5.1 Quadratic Functions

The path passes through the origin and has vertex at ( − 4 , 7 ) , ( − 4 , 7 ) , so h ( x ) = – 7 16 ( x + 4 ) 2 + 7. h ( x ) = – 7 16 ( x + 4 ) 2 + 7. To make the shot, h ( − 7.5 ) h ( − 7.5 ) would need to be about 4 but h ( – 7.5 ) ≈ 1.64 ; h ( – 7.5 ) ≈ 1.64 ; he doesn’t make it.

g ( x ) = x 2 − 6 x + 13 g ( x ) = x 2 − 6 x + 13 in general form; g ( x ) = ( x − 3 ) 2 + 4 g ( x ) = ( x − 3 ) 2 + 4 in standard form

The domain is all real numbers. The range is f ( x ) ≥ 8 11 , f ( x ) ≥ 8 11 , or [ 8 11 , ∞ ) . [ 8 11 , ∞ ) .

y -intercept at (0, 13), No x - x - intercepts

  • ⓐ 3 seconds
  • ⓒ 7 seconds

5.2 Power Functions and Polynomial Functions

f ( x ) f ( x ) is a power function because it can be written as f ( x ) = 8 x 5 . f ( x ) = 8 x 5 . The other functions are not power functions.

As x x approaches positive or negative infinity, f ( x ) f ( x ) decreases without bound: as x → ± ∞ ,   f ( x ) → − ∞ x → ± ∞ ,   f ( x ) → − ∞ because of the negative coefficient.

The degree is 6. The leading term is − x 6 . − x 6 . The leading coefficient is − 1. − 1.

As x → ∞ ,   f ( x ) → − ∞ ;   a s   x → − ∞ ,   f ( x ) → − ∞ . x → ∞ ,   f ( x ) → − ∞ ;   a s   x → − ∞ ,   f ( x ) → − ∞ . It has the shape of an even degree power function with a negative coefficient.

The leading term is 0.2 x 3 , 0.2 x 3 , so it is a degree 3 polynomial. As x x approaches positive infinity, f ( x ) f ( x ) increases without bound; as x x approaches negative infinity, f ( x ) f ( x ) decreases without bound.

y -intercept ( 0 , 0 ) ; ( 0 , 0 ) ; x -intercepts ( 0 , 0 ) , ( – 2 , 0 ) , ( 0 , 0 ) , ( – 2 , 0 ) , and ( 5 , 0 ) ( 5 , 0 )

There are at most 12 x - x - intercepts and at most 11 turning points.

The end behavior indicates an odd-degree polynomial function; there are 3 x - x - intercepts and 2 turning points, so the degree is odd and at least 3. Because of the end behavior, we know that the lead coefficient must be negative.

The x - x - intercepts are ( 2 , 0 ) , ( − 1 , 0 ) , ( 2 , 0 ) , ( − 1 , 0 ) , and ( 5 , 0 ) , ( 5 , 0 ) , the y- intercept is ( 0 , 2 ) , ( 0 , 2 ) , and the graph has at most 2 turning points.

5.3 Graphs of Polynomial Functions

y -intercept ( 0 , 0 ) ; ( 0 , 0 ) ; x -intercepts ( 0 , 0 ) , ( – 5 , 0 ) , ( 2 , 0 ) , ( 0 , 0 ) , ( – 5 , 0 ) , ( 2 , 0 ) , and ( 3 , 0 ) ( 3 , 0 )

The graph has a zero of –5 with multiplicity 3, a zero of -1 with multiplicity 2, and a zero of 3 with multiplicity 4.

Because f f is a polynomial function and since f ( 1 ) f ( 1 ) is negative and f ( 2 ) f ( 2 ) is positive, there is at least one real zero between x = 1 x = 1 and x = 2. x = 2.

f ( x ) = − 1 8 ( x − 2 ) 3 ( x + 1 ) 2 ( x − 4 ) f ( x ) = − 1 8 ( x − 2 ) 3 ( x + 1 ) 2 ( x − 4 )

The minimum occurs at approximately the point ( 0 , − 6.5 ) , ( 0 , − 6.5 ) , and the maximum occurs at approximately the point ( 3.5 , 7 ) . ( 3.5 , 7 ) .

5.4 Dividing Polynomials

4 x 2 − 8 x + 15 − 78 4 x + 5 4 x 2 − 8 x + 15 − 78 4 x + 5

3 x 3 − 3 x 2 + 21 x − 150 + 1 , 090 x + 7 3 x 3 − 3 x 2 + 21 x − 150 + 1 , 090 x + 7

3 x 2 − 4 x + 1 3 x 2 − 4 x + 1

5.5 Zeros of Polynomial Functions

f ( − 3 ) = − 412 f ( − 3 ) = − 412

The zeros are 2, –2, and –4.

There are no rational zeros.

The zeros are –4,  1 2 , and 1 . –4,  1 2 , and 1 .

f ( x ) = − 1 2 x 3 + 5 2 x 2 − 2 x + 10 f ( x ) = − 1 2 x 3 + 5 2 x 2 − 2 x + 10

There must be 4, 2, or 0 positive real roots and 0 negative real roots. The graph shows that there are 2 positive real zeros and 0 negative real zeros.

3 meters by 4 meters by 7 meters

5.6 Rational Functions

End behavior: as x → ± ∞ ,   f ( x ) → 0 ; x → ± ∞ ,   f ( x ) → 0 ; Local behavior: as x → 0 ,   f ( x ) → ∞ x → 0 ,   f ( x ) → ∞ (there are no x - or y -intercepts)

The function and the asymptotes are shifted 3 units right and 4 units down. As x → 3 , f ( x ) → ∞ , x → 3 , f ( x ) → ∞ , and as x → ± ∞ , f ( x ) → − 4. x → ± ∞ , f ( x ) → − 4.

The function is f ( x ) = 1 ( x − 3 ) 2 − 4. f ( x ) = 1 ( x − 3 ) 2 − 4.

12 11 12 11

The domain is all real numbers except x = 1 x = 1 and x = 5. x = 5.

Removable discontinuity at x = 5. x = 5. Vertical asymptotes: x = 0 , x = 1. x = 0 , x = 1.

Vertical asymptotes at x = 2 x = 2 and x = – 3 ; x = – 3 ; horizontal asymptote at y = 4. y = 4.

For the transformed reciprocal squared function, we find the rational form. f ( x ) = 1 ( x − 3 ) 2 − 4 = 1 − 4 ( x − 3 ) 2 ( x − 3 ) 2 = 1 − 4 ( x 2 − 6 x + 9 ) ( x − 3 ) ( x − 3 ) = − 4 x 2 + 24 x − 35 x 2 − 6 x + 9 f ( x ) = 1 ( x − 3 ) 2 − 4 = 1 − 4 ( x − 3 ) 2 ( x − 3 ) 2 = 1 − 4 ( x 2 − 6 x + 9 ) ( x − 3 ) ( x − 3 ) = − 4 x 2 + 24 x − 35 x 2 − 6 x + 9

Because the numerator is the same degree as the denominator we know that as x → ± ∞ ,   f ( x ) → − 4 ;   so   y = – 4 x → ± ∞ ,   f ( x ) → − 4 ;   so   y = – 4 is the horizontal asymptote. Next, we set the denominator equal to zero, and find that the vertical asymptote is x = 3 , x = 3 , because as x → 3 , f ( x ) → ∞ . x → 3 , f ( x ) → ∞ . We then set the numerator equal to 0 and find the x -intercepts are at ( 2.5 , 0 ) ( 2.5 , 0 ) and ( 3.5 , 0 ) . ( 3.5 , 0 ) . Finally, we evaluate the function at 0 and find the y -intercept to be at ( 0 , − 35 9 ) . ( 0 , − 35 9 ) .

