the future.

Example 34.15 Section  

Suppose we are interested in conducting an experiment so that we can compare the effects of two drugs (A and B) and one placebo on headache pain. We have 30 subjects enrolled in our study but need to determine a plan for randomly assigning 10 of the subjects to treatment A, 10 of the subjects to treatment B, and 10 of the subjects to the placebo. The following program does just that for us. That is, it creates a random assignment for 30 subjects in a completely randomized design with one factor having 3 levels:

Okay, let's first launch and run    the SAS program, so you can review the resulting output to convince yourself that the code did indeed generate the desired treatment plan. You should see that 10 of the subjects were randomly assigned to treatment A, 10 to treatment B, and 10 to the placebo.

Now, let's walk ourselves through the program to make sure we understand how it works. The first DATA step merely uses a simple DO loop to create a temporary data set called exper1 that contains one observation for each of the experimental units (in our case, the experimental units are subjects). The only variable in the data set, unit , contains an arbitrary label 1, 2, ..., 30 assigned to each of the experimental units.

The remainder of the code generates a random assignment. To do so, the code from Example 34.5 is simply extended. That is:

  • The second DATA step uses the ranuni function to generate a uniform random number between 0 and 1 for each observation in the exper1 data set. The result is stored in a temporary data set called random1 .
  • The random1 data set is sorted in order of the random number.
  • The third DATA step uses an IF-THEN-ELSE construct to assign the first ten units in sorted order to Group 1, the second ten to Group 2, and the last ten to Group 3.
  • A FORMAT is defined to label the groups meaningfully.
  • The final randomization list is printed.

Example 34.16 Section  

To create a random assignment for a completely randomized design with two factors , you can just modify the IF statement in the previous example. The following program generates a random assignment of treatments to 30 subjects, in which Factor A has 2 levels and Factor B has 3 levels (and hence 6 treatments). The code is similar to the code from the previous example except the IF statement now divides the 30 subjects into 6 treatment groups and (arbitrarily) assigns the levels of factors A and B to the groups:

First, my apologies for the formatting that makes the IF-THEN-ELSE statement a little difficult to read. I needed to format it as such so that I could easily capture the image of the program for you.

Again, it's probably best if you first launch and run    the SAS program, so you can review the resulting output to convince yourself that the code did indeed generate the desired treatment plan. You should see that five of the subjects were randomly assigned to the A=1, B=1 group, five to the A=1, B=2 group, five to the A=1, B=3 group, and so on.

Then, if you compare the code to the code from the previous example, the only substantial difference you should see is the difference between the two IF statements. As previously mentioned, the IF statement here divides the 30 subjects into 6 treatment groups and (arbitrarily) assigns the levels of factors A and B to the groups:

Example 34.17 Section  

Thus far, our random assignments have not involved dealing with a blocking factor. As you know, it is natural in some experiments to block some of the experimental units together in an attempt to reduce unnecessary variability in your measurements that might otherwise prevent you from making good treatment comparisons. Suppose, for example, that your workload would prevent you from making more than nine experimental measurements in a day. Then, it would be a good idea then to treat the day as a blocking factor. The following program creates a random assignment for 27 subjects in a randomized block design with one factor having three levels.

Again, my apologies about the formatting that makes the program a little more difficult than usual to read. I needed to format it as such so that I could easily capture the image of the program for you.

It's probably going to be best if you first launch and run    the SAS program, so you can first review the contents of the initial exper2 data set:

EXPER2: Definition of Experimental Units

and then the resulting output that contains the desired treatment plan... first in block-treatment order:

Random Assignments for RBD: Sorted in BLOCK-TRT order

and then in block-unit order:

Random Assignments for RBD: Sorted in BLOCK-UNIT order

As you can see, the exper2 data set is created to contain one observation for each of the experimental units (27 subjects here). The variable unit contains an arbitrary label (1, 2, ..., 30) assigned to each of the experimental units. The variable block , which identifies the block number (1, 2, and 3), divides the experimental units into three equal-sized blocks of nine.

Now, to create the random assignment:

  • We use the ranuni function to generate a uniform random number between 0 and 1 for each observation.
  • Then, within each block, we sort the data in order of the random number.
  • Then, we create a counter variable to count the number of observations within each block: for the first observation within each block ("if first.block "), we set the counter ( k ) to 0; otherwise, we increase the counter by 1 for each observation within the block. (For this to work, we must retain k from iteration to iteration).
  • Using an IF-THEN-ELSE construct, within each block , assign the first three units in sorted order ( k =0,1,2) to group 1, the second three ( k =3,4,5) to group 2, and the last three ( k =6,7,8) to group 3.

Depending on how the experiment will be conducted, you can print the random assignment in different orders:

  • First, the randomization is printed in order of treatment within each block. This will accommodate experiments for which it is natural to perform the treatments in groups on the randomized experimental units.
  • Then, the randomization is printed in order of units within the block. This will accommodate experiments for which it is natural to perform the treatments in random order on consecutive experimental units.
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

The Random Selection Experiment Method

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

why do we need random assignment

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

why do we need random assignment

When researchers need to select a representative sample from a larger population, they often utilize a method known as random selection. In this selection process, each member of a group stands an equal chance of being chosen as a participant in the study.

Random Selection vs. Random Assignment

How does random selection differ from  random assignment ? Random selection refers to how the sample is drawn from the population as a whole, whereas random assignment refers to how the participants are then assigned to either the experimental or control groups.

It is possible to have both random selection and random assignment in an experiment.

Imagine that you use random selection to draw 500 people from a population to participate in your study. You then use random assignment to assign 250 of your participants to a control group (the group that does not receive the treatment or independent variable) and you assign 250 of the participants to the experimental group (the group that receives the treatment or independent variable).

Why do researchers utilize random selection? The purpose is to increase the generalizability of the results.

By drawing a random sample from a larger population, the goal is that the sample will be representative of the larger group and less likely to be subject to bias.

Factors Involved

Imagine a researcher is selecting people to participate in a study. To pick participants, they may choose people using a technique that is the statistical equivalent of a coin toss.

They may begin by using random selection to pick geographic regions from which to draw participants. They may then use the same selection process to pick cities, neighborhoods, households, age ranges, and individual participants.

Another important thing to remember is that larger sample sizes tend to be more representative. Even random selection can lead to a biased or limited sample if the sample size is small.

When the sample size is small, an unusual participant can have an undue influence over the sample as a whole. Using a larger sample size tends to dilute the effects of unusual participants and prevent them from skewing the results.

Lin L.  Bias caused by sampling error in meta-analysis with small sample sizes .  PLoS ONE . 2018;13(9):e0204056. doi:10.1371/journal.pone.0204056

Elmes DG, Kantowitz BH, Roediger HL.  Research Methods in Psychology. Belmont, CA: Wadsworth; 2012.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Iowa Reading Research Center

Two women in a school hallway smiling with class materials in their hands

Technically Speaking: Why We Use Random Assignment in Reading Research

Editor’s note: This blog post is part of an ongoing series entitled  “Technically Speaking.”  In these posts, we write in a way that is understandable about very technical principles that we use in reading research. We want to improve busy practitioners’ and family members’ abilities to be good consumers of reading research and to deepen their understanding of how our research operates to provide the best information.

