Database Security Threats and Challenges

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sensors (Basel)

Logo of sensors

The Impact of Artificial Intelligence on Data System Security: A Literature Review

Ricardo raimundo.

1 ISEC Lisboa, Instituto Superior de Educação e Ciências, 1750-142 Lisbon, Portugal; [email protected]

Albérico Rosário

2 Research Unit on Governance, Competitiveness and Public Policies (GOVCOPP), University of Aveiro, 3810-193 Aveiro, Portugal

Associated Data

Not applicable.

Diverse forms of artificial intelligence (AI) are at the forefront of triggering digital security innovations based on the threats that are arising in this post-COVID world. On the one hand, companies are experiencing difficulty in dealing with security challenges with regard to a variety of issues ranging from system openness, decision making, quality control, and web domain, to mention a few. On the other hand, in the last decade, research has focused on security capabilities based on tools such as platform complacency, intelligent trees, modeling methods, and outage management systems in an effort to understand the interplay between AI and those issues. the dependence on the emergence of AI in running industries and shaping the education, transports, and health sectors is now well known in the literature. AI is increasingly employed in managing data security across economic sectors. Thus, a literature review of AI and system security within the current digital society is opportune. This paper aims at identifying research trends in the field through a systematic bibliometric literature review (LRSB) of research on AI and system security. the review entails 77 articles published in the Scopus ® database, presenting up-to-date knowledge on the topic. the LRSB results were synthesized across current research subthemes. Findings are presented. the originality of the paper relies on its LRSB method, together with an extant review of articles that have not been categorized so far. Implications for future research are suggested.

1. Introduction

The assumption that the human brain may be deemed quite comparable to computers in some ways offers the spontaneous basis for artificial intelligence (AI), which is supported by psychology through the idea of humans and animals operating like machines that process information by devices of associative memory [ 1 ]. Nowadays, researchers are working on the possibilities of AI to cope with varying issues of systems security across diverse sectors. Hence, AI is commonly considered an interdisciplinary research area that attracts considerable attention both in economics and social domains as it offers a myriad of technological breakthroughs with regard to systems security [ 2 ]. There is a universal trend of investing in AI technology to face security challenges of our daily lives, such as statistical data, medicine, and transportation [ 3 ].

Some claim that specific data from key sectors have supported the development of AI, namely the availability of data from e-commerce [ 4 ], businesses [ 5 ], and government [ 6 ], which provided substantial input to ameliorate diverse machine-learning solutions and algorithms, in particular with respect to systems security [ 7 ]. Additionally, China and Russia have acknowledged the importance of AI for systems security and competitiveness in general [ 8 , 9 ]. Similarly, China has recognized the importance of AI in terms of housing security, aiming at becoming an authority in the field [ 10 ]. Those efforts are already being carried out in some leading countries in order to profit the most from its substantial benefits [ 9 ]. In spite of the huge development of AI in the last few years, the discussion around the topic of systems security is sparse [ 11 ]. Therefore, it is opportune to acquaint the last developments regarding the theme in order to map the advancements in the field and ensuing outcomes [ 12 ]. In view of this, we intend to find out the principal trends of issues discussed on the topic these days in order to answer the main research question: What is the impact of AI on data system security?

The article is organized as follows. In Section 2 , we put forward diverse theoretical concepts related to AI in systems security. In Section 3 , we present the methodological approach. In Section 4 , we discuss the main fields of use of AI with regard to systems security, which came out from the literature. Finally, we conclude this paper by suggesting implications and future research avenues.

2. Literature Trends: AI and Systems Security

The concept of AI was introduced following the creation of the notion of digital computing machine in an attempt to ascertain whether a machine is able to “think” [ 1 ] or if the machine can carry out humans’ tasks [ 13 ]. AI is a vast domain of information and computer technologies (ICT), which aims at designing systems that can operate autonomously, analogous to the individuals’ decision-making process [ 14 ].In terms of AI, a machine may learn from experience through processing an immeasurable quantity of data while distinguishing patterns in it, as in the case of Siri [ 15 ] and image recognition [ 16 ], technologies based on machine learning that is a subtheme of AI, defined as intelligent systems with the capacity to think and learn [ 1 ].

Furthermore, AI entails a myriad of related technologies, such as neural networks [ 17 ] and machine learning [ 18 ], just to mention a few, and we can identify some research areas of AI:

  • (I) Machine learning is a myriad of technologies that allow computers to carry out algorithms based on gathered data and distinct orders, providing the machine the capabilities to learn without instructions from humans, adjusting its own algorithm to the situation, while learning and recoding itself, such as Google and Siri when performing distinct tasks ordered by voice [ 19 ]. As well, video surveillance that tracks unusual behavior [ 20 ];
  • (II) Deep learning constitutes the ensuing progress of machine learning, in which the machine carry out tasks directly from pictures, text, and sound, through a wide set of data architecture that entails numerous layers in order to learn and characterize data with several levels of abstraction imitating thus how the natural brain processes information [ 21 ]. This is illustrated, for example, in forming a certificate database structure of university performance key indicators, in order to fix issues such as identity authentication [ 21 ];
  • (III) Neural networks are composed of a pattern recognition system that machine/deep learning operates to perform learning from observational data, figuring out its own solutions such as an auto-steering gear system with a fuzzy regulator, which enables to select optimal neural network models of the vessel paths, to obtain in this way control activity [ 22 ];
  • (IV) Natural language processing machines analyze language and speech as it is spoken, resorting to machine learning and natural language processing, such as developing a swarm intelligence and active system, while mounting friendly human-computer interface software for users, to be implemented in educational and e-learning organizations [ 23 ];
  • (V) Expert systems are composed of software arrangements that assist in achieving answers to distinct inquiries provided either by a customer or by another software set, in which expert knowledge is set aside in a particular area of the application that includes a reasoning component to access answers, in view of the environmental information and subsequent decision making [ 24 ].

Those subthemes of AI are applied to many sectors, such as health institutions, education, and management, through varying applications related to systems security. These abovementioned processes have been widely deployed to solve important security issues such as the following application trends ( Figure 1 ):

  • (a) Cyber security, in terms of computer crime, behavior research, access control, and surveillance, as for example the case of computer vision, in which an algorithmic analyses images, CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) techniques [ 6 , 7 , 12 , 19 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 ];
  • (b) Information management, namely in supporting decision making, business strategy, and expert systems, for example, by improving the quality of the relevant strategic decisions by analyzing big data, as well as in the management of the quality of complex objects [ 2 , 4 , 5 , 11 , 14 , 24 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 ];
  • (c) Societies and institutions, regarding computer networks, privacy, and digitalization, legal and clinical assistance, for example, in terms of legal support of cyber security, digital modernization, systems to support police investigations and the efficiency of technological processes in transport [ 8 , 9 , 10 , 15 , 17 , 18 , 20 , 21 , 23 , 28 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 ];
  • (d) Neural networks, for example, in terms of designing a model of human personality for use in robotic systems [ 1 , 13 , 16 , 22 , 74 , 75 ].

An external file that holds a picture, illustration, etc.
Object name is sensors-21-07029-g001.jpg

Subthemes/network of all keywords of AI—source: own elaboration.

Through these streams of research, we will explain how the huge potential of AI can be deployed to over-enhance systems security that is in use both in states and organizations, to mitigate risks and increase returns while identifying, averting cyber attacks, and determine the best course of action [ 19 ]. AI could even be unveiled as more effective than humans in averting potential threats by various security solutions such as redundant systems of video surveillance, VOIP voice network technology security strategies [ 36 , 76 , 77 ], and dependence upon diverse platforms for protection (platform complacency) [ 30 ].

The design of the abovementioned conceptual and technological framework was not made randomly, as we did a preliminary search on Scopus with the keywords “Artificial Intelligence” and “Security”.

3. Materials and Methods

We carried out a systematic bibliometric literature review (LRSB) of the “Impact of AI on Data System Security”. the LRSB is a study concept that is based on a detailed, thorough study of the recognition and synthesis of information, being an alternative to traditional literature reviews, improving: (i) the validity of the review, providing a set of steps that can be followed if the study is replicated; (ii) accuracy, providing and demonstrating arguments strictly related to research questions; and (iii) the generalization of the results, allowing the synthesis and analysis of accumulated knowledge [ 78 , 79 , 80 ]. Thus, the LRSB is a “guiding instrument” that allows you to guide the review according to the objectives.

The study is performed following Raimundo and Rosário suggestions as follows: (i) definition of the research question; (ii) location of the studies; (iii) selection and evaluation of studies; (iv) analysis and synthesis; (v) presentation of results; finally (vi) discussion and conclusion of results. This methodology ensures a comprehensive, auditable, replicable review that answers the research questions.

The review was carried out in June 2021, with a bibliographic search in the Scopus database of scientific articles published until June 2021. the search was carried out in three phases: (i) using the keyword Artificial Intelligence “382,586 documents were obtained; (ii) adding the keyword “Security”, we obtained a set of 15,916 documents; we limited ourselves to Business, Management, and Accounting 401 documents were obtained and finally (iii) exact keyword: Data security, Systems security a total of 77 documents were obtained ( Table 1 ).

Screening methodology.

Source: own elaboration.

The search strategy resulted in 77 academic documents. This set of eligible break-downs was assessed for academic and scientific relevance and quality. Academic Documents, Conference Paper (43); Article (29); Review (3); Letter (1); and retracted (1).

Peer-reviewed academic documents on the impact of artificial intelligence on data system security were selected until 2020. In the period under review, 2021 was the year with the highest number of peer-reviewed academic documents on the subject, with 18 publications, with 7 publications already confirmed for 2021. Figure 2 reviews peer-reviewed publications published until 2021.

An external file that holds a picture, illustration, etc.
Object name is sensors-21-07029-g002.jpg

Number of documents by year. Source: own elaboration.