Horizontal asymptote at y = 1 2 . y = 1 2 . Vertical asymptotes at x = 1   and   x = 3. x = 1   and   x = 3. y -intercept at ( 0 , 4 3 . ) ( 0 , 4 3 . )

x -intercepts at ( 2 , 0 )   and  ( – 2 , 0 ) . ( 2 , 0 )   and  ( – 2 , 0 ) . ( – 2 , 0 ) ( – 2 , 0 ) is a zero with multiplicity 2, and the graph bounces off the x -axis at this point. ( 2 , 0 ) ( 2 , 0 ) is a single zero and the graph crosses the axis at this point.

5.7 Inverses and Radical Functions

f − 1 ( f ( x ) ) = f − 1 ( x + 5 3 ) = 3 ( x + 5 3 ) − 5 = ( x − 5 ) + 5 = x f − 1 ( f ( x ) ) = f − 1 ( x + 5 3 ) = 3 ( x + 5 3 ) − 5 = ( x − 5 ) + 5 = x and f ( f − 1 ( x ) ) = f ( 3 x − 5 ) = ( 3 x − 5 ) + 5 3 = 3 x 3 = x f ( f − 1 ( x ) ) = f ( 3 x − 5 ) = ( 3 x − 5 ) + 5 3 = 3 x 3 = x

f − 1 ( x ) = x 3 − 4 f − 1 ( x ) = x 3 − 4

f − 1 ( x ) = x − 1 f − 1 ( x ) = x − 1

f − 1 ( x ) = x 2 − 3 2 , x ≥ 0 f − 1 ( x ) = x 2 − 3 2 , x ≥ 0

f − 1 ( x ) = 2 x + 3 x − 1 f − 1 ( x ) = 2 x + 3 x − 1

5.8 Modeling Using Variation

128 3 128 3

x = 20 x = 20

5.1 Section Exercises

When written in that form, the vertex can be easily identified.

If a = 0 a = 0 then the function becomes a linear function.

If possible, we can use factoring. Otherwise, we can use the quadratic formula.

g ( x ) = ( x + 1 ) 2 − 4 , g ( x ) = ( x + 1 ) 2 − 4 , Vertex ( − 1 , − 4 ) ( − 1 , − 4 )

f ( x ) = ( x + 5 2 ) 2 − 33 4 , f ( x ) = ( x + 5 2 ) 2 − 33 4 , Vertex ( − 5 2 , − 33 4 ) ( − 5 2 , − 33 4 )

f ( x ) = 3 ( x − 1 ) 2 − 12 , f ( x ) = 3 ( x − 1 ) 2 − 12 , Vertex ( 1 , − 12 ) ( 1 , − 12 )

f ( x ) = 3 ( x − 5 6 ) 2 − 37 12 , f ( x ) = 3 ( x − 5 6 ) 2 − 37 12 , Vertex ( 5 6 , − 37 12 ) ( 5 6 , − 37 12 )

Minimum is − 17 2 − 17 2 and occurs at 5 2 . 5 2 . Axis of symmetry is x = 5 2 . x = 5 2 .

Minimum is − 17 16 − 17 16 and occurs at − 1 8 . − 1 8 . Axis of symmetry is x = − 1 8 . x = − 1 8 .

Minimum is − 7 2 − 7 2 and occurs at −3. −3. Axis of symmetry is x = −3. x = −3.

Domain is ( − ∞ , ∞ ) . ( − ∞ , ∞ ) . Range is [ 2 , ∞ ) . [ 2 , ∞ ) .

Domain is ( − ∞ , ∞ ) . ( − ∞ , ∞ ) . Range is [ −5 , ∞ ) . [ −5 , ∞ ) .

Domain is ( − ∞ , ∞ ) . ( − ∞ , ∞ ) . Range is [ −12 , ∞ ) . [ −12 , ∞ ) .

f ( x ) = x 2 + 4 x + 3 f ( x ) = x 2 + 4 x + 3

f ( x ) = x 2 - 4 x + 7 f ( x ) = x 2 - 4 x + 7

f ( x ) = - 1 49 x 2 + 6 49 x + 89 49 f ( x ) = - 1 49 x 2 + 6 49 x + 89 49

f ( x ) = x 2 - 2 x + 1 f ( x ) = x 2 - 2 x + 1

Vertex: (3, −10), axis of symmetry: x = 3, intercepts: ( 3 + 10 , 0 ) ( 3 + 10 , 0 ) and ( 3 - 10 , 0 ) ( 3 - 10 , 0 )

Vertex: ( 3 2 , - 12 ) ( 3 2 , - 12 ) , axis of symmetry: x = 3 2 x = 3 2 , intercept: ( 3 + 2 3 2 , 0 ) ( 3 + 2 3 2 , 0 ) and ( 3 - 2 3 2 , 0 ) ( 3 - 2 3 2 , 0 )

f ( x ) = x 2 + 2 x + 3 f ( x ) = x 2 + 2 x + 3

f ( x ) = - 3 x 2 − 6 x − 1 f ( x ) = - 3 x 2 − 6 x − 1

f ( x ) = - 1 4 x 2 − x + 2 f ( x ) = - 1 4 x 2 − x + 2

f ( x ) = x 2 + 2 x + 1 f ( x ) = x 2 + 2 x + 1

f ( x ) = - x 2 + 2 x f ( x ) = - x 2 + 2 x

f ( x ) = 2 x 2 f ( x ) = 2 x 2

The graph is shifted to the right or left (a horizontal shift).

The suspension bridge has 1,000 feet distance from the center.

Domain is ( − ∞ , ∞ ) . ( − ∞ , ∞ ) . Range is ( - ∞ , 2 ] . ( - ∞ , 2 ] .

Domain: ( - ∞ , ∞ ) ( - ∞ , ∞ ) ; range: [ 100 , ∞ ) [ 100 , ∞ )

f ( x ) = 2 x 2 + 2 f ( x ) = 2 x 2 + 2

f ( x ) = - x 2 − 2 f ( x ) = - x 2 − 2

f ( x ) = 3 x 2 + 6 x - 15 f ( x ) = 3 x 2 + 6 x - 15

75 feet by 50 feet

3 and 3; product is 9

The revenue reaches the maximum value when 1800 thousand phones are produced.

2.449 seconds

41 trees per acre

5.2 Section Exercises

The coefficient of the power function is the real number that is multiplied by the variable raised to a power. The degree is the highest power appearing in the function.

As x x decreases without bound, so does f ( x ) . f ( x ) . As x x increases without bound, so does f ( x ) . f ( x ) .

The polynomial function is of even degree and leading coefficient is negative.