Making Causal Inferences with Random Assignment

In our  previous “Technically Speaking” blog post , we explained the first of two important goals when conducting a study that attempts to measure the effectiveness of a reading intervention on student outcomes:

  • Be able to generalize results to a wider student population
  • Establish a causal relationship between the reading intervention and changes observed in student reading

If random sampling addresses the goal of generalizing results as we wrote previously, what do researchers implement to make causal inferences about the reading intervention being studied? A key design component to facilitate this is  random assignment . Whereas random sampling helps facilitate the external validity of a study (i.e., the degree to which findings can be appropriately generalized from a sample to a population), random assignment helps establish a study’s  internal validity . This refers to the degree to which one can conclude that changes to the instruction based on the treatment and changes in students’ outcomes reflect a cause-effect relationship between the two (Shadish, Cook, & Campbell, 2002). In other words, just how sure can we be that the changes in student reading performance observed during the study are a result of the reading intervention that was implemented?

Randomly assigning students to treatment conditions means every student has an equally likely chance to end up in either the treatment/intervention group or a comparison group. A comparison group is important for establishing internal validity because it serves as a way to determine what the outcome would be in the absence of the intervention. Without a comparison group, it becomes difficult to disentangle potential effects of an intervention from factors such as general student maturation (particularly if the study extends over time), biases in how student participants were selected for the study conditions, or other uncontrollable factors. What may serve as a reasonable comparison group in a reading intervention study? Depending on the study, a comparison group could be a control group of students that do not receive any reading intervention at all (e.g., a treatment group attends summer school and a control group does not), a classroom that receives the “status quo” or usual reading instruction that students receive, or a classroom that receives an alternative reading intervention that differs from the intervention of interest in the study.

Random assignment, then, establishes that—before the intervention begins—the treatment and comparison groups are equal  on expectation . On expectation means that while student characteristics may not be necessarily the same if a handful of students from each group is selected at random, on average over all possible assignments of students to conditions, the important characteristics between treatment and control group would be similar (Shadish et al., 2002). In other words, in the long run groups will be similar to one another on average for all characteristics other than the treatment condition itself. This expected equality of groups reduces the likelihood that other factors that could affect the outcome of a study are confounded with the treatment. In other words, if groups were randomly equated prior to the intervention, then any differences we observe after the intervention is implemented could not be the result of any preexisting differences prior to intervention. By removing these potential confounding factors, random assignment reduces the plausibility of alternative explanations for any observed relationship between the reading intervention and student outcomes (Shadish et al., 2002).

Consider the alternative to random assignment—where students or teachers are assigned to groups in some planned or systematic way (e.g., only highly experienced teachers being chosen to pilot a new curriculum) or where the teachers are allowed to choose the group to which their students would belong. This leads to a  selection bias , where there are systematic differences in teacher or student qualities in the two groups that are completely independent of treatment condition. Random assignment removes, or at the very least diminishes, these selection biases.

Random assignment to groups can occur at different levels—schools, classrooms, students within classrooms, or a combination of these. For example, a study’s design may have one school in a district implement an intervention of interest while another school in the district will serve as a comparison group – ideally, the researcher would then randomly assign the intervention of interest to one of these schools, while the other school receives a different intervention. On the other hand, if different classrooms within the same school will be receiving different interventions, then random assignment of conditions to each classroom is needed. There are strengths and weaknesses for designing implementation of random assignment at each of these levels within a study.

Perhaps the biggest challenges of random assignment arise when the study design calls for students within the same classroom to receive different intervention conditions. For one, if different interventions are implemented within the same classroom, there is the concern of treatment contamination (i.e., students receiving components of the treatment when they were supposed to receive the control condition, or vice versa). On the other hand, there may be less of a teacher effect when both interventions are implemented within the same classroom by the same teacher. Another challenge is that the differences in student abilities within classrooms typically are larger than the average differences in student abilities between classrooms. This large variability within classrooms means there is a fairly high chance that students’ reading abilities will not be balanced between the treatment and comparison groups despite randomly assigning students within the class to conditions. Although there are ways statistically to try to account for these imbalances during the analysis phase of a study, there are also ways this can be addressed within the assignment process itself. Pairing students by ability and then randomly assigning one member of the pair to a condition (and thereby placing the other member in the other condition) is one method that can provide some level of group balancing while still using random assignment.

An Example of Random Assignment in Reading Research

Building on the example from our  previous “Technically Speaking” blog post  on random sampling, recall that the colored dots represent a sample of 100 students with different characteristics. We now assume that we will randomly allocate half of our sample (50 units or students) to the treatment group (Figure 1) and half of them (50 units) to the comparison group (Figure 2).

Figure 1. Treatment Group Using Simple Random Assignment

A flowchart illustrating the process of random assignment in a research study. The flowchart shows a series of boxes and arrows representing the steps involved in randomly assigning participants to different groups or conditions in a study.

Figure 2. Comparison Group Using Simple Random Assignment

A scatter plot displaying the results of a study comparing two groups that were randomly assigned. The plot shows a random distribution of points with no clear pattern or trend.

The figures above illustrate the treatment and comparison groups if simple random assignment were used. As the visual representation suggests, the important student characteristics represented by the colored dots do not appear similarly in both figures. This means that the students in these two groups may not be similar enough to compare their results, depending on how important it is for these student characteristics to be distributed evenly between the two groups. A way to address this will be discussed after this example.

Let us look at this another way. Below, we have broken down each group by the numbers. Each letter A through J represents an important student characteristic.

Treatment Group

Comparison group.

We can see above that the number of students with each characteristic in some cases differs substantially between the groups (e.g., there 6 students with characteristic J in the treatment group but only 2 students with characteristic J in the comparison group). This demonstrates that random assignment equates groups  on expectation , but perhaps not always in reality. If we are sure that these student characteristics must be evenly represented across samples, we typically rely on  block randomization . In short, this means we would create a pool or block of students by each characteristic of interest and randomly allocate students within each block. Figures 3 and 4 display the same samples as displayed in Figures 1 and 2, but in this case, block randomization was used.

Figure 3. Treatment Group Using Block Randomization

A scatter plot displaying the results of randomly assigned blocks. The plot shows a random distribution of points with no clear pattern or trend.

Figure 4. Comparison Group Using Block Randomization

A scatter plot of comparison group with no clear pattern or trend

Looking back at the breakdown of the groups by the numbers of students with each lettered characteristic, we can confirm that block randomization was more successful in equating our samples than simple random assignment (e.g., there are now 4 students with characteristic J in both the treatment and comparison groups). Remember, each letter represents an important student characteristic that should be evenly distributed between the two groups.

Random sampling and random assignment are two distinct techniques used in research. As we explained  in our previous post , random sampling aids in our ability to create representative samples from a population of interest. This post addressed how random assignment aids in creating treatment and control groups that are equated on expectation for important characteristics. Random sampling is related to the ability to generalize our study results to a wider universe of students, and random assignment is related to establishing the causal effect of a reading intervention. When used together, these techniques provide researchers sound evidence of whether or not a reading intervention has the potential to help students become more skilled readers.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002).  Experimental and quasi-experimental designs for generalized causal inference . Cengage Learning: Boston, MA.

  • interventions
  • random assignment
  • technically speaking

A photograph of a group of students in a classroom focused on their work, sitting at desks and writing on paper with pencils.