The publications were sorted out as follows: 2011 2nd International Conference on Artificial Intelligence Management Science and Electronic Commerce Aimsec 2011 Proceedings (14); Proceedings of the 2020 IEEE International Conference Quality Management Transport and Information Security Information Technologies IT and Qm and Is 2020 (6); Proceedings of the 2019 IEEE International Conference Quality Management Transport and Information Security Information Technologies IT and Qm and Is 2019 (5); Computer Law and Security Review (4); Journal of Network and Systems Management (4); Decision Support Systems (3); Proceedings 2021 21st Acis International Semi Virtual Winter Conference on Software Engineering Artificial Intelligence Networking and Parallel Distributed Computing Snpd Winter 2021 (3); IEEE Transactions on Engineering Management (2); Ictc 2019 10th International Conference on ICT Convergence ICT Convergence Leading the Autonomous Future (2); Information and Computer Security (2); Knowledge Based Systems (2); with 1 publication (2013 3rd International Conference on Innovative Computing Technology Intech 2013; 2020 IEEE Technology and Engineering Management Conference Temscon 2020; 2020 International Conference on Technology and Entrepreneurship Virtual Icte V 2020; 2nd International Conference on Current Trends In Engineering and Technology Icctet 2014; ACM Transactions on Management Information Systems; AFE Facilities Engineering Journal; Electronic Design; Facct 2021 Proceedings of the 2021 ACM Conference on Fairness Accountability and Transparency; HAC; ICE B 2010 Proceedings of the International Conference on E Business; IEEE Engineering Management Review; Icaps 2008 Proceedings of the 18th International Conference on Automated Planning and Scheduling; Icaps 2009 Proceedings of the 19th International Conference on Automated Planning and Scheduling; Industrial Management and Data Systems; Information and Management; Information Management and Computer Security; Information Management Computer Security; Information Systems Research; International Journal of Networking and Virtual Organisations; International Journal of Production Economics; International Journal of Production Research; Journal of the Operational Research Society; Proceedings 2020 2nd International Conference on Machine Learning Big Data and Business Intelligence Mlbdbi 2020; Proceedings Annual Meeting of the Decision Sciences Institute; Proceedings of the 2014 Conference on IT In Business Industry and Government An International Conference By Csi on Big Data Csibig 2014; Proceedings of the European Conference on Innovation and Entrepreneurship Ecie; TQM Journal; Technology In Society; Towards the Digital World and Industry X 0 Proceedings of the 29th International Conference of the International Association for Management of Technology Iamot 2020; Wit Transactions on Information and Communication Technologies).

We can say that in recent years there has been some interest in research on the impact of artificial intelligence on data system security.

In Table 2 , we analyze for the Scimago Journal & Country Rank (SJR), the best quartile, and the H index by publication.

Scimago journal and country rank impact factor.

Note: * data not available. Source: own elaboration.

Information Systems Research is the most quoted publication with 3510 (SJR), Q1, and H index 159.

There is a total of 11 journals on Q1, 3 journals on Q2 and 2 journals on Q3, and 2 journal on Q4. Journals from best quartile Q1 represent 27% of the 41 journals titles; best quartile Q2 represents 7%, best quartile Q3 represents 5%, and finally, best Q4 represents 5% each of the titles of 41 journals. Finally, 23 of the publications representing 56%, the data are not available.

As evident from Table 2 , the significant majority of articles on artificial intelligence on data system security rank on the Q1 best quartile index.

The subject areas covered by the 77 scientific documents were: Business, Management and Accounting (77); Computer Science (57); Decision Sciences (36); Engineering (21); Economics, Econometrics, and Finance (15); Social Sciences (13); Arts and Humanities (3); Psychology (3); Mathematics (2); and Energy (1).

The most quoted article was “CCANN: An intrusion detection system based on combining cluster centers and nearest neighbors” from Lin, Ke, and Tsai 290 quotes published in the Knowledge-Based Systems with 1590 (SJR), the best quartile (Q1) and with H index (121). the published article proposes a new resource representation approach, a cluster center, and the nearest neighbor approach.

In Figure 3 , we can analyze the evolution of citations of documents published between 2010 and 2021, with a growing number of citations with an R2 of 0.45%.

An external file that holds a picture, illustration, etc.
Object name is sensors-21-07029-g003.jpg

Evolution and number of citations between 2010 and 2021. Source: own elaboration.

The h index was used to verify the productivity and impact of the documents, based on the largest number of documents included that had at least the same number of citations. Of the documents considered for the h index, 11 have been cited at least 11 times.

In Appendix A , Table A1 , citations of all scientific articles until 2021 are analyzed; 35 documents were not cited until 2021.

Appendix A , Table A2 , examines the self-quotation of documents until 2021, in which self-quotation was identified for a total of 16 self-quotations.

In Figure 4 , a bibliometric analysis was performed to analyze and identify indicators on the dynamics and evolution of scientific information using the main keywords. the analysis of the bibliometric research results using the scientific software VOSviewe aims to identify the main keywords of research in “Artificial Intelligence” and “Security”.

An external file that holds a picture, illustration, etc.
Object name is sensors-21-07029-g004.jpg

Network of linked keywords. Source: own elaboration.

The linked keywords can be analyzed in Figure 4 , making it possible to clarify the network of keywords that appear together/linked in each scientific article, allowing us to know the topics analyzed by the research and to identify future research trends.

4. Discussion

By examining the selected pieces of literature, we have identified four principal areas that have been underscored and deserve further investigation with regard to cyber security in general: business decision making, electronic commerce business, AI social applications, and neural networks ( Figure 4 ). There is a myriad of areas in where AI cyber security can be applied throughout social, private, and public domains of our daily lives, from Internet banking to digital signatures.

First, it has been discussed the possible decreasing of unnecessary leakage of accounting information [ 27 ], mainly through security drawbacks of VOIP technology in IP network systems and subsequent safety measures [ 77 ], which comprises a secure dynamic password used in Internet banking [ 29 ].

Second, it has been researched some computer user cyber security behaviors, which includes both a naïve lack of concern about the likelihood of facing security threats and dependence upon specific platforms for protection, as well as the dependence on guidance from trusted social others [ 30 ], which has been partly resolved through a mobile agent (MA) management systems in distributed networks, while operating a model of an open management framework that provides a broad range of processes to enforce security policies [ 31 ].

Third, AI cyber systems security always aims at achieving stability of the programming and analysis procedures by clarifying the relationship of code fault-tolerance programming with code security in detail to strengthen it [ 33 ], offering an overview of existing cyber security tasks and roadmap [ 32 ].

Fourth, in this vein, numerous AI tools have been developed to achieve a multi-stage security task approach for a full security life cycle [ 38 ]. New digital signature technology has been built, amidst the elliptic curve cryptography, of increasing reliance [ 28 ]; new experimental CAPTCHA has been developed, through more interference characters and colorful background [ 8 ] to provide better protection against spambots, allowing people with little knowledge of sign languages to recognize gestures on video relatively fast [ 70 ]; novel detection approach beyond traditional firewall systems have been developed (e.g., cluster center and nearest neighbor—CANN) of higher efficiency for detection of attacks [ 71 ]; security solutions of AI for IoT (e.g., blockchain), due to its centralized architecture of security flaws [ 34 ]; and integrated algorithm of AI to identify malicious web domains for security protection of Internet users [ 19 ].

In sum, AI has progressed lately by advances in machine learning, with multilevel solutions to the security problems faced in security issues both in operating systems and networks, comprehending algorithms, methods, and tools lengthily used by security experts for the better of the systems [ 6 ]. In this way, we present a detailed overview of the impacts of AI on each of those fields.

4.1. Business Decision Making

AI has an increasing impact on systems security aimed at supporting decision making at the management level. More and more, it is discussed expert systems that, along with the evolution of computers, are able to integrate systems into corporate culture [ 24 ]. Such systems are expected to maximize benefits against costs in situations where a decision-making agent has to decide between a limited set of strategies of sparse information [ 14 ], while a strategic decision in a relatively short period of time is required demanded and of quality, for example by intelligent analysis of big data [ 39 ].

Secondly, it has been adopted distributed decision models coordinated toward an overall solution, reliant on a decision support platform [ 40 ], either more of a mathematical/modeling support of situational approach to complex objects [ 41 ], or more of a web-based multi-perspective decision support system (DSS) [ 42 ].

Thirdly, the problem of software for the support of management decisions was resolved by combining a systematic approach with heuristic methods and game-theoretic modeling [ 43 ] that, in the case of industrial security, reduces the subsequent number of incidents [ 44 ].

Fourthly, in terms of industrial management and ISO information security control, a semantic decision support system increases the automation level and support the decision-maker at identifying the most appropriate strategy against a modeled environment [ 45 ] while providing understandable technology that is based on the decisions and interacts with the machine [ 46 ].

Finally, with respect to teamwork, AI validates a theoretical model of behavioral decision theory to assist organizational leaders in deciding on strategic initiatives [ 11 ] while allowing understanding who may have information that is valuable for solving a collaborative scheduling problem [ 47 ].

4.2. Electronic Commerce Business

The third research stream focuses on e-commerce solutions to improve its systems security. This AI research stream focuses on business, principally on security measures to electronic commerce (e-commerce), in order to avoid cyber attacks, innovate, achieve information, and ultimately obtain clients [ 5 ].

First, it has been built intelligent models around the factors that induce Internet users to make an online purchase, to build effective strategies [ 48 ], whereas it is discussed the cyber security issues by diverse AI models for controlling unauthorized intrusion [ 49 ], in particular in some countries such as China, to solve drawbacks in firewall technology, data encryption [ 4 ] and qualification [ 2 ].

Second, to adapt to the increasingly demanding environment nowadays of a world pandemic, in terms of finding new revenue sources for business [ 3 ] and restructure business digital processes to promote new products and services with enough privacy and manpower qualified accordingly and able to deal with the AI [ 50 ].

Third, to develop AI able to intelligently protect business either by a distinct model of decision trees amidst the Internet of Things (IoT) [ 51 ] or by ameliorating network management through active networks technology, of multi-agent architecture able to imitate the reactive behavior and logical inference of a human expert [ 52 ].

Fourth, to reconceptualize the role of AI within the proximity’s spatial and non-spatial dimensions of a new digital industry framework, aiming to connect the physical and digital production spaces both in the traditional and new technology-based approaches (e.g., industry 4.0), promoting thus innovation partnerships and efficient technology and knowledge transfer [ 53 ]. In this vein, there is an attempt to move the management systems from a centralized to a distributed paradigm along the network and based on criteria such as for example the delegation degree [ 54 ] that inclusive allows the transition from industry 4.0 to industry 5.0i, through AI in the form of Internet of everything, multi-agent systems and emergent intelligence and enterprise architecture [ 58 ].

Fifth, in terms of manufacturing environments, following that networking paradigm, there is also an attempt to manage agent communities in distributed and varied manufacturing environments through an AI multi-agent virtual manufacturing system (e.g., MetaMorph) that optimizes real-time planning and security [ 55 ]. In addition, in manufacturing, smart factories have been built to mitigate security vulnerabilities of intelligent manufacturing processes automation by AI security measures and devices [ 56 ] as, for example, in the design of a mine security monitoring configuration software platform of a real-time framework (e.g., the device management class diagram) [ 26 ]. Smart buildings in manufacturing and nonmanufacturing environments have been adopted, aiming at reducing costs, the height of the building, and minimizing the space required for users [ 57 ].

Finally, aiming at augmenting the cyber security of e-commerce and business in general, other projects have been put in place, such as computer-assisted audit tools (CAATs), able to carry on continuous auditing, allowing auditors to augment their productivity amidst the real-time accounting and electronic data interchange [ 59 ] and a surge in the demand of high-tech/AI jobs [ 60 ].

4.3. AI Social Applications

As seen, AI systems security can be widely deployed across almost all society domains, be in regulation, Internet security, computer networks, digitalization, health, and other numerous fields (see Figure 4 ).