Power function

Degree = 2, Coefficient = –2

Degree =4, Coefficient = –2

As x → ∞ x → ∞ , f ( x ) → ∞ , as x → − ∞ , f ( x ) → ∞ f ( x ) → ∞ , as x → − ∞ , f ( x ) → ∞

As x → − ∞ x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → − ∞ f ( x ) → − ∞ , as x → ∞ , f ( x ) → − ∞

As x → ∞ x → ∞ , f ( x ) → ∞ , as x → − ∞ , f ( x ) → − ∞ f ( x ) → ∞ , as x → − ∞ , f ( x ) → − ∞

y -intercept is ( 0 , 12 ) , ( 0 , 12 ) , t -intercepts are ( 1 , 0 ) ; ( – 2 , 0 ) ; and  ( 3 , 0 ) . ( 1 , 0 ) ; ( – 2 , 0 ) ; and  ( 3 , 0 ) .

y -intercept is ( 0 , − 16 ) . ( 0 , − 16 ) . x -intercepts are ( 2 , 0 ) ( 2 , 0 ) and ( − 2 , 0 ) . ( − 2 , 0 ) .

y -intercept is ( 0 , 0 ) . ( 0 , 0 ) . x -intercepts are ( 0 , 0 ) , ( 4 , 0 ) , ( 0 , 0 ) , ( 4 , 0 ) , and ( − 2 ,   0 ) . ( − 2 ,   0 ) .

Yes. Number of turning points is 2. Least possible degree is 3.

Yes. Number of turning points is 1. Least possible degree is 2.

Yes. Number of turning points is 0. Least possible degree is 1.

As x → − ∞ x → − ∞ , f ( x ) → ∞ , as x → ∞ , f ( x ) → ∞ f ( x ) → ∞ , as x → ∞ , f ( x ) → ∞

As x → − ∞ x → − ∞ , f ( x ) → ∞ , as x → ∞ , f ( x ) → − ∞ f ( x ) → ∞ , as x → ∞ , f ( x ) → − ∞

The y - y - intercept is ( 0 ,   0 ) . ( 0 ,   0 ) . The x - x - intercepts are ( 0 ,   0 ) , ( 2 ,   0 ) . ( 0 ,   0 ) , ( 2 ,   0 ) . As x → − ∞ x → − ∞ , f ( x ) → ∞ , as x → ∞ , f ( x ) → ∞ f ( x ) → ∞ , as x → ∞ , f ( x ) → ∞

The y - y - intercept is ( 0 , 0 ) ( 0 , 0 ) . The x - x - intercepts are ( 0 ,   0 ) , ( 5 ,   0 ) , ( 7 ,   0 ) . ( 0 ,   0 ) , ( 5 ,   0 ) , ( 7 ,   0 ) . As x → − ∞ x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞ f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞

The y - y - intercept is ( 0 ,   0 ) . ( 0 ,   0 ) . The x - x - intercept is ( − 4 ,   0 ) , ( 0 ,   0 ) , ( 4 ,   0 ) . ( − 4 ,   0 ) , ( 0 ,   0 ) , ( 4 ,   0 ) . A s x → − ∞ A s x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞ f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞

The y - y - intercept is ( 0 ,   − 81 ) . ( 0 ,   − 81 ) . The x - x - intercept are ( 3 ,   0 ) , ( − 3 ,   0 ) . ( 3 ,   0 ) , ( − 3 ,   0 ) . As x → − ∞ x → − ∞ , f ( x ) → ∞ , as x → ∞ , f ( x ) → ∞ f ( x ) → ∞ , as x → ∞ , f ( x ) → ∞

The y - y - intercept is ( 0 ,   0 ) . ( 0 ,   0 ) . The x - x - intercepts are ( − 3 ,   0 ) , ( 0 ,   0 ) , ( 5 ,   0 ) . ( − 3 ,   0 ) , ( 0 ,   0 ) , ( 5 ,   0 ) . As x → − ∞ x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞ f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞

f ( x ) = x 2 − 4 f ( x ) = x 2 − 4

f ( x ) = x 3 − 4 x 2 + 4 x f ( x ) = x 3 − 4 x 2 + 4 x

f ( x ) = x 4 + 1 f ( x ) = x 4 + 1

V ( m ) = 8 m 3 + 36 m 2 + 54 m + 27 V ( m ) = 8 m 3 + 36 m 2 + 54 m + 27

V ( x ) = 4 x 3 − 32 x 2 + 64 x V ( x ) = 4 x 3 − 32 x 2 + 64 x

5.3 Section Exercises

The x - x - intercept is where the graph of the function crosses the x - x - axis, and the zero of the function is the input value for which f ( x ) = 0. f ( x ) = 0.

If we evaluate the function at a a and at b b and the sign of the function value changes, then we know a zero exists between a a and b . b .

There will be a factor raised to an even power.

( − 2 , 0 ) , ( 3 , 0 ) , ( − 5 , 0 ) ( − 2 , 0 ) , ( 3 , 0 ) , ( − 5 , 0 )

( 3 , 0 ) , ( − 1 , 0 ) , ( 0 , 0 ) ( 3 , 0 ) , ( − 1 , 0 ) , ( 0 , 0 )

( 0 , 0 ) , ( − 5 , 0 ) , ( 2 , 0 ) ( 0 , 0 ) , ( − 5 , 0 ) , ( 2 , 0 )

( 0 , 0 ) , ( − 5 , 0 ) , ( 4 , 0 ) ( 0 , 0 ) , ( − 5 , 0 ) , ( 4 , 0 )

( 2 , 0 ) , ( − 2 , 0 ) , ( − 1 , 0 ) ( 2 , 0 ) , ( − 2 , 0 ) , ( − 1 , 0 )

( − 2 , 0 ) , ( 2 , 0 ) , ( 1 2 , 0 ) ( − 2 , 0 ) , ( 2 , 0 ) , ( 1 2 , 0 )

( 1 , 0 ) , ( − 1 , 0 ) ( 1 , 0 ) , ( − 1 , 0 )

( 0 , 0 ) , ( 3 , 0 ) , ( − 3 , 0 ) ( 0 , 0 ) , ( 3 , 0 ) , ( − 3 , 0 )

( 0 , 0 ) , ( 1 , 0 ) ,  ( − 1 , 0 ) , ( 2 , 0 ) , ( − 2 , 0 ) ( 0 , 0 ) , ( 1 , 0 ) ,  ( − 1 , 0 ) , ( 2 , 0 ) , ( − 2 , 0 )

f ( 2 ) = – 10 f ( 2 ) = – 10 and f ( 4 ) = 28. f ( 4 ) = 28. Sign change confirms.

f ( 1 ) = 3 f ( 1 ) = 3 and f ( 3 ) = – 77. f ( 3 ) = – 77. Sign change confirms.

f ( 0.01 ) = 1.000001 f ( 0.01 ) = 1.000001 and f ( 0.1 ) = – 7.999. f ( 0.1 ) = – 7.999. Sign change confirms.