Technically Speaking: Determining Test Effectiveness With Item Response Theory

Student holding up an A plus exam

Technically Speaking: Understanding and Quantifying the Correlation of Two Reading Measures

Students participating in reading programs. Some students are on iPads and others are writing on paper

Technically Speaking: What is Causal Inference and Why is it Important?

Two women in a school hallway smiling with class materials in their hands

Technically Speaking: Why We Use Random Sampling in Reading Research

  • Search Menu
  • Advance Articles
  • Author Guidelines
  • Open Access Policy
  • Self-Archiving Policy
  • About Significance
  • About The Royal Statistical Society
  • Editorial Board
  • Advertising & Corporate Services
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

What is randomisation, why do we randomise, choosing a randomisation method, implementing the chosen randomisation method.

  • < Previous

Randomisation: What, Why and How?

  • Article contents
  • Figures & tables
  • Supplementary Data

Zoë Hoare, Randomisation: What, Why and How?, Significance , Volume 7, Issue 3, September 2010, Pages 136–138, https://doi.org/10.1111/j.1740-9713.2010.00443.x

  • Permissions Icon Permissions

Randomisation is a fundamental aspect of randomised controlled trials, but how many researchers fully understand what randomisation entails or what needs to be taken into consideration to implement it effectively and correctly? Here, for students or for those about to embark on setting up a trial, Zoë Hoare gives a basic introduction to help approach randomisation from a more informed direction.

Most trials of new medical treatments, and most other trials for that matter, now implement some form of randomisation. The idea sounds so simple that defining it becomes almost a joke: randomisation is “putting participants into the treatment groups randomly”. If only it were that simple. Randomisation can be a minefield, and not everyone understands what exactly it is or why they are doing it.

A key feature of a randomised controlled trial is that it is genuinely not known whether the new treatment is better than what is currently offered. The researchers should be in a state of equipoise; although they may hope that the new treatment is better, there is no definitive evidence to back this hypothesis up. This evidence is what the trial is trying to provide.

You will have, at its simplest, two groups: patients who are getting the new treatment, and those getting the control or placebo. You do not hand-select which patient goes into which group, because that would introduce selection bias. Instead you allocate your patients randomly. In its simplest form this can be done by the tossing of a fair coin: heads, the patient gets the trial treatment; tails, he gets the control. Simple randomisation is a fair way of ensuring that any differences that occur between the treatment groups arise completely by chance. But – and this is the first but of many here – simple randomisation can lead to unbalanced groups, that is, groups of unequal size. This is particularly true if the trial is only small. For example, tossing a fair coin 10 times will only result in five heads and five tails about 25% of the time. We would have a 66% chance of getting 6 heads and 4 tails, 5 and 5, or 4 and 6; 33% of the time we would get an even larger imbalance, with 7, 8, 9 or even all 10 patients in one group and the other group correspondingly undersized.

The impact of an imbalance like this is far greater for a small trial than for a larger trial. Tossing a fair coin 100 times will result in imbalance larger than 60–40 less than 1% of the time. One important part of the trial design process is the statement of intention of using randomisation; then we need to establish which method to use, when it will be used, and whether or not it is in fact random.

Randomisation needs to be controlled: You would not want all the males under 30 to be in one trial group and all the women over 70 in the other

It is partly true to say that we do it because we have to. The Consolidated Standards of Reporting Trials (CONSORT) 1 , to which we should all adhere, tells us: “Ideally, participants should be assigned to comparison groups in the trial on the basis of a chance (random) process characterized by unpredictability.” The requirement is there for a reason. Randomisation of the participants is crucial because it allows the principles of statistical theory to stand and as such allows a thorough analysis of the trial data without bias. The exact method of randomisation can have an impact on the trial analyses, and this needs to be taken into account when writing the statistical analysis plan.

Ideally, simple randomisation would always be the preferred option. However, in practice there often needs to be some control of the allocations to avoid severe imbalances within treatments or within categories of patient. You would not want, for example, all the males under 30 to be in one group and all the females over 70 in the other. This is where restricted or stratified randomisation comes in.

Restricted randomisation relates to using any method to control the split of allocations to each of the treatment groups based on certain criteria. This can be as simple as generating a random list, such as AAABBBABABAABB …, and allocating each participant as they arrive to the next treatment on the list. At certain points within the allocations we know that the groups will be balanced in numbers – here at the sixth, eighth, tenth and 14th participants – and we can control the maximum imbalance at any one time.

Stratified randomisation sets out to control the balance in certain baseline characteristics of the participants – such as sex or age. This can be thought of as producing an individual randomisation list for each of the characteristics concerned.

© iStockphoto.com/dra_schwartz

© iStockphoto.com/dra_schwartz

Stratification variables are the baseline characteristics that you think might influence the outcome your trial is trying to measure. For example, if you thought gender was going to have an effect on the efficacy of the treatment then you would use it as one of your stratification variables. A stratified randomisation procedure would aim to ensure a balance of the two gender groups between the two treatment groups.

If you also thought age would be affecting the treatment then you could also stratify by age (young/old) with some sensible limits on what old and young are. Once you start stratifying by age and by gender, you have to start taking care. You will need to use a stratified randomisation process that balances at the stratum level (i.e. at the level of those characteristics) to ensure that all four strata (male/young, male/old, female/young and female/old) have equivalent numbers of each of the treatment groups represented.

“Great”, you might think. “I'll just stratify by all my baseline characteristics!” Better not. Stop and consider what this would mean. As the number of stratification variables increases linearly, the number of strata increases exponentially. This reduces the number of participants that would appear in each stratum. In our example above, with our two stratification variables of age and sex we had four strata; if we added, say “blue-eyed” and “overweight” to our criteria to give four stratification variables each with just two levels we would get 16 represented strata. How likely is it that each of those strata will be represented in the population targeted by the trial? In other words, will we be sure of finding a blue-eyed young male who is also overweight among our patients? And would one such overweight possible Adonis be statistically enough? It becomes evident that implementing pre-generated lists within each stratification level or stratum and maintaining an overall balance of group sizes becomes much more complicated with many stratification variables and the uncertainty of what type of participant will walk through the door next.

Does it matter? There are a wide variety of methods for randomisation, and which one you choose does actually matter. It needs to be able to do everything that is required of it. Ask yourself these questions, and others:

Can the method accommodate enough treatment groups? Some methods are limited to two treatment groups; many trials involve three or more.

What type of randomness, if any, is injected into the method? The level of randomness dictates how predictable a method is.

A deterministic method has no randomness, meaning that with all the previous information you can tell in advance which group the next patient to appear will be allocated to. Allocating alternate participants to the two treatments using ABABABABAB … would be an example.

A static random element means that each allocation is made with a pre-defined probability. The coin-toss method does this.

With a dynamic element the probability of allocation is always changing in relation to the information received, meaning that the probability of allocation can only be worked out with knowledge of the algorithm together with all its settings. A biased coin toss does this where the bias is recalculated for each participant.

Can the method accommodate stratification variables, and if so how many? Not all of them can. And can it cope with continuous stratification variables? Most variables are divided into mutually exclusive categories (e.g. male or female), but sometimes it may be necessary (or preferable) to use a continuous scale of the variable – such as weight, or body mass index.