First, it has been an attempt to regulate cyber security, namely in terms of legal support of cyber security, with regard to the application of artificial intelligence technology [ 61 ], in an innovative and economical/political-friendly way [ 9 ] and in fields such as infrastructures, by ameliorating the efficiency of technological processes in transport, reducing, for example, the inter train stops [ 63 ] and education, by improving the cyber security of university E-Gov, for example in forming a certificate database structure of university performance key indicators [ 21 ] e-learning organizations by swarm intelligence [ 23 ] and acquainting the risk a digital campus will face according to ISO series standards and criteria of risk levels [ 25 ] while suggesting relevant solutions to key issues in its network information safety [ 12 ].

Second, some moral and legal issues have risen, in particular in relation to privacy, sex, and childhood. Is the case of the ethical/legal legitimacy of publishing open-source dual-purpose machine-learning algorithms [ 18 ], the needed legislated framework comprising regulatory agencies and representatives of all stakeholder groups gathered around AI [ 68 ], the gendering issue of VPAs as female (e.g., Siri) as replicate normative assumptions about the potential role of women as secondary to men [ 15 ], the need of inclusion of communities to uphold its own code [ 35 ] and the need to improve the legal position of people and children in particular that are exposed to AI-mediated risk profiling practices [ 7 , 69 ].

Third, the traditional industry also benefits from AI, given that it can improve, for example, the safety of coal mine, by analyzing the coal mine safety scheme storage structure, building data warehouse and analysis [ 64 ], ameliorating, as well, the security of smart cities and ensuing intelligent devices and networks, through AI frameworks (e.g., United Theory of Acceptance and Use of Technology—UTAUT) [ 65 ], housing [ 10 ] and building [ 66 ] security system in terms of energy balance (e.g., Direct Digital Control System), implying fuzzy logic as a non-precise program tool that allows the systems to function well [ 66 ], or even in terms of data integrity attacks to outage management system OMSs and ensuing AI means to detect and mitigate them [ 67 ].

Fourth, the citizens, in general, have reaped benefits from areas of AI such as police investigation, through expert systems that offer support in terms of profiling and tracking criminals based on machine-learning and neural network techniques [ 17 ], video surveillance systems of real-time accuracy [ 76 ], resorting to models to detect moving objects keeping up with environment changes [ 36 ], of dynamical sensor selection in processing the image streams of all cameras simultaneously [ 37 ], whereas ambient intelligence (AmI) spaces, in where devices, sensors, and wireless networks, combine data from diverse sources and monitor user preferences and their subsequent results on users’ privacy under a regulatory privacy framework [ 62 ].

Finally, AI has granted the society noteworthy progress in terms of clinical assistance in terms of an integrated electronic health record system into the existing risk management software to monitor sepsis at intensive care unit (ICU) through a peer-to-peer VPN connection and with a fast and intuitive user interface [ 72 ]. As well, it has offered an AI organizational solution of innovative housing model that combines remote surveillance, diagnostics, and the use of sensors and video to detect anomalies in the behavior and health of the elderly [ 20 ], together with a case-based decision support system for the automatic real-time surveillance and diagnosis of health care-associated infections, by diverse machine-learning techniques [ 73 ].

4.4. Neural Networks

Neural networks, or the process through which machines learn from observational data, coming up with their own solutions, have been lately discussed over some stream of issues.

First, it has been argued that it is opportune to develop a software library for creating artificial neural networks for machine learning to solve non-standard tasks [ 74 ], along a decentralized and integrated AI environment that can accommodate video data storage and event-driven video processing, gathered from varying sources, such as video surveillance systems [ 16 ], which images could be improved through AI [ 75 ].

Second, such neural networks architecture has progressed into a huge number of neurons in the network, in which the devices of associative memory were designed with the number of neurons comparable to the human brain within supercomputers [ 1 ]. Subsequently, such neural networks can be modeled on the base of switches architecture to interconnect neurons and to store the training results in the memory, on the base of the genetic algorithms to be exported to other robotic systems: a model of human personality for use in robotic systems in medicine and biology [ 13 ].

Finally, the neural network is quite representative of AI, in the attempt of, once trained in human learning and self-learning, could operate without human guidance, as in the case of a current positioning vessel seaway systems, involving a fuzzy logic regulator, a neural network classifier enabling to select optimal neural network models of the vessel paths, to obtain control activity [ 22 ].

4.5. Data Security and Access Control Mechanisms

Access control can be deemed as a classic security model that is pivotal do any security and privacy protection processes to support data access from different environments, as well as to protect unauthorized access according to a given security policy [ 81 ]. In this vein, data security and access control-related mechanisms have been widely debated these days, particularly with regard to their distinct contextual conditions in terms, for example, of spatial and temporal environs that differ according to diverse, decentralized networks. Those networks constitute a major challenge because they are dynamically located on “cloud” or “fog” environments, rather than fixed desktop structures, demanding thus innovative approaches in terms of access security, such as fog-based context-aware access control (FB-CAAC) [ 81 ]. Context-awareness is, therefore, an important characteristic of changing environs, where users access resources anywhere and anytime. As a result, it is paramount to highlight the interplay between the information, now based on fuzzy sets, and its situational context to implement context-sensitive access control policies, as well, through diverse criteria such as, for example, following subject and action-specific attributes. In this way, different contextual conditions, such as user profile information, social relationship information, and so on, need to be added to the traditional, spatial and temporal approaches to sustain these dynamic environments [ 81 ]. In the end, the corresponding policies should aim at defining the security and privacy requirements through a fog-based context-aware access control model that should be respected for distributed cloud and fog networks.

5. Conclusion and Future Research Directions

This piece of literature allowed illustrating the AI impacts on systems security, which influence our daily digital life, business decision making, e-commerce, diverse social and legal issues, and neural networks.

First, AI will potentially impact our digital and Internet lives in the future, as the major trend is the emergence of increasingly new malicious threats from the Internet environment; likewise, greater attention should be paid to cyber security. Accordingly, the progressively more complexity of business environment will demand, as well, more and more AI-based support systems to decision making that enables management to adapt in a faster and accurate way while requiring unique digital e-manpower.

Second, with regard to the e-commerce and manufacturing issues, principally amidst the world pandemic of COVID-19, it tends to augment exponentially, as already observed, which demands subsequent progress with respect to cyber security measures and strategies. the same, regarding the social applications of AI that, following the increase in distance services, will also tend to adopt this model, applied to improved e-health, e-learning, and e-elderly monitoring systems.

Third, subsequent divisive issues are being brought to the academic arena, which demands progress in terms of a legal framework, able to comprehend all the abovementioned issues in order to assist the political decisions and match the expectations of citizens.

Lastly, it is inevitable further progress in neural networks platforms, as it represents the cutting edge of AI in terms of human thinking imitation technology, the main goal of AI applications.

To summarize, we have presented useful insights with respect to the impact of AI in systems security, while we illustrated its influence both on the people’ service delivering, in particular in security domains of their daily matters, health/education, and in the business sector, through systems capable of supporting decision making. In addition, we over-enhance the state of the art in terms of AI innovations applied to varying fields.

Future Research Issues

Due to the aforementioned scenario, we also suggest further research avenues to reinforce existing theories and develop new ones, in particular the deployment of AI technologies in small medium enterprises (SMEs), of sparse resources and from traditional sectors that constitute the core of intermediate economies and less developed and peripheral regions. In addition, the building of CAAC solutions constitutes a promising field in order to control data resources in the cloud and throughout changing contextual conditions.


We would like to express our gratitude to the Editor and the Referees. They offered extremely valuable suggestions or improvements. the authors were supported by the GOVCOPP Research Unit of Universidade de Aveiro and ISEC Lisboa, Higher Institute of Education and Sciences.

Overview of document citations period ≤ 2010 to 2021.

Overview of document self-citation period ≤ 2010 to 2020.

Author Contributions

Conceptualization, R.R. and A.R.; data curation, R.R. and A.R.; formal analysis, R.R. and A.R.; funding acquisition, R.R. and A.R.; investigation, R.R. and A.R.; methodology, R.R. and A.R.; project administration, R.R. and A.R.; software, R.R. and A.R.; validation, R.R. and A.R.; resources, R.R. and A.R.; writing—original draft preparation, R.R. and A.R.; writing—review and editing, R.R. and A.R.; visualization, R.R. and A.R.; supervision, R.R. and A.R.; project administration, R.R. and A.R.; All authors have read and agreed to the published version of the manuscript.

This research received no external funding.

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare no conflict of interest. the funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

data security Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

Big Data Security Management Countermeasures in the Prevention and Control of Computer Network Crime

This paper aims to study the Countermeasures of big data security management in the prevention and control of computer network crime in the absence of relevant legislation and judicial practice. Starting from the concepts and definitions of computer crime and network crime, this paper puts forward the comparison matrix, investigation and statistics method and characteristic measure of computer crime. Through the methods of crime scene investigation, network investigation and network tracking, this paper studies the big data security management countermeasures in the prevention and control of computer network crime from the perspective of criminology. The experimental results show that the phenomenon of low age is serious, and the number of Teenagers Participating in network crime is on the rise. In all kinds of cases, criminals under the age of 35 account for more than 50%.

Fog Computing with IoT Device’s Data Security Management Using Density Control Weighted Election and Extensible Authentication Protocol

Integration of blockchain with connected and autonomous vehicles: vision and challenge.

Connected and Autonomous Vehicles (CAVs) are introduced to improve individuals’ quality of life by offering a wide range of services. They collect a huge amount of data and exchange them with each other and the infrastructure. The collected data usually includes sensitive information about the users and the surrounding environment. Therefore, data security and privacy are among the main challenges in this industry. Blockchain, an emerging distributed ledger, has been considered by the research community as a potential solution for enhancing data security, integrity, and transparency in Intelligent Transportation Systems (ITS). However, despite the emphasis of governments on the transparency of personal data protection practices, CAV stakeholders have not been successful in communicating appropriate information with the end users regarding the procedure of collecting, storing, and processing their personal data, as well as the data ownership. This article provides a vision of the opportunities and challenges of adopting blockchain in ITS from the “data transparency” and “privacy” perspective. The main aim is to answer the following questions: (1) Considering the amount of personal data collected by the CAVs, such as location, how would the integration of blockchain technology affect transparency , fairness , and lawfulness of personal data processing concerning the data subjects (as this is one of the main principles in the existing data protection regulations)? (2) How can the trade-off between transparency and privacy be addressed in blockchain-based ITS use cases?