0 with multiplicity 2, − 3 2 − 3 2 with multiplicity 5, 4 with multiplicity 2

0 with multiplicity 2, –2 with multiplicity 2

− 2 3 − 2 3 with multiplicity 5, 5 with multiplicity 2

0 with multiplicity 4, 2 with multiplicity 1, −1 with multiplicity 1

3 2 3 2 with multiplicity 2, 0 with multiplicity 3

0 with multiplicity 6 , 2 3 with multiplicity 2 0 with multiplicity 6 , 2 3 with multiplicity 2

x -intercepts, ( 1, 0 ) ( 1, 0 ) with multiplicity 2, ( – 4 ,   0 ) ( – 4 ,   0 ) with multiplicity 1, y - y - intercept ( 0 ,   4 ). ( 0 ,   4 ). As x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞ . x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞ .

x -intercepts ( 3 , 0 ) ( 3 , 0 ) with multiplicity 3, ( 2 , 0 ) ( 2 , 0 ) with multiplicity 2, y - y - intercept ( 0 , – 108 ) . ( 0 , – 108 ) . As x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞ . x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞ .

x -intercepts ( 0 ,   0 ) , ( – 2 ,   0 ) , ( 4 , 0 ) ( 0 ,   0 ) , ( – 2 ,   0 ) , ( 4 , 0 ) with multiplicity 1, y - y - intercept ( 0 ,   0 ) . ( 0 ,   0 ) . As x → − ∞ , f ( x ) → ∞ , as x → ∞ , f ( x ) → − ∞ . x → − ∞ , f ( x ) → ∞ , as x → ∞ , f ( x ) → − ∞ .

f ( x ) = − 2 9 ( x − 3 ) ( x + 1 ) ( x + 3 ) f ( x ) = − 2 9 ( x − 3 ) ( x + 1 ) ( x + 3 )

f ( x ) = 1 4 ( x + 2 ) 2 ( x − 3 ) f ( x ) = 1 4 ( x + 2 ) 2 ( x − 3 )

–4, –2, 1, 3 with multiplicity 1

–2, 3 each with multiplicity 2

f ( x ) = − 2 3 ( x + 2 ) ( x − 1 ) ( x − 3 ) f ( x ) = − 2 3 ( x + 2 ) ( x − 1 ) ( x − 3 )

f ( x ) = 1 3 ( x − 3 ) 2 ( x − 1 ) 2 ( x + 3 ) f ( x ) = 1 3 ( x − 3 ) 2 ( x − 1 ) 2 ( x + 3 )

f ( x ) = −15 ( x − 1 ) 2 ( x − 3 ) 3 f ( x ) = −15 ( x − 1 ) 2 ( x − 3 ) 3

f ( x ) = − 2 ( x + 3 ) ( x + 2 ) ( x − 1 ) f ( x ) = − 2 ( x + 3 ) ( x + 2 ) ( x − 1 )

f ( x ) = − 3 2 ( 2 x − 1 ) 2 ( x − 6 ) ( x + 2 ) f ( x ) = − 3 2 ( 2 x − 1 ) 2 ( x − 6 ) ( x + 2 )

local max ( – .58, – .62 ) , ( – .58, – .62 ) , local min ( .58, –1 .38 ) ( .58, –1 .38 )

global min ( – .63, – .47 ) ( – .63, – .47 )

global min ( .75,  .89) ( .75,  .89)

f ( x ) = ( x − 500 ) 2 ( x + 200 ) f ( x ) = ( x − 500 ) 2 ( x + 200 )

f ( x ) = 4 x 3 − 36 x 2 + 80 x f ( x ) = 4 x 3 − 36 x 2 + 80 x

f ( x ) = 4 x 3 − 36 x 2 + 60 x + 100 f ( x ) = 4 x 3 − 36 x 2 + 60 x + 100

f ( x ) = 9 π ( x 3 + 5 x 2 + 8 x + 4 ) f ( x ) = 9 π ( x 3 + 5 x 2 + 8 x + 4 )

5.4 Section Exercises

The binomial is a factor of the polynomial.

x + 6 + 5 x - 1 , quotient: x + 6 , remainder: 5 x + 6 + 5 x - 1 , quotient: x + 6 , remainder: 5

3 x + 2 , quotient:  3 x + 2 , remainder: 0 3 x + 2 , quotient:  3 x + 2 , remainder: 0

x − 5 , quotient: x − 5 , remainder: 0 x − 5 , quotient: x − 5 , remainder: 0

2 x − 7 + 16 x + 2 , quotient: ​ 2 x − 7 , remainder: 16 2 x − 7 + 16 x + 2 , quotient: ​ 2 x − 7 , remainder: 16

x − 2 + 6 3 x + 1 , quotient: x − 2 , remainder: 6 x − 2 + 6 3 x + 1 , quotient: x − 2 , remainder: 6

2 x 2 − 3 x + 5 , quotient: 2 x 2 − 3 x + 5 , remainder: 0 2 x 2 − 3 x + 5 , quotient: 2 x 2 − 3 x + 5 , remainder: 0

2 x 2 + 2 x + 1 + 10 x − 4 2 x 2 + 2 x + 1 + 10 x − 4

2 x 2 − 7 x + 1 − 2 2 x + 1 2 x 2 − 7 x + 1 − 2 2 x + 1

3 x 2 − 11 x + 34 − 106 x + 3 3 x 2 − 11 x + 34 − 106 x + 3

x 2 + 5 x + 1 x 2 + 5 x + 1

4 x 2 − 21 x + 84 − 323 x + 4 4 x 2 − 21 x + 84 − 323 x + 4

x 2 − 14 x + 49 x 2 − 14 x + 49

3 x 2 + x + 2 3 x − 1 3 x 2 + x + 2 3 x − 1

x 3 − 3 x + 1 x 3 − 3 x + 1

x 3 − x 2 + 2 x 3 − x 2 + 2

x 3 − 6 x 2 + 12 x − 8 x 3 − 6 x 2 + 12 x − 8

x 3 − 9 x 2 + 27 x − 27 x 3 − 9 x 2 + 27 x − 27

2 x 3 − 2 x + 2 2 x 3 − 2 x + 2

Yes ( x − 2 ) ( 3 x 3 − 5 ) ( x − 2 ) ( 3 x 3 − 5 )

Yes ( x − 2 ) ( 4 x 3 + 8 x 2 + x + 2 ) ( x − 2 ) ( 4 x 3 + 8 x 2 + x + 2 )

( x − 1 ) ( x 2 + 2 x + 4 ) ( x − 1 ) ( x 2 + 2 x + 4 )

( x − 5 ) ( x 2 + x + 1 ) ( x − 5 ) ( x 2 + x + 1 )

Quotient: 4 x 2 + 8 x + 16 , remainder: − 1 Quotient: 4 x 2 + 8 x + 16 , remainder: − 1

Quotient: 3 x 2 + 3 x + 5 , remainder: 0 Quotient: 3 x 2 + 3 x + 5 , remainder: 0

Quotient: x 3 − 2 x 2 + 4 x − 8 , remainder: − 6 Quotient: x 3 − 2 x 2 + 4 x − 8 , remainder: − 6

x 6 − x 5 + x 4 − x 3 + x 2 − x + 1 x 6 − x 5 + x 4 − x 3 + x 2 − x + 1

x 3 − x 2 + x − 1 + 1 x + 1 x 3 − x 2 + x − 1 + 1 x + 1

1 + 1 + i x − i 1 + 1 + i x − i

1 + 1 − i x + i 1 + 1 − i x + i

x 2 − i x − 1 + 1 − i x − i x 2 − i x − 1 + 1 − i x − i

2 x 2 + 3 2 x 2 + 3

2 x + 3 2 x + 3

x + 2 x + 2

x − 3 x − 3

3 x 2 − 2 3 x 2 − 2

5.5 Section Exercises

The theorem can be used to evaluate a polynomial.