Can the method use an unequal allocation ratio? Not all trials require equal-sized treatment groups. There are many reasons why it might be wise to have more patients receiving treatment A than treatment B 2 . However, an allocation ratio being something other than 1:1 does impact on the study design and on the calculation of the sample size, so is not something to be changing mid-trial. Not all allocation methods can cope with this inequality.

Is thresholding used in the method? Thresholding handles imbalances in allocation. A threshold is set and if the imbalance becomes greater than the threshold then the allocation becomes deterministic to reduce the imbalance back below the threshold.

Can the method be implemented sequentially? In other words, does it require that the total number of participants be known at the beginning of the allocations? Some methods generate lists requiring exactly N participants to be recruited in order to be effective – and recruiting participants is often one of the more problematic parts of a trial.

Is the method complex? If so, then its practical implementation becomes an issue for the day-to-day running of the trial.

Is the method suitable to apply to a cluster randomisation? Cluster randomisations are used when randomising groups of individuals to a treatment rather than the individuals themselves. This can be due to the nature of the treatment, such as a new teaching method for schools or a dietary intervention for families. Using clusters is a big part of the trial design and the randomisation needs to be handled slightly differently.

Should a response-adaptive method be considered? If there is some evidence that one treatment is better than another, then a response-adaptive method works by taking into account the outcomes of previous allocations and works to minimise the number of participants on the “wrong” treatment.

For multi-centred trials, how to handle the randomisations across the centres should be considered at this point. Do all centres need to be completely balanced? Are all centres the same size? Considering the various centres as stratification variables is one way of dealing with more than one centre.

Once the method of randomisation has been established the next important step is to consider how to implement it. The recommended way is to enlist the services of a central randomisation office that can offer robust, validated techniques with the security and back-up needed to implement many of the methods proposed today. How the method is implemented must be as clearly reported as the method chosen. As part of the implementation it is important to keep the allocations concealed, both those already done and any future ones, from as many people as possible. This helps prevent selection bias: a clinician may withhold a participant if he believes that based on previous allocations the next allocations would not be the “preferred” ones – see the section below on subversion.

Part of the trial design will be to note exactly who should know what about how each participant has been allocated. Researchers and participants may be equally blinded, but that is not always the case.

For example, in a blinded trial there may be researchers who do not know which group the participants have been allocated to. This enables them to conduct the assessments without any bias for the allocation. They may, however, start to guess, on the basis of the results they see. A measure of blinding may be incorporated for the researchers to indicate whether they have remained blind to the treatment allocated. This can be in the form of a simple scale tool for the researcher to indicate how confident they are in knowing which allocated group the participant is in by the end of an assessment. With psychosocial interventions it is often impossible to hide from the participants, let alone the clinicians, which treatment group they have been allocated to.

In a drug trial where a placebo can be prescribed a coded system can ensure that neither patients nor researchers know which group is which until after the analysis stage.

With any level of blinding there may be a requirement to unblind participants or clinicians at any point in the trial, and there should be a documented procedure drawn up on how to unblind a particular participant without risking the unblinding of a trial. For drug trials in particular, the methods for unblinding a participant must be stated in the trial protocol. Wherever possible the data analysts and statisticians should remain blind to the allocation until after the main analysis has taken place.

Blinding should not be confused with allocation concealment. Blinding prevents performance and ascertainment bias within a trial, while allocation concealment prevents selection bias. Bias introduced by poor allocation concealment may be thought of as a predictive bias, trying to influence the results from the outset, while the biases introduced by non-blinding can be thought of as a reactive bias, creating causal links in outcomes because of being in possession of information about the treatment group.

In the literature on randomisation there are numerous tales of how allocation schemes have been subverted by clinicians trying to do the best for the trial or for their patient or both. This includes anecdotal tales of clinicians holding sealed envelopes containing the allocations up to X-ray lights and confessing to breaking into locked filing cabinets to get at the codes 3 . This type of behaviour has many explanations and reasons, but does raise the question whether these clinicians were in a state of equipoise with regard to the trial, and whether therefore they should really have been involved with the trial. Randomisation schemes and their implications must be signed up to by the whole team and are not something that only the participants need to consent to.

Clinicians have been known to X-ray sealed allocation envelopes to try to get their patients into the preferred group in a trial

The 2010 CONSORT statement can be found at http://www.consort-statement.org/consort-statement/ .

Dumville , J. C. , Hahn , S. , Miles , J. N. V. and Torgerson , D. J. ( 2006 ) The use of unequal randomisation ratios in clinical trials: A review . Contemporary Clinical Trials , 27 , 1 – 12 .

Google Scholar

Shulz , K. F. ( 1995 ) Subverting randomisation in controlled trials . Journal of the American Medical Association , 274 , 1456 – 1458 .

Email alerts

Citing articles via.

  • Recommend to Your Librarian
  • Advertising & Corporate Services
  • Journals Career Network

Affiliations

  • Online ISSN 1740-9713
  • Print ISSN 1740-9705
  • Copyright © 2024 Royal Statistical Society
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Simple Random Sampling | Definition, Steps & Examples

Simple Random Sampling | Definition, Steps & Examples

Published on August 28, 2020 by Lauren Thomas . Revised on December 18, 2023.

A simple random sample is a randomly selected subset of a population. In this sampling method, each member of the population has an exactly equal chance of being selected.

This method is the most straightforward of all the probability sampling methods , since it only involves a single random selection and requires little advance knowledge about the population. Because it uses randomization, any research performed on this sample should have high internal and external validity, and be at a lower risk for research biases like sampling bias and selection bias .

Systematic Sampling

Table of contents

When to use simple random sampling, how to perform simple random sampling, other interesting articles, frequently asked questions about simple random sampling.

Simple random sampling is used to make statistical inferences about a population. It helps ensure high internal validity : randomization is the best method to reduce the impact of potential confounding variables .

In addition, with a large enough sample size, a simple random sample has high external validity : it represents the characteristics of the larger population.

However, simple random sampling can be challenging to implement in practice. To use this method, there are some prerequisites:

  • You have a complete list of every member of the population .
  • You can contact or access each member of the population if they are selected.
  • You have the time and resources to collect data from the necessary sample size.

Simple random sampling works best if you have a lot of time and resources to conduct your study, or if you are studying a limited population that can easily be sampled.

In some cases, it might be more appropriate to use a different type of probability sampling:

  • Systematic sampling involves choosing your sample based on a regular interval, rather than a fully random selection. It can also be used when you don’t have a complete list of the population.
  • Stratified sampling is appropriate when you want to ensure that specific characteristics are proportionally represented in the sample. You split your population into strata (for example, divided by gender or race), and then randomly select from each of these subgroups.
  • Cluster sampling is appropriate when you are unable to sample from the entire population. You divide the sample into clusters that approximately reflect the whole population, and then choose your sample from a random selection of these clusters.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

why do we need random assignment

There are 4 key steps to select a simple random sample.

Step 1: Define the population

Start by deciding on the population that you want to study.

It’s important to ensure that you have access to every individual member of the population, so that you can collect data from all those who are selected for the sample.

Step 2: Decide on the sample size

Next, you need to decide how large your sample size will be. Although larger samples provide more statistical certainty, they also cost more and require far more work.

There are several potential ways to decide upon the size of your sample, but one of the simplest involves using a formula with your desired confidence interval and confidence level , estimated size of the population you are working with, and the standard deviation of whatever you want to measure in your population.