SecNVM: An Efficient and Write-Friendly Metadata Crash Consistency Scheme for Secure NVM

Data security is an indispensable part of non-volatile memory (NVM) systems. However, implementing data security efficiently on NVM is challenging, since we have to guarantee the consistency of user data and the related security metadata. Existing consistency schemes ignore the recoverability of the SGX style integrity tree (SIT) and the access correlation between metadata blocks, thereby generating unnecessary NVM write traffic. In this article, we propose SecNVM, an efficient and write-friendly metadata crash consistency scheme for secure NVM. SecNVM utilizes the observation that for a lazily updated SIT, the lost tree nodes after a crash can be recovered by the corresponding child nodes in NVM. It reduces the SIT persistency overhead through a restrained write-back metadata cache and exploits the SIT inter-layer dependency for recovery. Next, leveraging the strong access correlation between the counter and DMAC, SecNVM improves the efficiency of security metadata access through a novel collaborative counter-DMAC scheme. In addition, it adopts a lightweight address tracker to reduce the cost of address tracking for fast recovery. Experiments show that compared to the state-of-the-art schemes, SecNVM improves the performance and decreases write traffic a lot, and achieves an acceptable recovery time.

Review on Blockchain Technology

Abstract: Blockchain is a technology that has the potential to cause big changes in our corporate environment and will have a significant influence over the next few decades. It has the potential to alter our perception of business operations and revolutionise our economy. Blockchain is a decentralised and distributed ledger system that, since it cannot be tampered with or faked, attempts to assure transparency, data security, and integrity. Only a few studies have looked at the usage of Blockchain Technology in other contexts or sectors, with the majority of current Blockchain Technology research focusing on its use for cryptocurrencies like Bitcoin. Blockchain technology is more than simply bitcoin; it may be used in government, finance and banking, accounting, and business process managementAs a result, the goal of this study is to examine and investigate the advantages and drawbacks of Blockchain Technology for current and future applications. As a consequence, a large number of published studies were thoroughly assessed and analysed based on their contributions to the Blockchain body of knowledge. Keywords: Blockchain Technology, Bitcoin, Cryptocurrency, Digital currency

China’s Data Security Policies Leading to the Cyber Security Law

A novel framework of an iot-blockchain-based intelligent system.

With the growing need of technology into varied fields, dependency is getting directly proportional to ease of user-friendly smart systems. The advent of artificial intelligence in these smart systems has made our lives easier. Several Internet of Things- (IoT-) based smart refrigerator systems are emerging which support self-monitoring of contents, but the systems lack to achieve the optimized run time and data security. Therefore, in this research, a novel design is implemented with the hardware level of integration of equipment with a more sophisticated software design. It was attempted to design a new smart refrigerator system, which has the capability of automatic self-checking and self-purchasing, by integrating smart mobile device applications and IoT technology with minimal human intervention carried through Blynk application on a mobile phone. The proposed system automatically makes periodic checks and then waits for the owner’s decision to either allow the system to repurchase these products via Ethernet or reject the purchase option. The paper also discussed the machine level integration with artificial intelligence by considering several features and implemented state-of-the-art machine learning classifiers to give automatic decisions. The blockchain technology is cohesively combined to store and propagate data for the sake of data security and privacy concerns. In combination with IoT devices, machine learning, and blockchain technology, the proposed model of the paper can provide a more comprehensive and valuable feedback-driven system. The experiments have been performed and evaluated using several information retrieval metrics using visualization tools. Therefore, our proposed intelligent system will save effort, time, and money which helps us to have an easier, faster, and healthier lifestyle.


The adoption rate of new technologies is still relatively low in the construction industry, particularly for mitigating occupational safety and health (OSH) risks, which is traditionally a largely labor-intensive activity in developing countries, occupying ill-afforded non-productive management resources. However, understanding why this is the case is a relatively unresearched area in developing countries such as Malaysia. In aiming to help redress this situation, this study explored the major barriers involved, firstly by a detailed literature review to identify the main barriers hampering the adoption of new technologies for safety science and management in construction. Then, a questionnaire survey of Malaysian construction practitioners was used to prioritize these barriers. A factor analysis further identified six major dimensions underlying the barriers, relating to the lack of OSH regulations and legislation, technological limitations, lack of genuine organizational commitment, prohibitive costs, poor safety culture within the construction industry, and privacy and data security concerns. Taken together, the findings provide a valuable reference to assist industry practitioners and researchers regarding the critical barriers to the adoption of new technologies for construction safety management in Malaysia and other similar developing countries, and bridge the identified knowledge gap concerning the dimensionality of the barriers.

Design and Development of Maritime Data Security Management Platform

Since the e-Navigation strategy was put forward, various countries and regions in the world have researched e-Navigation test platforms. However, the sources of navigation data are multi-source, and there are still difficulties in the unified acquisition, processing, analysis and application of multi-source data. Users often find it difficult to obtain the required comprehensive navigation information. The purpose of this paper is to use e-Navigation architecture to design and develop maritime data security management platform, strengthen navigation safety guarantee, strengthen Marine environment monitoring, share navigation and safety information, improve the ability of shipping transportation organizations in ports, and protect the marine environment. Therefore, this paper proposes a four-layer system architecture based on Java 2 Platform Enterprise Edition (J2EE) technology, and designs a unified maritime data storage, analysis and management platform, which realizes the intelligent, visualized and modular management of maritime data at shipside and the shore. This platform can provide comprehensive data resource services for ship navigation and support the analysis and mining of maritime big data. This paper expounds on the design, development scheme and demonstration operation scheme of the maritime data security management platform from the system structure and data exchange mode.

Mapping the quantity, quality and structural indicators of Asian (48 countries and 3 territories) research productivity on cloud computing

PurposeThe purpose of this study was to map the quantity (frequency), quality (impact) and structural indicators (correlations) of research produced on cloud computing in 48 countries and 3 territories in the Asia continent.Design/methodology/approachTo achieve the objectives of the study and scientifically map the indicators, data were extracted from the Scopus database. The extracted bibliographic data was first cleaned properly using Endnote and then analyzed using Biblioshiny and VosViewer application software. In the software, calculations include citations count; h, g and m indexes; Bradford's and Lotka's laws; and other scientific mappings.FindingsResults of the study indicate that China remained the most productive, impactful and collaborative country in Asia. All the top 20 impactful authors were also from China. The other most researched areas associated with cloud computing were revealed to be mobile cloud computing and data security in clouds. The most prominent journal currently publishing research studies on cloud computing was “Advances in Intelligent Systems and Computing.”Originality/valueThe study is the first of its kind which identified the quantity (frequencies), quality (impact) and structural indicators (correlations) of Asian (48 countries and 3 territories) research productivity on cloud computing. The results are of great importance for researchers and countries interested in further exploring, publishing and increasing cross country collaborations related to the phenomenon of cloud computing.

Export Citation Format

Share document.

Cyber risk and cybersecurity: a systematic review of data availability

  • Open access
  • Published: 17 February 2022
  • Volume 47 , pages 698–736, ( 2022 )

Cite this article

You have full access to this open access article

database security research paper

  • Frank Cremer 1 ,
  • Barry Sheehan   ORCID: 1 ,
  • Michael Fortmann 2 ,
  • Arash N. Kia 1 ,
  • Martin Mullins 1 ,
  • Finbarr Murphy 1 &
  • Stefan Materne 2  

67k Accesses

63 Citations

42 Altmetric

Explore all metrics

Cybercrime is estimated to have cost the global economy just under USD 1 trillion in 2020, indicating an increase of more than 50% since 2018. With the average cyber insurance claim rising from USD 145,000 in 2019 to USD 359,000 in 2020, there is a growing necessity for better cyber information sources, standardised databases, mandatory reporting and public awareness. This research analyses the extant academic and industry literature on cybersecurity and cyber risk management with a particular focus on data availability. From a preliminary search resulting in 5219 cyber peer-reviewed studies, the application of the systematic methodology resulted in 79 unique datasets. We posit that the lack of available data on cyber risk poses a serious problem for stakeholders seeking to tackle this issue. In particular, we identify a lacuna in open databases that undermine collective endeavours to better manage this set of risks. The resulting data evaluation and categorisation will support cybersecurity researchers and the insurance industry in their efforts to comprehend, metricise and manage cyber risks.

Similar content being viewed by others

database security research paper

Cybersecurity data science: an overview from machine learning perspective

database security research paper

Cyber Security Threats and Vulnerabilities: A Systematic Mapping Study

database security research paper

Artificial Intelligence and Fraud Detection

Avoid common mistakes on your manuscript.


Globalisation, digitalisation and smart technologies have escalated the propensity and severity of cybercrime. Whilst it is an emerging field of research and industry, the importance of robust cybersecurity defence systems has been highlighted at the corporate, national and supranational levels. The impacts of inadequate cybersecurity are estimated to have cost the global economy USD 945 billion in 2020 (Maleks Smith et al. 2020 ). Cyber vulnerabilities pose significant corporate risks, including business interruption, breach of privacy and financial losses (Sheehan et al. 2019 ). Despite the increasing relevance for the international economy, the availability of data on cyber risks remains limited. The reasons for this are many. Firstly, it is an emerging and evolving risk; therefore, historical data sources are limited (Biener et al. 2015 ). It could also be due to the fact that, in general, institutions that have been hacked do not publish the incidents (Eling and Schnell 2016 ). The lack of data poses challenges for many areas, such as research, risk management and cybersecurity (Falco et al. 2019 ). The importance of this topic is demonstrated by the announcement of the European Council in April 2021 that a centre of excellence for cybersecurity will be established to pool investments in research, technology and industrial development. The goal of this centre is to increase the security of the internet and other critical network and information systems (European Council 2021 ).

This research takes a risk management perspective, focusing on cyber risk and considering the role of cybersecurity and cyber insurance in risk mitigation and risk transfer. The study reviews the existing literature and open data sources related to cybersecurity and cyber risk. This is the first systematic review of data availability in the general context of cyber risk and cybersecurity. By identifying and critically analysing the available datasets, this paper supports the research community by aggregating, summarising and categorising all available open datasets. In addition, further information on datasets is attached to provide deeper insights and support stakeholders engaged in cyber risk control and cybersecurity. Finally, this research paper highlights the need for open access to cyber-specific data, without price or permission barriers.

The identified open data can support cyber insurers in their efforts on sustainable product development. To date, traditional risk assessment methods have been untenable for insurance companies due to the absence of historical claims data (Sheehan et al. 2021 ). These high levels of uncertainty mean that cyber insurers are more inclined to overprice cyber risk cover (Kshetri 2018 ). Combining external data with insurance portfolio data therefore seems to be essential to improve the evaluation of the risk and thus lead to risk-adjusted pricing (Bessy-Roland et al. 2021 ). This argument is also supported by the fact that some re/insurers reported that they are working to improve their cyber pricing models (e.g. by creating or purchasing databases from external providers) (EIOPA 2018 ). Figure  1 provides an overview of pricing tools and factors considered in the estimation of cyber insurance based on the findings of EIOPA ( 2018 ) and the research of Romanosky et al. ( 2019 ). The term cyber risk refers to all cyber risks and their potential impact.

figure 1

An overview of the current cyber insurance informational and methodological landscape, adapted from EIOPA ( 2018 ) and Romanosky et al. ( 2019 )

Besides the advantage of risk-adjusted pricing, the availability of open datasets helps companies benchmark their internal cyber posture and cybersecurity measures. The research can also help to improve risk awareness and corporate behaviour. Many companies still underestimate their cyber risk (Leong and Chen 2020 ). For policymakers, this research offers starting points for a comprehensive recording of cyber risks. Although in many countries, companies are obliged to report data breaches to the respective supervisory authority, this information is usually not accessible to the research community. Furthermore, the economic impact of these breaches is usually unclear.