Rational zeros can be expressed as fractions whereas real zeros include irrational numbers.

Polynomial functions can have repeated zeros, so the fact that number is a zero doesn’t preclude it being a zero again.

− 106 − 106

− 2 ,   1 ,   1 2 − 2 ,   1 ,   1 2

− 5 2 ,   6 ,   − 6 − 5 2 ,   6 ,   − 6

2 ,   − 4 ,   − 3 2 2 ,   − 4 ,   − 3 2

4 ,   − 4 ,   − 5 4 ,   − 4 ,   − 5

5 ,   − 3 ,   − 1 2 5 ,   − 3 ,   − 1 2

1 2 ,   1 + 5 2 ,   1 − 5 2 1 2 ,   1 + 5 2 ,   1 − 5 2

2 ,   3 ,   − 1 ,   − 2 2 ,   3 ,   − 1 ,   − 2

1 2 ,   − 1 2 ,   2 ,   − 3 1 2 ,   − 1 2 ,   2 ,   − 3

− 1 ,   − 1 ,   5 ,   − 5 − 1 ,   − 1 ,   5 ,   − 5

− 3 4 ,   − 1 2 − 3 4 ,   − 1 2

2 ,   3 + 2 i ,   3 − 2 i 2 ,   3 + 2 i ,   3 − 2 i

− 2 3 ,   1 + 2 i ,   1 − 2 i − 2 3 ,   1 + 2 i ,   1 − 2 i

− 1 2 ,   1 + 4 i ,   1 − 4 i − 1 2 ,   1 + 4 i ,   1 − 4 i

1 positive, 1 negative

3 or 1 positive, 0 negative

0 positive, 3 or 1 negative

2 or 0 positive, 2 or 0 negative

± 5 ,   ± 1 ,   ± 5 2 ,   ± 1 2 ± 5 ,   ± 1 ,   ± 5 2 ,   ± 1 2

± 1 ,   ± 1 2 ,   ± 1 3 ,   ± 1 6 ± 1 ,   ± 1 2 ,   ± 1 3 ,   ± 1 6

1 ,   1 2 ,   − 1 3 1 ,   1 2 ,   − 1 3

2 ,   1 4 ,   − 3 2 2 ,   1 4 ,   − 3 2

f ( x ) = 4 9 ( x 3 + x 2 − x − 1 ) f ( x ) = 4 9 ( x 3 + x 2 − x − 1 )

f ( x ) = − 1 5 ( 4 x 3 − x ) f ( x ) = − 1 5 ( 4 x 3 − x )

8 by 4 by 6 inches

5.5 by 4.5 by 3.5 inches

8 by 5 by 3 inches

Radius = 6 meters, Height = 2 meters

Radius = 2.5 meters, Height = 4.5 meters

5.6 Section Exercises

The rational function will be represented by a quotient of polynomial functions.

The numerator and denominator must have a common factor.

Yes. The numerator of the formula of the functions would have only complex roots and/or factors common to both the numerator and denominator.

All reals  x ≠ – 1 ,   1 All reals  x ≠ – 1 ,   1

All reals  x ≠ – 1 ,   – 2 ,   1 ,   2 All reals  x ≠ – 1 ,   – 2 ,   1 ,   2

V.A. at x = – 2 5 ; x = – 2 5 ; H.A. at y = 0 ; y = 0 ; Domain is all reals x ≠ – 2 5 x ≠ – 2 5

V.A. at x = 4 ,   – 9 ; x = 4 ,   – 9 ; H.A. at y = 0 ; y = 0 ; Domain is all reals x ≠ 4 ,   – 9 x ≠ 4 ,   – 9

V.A. at x = 0 ,   4 ,   − 4 ; x = 0 ,   4 ,   − 4 ; H.A. at y = 0 ; y = 0 ; Domain is all reals x ≠ 0 , 4 ,   – 4 x ≠ 0 , 4 ,   – 4

V.A. at x = 5 ; x = 5 ; H.A. at y = 0 ; y = 0 ; Domain is all reals x ≠ 5 , − 5 x ≠ 5 , − 5

V.A. at x = 1 3 ; x = 1 3 ; H.A. at y = − 2 3 ; y = − 2 3 ; Domain is all reals x ≠ 1 3 . x ≠ 1 3 .

x -intercepts none,  y -intercept  ( 0 , 1 4 ) x -intercepts none,  y -intercept  ( 0 , 1 4 )

Local behavior: x → − 1 2 + , f ( x ) → − ∞ , x → − 1 2 − , f ( x ) → ∞ x → − 1 2 + , f ( x ) → − ∞ , x → − 1 2 − , f ( x ) → ∞

End behavior: x → ± ∞ , f ( x ) → 1 2 x → ± ∞ , f ( x ) → 1 2

Local behavior: x → 6 + , f ( x ) → − ∞ , x → 6 − , f ( x ) → ∞ , x → 6 + , f ( x ) → − ∞ , x → 6 − , f ( x ) → ∞ , End behavior: x → ± ∞ , f ( x ) → − 2 x → ± ∞ , f ( x ) → − 2

Local behavior: x → − 1 3 + , f ( x ) → ∞ , x → − 1 3 − , x → − 1 3 + , f ( x ) → ∞ , x → − 1 3 − , f ( x ) → − ∞ , x → 5 2 − , f ( x ) → ∞ , x → 5 2 + , f ( x ) → − ∞ f ( x ) → − ∞ , x → 5 2 − , f ( x ) → ∞ , x → 5 2 + , f ( x ) → − ∞

End behavior: x → ± ∞ , f ( x ) → 1 3 x → ± ∞ , f ( x ) → 1 3

y = 2 x + 4 y = 2 x + 4

y = 2 x y = 2 x

V . A . x = 0 , H . A . y = 2 V . A . x = 0 , H . A . y = 2

V . A . x = 2 , H . A . y = 0 V . A . x = 2 , H . A . y = 0

V . A . x = − 4 , H . A . y = 2 ; ( 3 2 , 0 ) ; ( 0 , − 3 4 ) V . A . x = − 4 , H . A . y = 2 ; ( 3 2 , 0 ) ; ( 0 , − 3 4 )

V . A . x = 2 , H . A . y = 0 , ( 0 , 1 ) V . A . x = 2 , H . A . y = 0 , ( 0 , 1 )

V . A . x = − 4 , x = 4 3 , H . A . y = 1 ; ( 5 , 0 ) ; ( − 1 3 , 0 ) ; ( 0 , 5 16 ) V . A . x = − 4 , x = 4 3 , H . A . y = 1 ; ( 5 , 0 ) ; ( − 1 3 , 0 ) ; ( 0 , 5 16 )

V . A . x = − 1 , H . A . y = 1 ; ( − 3 , 0 ) ; ( 0 , 3 ) V . A . x = − 1 , H . A . y = 1 ; ( − 3 , 0 ) ; ( 0 , 3 )

V . A . x = 4 , S . A . y = 2 x + 9 ; ( − 1 , 0 ) ; ( 1 2 , 0 ) ; ( 0 , 1 4 ) V . A . x = 4 , S . A . y = 2 x + 9 ; ( − 1 , 0 ) ; ( 1 2 , 0 ) ; ( 0 , 1 4 )