The most common confidence interval and levels used are 0.05 and 0.95, respectively. Since you may not know the standard deviation of the population you are studying, you should choose a number high enough to account for a variety of possibilities (such as 0.5).

You can then use a sample size calculator to estimate the necessary sample size.

Step 3: Randomly select your sample

This can be done in one of two ways: the lottery or random number method.

In the lottery method , you choose the sample at random by “drawing from a hat” or by using a computer program that will simulate the same action.

In the random number method , you assign every individual a number. By using a random number generator or random number tables, you then randomly pick a subset of the population. You can also use the random number function (RAND) in Microsoft Excel to generate random numbers.

Step 4: Collect data from your sample

Finally, you should collect data from your sample.

To ensure the validity of your findings, you need to make sure every individual selected actually participates in your study. If some drop out or do not participate for reasons associated with the question that you’re studying, this could bias your findings.

For example, if young participants are systematically less likely to participate in your study, your findings might not be valid due to the underrepresentation of this group.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Thomas, L. (2023, December 18). Simple Random Sampling | Definition, Steps & Examples. Scribbr. Retrieved March 12, 2024, from https://www.scribbr.com/methodology/simple-random-sampling/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, sampling methods | types, techniques & examples, stratified sampling | definition, guide & examples, sampling bias and how to avoid it | types & examples, what is your plagiarism score.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Random Assignment in Experiments | Introduction & Examples

Random Assignment in Experiments | Introduction & Examples

Published on 6 May 2022 by Pritha Bhandari . Revised on 13 February 2023.

In experimental research, random assignment is a way of placing participants from your sample into different treatment groups using randomisation.

With simple random assignment, every member of the sample has a known or equal chance of being placed in a control group or an experimental group. Studies that use simple random assignment are also called completely randomised designs .

Random assignment is a key part of experimental design . It helps you ensure that all groups are comparable at the start of a study: any differences between them are due to random factors.

Table of contents

Why does random assignment matter, random sampling vs random assignment, how do you use random assignment, when is random assignment not used, frequently asked questions about random assignment.

Random assignment is an important part of control in experimental research, because it helps strengthen the internal validity of an experiment.

In experiments, researchers manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. To do so, they often use different levels of an independent variable for different groups of participants.

This is called a between-groups or independent measures design.

You use three groups of participants that are each given a different level of the independent variable:

  • A control group that’s given a placebo (no dosage)
  • An experimental group that’s given a low dosage
  • A second experimental group that’s given a high dosage

Random assignment to helps you make sure that the treatment groups don’t differ in systematic or biased ways at the start of the experiment.

If you don’t use random assignment, you may not be able to rule out alternative explanations for your results.

  • Participants recruited from pubs are placed in the control group
  • Participants recruited from local community centres are placed in the low-dosage experimental group
  • Participants recruited from gyms are placed in the high-dosage group

With this type of assignment, it’s hard to tell whether the participant characteristics are the same across all groups at the start of the study. Gym users may tend to engage in more healthy behaviours than people who frequent pubs or community centres, and this would introduce a healthy user bias in your study.

Although random assignment helps even out baseline differences between groups, it doesn’t always make them completely equivalent. There may still be extraneous variables that differ between groups, and there will always be some group differences that arise from chance.

Most of the time, the random variation between groups is low, and, therefore, it’s acceptable for further analysis. This is especially true when you have a large sample. In general, you should always use random assignment in experiments when it is ethically possible and makes sense for your study topic.

Prevent plagiarism, run a free check.

Random sampling and random assignment are both important concepts in research, but it’s important to understand the difference between them.

Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups.

While random sampling is used in many types of studies, random assignment is only used in between-subjects experimental designs.

Some studies use both random sampling and random assignment, while others use only one or the other.

Random sample vs random assignment

Random sampling enhances the external validity or generalisability of your results, because it helps to ensure that your sample is unbiased and representative of the whole population. This allows you to make stronger statistical inferences .

You use a simple random sample to collect data. Because you have access to the whole population (all employees), you can assign all 8,000 employees a number and use a random number generator to select 300 employees. These 300 employees are your full sample.

Random assignment enhances the internal validity of the study, because it ensures that there are no systematic differences between the participants in each group. This helps you conclude that the outcomes can be attributed to the independent variable .

  • A control group that receives no intervention
  • An experimental group that has a remote team-building intervention every week for a month

You use random assignment to place participants into the control or experimental group. To do so, you take your list of participants and assign each participant a number. Again, you use a random number generator to place each participant in one of the two groups.

To use simple random assignment, you start by giving every member of the sample a unique number. Then, you can use computer programs or manual methods to randomly assign each participant to a group.

  • Random number generator: Use a computer program to generate random numbers from the list for each group.
  • Lottery method: Place all numbers individually into a hat or a bucket, and draw numbers at random for each group.
  • Flip a coin: When you only have two groups, for each number on the list, flip a coin to decide if they’ll be in the control or the experimental group.
  • Use a dice: When you have three groups, for each number on the list, roll a die to decide which of the groups they will be in. For example, assume that rolling 1 or 2 lands them in a control group; 3 or 4 in an experimental group; and 5 or 6 in a second control or experimental group.

This type of random assignment is the most powerful method of placing participants in conditions, because each individual has an equal chance of being placed in any one of your treatment groups.

Random assignment in block designs

In more complicated experimental designs, random assignment is only used after participants are grouped into blocks based on some characteristic (e.g., test score or demographic variable). These groupings mean that you need a larger sample to achieve high statistical power .

For example, a randomised block design involves placing participants into blocks based on a shared characteristic (e.g., college students vs graduates), and then using random assignment within each block to assign participants to every treatment condition. This helps you assess whether the characteristic affects the outcomes of your treatment.

In an experimental matched design , you use blocking and then match up individual participants from each block based on specific characteristics. Within each matched pair or group, you randomly assign each participant to one of the conditions in the experiment and compare their outcomes.

Sometimes, it’s not relevant or ethical to use simple random assignment, so groups are assigned in a different way.

When comparing different groups

Sometimes, differences between participants are the main focus of a study, for example, when comparing children and adults or people with and without health conditions. Participants are not randomly assigned to different groups, but instead assigned based on their characteristics.

In this type of study, the characteristic of interest (e.g., gender) is an independent variable, and the groups differ based on the different levels (e.g., men, women). All participants are tested the same way, and then their group-level outcomes are compared.

When it’s not ethically permissible

When studying unhealthy or dangerous behaviours, it’s not possible to use random assignment. For example, if you’re studying heavy drinkers and social drinkers, it’s unethical to randomly assign participants to one of the two groups and ask them to drink large amounts of alcohol for your experiment.

When you can’t assign participants to groups, you can also conduct a quasi-experimental study . In a quasi-experiment, you study the outcomes of pre-existing groups who receive treatments that you may not have any control over (e.g., heavy drinkers and social drinkers).

These groups aren’t randomly assigned, but may be considered comparable when some other variables (e.g., age or socioeconomic status) are controlled for.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, February 13). Random Assignment in Experiments | Introduction & Examples. Scribbr. Retrieved 12 March 2024, from https://www.scribbr.co.uk/research-methods/random-assignment-experiments/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, control groups and treatment groups | uses & examples.

5.5 – Importance of randomization in experimental design

Introduction.

  • Demonstrate the benefits of random sampling as a method to control for extraneous factors

What about observational studies? How does randomization work?