As well as the cyber risk management community, this research also supports cybersecurity stakeholders. Researchers are provided with an up-to-date, peer-reviewed literature of available datasets showing where these datasets have been used. For example, this includes datasets that have been used to evaluate the effectiveness of countermeasures in simulated cyberattacks or to test intrusion detection systems. This reduces a time-consuming search for suitable datasets and ensures a comprehensive review of those available. Through the dataset descriptions, researchers and industry stakeholders can compare and select the most suitable datasets for their purposes. In addition, it is possible to combine the datasets from one source in the context of cybersecurity or cyber risk. This supports efficient and timely progress in cyber risk research and is beneficial given the dynamic nature of cyber risks.

Cyber risks are defined as “operational risks to information and technology assets that have consequences affecting the confidentiality, availability, and/or integrity of information or information systems” (Cebula et al. 2014 ). Prominent cyber risk events include data breaches and cyberattacks (Agrafiotis et al. 2018 ). The increasing exposure and potential impact of cyber risk have been highlighted in recent industry reports (e.g. Allianz 2021 ; World Economic Forum 2020 ). Cyberattacks on critical infrastructures are ranked 5th in the World Economic Forum's Global Risk Report. Ransomware, malware and distributed denial-of-service (DDoS) are examples of the evolving modes of a cyberattack. One example is the ransomware attack on the Colonial Pipeline, which shut down the 5500 mile pipeline system that delivers 2.5 million barrels of fuel per day and critical liquid fuel infrastructure from oil refineries to states along the U.S. East Coast (Brower and McCormick 2021 ). These and other cyber incidents have led the U.S. to strengthen its cybersecurity and introduce, among other things, a public body to analyse major cyber incidents and make recommendations to prevent a recurrence (Murphey 2021a ). Another example of the scope of cyberattacks is the ransomware NotPetya in 2017. The damage amounted to USD 10 billion, as the ransomware exploited a vulnerability in the windows system, allowing it to spread independently worldwide in the network (GAO 2021 ). In the same year, the ransomware WannaCry was launched by cybercriminals. The cyberattack on Windows software took user data hostage in exchange for Bitcoin cryptocurrency (Smart 2018 ). The victims included the National Health Service in Great Britain. As a result, ambulances were redirected to other hospitals because of information technology (IT) systems failing, leaving people in need of urgent assistance waiting. It has been estimated that 19,000 cancelled treatment appointments resulted from losses of GBP 92 million (Field 2018 ). Throughout the COVID-19 pandemic, ransomware attacks increased significantly, as working from home arrangements increased vulnerability (Murphey 2021b ).

Besides cyberattacks, data breaches can also cause high costs. Under the General Data Protection Regulation (GDPR), companies are obliged to protect personal data and safeguard the data protection rights of all individuals in the EU area. The GDPR allows data protection authorities in each country to impose sanctions and fines on organisations they find in breach. “For data breaches, the maximum fine can be €20 million or 4% of global turnover, whichever is higher” (GDPR.EU 2021 ). Data breaches often involve a large amount of sensitive data that has been accessed, unauthorised, by external parties, and are therefore considered important for information security due to their far-reaching impact (Goode et al. 2017 ). A data breach is defined as a “security incident in which sensitive, protected, or confidential data are copied, transmitted, viewed, stolen, or used by an unauthorized individual” (Freeha et al. 2021 ). Depending on the amount of data, the extent of the damage caused by a data breach can be significant, with the average cost being USD 392 million Footnote 1 (IBM Security 2020 ).

This research paper reviews the existing literature and open data sources related to cybersecurity and cyber risk, focusing on the datasets used to improve academic understanding and advance the current state-of-the-art in cybersecurity. Furthermore, important information about the available datasets is presented (e.g. use cases), and a plea is made for open data and the standardisation of cyber risk data for academic comparability and replication. The remainder of the paper is structured as follows. The next section describes the related work regarding cybersecurity and cyber risks. The third section outlines the review method used in this work and the process. The fourth section details the results of the identified literature. Further discussion is presented in the penultimate section and the final section concludes.

Related work

Due to the significance of cyber risks, several literature reviews have been conducted in this field. Eling ( 2020 ) reviewed the existing academic literature on the topic of cyber risk and cyber insurance from an economic perspective. A total of 217 papers with the term ‘cyber risk’ were identified and classified in different categories. As a result, open research questions are identified, showing that research on cyber risks is still in its infancy because of their dynamic and emerging nature. Furthermore, the author highlights that particular focus should be placed on the exchange of information between public and private actors. An improved information flow could help to measure the risk more accurately and thus make cyber risks more insurable and help risk managers to determine the right level of cyber risk for their company. In the context of cyber insurance data, Romanosky et al. ( 2019 ) analysed the underwriting process for cyber insurance and revealed how cyber insurers understand and assess cyber risks. For this research, they examined 235 American cyber insurance policies that were publicly available and looked at three components (coverage, application questionnaires and pricing). The authors state in their findings that many of the insurers used very simple, flat-rate pricing (based on a single calculation of expected loss), while others used more parameters such as the asset value of the company (or company revenue) or standard insurance metrics (e.g. deductible, limits), and the industry in the calculation. This is in keeping with Eling ( 2020 ), who states that an increased amount of data could help to make cyber risk more accurately measured and thus more insurable. Similar research on cyber insurance and data was conducted by Nurse et al. ( 2020 ). The authors examined cyber insurance practitioners' perceptions and the challenges they face in collecting and using data. In addition, gaps were identified during the research where further data is needed. The authors concluded that cyber insurance is still in its infancy, and there are still several unanswered questions (for example, cyber valuation, risk calculation and recovery). They also pointed out that a better understanding of data collection and use in cyber insurance would be invaluable for future research and practice. Bessy-Roland et al. ( 2021 ) come to a similar conclusion. They proposed a multivariate Hawkes framework to model and predict the frequency of cyberattacks. They used a public dataset with characteristics of data breaches affecting the U.S. industry. In the conclusion, the authors make the argument that an insurer has a better knowledge of cyber losses, but that it is based on a small dataset and therefore combination with external data sources seems essential to improve the assessment of cyber risks.

Several systematic reviews have been published in the area of cybersecurity (Kruse et al. 2017 ; Lee et al. 2020 ; Loukas et al. 2013 ; Ulven and Wangen 2021 ). In these papers, the authors concentrated on a specific area or sector in the context of cybersecurity. This paper adds to this extant literature by focusing on data availability and its importance to risk management and insurance stakeholders. With a priority on healthcare and cybersecurity, Kruse et al. ( 2017 ) conducted a systematic literature review. The authors identified 472 articles with the keywords ‘cybersecurity and healthcare’ or ‘ransomware’ in the databases Cumulative Index of Nursing and Allied Health Literature, PubMed and Proquest. Articles were eligible for this review if they satisfied three criteria: (1) they were published between 2006 and 2016, (2) the full-text version of the article was available, and (3) the publication is a peer-reviewed or scholarly journal. The authors found that technological development and federal policies (in the U.S.) are the main factors exposing the health sector to cyber risks. Loukas et al. ( 2013 ) conducted a review with a focus on cyber risks and cybersecurity in emergency management. The authors provided an overview of cyber risks in communication, sensor, information management and vehicle technologies used in emergency management and showed areas for which there is still no solution in the literature. Similarly, Ulven and Wangen ( 2021 ) reviewed the literature on cybersecurity risks in higher education institutions. For the literature review, the authors used the keywords ‘cyber’, ‘information threats’ or ‘vulnerability’ in connection with the terms ‘higher education, ‘university’ or ‘academia’. A similar literature review with a focus on Internet of Things (IoT) cybersecurity was conducted by Lee et al. ( 2020 ). The review revealed that qualitative approaches focus on high-level frameworks, and quantitative approaches to cybersecurity risk management focus on risk assessment and quantification of cyberattacks and impacts. In addition, the findings presented a four-step IoT cyber risk management framework that identifies, quantifies and prioritises cyber risks.

Datasets are an essential part of cybersecurity research, underlined by the following works. Ilhan Firat et al. ( 2021 ) examined various cybersecurity datasets in detail. The study was motivated by the fact that with the proliferation of the internet and smart technologies, the mode of cyberattacks is also evolving. However, in order to prevent such attacks, they must first be detected; the dissemination and further development of cybersecurity datasets is therefore critical. In their work, the authors observed studies of datasets used in intrusion detection systems. Khraisat et al. ( 2019 ) also identified a need for new datasets in the context of cybersecurity. The researchers presented a taxonomy of current intrusion detection systems, a comprehensive review of notable recent work, and an overview of the datasets commonly used for assessment purposes. In their conclusion, the authors noted that new datasets are needed because most machine-learning techniques are trained and evaluated on the knowledge of old datasets. These datasets do not contain new and comprehensive information and are partly derived from datasets from 1999. The authors noted that the core of this issue is the availability of new public datasets as well as their quality. The availability of data, how it is used, created and shared was also investigated by Zheng et al. ( 2018 ). The researchers analysed 965 cybersecurity research papers published between 2012 and 2016. They created a taxonomy of the types of data that are created and shared and then analysed the data collected via datasets. The researchers concluded that while datasets are recognised as valuable for cybersecurity research, the proportion of publicly available datasets is limited.

The main contributions of this review and what differentiates it from previous studies can be summarised as follows. First, as far as we can tell, it is the first work to summarise all available datasets on cyber risk and cybersecurity in the context of a systematic review and present them to the scientific community and cyber insurance and cybersecurity stakeholders. Second, we investigated, analysed, and made available the datasets to support efficient and timely progress in cyber risk research. And third, we enable comparability of datasets so that the appropriate dataset can be selected depending on the research area.


Process and eligibility criteria.

The structure of this systematic review is inspired by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework (Page et al. 2021 ), and the search was conducted from 3 to 10 May 2021. Due to the continuous development of cyber risks and their countermeasures, only articles published in the last 10 years were considered. In addition, only articles published in peer-reviewed journals written in English were included. As a final criterion, only articles that make use of one or more cybersecurity or cyber risk datasets met the inclusion criteria. Specifically, these studies presented new or existing datasets, used them for methods, or used them to verify new results, as well as analysed them in an economic context and pointed out their effects. The criterion was fulfilled if it was clearly stated in the abstract that one or more datasets were used. A detailed explanation of this selection criterion can be found in the ‘Study selection’ section.