V . A . x = − 2 , x = 4 , H . A . y = 1 , ( 1 , 0 ) ; ( 5 , 0 ) ; ( − 3 , 0 ) ; ( 0 , − 15 16 ) V . A . x = − 2 , x = 4 , H . A . y = 1 , ( 1 , 0 ) ; ( 5 , 0 ) ; ( − 3 , 0 ) ; ( 0 , − 15 16 )

y = 50 x 2 − x − 2 x 2 − 25 y = 50 x 2 − x − 2 x 2 − 25

y = 7 x 2 + 2 x − 24 x 2 + 9 x + 20 y = 7 x 2 + 2 x − 24 x 2 + 9 x + 20

y = 1 2 x 2 − 4 x + 4 x + 1 y = 1 2 x 2 − 4 x + 4 x + 1

y = 4 x − 3 x 2 − x − 12 y = 4 x − 3 x 2 − x − 12

y = 27 ( x − 2 ) ( x + 3 ) ( x – 3 ) 2 y = 27 ( x − 2 ) ( x + 3 ) ( x – 3 ) 2

y = 1 3 x 2 + x − 6 x − 1 y = 1 3 x 2 + x − 6 x − 1

y = − 6 ( x − 1 ) 2 ( x + 3 ) ( x − 2 ) 2 y = − 6 ( x − 1 ) 2 ( x + 3 ) ( x − 2 ) 2

Vertical asymptote x = 2 , x = 2 , Horizontal asymptote y = 0 y = 0

Vertical asymptote x = − 4 , x = − 4 , Horizontal asymptote y = 2 y = 2

Vertical asymptote x = − 1 , x = − 1 , Horizontal asymptote y = 1 y = 1

( 3 2 , ∞ ) ( 3 2 , ∞ )

( − 2 , 1 ) ∪ ( 4 , ∞ ) ( − 2 , 1 ) ∪ ( 4 , ∞ )

( 2 , 4 ) ( 2 , 4 )

( 2 , 5 ) ( 2 , 5 )

( – 1 , 1 ) ( – 1 , 1 )

C ( t ) = 8 + 2 t 300 + 20 t C ( t ) = 8 + 2 t 300 + 20 t

After about 6.12 hours.

A ( x ) = 50 x 2 + 800 x . A ( x ) = 50 x 2 + 800 x . 2 by 2 by 5 feet.

A ( x ) = π x 2 + 100 x . A ( x ) = π x 2 + 100 x . Radius = 2.52 meters.

5.7 Section Exercises

It can be too difficult or impossible to solve for x x in terms of y . y .

We will need a restriction on the domain of the answer.

f − 1 ( x ) = x + 4 f − 1 ( x ) = x + 4

f − 1 ( x ) = x + 3 − 1 f − 1 ( x ) = x + 3 − 1

f − 1 ( x ) = 12 − x f − 1 ( x ) = 12 − x

f − 1 ( x ) = ± x − 4 2 f − 1 ( x ) = ± x − 4 2

f − 1 ( x ) = x − 1 3 3 f − 1 ( x ) = x − 1 3 3

f − 1 ( x ) = 4 − x 2 3 f − 1 ( x ) = 4 − x 2 3

f −1 ( x ) = 3 − x 2 4 , [ 0 , ∞ ) f −1 ( x ) = 3 − x 2 4 , [ 0 , ∞ )

f −1 ( x ) = ( x - 5 ) 2 + 8 6 f −1 ( x ) = ( x - 5 ) 2 + 8 6

f −1 ( x ) = ( 3 - x ) 2 f −1 ( x ) = ( 3 - x ) 2

f −1 ( x ) = 4 x + 3 x f −1 ( x ) = 4 x + 3 x

f −1 ( x ) = 7 x − 3 1 − x f −1 ( x ) = 7 x − 3 1 − x

f −1 ( x ) = 2 x - 1 5 x + 5 f −1 ( x ) = 2 x - 1 5 x + 5

f −1 ( x ) = x + 3 − 2 f −1 ( x ) = x + 3 − 2

f − 1 ( x ) = x − 2 f − 1 ( x ) = x − 2

f − 1 ( x ) = x − 3 f − 1 ( x ) = x − 3

f − 1 ( x ) = x − 3 3 f − 1 ( x ) = x − 3 3

f − 1 ( x ) = x + 4 - 2 f − 1 ( x ) = x + 4 - 2

[ - 1 , 0 ) ∪ [ 1 , ∞ ) [ - 1 , 0 ) ∪ [ 1 , ∞ )

[ - 3 , 0 ] ∪ ( 4 , ∞ ) [ - 3 , 0 ] ∪ ( 4 , ∞ )

[ - ∞ , - 4 ] ⋅ [ - 3 , 3 ] [ - ∞ , - 4 ] ⋅ [ - 3 , 3 ]

( – 2 , 0 ) , ( 0 , 1 ) , ( 8 , 2 ) ( – 2 , 0 ) , ( 0 , 1 ) , ( 8 , 2 )

( – 13 , – 1 ) , ( – 4 , 0 ) , ( 5 , 1 ) ( – 13 , – 1 ) , ( – 4 , 0 ) , ( 5 , 1 )

f − 1 ( x ) = x − b a 3 f − 1 ( x ) = x − b a 3

f − 1 ( x ) = x 2 - b a f − 1 ( x ) = x 2 - b a

f − 1 ( x ) = c x - b a - x f − 1 ( x ) = c x - b a - x

t ( h ) = 600 - h 16 t ( h ) = 600 - h 16 , 3.54 seconds

r ( A ) = A 4 π , ≈ r ( A ) = A 4 π , ≈ 8.92 in.

l ( T ) = 32.2 ( T 2 π ) , ≈ l ( T ) = 32.2 ( T 2 π ) , ≈ 3.26 ft

r ( A ) = A + 2 π 8 π , r ( A ) = A + 2 π 8 π , -2, 3.99 ft

r ( V ) = V 10 π , r ( V ) = V 10 π , ≈ 5.64 ft

5.8 Section Exercises

The graph will have the appearance of a power function.

No. Multiple variables may jointly vary.

y = 5 x 2 y = 5 x 2

y = 1 1944 x 3 y = 1 1944 x 3

y = 6 x 4 y = 6 x 4

y = 18 x 2 y = 18 x 2

y = 81 x 4 y = 81 x 4

y = 20 x 3 y = 20 x 3

y = 10 x z w y = 10 x z w

y = 10 x z y = 10 x z

y = 4 x z w y = 4 x z w

y = 40 x z w t 2 y = 40 x z w t 2

y = 256 y = 256

y = 6 y = 6

y = 27 y = 27

y = 3 y = 3

y = 18 y = 18

y = 90 y = 90

y = 81 2 y = 81 2

y = 3 4 x 2 y = 3 4 x 2

y = 1 3 x y = 1 3 x

y = 4 x 2 y = 4 x 2

49.75 pounds

33.33 amperes

2.88 inches

Review Exercises

f ( x ) = ( x − 2 ) 2 − 9 vertex   ( 2 , –9 ) ,   intercepts   ( 5 , 0 ) ;   ( –1 , 0 ) ;   ( 0 , –5 ) f ( x ) = ( x − 2 ) 2 − 9 vertex   ( 2 , –9 ) ,   intercepts   ( 5 , 0 ) ;   ( –1 , 0 ) ;   ( 0 , –5 )

f ( x ) = 3 25 ( x + 2 ) 2 + 3 f ( x ) = 3 25 ( x + 2 ) 2 + 3

300 meters by 150 meters, the longer side parallel to river.