Chapter 5 contents.

If the goal of the research is to make general, evidenced-based statements about causes of disease or other conditions of concern to the researcher, then how the subjects are selected for study directly impacts our ability to make generalizable conclusions . The most important concept to learn about inference in statistical science is that your sample of subjects upon which all measurements and treatments are conducted, ideally should be a random selection of individuals from a well-defined reference population.

The primary benefit of random sampling is that it strengthens our confidence in the links between cause and effect. Often after an intervention trial is complete, differences among the treatment groups will be observed. Groups of subjects who participated in sixteen weeks of “vigorous” aerobic exercise training show reduced systolic blood pressure compared to those subjects who engaged in light exercise for the same period of time (Cox et al 1996). But how do we know that exercise training caused the difference in blood pressure between the two treatment groups? Couldn’t the differences be explained by chance differences in the subjects? Age, body mass index (BMI), over all health, family history, etc.?

How can we account for these additional differences among the subjects? If you are thinking like an experimental biologist, then the word “control” is likely coming to the foreground. Why not design a study in which all 60 subjects are the same age, the same BMI, the same general health, the same family … history…? Hmm. That does not work. Even if you decide to control age, BMI, and general health categories, you can imagine the increased effort and cost to the project in trying to recruit subjects based on such narrow criteria. So, control per se is not the general answer.

If done properly, random sampling makes these alternative explanations less likely. Random sampling implies that other factors that may causally contribute to differences in the measured outcome, but themselves are not measured or included as a focus of the research study, should be the same, on average, among our different treatment groups. The practical benefits of proper random sampling is that recruiting subjects gets easier — fewer subjects will be needed because you are not trying to control dozens of factors that may (or may not!) contribute to differences in your outcome variable. The downside to random sampling is that the variability of the outcomes within your treatment groups will tends to increase. As we will see when we get to statistical inference, large variability within groups will make it less likely that any statistical difference between the treatment groups will be observed.

Demonstrate the benefits of random sampling as a method to control for extraneous factors.

The study reported by Cox et al included 60 obese men between the ages of 20 and 50. A reasonable experimental design decision would suggest that the 60 subjects be split into the two treatment groups such that both groups had 30 subjects for a balanced design. Subjects who met all of the research criteria and who had signed the informed consent agreement are to be placed into the treatment groups and there are many ways that group assignment could be accomplished. One possibility, the researchers could assign the first 30 people that came into the lab to the Vigorous exercise group and the remaining 30 then would be assigned to the Light exercise group. Intuitively I think we would all agree that this is a suspect way to design an experiment, but more importantly, why shouldn’t you use this convenient method?

Just for arguments sake, imagine that their subjects came in one at a time, and, coincidentally, they did so by age. The first person was age 21, the second was 22, and so on up to the 30th person who was 50. Then, the next group came in, again, coincidentally in order of ascending age. If you calculate the simple average age for each group you will find that they are identical (35.5 years). On the surface, this looks like we have controlled for age: both treatment groups have subjects that are the same age. A second option is to sort the subjects into the two treatment groups so that a 21 year old is in Group A, and the other 21 year old is in Group B, and so on. Again, the average age of Group A subjects and of Group B subjects would be the same and therefore controlled with respect to any covariation between age and change in blood pressure. However, there are other variables that may covary with blood pressure, and by controlling one, we would need to control the others. Randomization provides a better way.

I will demonstrate how randomization tends to distribute the values in such a way that the groups will not differ appreciably for the nuisance variables like age and BMI differences and, by extension, any other covariable. The R work is attached following the Reading list. The take-home message: After randomly selecting subjects for assignment to the treatment groups, the apparent differences between Group A and Group B for both age and BMI are substantially diminished. No attempt to match by age and by BMI is necessary. The numbers are shown in the table and then in two graphics (Fig. 1, Fig. 2) derived from the table.

Table 1. Mean age and BMI for subjects in two treatment groups A and B where subjects were assigned randomly or by convenience to treatment groups.

Just for emphasis, the means from Table 1 are presented in the next two figures (Fig. 1 and Fig. 2).

Figure 6. Age of subjects by groups (A = blue, B = red) with and without randomized assignment of subjects to treatment groups

Figure 1. Age of subjects by groups (A = blue, B = red) with and without randomized assignment of subjects to treatment groups

Figure 7. BMI of subjects by groups (A = blue, B = red) with and without randomized assignment of subjects to treatment groups

Figure 2. BMI of subjects by groups (A = blue, B = red) with and without randomized assignment of subjects to treatment groups

Note that the apparent difference between A and B for BMI disappear once proper randomization of subjects was accomplished. In conclusion, a random sample is an approach to experimental design that helps to reduce the influence other factors may have on the outcome variable (e.g., change in blood pressure after 16 weeks of exercise). In principle, randomization should protect a project because, on average, these influences will be represented randomly for the two groups of individuals. This reasoning extends to unmeasured and unknown causal factors as well.

This discussion was illustrated by random assignment of subjects to treatment groups. The same logic applies to how to select subjects from a population. If the sampling is large enough, then a random sample of subjects will tend to be representative of the variability of the outcome variable for the population and representative also of the additional and unmeasured cofactors that may contribute to the variability of the outcome variable.

However, if you do cannot obtain a random sample, then conclusions reached may be sample-specific, biased . …perhaps the group of individuals that likes to exercise on treadmills just happens to have a higher cardiac output because they are larger than the individuals that like to exercise on bicycles. This nonrandom sample will bias your results and can lead to incorrect interpretation of results. Random sampling is CRUCIAL in epidemiology, opinion survey work, most aspects of health, drug studies, medical work with human subjects. It’s difficult and very costly to do… so most surveys you hear about, especially polls reported from Internet sites, are NOT conducted using random sampling (included in the catch-all term “ probability sampling “)!! As an aside, most opinion survey work involves complex sample designs involving some form of geographic clustering (e.g., all phone numbers in a city, random sample among neighborhoods).

Random sampling is the ideal if generalizations are to be made about data, but strictly random sampling is not appropriate for all kinds of studies. Consider the question of whether or not EMF exposure is a risk factor for developing cancer (Pool 1990). These kinds of studies are observational: at least in principle, we wouldn’t expect that housing and therefore exposure to EMF is manipulated (cf. discussion Walker 2009). Thus, epidemiologists will look for patterns: if EMF exposure is linked to cancer, then more cases of cancer should occur near EMF sources compared to areas distant from EMF sources. Thus, the hypothesis is that an association between EMF exposure and cancer occurs non-randomly, whereas cancers occurring in people not exposed to EMF are random. Unfortunately, clusters can occur even if the process that generates the data is random.

Compare Graph A and Graph B (Fig. 3). One of the graphs resulted from a random process and the other was generated by a non-random process . Note that the claim can be rephrased about the probability that each grid has a point, e.g., it’s like Heads/Tails of 16 tosses of a coin. We can see clusters of points in Graph B; Graph A lacks obvious clusters of points — there is a point in each of the 16 cells of the grid. Although both patterns could be random, the correct answer in this case is Graph B.

Figure 8. An example of clustering resulting from a random sampling process (Graph B). In contrast, Graph A was generated so that a point was located within each grid.

Figure 3. An example of clustering resulting from a random sampling process (Graph B). In contrast, Graph A was generated so that a point was located within each grid.