Information sources

In order to cover a complete spectrum of literature, various databases were queried to collect relevant literature on the topic of cybersecurity and cyber risks. Due to the spread of related articles across multiple databases, the literature search was limited to the following four databases for simplicity: IEEE Xplore, Scopus, SpringerLink and Web of Science. This is similar to other literature reviews addressing cyber risks or cybersecurity, including Sardi et al. ( 2021 ), Franke and Brynielsson ( 2014 ), Lagerström (2019), Eling and Schnell ( 2016 ) and Eling ( 2020 ). In this paper, all databases used in the aforementioned works were considered. However, only two studies also used all the databases listed. The IEEE Xplore database contains electrical engineering, computer science, and electronics work from over 200 journals and three million conference papers (IEEE 2021 ). Scopus includes 23,400 peer-reviewed journals from more than 5000 international publishers in the areas of science, engineering, medicine, social sciences and humanities (Scopus 2021 ). SpringerLink contains 3742 journals and indexes over 10 million scientific documents (SpringerLink 2021 ). Finally, Web of Science indexes over 9200 journals in different scientific disciplines (Science 2021 ).

A search string was created and applied to all databases. To make the search efficient and reproducible, the following search string with Boolean operator was used in all databases: cybersecurity OR cyber risk AND dataset OR database. To ensure uniformity of the search across all databases, some adjustments had to be made for the respective search engines. In Scopus, for example, the Advanced Search was used, and the field code ‘Title-ABS-KEY’ was integrated into the search string. For IEEE Xplore, the search was carried out with the Search String in the Command Search and ‘All Metadata’. In the Web of Science database, the Advanced Search was used. The special feature of this search was that it had to be carried out in individual steps. The first search was carried out with the terms cybersecurity OR cyber risk with the field tag Topic (T.S. =) and the second search with dataset OR database. Subsequently, these searches were combined, which then delivered the searched articles for review. For SpringerLink, the search string was used in the Advanced Search under the category ‘Find the resources with all of the words’. After conducting this search string, 5219 studies could be found. According to the eligibility criteria (period, language and only scientific journals), 1581 studies were identified in the databases:

Scopus: 135

Springer Link: 548

Web of Science: 534

An overview of the process is given in Fig.  2 . Combined with the results from the four databases, 854 articles without duplicates were identified.

figure 2

Literature search process and categorisation of the studies

Study selection

In the final step of the selection process, the articles were screened for relevance. Due to a large number of results, the abstracts were analysed in the first step of the process. The aim was to determine whether the article was relevant for the systematic review. An article fulfilled the criterion if it was recognisable in the abstract that it had made a contribution to datasets or databases with regard to cyber risks or cybersecurity. Specifically, the criterion was considered to be met if the abstract used datasets that address the causes or impacts of cyber risks, and measures in the area of cybersecurity. In this process, the number of articles was reduced to 288. The articles were then read in their entirety, and an expert panel of six people decided whether they should be used. This led to a final number of 255 articles. The years in which the articles were published and the exact number can be seen in Fig.  3 .

figure 3

Distribution of studies

Data collection process and synthesis of the results

For the data collection process, various data were extracted from the studies, including the names of the respective creators, the name of the dataset or database and the corresponding reference. It was also determined where the data came from. In the context of accessibility, it was determined whether access is free, controlled, available for purchase or not available. It was also determined when the datasets were created and the time period referenced. The application type and domain characteristics of the datasets were identified.

This section analyses the results of the systematic literature review. The previously identified studies are divided into three categories: datasets on the causes of cyber risks, datasets on the effects of cyber risks and datasets on cybersecurity. The classification is based on the intended use of the studies. This system of classification makes it easier for stakeholders to find the appropriate datasets. The categories are evaluated individually. Although complete information is available for a large proportion of datasets, this is not true for all of them. Accordingly, the abbreviation N/A has been inserted in the respective characters to indicate that this information could not be determined by the time of submission. The term ‘use cases in the literature’ in the following and supplementary tables refers to the application areas in which the corresponding datasets were used in the literature. The areas listed there refer to the topic area on which the researchers conducted their research. Since some datasets were used interdisciplinarily, the listed use cases in the literature are correspondingly longer. Before discussing each category in the next sections, Fig.  4 provides an overview of the number of datasets found and their year of creation. Figure  5 then shows the relationship between studies and datasets in the period under consideration. Figure  6 shows the distribution of studies, their use of datasets and their creation date. The number of datasets used is higher than the number of studies because the studies often used several datasets (Table 1 ).

figure 4

Distribution of dataset results

figure 5

Correlation between the studies and the datasets

figure 6

Distribution of studies and their use of datasets

Most of the datasets are generated in the U.S. (up to 58.2%). Canada and Australia rank next, with 11.3% and 5% of all the reviewed datasets, respectively.

Additionally, to create value for the datasets for the cyber insurance industry, an assessment of the applicability of each dataset has been provided for cyber insurers. This ‘Use Case Assessment’ includes the use of the data in the context of different analyses, calculation of cyber insurance premiums, and use of the information for the design of cyber insurance contracts or for additional customer services. To reasonably account for the transition of direct hyperlinks in the future, references were directed to the main websites for longevity (nearest resource point). In addition, the links to the main pages contain further information on the datasets and different versions related to the operating systems. The references were chosen in such a way that practitioners get the best overview of the respective datasets.

Case datasets

This section presents selected articles that use the datasets to analyse the causes of cyber risks. The datasets help identify emerging trends and allow pattern discovery in cyber risks. This information gives cybersecurity experts and cyber insurers the data to make better predictions and take appropriate action. For example, if certain vulnerabilities are not adequately protected, cyber insurers will demand a risk surcharge leading to an improvement in the risk-adjusted premium. Due to the capricious nature of cyber risks, existing data must be supplemented with new data sources (for example, new events, new methods or security vulnerabilities) to determine prevailing cyber exposure. The datasets of cyber risk causes could be combined with existing portfolio data from cyber insurers and integrated into existing pricing tools and factors to improve the valuation of cyber risks.

A portion of these datasets consists of several taxonomies and classifications of cyber risks. Aassal et al. ( 2020 ) propose a new taxonomy of phishing characteristics based on the interpretation and purpose of each characteristic. In comparison, Hindy et al. ( 2020 ) presented a taxonomy of network threats and the impact of current datasets on intrusion detection systems. A similar taxonomy was suggested by Kiwia et al. ( 2018 ). The authors presented a cyber kill chain-based taxonomy of banking Trojans features. The taxonomy built on a real-world dataset of 127 banking Trojans collected from December 2014 to January 2016 by a major U.K.-based financial organisation.

In the context of classification, Aamir et al. ( 2021 ) showed the benefits of machine learning for classifying port scans and DDoS attacks in a mixture of normal and attack traffic. Guo et al. ( 2020 ) presented a new method to improve malware classification based on entropy sequence features. The evaluation of this new method was conducted on different malware datasets.

To reconstruct attack scenarios and draw conclusions based on the evidence in the alert stream, Barzegar and Shajari ( 2018 ) use the DARPA2000 and MACCDC 2012 dataset for their research. Giudici and Raffinetti ( 2020 ) proposed a rank-based statistical model aimed at predicting the severity levels of cyber risk. The model used cyber risk data from the University of Milan. In contrast to the previous datasets, Skrjanc et al. ( 2018 ) used the older dataset KDD99 to monitor large-scale cyberattacks using a cauchy clustering method.

Amin et al. ( 2021 ) used a cyberattack dataset from the Canadian Institute for Cybersecurity to identify spatial clusters of countries with high rates of cyberattacks. In the context of cybercrime, Junger et al. ( 2020 ) examined crime scripts, key characteristics of the target company and the relationship between criminal effort and financial benefit. For their study, the authors analysed 300 cases of fraudulent activities against Dutch companies. With a similar focus on cybercrime, Mireles et al. ( 2019 ) proposed a metric framework to measure the effectiveness of the dynamic evolution of cyberattacks and defensive measures. To validate its usefulness, they used the DEFCON dataset.

Due to the rapidly changing nature of cyber risks, it is often impossible to obtain all information on them. Kim and Kim ( 2019 ) proposed an automated dataset generation system called CTIMiner that collects threat data from publicly available security reports and malware repositories. They released a dataset to the public containing about 640,000 records from 612 security reports published between January 2008 and 2019. A similar approach is proposed by Kim et al. ( 2020 ), using a named entity recognition system to extract core information from cyber threat reports automatically. They created a 498,000-tag dataset during their research (Ulven and Wangen 2021 ).

Within the framework of vulnerabilities and cybersecurity issues, Ulven and Wangen ( 2021 ) proposed an overview of mission-critical assets and everyday threat events, suggested a generic threat model, and summarised common cybersecurity vulnerabilities. With a focus on hospitality, Chen and Fiscus ( 2018 ) proposed several issues related to cybersecurity in this sector. They analysed 76 security incidents from the Privacy Rights Clearinghouse database. Supplementary Table 1 lists all findings that belong to the cyber causes dataset.

Impact datasets

This section outlines selected findings of the cyber impact dataset. For cyber insurers, these datasets can form an important basis for information, as they can be used to calculate cyber insurance premiums, evaluate specific cyber risks, formulate inclusions and exclusions in cyber wordings, and re-evaluate as well as supplement the data collected so far on cyber risks. For example, information on financial losses can help to better assess the loss potential of cyber risks. Furthermore, the datasets can provide insight into the frequency of occurrence of these cyber risks. The new datasets can be used to close any data gaps that were previously based on very approximate estimates or to find new results.

Eight studies addressed the costs of data breaches. For instance, Eling and Jung ( 2018 ) reviewed 3327 data breach events from 2005 to 2016 and identified an asymmetric dependence of monthly losses by breach type and industry. The authors used datasets from the Privacy Rights Clearinghouse for analysis. The Privacy Rights Clearinghouse datasets and the Breach level index database were also used by De Giovanni et al. ( 2020 ) to describe relationships between data breaches and bitcoin-related variables using the cointegration methodology. The data were obtained from the Department of Health and Human Services of healthcare facilities reporting data breaches and a national database of technical and organisational infrastructure information. Also in the context of data breaches, Algarni et al. ( 2021 ) developed a comprehensive, formal model that estimates the two components of security risks: breach cost and the likelihood of a data breach within 12 months. For their survey, the authors used two industrial reports from the Ponemon institute and VERIZON. To illustrate the scope of data breaches, Neto et al. ( 2021 ) identified 430 major data breach incidents among more than 10,000 incidents. The database created is available and covers the period 2018 to 2019.