Yes, degree = 5, leading coefficient = 4

Yes, degree = 4, leading coefficient = 1

As x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞ As x → − ∞ , f ( x ) → − ∞ , as x → ∞ , f ( x ) → ∞

–3 with multiplicity 2, − 1 2 − 1 2 with multiplicity 1, –1 with multiplicity 3

4 with multiplicity 1

1 2 1 2 with multiplicity 1, 3 with multiplicity 3

x 2 + 4 x 2 + 4 with remainder 12

x 2 − 5 x + 20 − 61 x + 3 x 2 − 5 x + 20 − 61 x + 3

2 x 2 − 2 x − 3 2 x 2 − 2 x − 3 , so factored form is ( x + 4 ) ( 2 x 2 − 2 x − 3 ) ( x + 4 ) ( 2 x 2 − 2 x − 3 )

{ − 2 ,   4 ,   − 1 2 } { − 2 ,   4 ,   − 1 2 }

{ 1 ,   3 ,   4 ,   1 2 } { 1 ,   3 ,   4 ,   1 2 }

0 or 2 positive, 1 negative

Intercepts ( –2 , 0 ) and ( 0 , − 2 5 ) ( –2 , 0 ) and ( 0 , − 2 5 ) , Asymptotes x = 5 x = 5 and y = 1. y = 1.

Intercepts (3, 0), (-3, 0), and ( 0 , 27 2 ) ( 0 , 27 2 ) , Asymptotes x = 1 ,   x = – 2 ,   y = 3. x = 1 ,   x = – 2 ,   y = 3.

y = x − 2 y = x − 2

f − 1 ( x ) = x + 2 f − 1 ( x ) = x + 2

f − 1 ( x ) = x + 11 − 3 f − 1 ( x ) = x + 11 − 3

f − 1 ( x ) = ( x + 3 ) 2 − 5 4 , x ≥ − 3 f − 1 ( x ) = ( x + 3 ) 2 − 5 4 , x ≥ − 3

y = 64 y = 64

y = 72 y = 72

148.5 pounds

Practice Test

Degree: 5, leading coefficient: −2

As x → −∞ , f ( x ) → ∞ , As x → ∞ , f ( x ) → ∞ As x → −∞ , f ( x ) → ∞ , As x → ∞ , f ( x ) → ∞

f ( x ) = 3 ( x - 2 ) 2 f ( x ) = 3 ( x - 2 ) 2

3 with multiplicity 3, 1 3 1 3 with multiplicity 1, 1 with multiplicity 2

- 1 2 - 1 2 with multiplicity 3, 2 with multiplicity 2

x 3 + 2 x 2 + 7 x + 14 + 26 x - 2 x 3 + 2 x 2 + 7 x + 14 + 26 x - 2

{ –3 , –1 , 3 2 } { –3 , –1 , 3 2 }

1, −2, and − 3 2 3 2 (multiplicity 2)

f ( x ) = - 2 3 ( x - 3 ) 2 ( x - 1 ) ( x + 2 ) f ( x ) = - 2 3 ( x - 3 ) 2 ( x - 1 ) ( x + 2 )

2 or 0 positive, 1 negative

( - 3 , 0 ) ( 1 , 0 ) ( 0 , 3 4 ) ( - 3 , 0 ) ( 1 , 0 ) ( 0 , 3 4 )

f − 1 ( x ) = ( x - 4 ) 2 + 2 , x ≥ 4 f − 1 ( x ) = ( x - 4 ) 2 + 2 , x ≥ 4

f − 1 ( x ) = x + 3 3 x - 2 f − 1 ( x ) = x + 3 3 x - 2

y = 20 y = 20

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites
  • Authors: Jay Abramson
  • Publisher/website: OpenStax
  • Book title: College Algebra
  • Publication date: Feb 13, 2015
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites
  • Section URL: https://openstax.org/books/college-algebra/pages/chapter-5

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Fiveable

Find what you need to study

💻 AP Computer Science A

📌 exam date: may 8, 2024.

Cram Finales

Study Guides

Practice Questions

AP Cheatsheets

Study Plans

AP Comp Sci A Unit 5 Study Guides

Unit 5 – writing classes.

Unit 5 Overview: Writing Classes

12 min read

Kashvi Panjolia

written by Kashvi Panjolia

Anatomy of a Class

user_sophia9212

written by user_sophia9212

Constructors

Milo Chang

written by Milo Chang

Documentation With Comments

Accessor Methods

Mutator Methods

Writing Methods

Static Variables and Methods

Scope and Access

This Keyword

Ethical and Social Implications of Computing Systems

Additional Resources

Study Tools

2024 AP Computer Science A Exam Guide

A Q

written by A Q

Frequently Asked Questions

Should I Use "int" or "double"?

Private Variables

How to Write Method Headers

What Are the 5 Best Resources for AP Computer Science Principles?

Harrison Burnside

written by Harrison Burnside

AP Computer Science Myths

AP Cram Sessions 2021

AP Computer Science A PDF Cheat Sheet & Review Chart

written by Aaron Cope

AP Computer Science A Cram Unit 1: Primitive Types

written by Takeisha Moranza

🌶️ AP Comp Sci A Cram Review: Unit 1: Primitive Types

🌶️ AP Comp Sci A Cram Review: Unit 2: Using Objects

AP Computer Science A Cram Unit 2: Using Objects

🌶️ AP Comp Sci A Cram Review: Unit 3: Boolean Expressions and if Statements

Previous Exam Prep

Introduction to CSP and Unit 1 Overview

Rachel Yuan

written by Rachel Yuan

Introduction to AP CSA and Unit 1 Review

Tejas Bhartiya

written by Tejas Bhartiya

AP CSA: Unit 2 and 3 Review

Fiveable

Stay Connected

© 2024 Fiveable Inc. All rights reserved.

AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.

IMAGES

  1. 5 Steps to Successful Assignment Preparation

    assignment terms review 5 3 (practice)

  2. Assignment Questions

    assignment terms review 5 3 (practice)

  3. MLA Practice Formatting and Documentation Assignment

    assignment terms review 5 3 (practice)

  4. Common-Assignment-Terms-2020-1.pdf

    assignment terms review 5 3 (practice)

  5. Thanh BCCS 170094 Peer-graded-Assignment -Critically-evaluating-sources

    assignment terms review 5 3 (practice)

  6. Challenge Assignment Series and Sequences

    assignment terms review 5 3 (practice)

VIDEO

  1. Practice set 5.2 Class 8th Maths

  2. 5th standard term 3 maths book activity questions

  3. 10th Maths 1

  4. TESTOUT PC PRO 2.1.6, 2.2.7, 2.3.3, & 2.4.3 Practice Questions

  5. NPTEL||DISCRETE MATHEMATICS||WEEK 5 ||ASSIGNMENT ANSWERS||CSIT_CODING

  6. Key Terms HVC145 Week 3 Mod: HVC145 Heating Systems

COMMENTS

  1. 5-3 Assignment: Socially Responsible Practice Recommendations

    Business 210 Socially Responsible Practices Social Responsibility or Societal ethics focuses on issues affecting the whole world (Soomo Learning, 2020). These may include but are not limited to poverty, animal cruelty or green house emissions. TOMS Shoes and The Body Shop are two great examples of socially responsible companies.