The graphic below shows the transmission grid in the continental United States (Fig. 4). How would one design a random sampling scheme overlaid against the obviously heterogeneous distribution of the grid itself? If a random sample was drawn, chances are good that no population would be near a grid in many of the western states, but in contrast, the likelihood would increase in the eastern portion of the United States where the population and therefore transmission grid is more densely placed.

Open Infrastructure map, https://openinframap.org/#3/24.61/-101.16

Figure 4. Map of electrical transmission grid for continental United States of America. Image source https://openinframap.org/#3/24.61/-101.16

For example, you want to test whether or not EMF affects human health, and your particular interest is in whether or not there exists a relationship between living close to high voltage towers or transfer stations and brain cancer. How does one design a study, keeping in mind the importance of randomization for our ability to generalize and assign causation?  This is a part of epidemiology which strives to detect whether clusters of disease are related to some environmental source. It is an extremely difficult challenge. For the record, no clear link to EMF and cancer has been found, but reports do appear from time to time (e.g., report on a cluster of breast cancer in men working in office adjacent to high EMF, Milham 2004).

1. I claimed that Graph B in Figure 8 was generated by a random process while Graph B was not. The results are: Graph A, each cell in the grid has a point; In graph B, ten cells have at least one point, six cells are empty. Which probability _____ distribution applies? A. beta B. binomial C. normal D. poisson

2. True or False. If sample with replacement is used, a subject may be included more than once.

3. Use the sample() with and without replacement on the object (see help with R below)

a) set of 3

b) set of 4

4. Confirm the claim by calculating the probability of Graph A result vs Graph B result (see R script below).

Code you type is shown in red; responses or output from R are shown in blue. Recall that statements preceded by the hash # are comments and are not read by R (i.e., no need for you tp type them).

First, create some variables. Vectors aa and bb contain my two age sequences.

Second, append vector bb to the end of vector aa

Third, get the average age for the first group (the aa sequence)  and for the second group (the bb sequence). Lots of ways to do this, I made a two subsets from the combined age variable; could have just as easily taken the mean of aa and the mean of bb (same thing!).

Fourth, start building a data frame, then sort it by age. Will be adding additional variables to this data frame

Fifth, divide the variable again into two subsets of 30 and get the averages

Sixth, create an index variable, random order without replacement

Add the new variable to our existing data frame, then print it to check that all is well

Seventh, select for our first treatment group the first 30 subjects from the randomized index. There are again other ways to do this, but sorting on the index variable means that the subject order will be change too.

Print the new data frame to confirm that the sorting worked. It did. we can see that the rows have been sorted by ascending order based on the index variable.

Eighth, create our new treatment groups, again of n = 30 each, then get the means ages for each group.

Get the minimum and maximum values for the groups

Ninth, create a BMI variable drawn from a normal distribution with coefficient of variation equal to 20%. The first group with we will call cc

The second group called dd

Create a new variable called BMI by joining cc and dd

Add the BMI variable to our data frame.

Tenth, repeat our protocol from before: Set up two groups each with 30 subjects, calculate the means for the variables and then sort by the random index and get the new group means.

All we did was confirm that the unsorted groups had mean BMI of around 27.5 and 37.5 respectively. Now, proceed to sort by the random index variable. Go ahead and create a new data frame

Get the means of the new groups

That’s all of the work!

  • The basics explained
  • Experiments
  • Experimental and Sampling units
  • Replication, Bias, and Nuisance Variables
  • Clinical trials
  • Importance of randomization in experimental design
  • Sampling from Populations
  • References and suggested readings

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Evid Based Spine Care J
  • v.1(3); 2010 Dec

The random allocation process: two things you need to know

Joseph dettori.

Spectrum Research, Inc. Tacoma, WA, USA

“The generation of random numbers is too important to be left to chance.” —Robert R Coveyou

The randomized controlled trial (RCT) has become the standard by which studies of therapy are judged. The key to the RCT lies in the random allocation process. When done correctly in a large enough sample, random allocation is an effective measure in reducing bias. In this article we describe the random allocation process.

What makes up the random allocation process?

The random allocation process consists of two steps:

  • generating an unpredictable random sequence,
  • implementing the sequence in a way that conceals the treatments until patients have been formally assigned to their groups.

What are acceptable ways of generating a random sequence?

Simple random allocation is the easiest and most basic approach that provides unpredictability of treatment assignment. In simple random allocation, treatment assignment is made by chance without regard to prior allocation (that is, it bears no relation to past allocations and it is not discoverable ahead of time).

Good methods of generating a random allocation sequence include using a random-numbers table or a computer software program that generates the random sequence. There are manual methods of achieving random allocation such as tossing a coin, drawing lots or throwing dice. However, these manual methods in practice often become nonrandom, are difficult to implement and do not leave an audit trail. Therefore, they are not generally recommended. Procedures to avoid completely include using hospital chart numbers, alternating patients sequentially or assigning by date of birth.

Because simple random allocation has no relationship with prior assignment, unequal group sizes can happen by chance, especially in small sample sizes. To illustrate this point, 20 different random allocation sequences were generated for two treatments that had a total sample size of 20 patients. Here are the results of the number of patients randomly assigned to each of two treatment groups (A or B) ( Table 1 ):

As you can see, an imbalance of six patients or more between groups occurred seven times (35% of the time). In trial number five, the difference was twelve! However, this concern about group imbalance diminishes as the sample size gets bigger. In general for a two-arm trial, the probability of a significant imbalance is negligible with a sample size of 200 or more 1 . Alternatively, there are procedures other than simple random allocation that can be used to ensure balanced group sizes, such as blocking, the random allocation rule, and replacement randomization 1 .

What is allocation concealment?

Allocation concealment is the technique of ensuring that implementation of the random allocation sequence occurs without knowledge of which patient will receive which treatment, as knowledge of the next assignment could influence whether a patient is included or excluded based on perceived prognosis.

For example, suppose that a spine surgeon has been working on a new kind of bone substitute that from a series of patients has shown great promise. The surgeon believes using this new substitute is better than the current method and wants to demonstrate this advantage in a randomized controlled trial. Let’s also assume the random sequence has been generated, the new bone substitute is the next treatment to be given, and the surgeon knows that this treatment is next on the list. The next patient seen by the surgeon has comorbidities that make the surgeon believe that this patient is risky of achieving success with any treatment even though the patient meets the inclusion/exclusion criteria for the study. In this scenario one might easily subconsciously justify not enrolling the patient. Perhaps the patient hesitates briefly when the study is mentioned and the surgeon suggests that the patient sleep on the idea of participating. Maybe the surgeon decides to get more tests before offering enrollment. The number of different subtle possibilities to exclude this patient is only limited by one’s imagination.

What is the result when concealment is not ensured?

One can expect a biased estimate of the treatment effect, and is in some cases as much as 40% or larger 2 .

What are acceptable ways to ensure concealment?

The following are considered adequate approaches to concealed allocation:

  • Central randomization. In this technique the individual recruiting the patient contacts a central methods center by phone or secure computer after the patient is enrolled.
  • Sequentially numbered, opaque, sealed envelopes. This method is generally considered acceptable, but may be susceptible to manipulation 3 . If investigators use envelopes, it is suggested that the envelopes receive numbers in advance, and are opened sequentially, only after the participant’s name is written on the appropriate envelope. In addition, the use of pressure sensitive paper inside the envelope should be used to transfer information to the assigned allocation. This can then serve as a valuable audit trail 4 .