With a direct focus on insurance, Biener et al. ( 2015 ) analysed 994 cyber loss cases from an operational risk database and investigated the insurability of cyber risks based on predefined criteria. For their study, they used data from the company SAS OpRisk Global Data. Similarly, Eling and Wirfs ( 2019 ) looked at a wide range of cyber risk events and actual cost data using the same database. They identified cyber losses and analysed them using methods from statistics and actuarial science. Using a similar reference, Farkas et al. ( 2021 ) proposed a method for analysing cyber claims based on regression trees to identify criteria for classifying and evaluating claims. Similar to Chen and Fiscus ( 2018 ), the dataset used was the Privacy Rights Clearinghouse database. Within the framework of reinsurance, Moro ( 2020 ) analysed cyber index-based information technology activity to see if index-parametric reinsurance coverage could suggest its cedant using data from a Symantec dataset.

Paté-Cornell et al. ( 2018 ) presented a general probabilistic risk analysis framework for cybersecurity in an organisation to be specified. The results are distributions of losses to cyberattacks, with and without considered countermeasures in support of risk management decisions based both on past data and anticipated incidents. The data used were from The Common Vulnerability and Exposures database and via confidential access to a database of cyberattacks on a large, U.S.-based organisation. A different conceptual framework for cyber risk classification and assessment was proposed by Sheehan et al. ( 2021 ). This framework showed the importance of proactive and reactive barriers in reducing companies’ exposure to cyber risk and quantifying the risk. Another approach to cyber risk assessment and mitigation was proposed by Mukhopadhyay et al. ( 2019 ). They estimated the probability of an attack using generalised linear models, predicted the security technology required to reduce the probability of cyberattacks, and used gamma and exponential distributions to best approximate the average loss data for each malicious attack. They also calculated the expected loss due to cyberattacks, calculated the net premium that would need to be charged by a cyber insurer, and suggested cyber insurance as a strategy to minimise losses. They used the CSI-FBI survey (1997–2010) to conduct their research.

In order to highlight the lack of data on cyber risks, Eling ( 2020 ) conducted a literature review in the areas of cyber risk and cyber insurance. Available information on the frequency, severity, and dependency structure of cyber risks was filtered out. In addition, open questions for future cyber risk research were set up. Another example of data collection on the impact of cyberattacks is provided by Sornette et al. ( 2013 ), who use a database of newspaper articles, press reports and other media to provide a predictive method to identify triggering events and potential accident scenarios and estimate their severity and frequency. A similar approach to data collection was used by Arcuri et al. ( 2020 ) to gather an original sample of global cyberattacks from newspaper reports sourced from the LexisNexis database. This collection is also used and applied to the fields of dynamic communication and cyber risk perception by Fang et al. ( 2021 ). To create a dataset of cyber incidents and disputes, Valeriano and Maness ( 2014 ) collected information on cyber interactions between rival states.

To assess trends and the scale of economic cybercrime, Levi ( 2017 ) examined datasets from different countries and their impact on crime policy. Pooser et al. ( 2018 ) investigated the trend in cyber risk identification from 2006 to 2015 and company characteristics related to cyber risk perception. The authors used a dataset of various reports from cyber insurers for their study. Walker-Roberts et al. ( 2020 ) investigated the spectrum of risk of a cybersecurity incident taking place in the cyber-physical-enabled world using the VERIS Community Database. The datasets of impacts identified are presented below. Due to overlap, some may also appear in the causes dataset (Supplementary Table 2).

Cybersecurity datasets

General intrusion detection.

General intrusion detection systems account for the largest share of countermeasure datasets. For companies or researchers focused on cybersecurity, the datasets can be used to test their own countermeasures or obtain information about potential vulnerabilities. For example, Al-Omari et al. ( 2021 ) proposed an intelligent intrusion detection model for predicting and detecting attacks in cyberspace, which was applied to dataset UNSW-NB 15. A similar approach was taken by Choras and Kozik ( 2015 ), who used machine learning to detect cyberattacks on web applications. To evaluate their method, they used the HTTP dataset CSIC 2010. For the identification of unknown attacks on web servers, Kamarudin et al. ( 2017 ) proposed an anomaly-based intrusion detection system using an ensemble classification approach. Ganeshan and Rodrigues ( 2020 ) showed an intrusion detection system approach, which clusters the database into several groups and detects the presence of intrusion in the clusters. In comparison, AlKadi et al. ( 2019 ) used a localisation-based model to discover abnormal patterns in network traffic. Hybrid models have been recommended by Bhattacharya et al. ( 2020 ) and Agrawal et al. ( 2019 ); the former is a machine-learning model based on principal component analysis for the classification of intrusion detection system datasets, while the latter is a hybrid ensemble intrusion detection system for anomaly detection using different datasets to detect patterns in network traffic that deviate from normal behaviour.

Agarwal et al. ( 2021 ) used three different machine learning algorithms in their research to find the most suitable for efficiently identifying patterns of suspicious network activity. The UNSW-NB15 dataset was used for this purpose. Kasongo and Sun ( 2020 ), Feed-Forward Deep Neural Network (FFDNN), Keshk et al. ( 2021 ), the privacy-preserving anomaly detection framework, and others also use the UNSW-NB 15 dataset as part of intrusion detection systems. The same dataset and others were used by Binbusayyis and Vaiyapuri ( 2019 ) to identify and compare key features for cyber intrusion detection. Atefinia and Ahmadi ( 2021 ) proposed a deep neural network model to reduce the false positive rate of an anomaly-based intrusion detection system. Fossaceca et al. ( 2015 ) focused in their research on the development of a framework that combined the outputs of multiple learners in order to improve the efficacy of network intrusion, and Gauthama Raman et al. ( 2020 ) presented a search algorithm based on Support Vector machine to improve the performance of the detection and false alarm rate to improve intrusion detection techniques. Ahmad and Alsemmeari ( 2020 ) targeted extreme learning machine techniques due to their good capabilities in classification problems and handling huge data. They used the NSL-KDD dataset as a benchmark.

With reference to prediction, Bakdash et al. ( 2018 ) used datasets from the U.S. Department of Defence to predict cyberattacks by malware. This dataset consists of weekly counts of cyber events over approximately seven years. Another prediction method was presented by Fan et al. ( 2018 ), which showed an improved integrated cybersecurity prediction method based on spatial-time analysis. Also, with reference to prediction, Ashtiani and Azgomi ( 2014 ) proposed a framework for the distributed simulation of cyberattacks based on high-level architecture. Kirubavathi and Anitha ( 2016 ) recommended an approach to detect botnets, irrespective of their structures, based on network traffic flow behaviour analysis and machine-learning techniques. Dwivedi et al. ( 2021 ) introduced a multi-parallel adaptive technique to utilise an adaption mechanism in the group of swarms for network intrusion detection. AlEroud and Karabatis ( 2018 ) presented an approach that used contextual information to automatically identify and query possible semantic links between different types of suspicious activities extracted from network flows.

Intrusion detection systems with a focus on IoT

In addition to general intrusion detection systems, a proportion of studies focused on IoT. Habib et al. ( 2020 ) presented an approach for converting traditional intrusion detection systems into smart intrusion detection systems for IoT networks. To enhance the process of diagnostic detection of possible vulnerabilities with an IoT system, Georgescu et al. ( 2019 ) introduced a method that uses a named entity recognition-based solution. With regard to IoT in the smart home sector, Heartfield et al. ( 2021 ) presented a detection system that is able to autonomously adjust the decision function of its underlying anomaly classification models to a smart home’s changing condition. Another intrusion detection system was suggested by Keserwani et al. ( 2021 ), which combined Grey Wolf Optimization and Particle Swam Optimization to identify various attacks for IoT networks. They used the KDD Cup 99, NSL-KDD and CICIDS-2017 to evaluate their model. Abu Al-Haija and Zein-Sabatto ( 2020 ) provide a comprehensive development of a new intelligent and autonomous deep-learning-based detection and classification system for cyberattacks in IoT communication networks that leverage the power of convolutional neural networks, abbreviated as IoT-IDCS-CNN (IoT-based Intrusion Detection and Classification System using Convolutional Neural Network). To evaluate the development, the authors used the NSL-KDD dataset. Biswas and Roy ( 2021 ) recommended a model that identifies malicious botnet traffic using novel deep-learning approaches like artificial neural networks gutted recurrent units and long- or short-term memory models. They tested their model with the Bot-IoT dataset.

With a more forensic background, Koroniotis et al. ( 2020 ) submitted a network forensic framework, which described the digital investigation phases for identifying and tracing attack behaviours in IoT networks. The suggested work was evaluated with the Bot-IoT and UINSW-NB15 datasets. With a focus on big data and IoT, Chhabra et al. ( 2020 ) presented a cyber forensic framework for big data analytics in an IoT environment using machine learning. Furthermore, the authors mentioned different publicly available datasets for machine-learning models.

A stronger focus on a mobile phones was exhibited by Alazab et al. ( 2020 ), which presented a classification model that combined permission requests and application programme interface calls. The model was tested with a malware dataset containing 27,891 Android apps. A similar approach was taken by Li et al. ( 2019a , b ), who proposed a reliable classifier for Android malware detection based on factorisation machine architecture and extraction of Android app features from manifest files and source code.

Literature reviews

In addition to the different methods and models for intrusion detection systems, various literature reviews on the methods and datasets were also found. Liu and Lang ( 2019 ) proposed a taxonomy of intrusion detection systems that uses data objects as the main dimension to classify and summarise machine learning and deep learning-based intrusion detection literature. They also presented four different benchmark datasets for machine-learning detection systems. Ahmed et al. ( 2016 ) presented an in-depth analysis of four major categories of anomaly detection techniques, which include classification, statistical, information theory and clustering. Hajj et al. ( 2021 ) gave a comprehensive overview of anomaly-based intrusion detection systems. Their article gives an overview of the requirements, methods, measurements and datasets that are used in an intrusion detection system.

Within the framework of machine learning, Chattopadhyay et al. ( 2018 ) conducted a comprehensive review and meta-analysis on the application of machine-learning techniques in intrusion detection systems. They also compared different machine learning techniques in different datasets and summarised the performance. Vidros et al. ( 2017 ) presented an overview of characteristics and methods in automatic detection of online recruitment fraud. They also published an available dataset of 17,880 annotated job ads, retrieved from the use of a real-life system. An empirical study of different unsupervised learning algorithms used in the detection of unknown attacks was presented by Meira et al. ( 2020 ).

New datasets

Kilincer et al. ( 2021 ) reviewed different intrusion detection system datasets in detail. They had a closer look at the UNS-NB15, ISCX-2012, NSL-KDD and CIDDS-001 datasets. Stojanovic et al. ( 2020 ) also provided a review on datasets and their creation for use in advanced persistent threat detection in the literature. Another review of datasets was provided by Sarker et al. ( 2020 ), who focused on cybersecurity data science as part of their research and provided an overview from a machine-learning perspective. Avila et al. ( 2021 ) conducted a systematic literature review on the use of security logs for data leak detection. They recommended a new classification of information leak, which uses the GDPR principles, identified the most widely publicly available dataset for threat detection, described the attack types in the datasets and the algorithms used for data leak detection. Tuncer et al. ( 2020 ) presented a bytecode-based detection method consisting of feature extraction using local neighbourhood binary patterns. They chose a byte-based malware dataset to investigate the performance of the proposed local neighbourhood binary pattern-based detection method. With a different focus, Mauro et al. ( 2020 ) gave an experimental overview of neural-based techniques relevant to intrusion detection. They assessed the value of neural networks using the Bot-IoT and UNSW-DB15 datasets.