  2. 5-3 Assignment Socially Responsible Practice Recommendations

    5-3 Assignment: Socially Responsible Practice Recommendations Joshua Alexander Instructor Fenlason Southern New Hampshire University October 3, 2021. ... As discussed in Soomo, the term social responsibility entered public discourse in 1960, and companies felt pressure from the community to behave in a more socially responsible manner. (Webtext ...

  3. BUS 210 5-3 Assignment- Socially Responsible Practice ...

    June 1, 2021 Hannah Shaw Student ID: 2079998 5-3 Assignment: Socially Responsible Practice Recommendations. While researching TOMS Shoes and The Body Shop, I have found both companies to be strong in their beliefs of humanity and philanthropy.

  4. MOA110 wk5 assn 11032023

    Week 5 Assignment Worksheet Vocabulary Review Group A. Documentation in the medical record to track the patient's condition and progress progress notes Space of time between events interval. An unexpected event that throws a plan into disorder; an interruption that prevents a system or process from continuing as usual or as expected disruption. Skilled as a result of training or practice ...

  5. 5-3 Assignment

    5-3 Assignment: Socially Responsible Practice Recommendations 2 Socially Responsible Practice Recommendations The Body Shop's effort to promote ethical and social good starts with their purpose. They aim to provide beauty products with naturally-based ingredients from around the world that are never tested on animals. Instead of promising women slimming and anti-ageing products, The Body ...

  6. 6.3.3 Practice Questions Flashcards

    Study with Quizlet and memorize flashcards containing terms like Match each cloud computing definition on the left with the appropriate characteristic on the right. Each characteristic may be used once, more than once, or not at all. Provides resources to a single organization., Combines public, private, and community cloud resources from different service providers., Designed to be shared by ...

  7. Understanding Assignments

    What this handout is about. The first step in any successful college writing venture is reading the assignment. While this sounds like a simple task, it can be a tough one. This handout will help you unravel your assignment and begin to craft an effective response. Much of the following advice will involve translating typical assignment terms ...

  8. 3.06 Discussion Based Assessment Flashcards

    What are some physical benefits of moderate to vigorous physical activity? -strengthens your heart and lungs. -boosts immune system. -healthy body composition. -improved posture. -Decreased strain on knees and legs. -Increased good cholesterol. -Decreased bad cholesterol.

  9. PDF Understanding Assignments

    translating typical assignment terms and practices into meaningful clues to the type of writing your instructor expects. See our online demonstration for more tips. Basic beginnings Consider adopting two habits that will serve you well—regardless of the assignment, department, or instructor: 1. Read the assignment carefully as soon as you ...

  10. 5.3 Polynomial Graphs

    5.3 Polynomial Graphs. Notes Key. Notes Application Key. Homework Key (UPDATED 11/2/17) Application Key.

  11. 5-3 Submit Assignment Socially Responsible Practice Recommendations

    Socially Responsible Practice Recommendations Social responsibility is at the core of the success of a Company. The SNHU Pet Supply Company must analyze its sustainability by focusing on their social responsibilities. Identifying leadership values and ethics with what is important to their consumers will sustain its social responsibilities. As leaders, we create value statements, and "These ...

  12. Assignment 5.1: Healthcare Ethics Vocabulary Review mod 1 admin

    The freedom to determine one's own actions and decisions. autonomy. Rod-shaped structures found in the cell's nucleus; they contain genetic information. chromosomes. To do good. beneficence. A set of rules about good and bad behavior. code of ethics. To treat patients fairly and give them what is due them.

  13. PDF HANDOUT 5.3 Practice Assignment after Session 1 of CPT

    Bring this statement with you to the next session. Also, please read over the two handouts I have given you on PTSD symptoms and Stuck Points (Handouts 5.1 and 5.2), so that you understand the ideas we are talking about. From Cognitive Processing Therapy for PTSD: A Comprehensive Manual by Patricia A. Resick, Candice M. Monson, and Kath-leen M ...

  14. Answer Key Chapter 5

    Review Exercises; Practice Test; 2 Equations and Inequalities. ... The leading term is 0.2 x 3, 0.2 x 3, so it is a degree 3 polynomial. As x x approaches positive infinity, f (x) f ... The graph has a zero of -5 with multiplicity 3, a zero of -1 with multiplicity 2, and a zero of 3 with multiplicity 4. ...

  15. 5-3 Assignment-Socially Responsible Practice Recommendations

    Cristian Membreno Southern New Hampshire University BUS 210: Managing/Leading in Business 5-3 Socially Responsible Practice Recommendations. Socially Responsible Efforts: Social responsibility is a business's duty to do no harm to society. In the 1960s, there has been growing pressure to hold companies accountable for their part in the welfare ...

  16. AP Computer Science A Unit 5 Review

    AP CSA: Unit 2 and 3 Review. written by Tejas Bhartiya. Study guides & practice questions for 10 key topics in AP CSA Unit 5 - Writing Classes.

  17. 5.3 Solve by Factoring

    Section 5.3 Solving Quadratics by Factoring. A2.1.4 Determine rational and complex zeros for quadratic equations; A2.5.1 Determine whether a relationship is a function and identify independent and dependent variables, the domain, range, roots, asymptotes and any points of discontinuity of functions. (use paper and pencil methods and/or graphing ...

  18. RI.5.3 Standards

    RI.5.3. Explain the relationships or interactions between two or more individuals, events, ideas, or concepts in a historical, scientific, or technical text based on specific information in the text.

  19. Module 5-3 Assignment

    5-3 Assignment: Socially Responsible Practice Recommendations Social responsibility is something to be admired when a company does it right, this can truly show where a companies values lie. The two companies, TOMS Shoes, and The Body Shop provide perfect examples of social responsibility.

  20. business law 5-3 Flashcards

    Study with Quizlet and memorize flashcards containing terms like injunction, damages, compensatory and more. ... Chapter 5 Business Law Review. 34 terms. Melanie_Gentrup. Preview. lesson 5.3 business law. 11 terms. maggie_chen16. Preview. Business Law 5-3 Quiz. 11 terms. jkelley0313. Preview. PROPERTY LAW . 207 terms. teanmanserr.

  21. Accounting Chapter 3: Part 1

    25 terms. gonzaal1. Preview. Chapter 3- Test A: Part 1: Defining Accounting Terms. 10 terms. estherly14. Preview. Study Guide 3- Part 3- Recording Transactions in a Multicolumn Journal. 10 terms.

  22. 3.3.5 Practice Comparing the Branches

    2.3.5 Journal Point on a Circle; 3.1.3 Journal The President's Power; 2.2.8 Write Prepare an Interpretation; 3.2.6 Practice Overturning a Supreme Court Decision; 4.1.5 Journal We Hold These Truths; 4.2.5 Practice Freedom of the Press in Context

  23. 5.3 Practice Assignment Key

    Exam 2 Zoom Review Answers Spring 2023. MATH335 Mathematical Biology Fall 2023 1. MATH335 Numerical Analysis Winter 2019 4. MATH335 Differential Equations Study Winter 2024 3. 6.2 Practice Key. Calc Oct12 - Instructor Bill Fries, Derivative Practice and Inverses.