Did the random allocation work?

Researchers should always present the distributions of baseline characteristics by treatment group in a table (often the first table). This allows the reader to compare the groups at baseline on the distribution of important prognostic characteristics and allows surgeons to infer results to specific populations 5 . The reader should look for the magnitude of the differences between groups (if any are present) to see if those differences should be accounted for in the analysis.

The use of P -values to determine if differences in baseline characteristics are important is not appropriate in randomized trials 4 , 6 . Remember, the P -value is not a measure of the size of the effect, but is the probability that any differences are due to chance. In a trial with proper randomly generated and concealed allocation any differences at baseline are due to chance.

Conclusions

  • generating the random sequence,
  • implementing the sequence in a way that it is concealed.
  • One should consider using a random numbers table or computer program to generate the random allocation sequence.
  • To minimize the effect of bias, the random allocation sequence should remain concealed from those enrolling patients into the study.

IMAGES

  1. Introduction to Random Assignment -Voxco

    why do we need random assignment

  2. Random Assignment in Psychology: Definition & Examples

    why do we need random assignment

  3. What Is RANDOM ASSIGNMENT? RANDOM ASSIGNMENT Definition & Meaning

    why do we need random assignment

  4. Random Assignment in Experiments

    why do we need random assignment

  5. PPT

    why do we need random assignment

  6. PPT

    why do we need random assignment

VIDEO

  1. Chapter 2.1 Introduce random variable (MAU)

  2. Task 1- A random Question

COMMENTS

  1. Random Assignment in Experiments

    Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups. While random sampling is used in many types of studies, random assignment is only used ...

  2. Random Assignment in Psychology: Definition & Examples

    Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study. On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. Random selection ensures that everyone in the population has an equal ...

  3. The Definition of Random Assignment In Psychology

    Random assignment refers to the use of chance procedures in psychology experiments to ensure that each participant has the same opportunity to be assigned to any given group in a study to eliminate any potential bias in the experiment at the outset. Participants are randomly assigned to different groups, such as the treatment group versus the ...

  4. Random Assignment in Experiments

    Random sampling is a process for obtaining a sample that accurately represents a population. Random assignment uses a chance process to assign subjects to experimental groups. Using random assignment requires that the experimenters can control the group assignment for all study subjects. For our study, we must be able to assign our participants ...

  5. Random sampling vs. random assignment (scope of inference)

    1. All of the students select a marble from a bag, and the 50 students with green marbles participate. 2. Jared asks 50 of his friends to participate in the study. 3. The names of all of the students in the school are put in a bowl and 50 names are drawn. 4.

  6. Why randomize?

    It does not refer to haphazard or casual choosing of some and not others. Randomization in this context means that care is taken to ensure that no pattern exists between the assignment of subjects into groups and any characteristics of those subjects. Every subject is as likely as any other to be assigned to the treatment (or control) group.

  7. Random assignment

    Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment (e.g., a treatment group versus a control group) using randomization, such as by a chance procedure (e.g., flipping a coin) or a random number generator. This ensures that each participant or subject has an equal chance of being placed in ...

  8. Random Sampling vs. Random Assignment

    So, to summarize, random sampling refers to how you select individuals from the population to participate in your study. Random assignment refers to how you place those participants into groups (such as experimental vs. control). Knowing this distinction will help you clearly and accurately describe the methods you use to collect your data and ...

  9. 3.6 Causation and Random Assignment

    Random assignment of participants helps to ensure that any differences between and within the groups are not systematic at the outset of the experiment. Thus, any differences between groups recorded at the end of the experiment can be more confidently attributed to the experimental procedures or treatment. … Random assignment does not ...

  10. Elements of Research : Random Assignment

    Random assignment. Random assignment is a procedure used in experiments to create multiple study groups that include participants with similar characteristics so that the groups are equivalent at the beginning of the study. The procedure involves assigning individuals to an experimental treatment or program at random, or by chance (like the ...

  11. 34.4

    34.4 - Creating Random Assignments. We now turn our focus from randomly sampling a subset of observations from a data set to that of generating a random assignment of treatments to experimental units in a randomized, controlled experiment. The good news is that the techniques used to sample without replacement can easily be extended to generate ...

  12. When do you use random assignment?

    Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there's usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable. In general, you should always use random assignment in this type of experimental design when ...

  13. econometrics

    This scheme is not random assignment in the AIR sense. But in expectation, it leads to an unbiased estimate of the average treatment effect. And that is no accident. Any assignment scheme that gives subjects equal probability of assignment to treatment will permit unbiased estimation of the ATE. So: why do we need random assignment in the AIR ...

  14. How Random Selection Is Used For Research

    Random selection refers to how the sample is drawn from the population as a whole, whereas random assignment refers to how the participants are then assigned to either the experimental or control groups. It is possible to have both random selection and random assignment in an experiment. Imagine that you use random selection to draw 500 people ...

  15. Technically Speaking: Why We Use Random Assignment in Reading Research

    Random sampling and random assignment are two distinct techniques used in research. As we explained in our previous post, random sampling aids in our ability to create representative samples from a population of interest.This post addressed how random assignment aids in creating treatment and control groups that are equated on expectation for important characteristics.

  16. Randomisation: What, Why and How?

    The idea sounds so simple that defining it becomes almost a joke: randomisation is "putting participants into the treatment groups randomly". If only it were that simple. Randomisation can be a minefield, and not everyone understands what exactly it is or why they are doing it. A key feature of a randomised controlled trial is that it is ...

  17. Random Assignment

    The point is, rather, that simply because we do not have random assignment is no excuse to stand around with our hands in our pockets, claiming that there is nothing that we can do. There is a lot that we can do, even if our final conclusions are less precise than we would like them to be. This is an important point, because many of the ...

  18. Simple Random Sampling

    Step 3: Randomly select your sample. This can be done in one of two ways: the lottery or random number method. In the lottery method, you choose the sample at random by "drawing from a hat" or by using a computer program that will simulate the same action. In the random number method, you assign every individual a number.

  19. Random Assignment in Experiments

    Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups. While random sampling is used in many types of studies, random assignment is only used ...

  20. An overview of randomization techniques: An unbiased assessment of

    Other methods include using a shuffled deck of cards (e.g., even - control, odd - treatment) or throwing a dice (e.g., below and equal to 3 - control, over 3 - treatment). A random number table found in a statistics book or computer-generated random numbers can also be used for simple randomization of subjects.

  21. 5.5

    In principle, randomization should protect a project because, on average, these influences will be represented randomly for the two groups of individuals. This reasoning extends to unmeasured and unknown causal factors as well. This discussion was illustrated by random assignment of subjects to treatment groups.

  22. Randomization Tests and Resampling

    You need random assignment to do that. I need to hedge a bit here. If the groups are males and females, you obviously cannot randomly assign subjects to groups. But you need to assume that, conditional on gender, there are no other systematic differences in group assignment. We aren't even sure what to call thes tests.

  23. The random allocation process: two things you need to know

    The randomized controlled trial (RCT) has become the standard by which studies of therapy are judged. The key to the RCT lies in the random allocation process. When done correctly in a large enough sample, random allocation is an effective measure in reducing bias. In this article we describe the random allocation process.