Another category of results in the context of countermeasure datasets is those that were presented as new. Moreno et al. ( 2018 ) developed a database of 300 security-related accidents from European and American sources. The database contained cybersecurity-related events in the chemical and process industry. Damasevicius et al. ( 2020 ) proposed a new dataset (LITNET-2020) for network intrusion detection. The dataset is a new annotated network benchmark dataset obtained from the real-world academic network. It presents real-world examples of normal and under-attack network traffic. With a focus on IoT intrusion detection systems, Alsaedi et al. ( 2020 ) proposed a new benchmark IoT/IIot datasets for assessing intrusion detection system-enabled IoT systems. Also in the context of IoT, Vaccari et al. ( 2020 ) proposed a dataset focusing on message queue telemetry transport protocols, which can be used to train machine-learning models. To evaluate the performance of machine-learning classifiers, Mahfouz et al. ( 2020 ) created a dataset called Game Theory and Cybersecurity (GTCS). A dataset containing 22,000 malware and benign samples was constructed by Martin et al. ( 2019 ). The dataset can be used as a benchmark to test the algorithm for Android malware classification and clustering techniques. In addition, Laso et al. ( 2017 ) presented a dataset created to investigate how data and information quality estimates enable the detection of anomalies and malicious acts in cyber-physical systems. The dataset contained various cyberattacks and is publicly available.

In addition to the results described above, several other studies were found that fit into the category of countermeasures. Johnson et al. ( 2016 ) examined the time between vulnerability disclosures. Using another vulnerabilities database, Common Vulnerabilities and Exposures (CVE), Subroto and Apriyana ( 2019 ) presented an algorithm model that uses big data analysis of social media and statistical machine learning to predict cyber risks. A similar databank but with a different focus, Common Vulnerability Scoring System, was used by Chatterjee and Thekdi ( 2020 ) to present an iterative data-driven learning approach to vulnerability assessment and management for complex systems. Using the CICIDS2017 dataset to evaluate the performance, Malik et al. ( 2020 ) proposed a control plane-based orchestration for varied, sophisticated threats and attacks. The same dataset was used in another study by Lee et al. ( 2019 ), who developed an artificial security information event management system based on a combination of event profiling for data processing and different artificial network methods. To exploit the interdependence between multiple series, Fang et al. ( 2021 ) proposed a statistical framework. In order to validate the framework, the authors applied it to a dataset of enterprise-level security breaches from the Privacy Rights Clearinghouse and Identity Theft Center database. Another framework with a defensive aspect was recommended by Li et al. ( 2021 ) to increase the robustness of deep neural networks against adversarial malware evasion attacks. Sarabi et al. ( 2016 ) investigated whether and to what extent business details can help assess an organisation's risk of data breaches and the distribution of risk across different types of incidents to create policies for protection, detection and recovery from different forms of security incidents. They used data from the VERIS Community Database.

Datasets that have been classified into the cybersecurity category are detailed in Supplementary Table 3. Due to overlap, records from the previous tables may also be included.

This paper presented a systematic literature review of studies on cyber risk and cybersecurity that used datasets. Within this framework, 255 studies were fully reviewed and then classified into three different categories. Then, 79 datasets were consolidated from these studies. These datasets were subsequently analysed, and important information was selected through a process of filtering out. This information was recorded in a table and enhanced with further information as part of the literature analysis. This made it possible to create a comprehensive overview of the datasets. For example, each dataset contains a description of where the data came from and how the data has been used to date. This allows different datasets to be compared and the appropriate dataset for the use case to be selected. This research certainly has limitations, so our selection of datasets cannot necessarily be taken as a representation of all available datasets related to cyber risks and cybersecurity. For example, literature searches were conducted in four academic databases and only found datasets that were used in the literature. Many research projects also used old datasets that may no longer consider current developments. In addition, the data are often focused on only one observation and are limited in scope. For example, the datasets can only be applied to specific contexts and are also subject to further limitations (e.g. region, industry, operating system). In the context of the applicability of the datasets, it is unfortunately not possible to make a clear statement on the extent to which they can be integrated into academic or practical areas of application or how great this effort is. Finally, it remains to be pointed out that this is an overview of currently available datasets, which are subject to constant change.

Due to the lack of datasets on cyber risks in the academic literature, additional datasets on cyber risks were integrated as part of a further search. The search was conducted on the Google Dataset search portal. The search term used was ‘cyber risk datasets’. Over 100 results were found. However, due to the low significance and verifiability, only 20 selected datasets were included. These can be found in Table 2  in the “ Appendix ”.

The results of the literature review and datasets also showed that there continues to be a lack of available, open cyber datasets. This lack of data is reflected in cyber insurance, for example, as it is difficult to find a risk-based premium without a sufficient database (Nurse et al. 2020 ). The global cyber insurance market was estimated at USD 5.5 billion in 2020 (Dyson 2020 ). When compared to the USD 1 trillion global losses from cybercrime (Maleks Smith et al. 2020 ), it is clear that there exists a significant cyber risk awareness challenge for both the insurance industry and international commerce. Without comprehensive and qualitative data on cyber losses, it can be difficult to estimate potential losses from cyberattacks and price cyber insurance accordingly (GAO 2021 ). For instance, the average cyber insurance loss increased from USD 145,000 in 2019 to USD 359,000 in 2020 (FitchRatings 2021 ). Cyber insurance is an important risk management tool to mitigate the financial impact of cybercrime. This is particularly evident in the impact of different industries. In the Energy & Commodities financial markets, a ransomware attack on the Colonial Pipeline led to a substantial impact on the U.S. economy. As a result of the attack, about 45% of the U.S. East Coast was temporarily unable to obtain supplies of diesel, petrol and jet fuel. This caused the average price in the U.S. to rise 7 cents to USD 3.04 per gallon, the highest in seven years (Garber 2021 ). In addition, Colonial Pipeline confirmed that it paid a USD 4.4 million ransom to a hacker gang after the attack. Another ransomware attack occurred in the healthcare and government sector. The victim of this attack was the Irish Health Service Executive (HSE). A ransom payment of USD 20 million was demanded from the Irish government to restore services after the hack (Tidy 2021 ). In the car manufacturing sector, Miller and Valasek ( 2015 ) initiated a cyberattack that resulted in the recall of 1.4 million vehicles and cost manufacturers EUR 761 million. The risk that arises in the context of these events is the potential for the accumulation of cyber losses, which is why cyber insurers are not expanding their capacity. An example of this accumulation of cyber risks is the NotPetya malware attack, which originated in Russia, struck in Ukraine, and rapidly spread around the world, causing at least USD 10 billion in damage (GAO 2021 ). These events highlight the importance of proper cyber risk management.

This research provides cyber insurance stakeholders with an overview of cyber datasets. Cyber insurers can use the open datasets to improve their understanding and assessment of cyber risks. For example, the impact datasets can be used to better measure financial impacts and their frequencies. These data could be combined with existing portfolio data from cyber insurers and integrated with existing pricing tools and factors to better assess cyber risk valuation. Although most cyber insurers have sparse historical cyber policy and claims data, they remain too small at present for accurate prediction (Bessy-Roland et al. 2021 ). A combination of portfolio data and external datasets would support risk-adjusted pricing for cyber insurance, which would also benefit policyholders. In addition, cyber insurance stakeholders can use the datasets to identify patterns and make better predictions, which would benefit sustainable cyber insurance coverage. In terms of cyber risk cause datasets, cyber insurers can use the data to review their insurance products. For example, the data could provide information on which cyber risks have not been sufficiently considered in product design or where improvements are needed. A combination of cyber cause and cybersecurity datasets can help establish uniform definitions to provide greater transparency and clarity. Consistent terminology could lead to a more sustainable cyber market, where cyber insurers make informed decisions about the level of coverage and policyholders understand their coverage (The Geneva Association 2020).

In addition to the cyber insurance community, this research also supports cybersecurity stakeholders. The reviewed literature can be used to provide a contemporary, contextual and categorised summary of available datasets. This supports efficient and timely progress in cyber risk research and is beneficial given the dynamic nature of cyber risks. With the help of the described cybersecurity datasets and the identified information, a comparison of different datasets is possible. The datasets can be used to evaluate the effectiveness of countermeasures in simulated cyberattacks or to test intrusion detection systems.

In this paper, we conducted a systematic review of studies on cyber risk and cybersecurity databases. We found that most of the datasets are in the field of intrusion detection and machine learning and are used for technical cybersecurity aspects. The available datasets on cyber risks were relatively less represented. Due to the dynamic nature and lack of historical data, assessing and understanding cyber risk is a major challenge for cyber insurance stakeholders. To address this challenge, a greater density of cyber data is needed to support cyber insurers in risk management and researchers with cyber risk-related topics. With reference to ‘Open Science’ FAIR data (Jacobsen et al. 2020 ), mandatory reporting of cyber incidents could help improve cyber understanding, awareness and loss prevention among companies and insurers. Through greater availability of data, cyber risks can be better understood, enabling researchers to conduct more in-depth research into these risks. Companies could incorporate this new knowledge into their corporate culture to reduce cyber risks. For insurance companies, this would have the advantage that all insurers would have the same understanding of cyber risks, which would support sustainable risk-based pricing. In addition, common definitions of cyber risks could be derived from new data.

The cybersecurity databases summarised and categorised in this research could provide a different perspective on cyber risks that would enable the formulation of common definitions in cyber policies. The datasets can help companies addressing cybersecurity and cyber risk as part of risk management assess their internal cyber posture and cybersecurity measures. The paper can also help improve risk awareness and corporate behaviour, and provides the research community with a comprehensive overview of peer-reviewed datasets and other available datasets in the area of cyber risk and cybersecurity. This approach is intended to support the free availability of data for research. The complete tabulated review of the literature is included in the Supplementary Material.

This work provides directions for several paths of future work. First, there are currently few publicly available datasets for cyber risk and cybersecurity. The older datasets that are still widely used no longer reflect today's technical environment. Moreover, they can often only be used in one context, and the scope of the samples is very limited. It would be of great value if more datasets were publicly available that reflect current environmental conditions. This could help intrusion detection systems to consider current events and thus lead to a higher success rate. It could also compensate for the disadvantages of older datasets by collecting larger quantities of samples and making this contextualisation more widespread. Another area of research may be the integratability and adaptability of cybersecurity and cyber risk datasets. For example, it is often unclear to what extent datasets can be integrated or adapted to existing data. For cyber risks and cybersecurity, it would be helpful to know what requirements need to be met or what is needed to use the datasets appropriately. In addition, it would certainly be helpful to know whether datasets can be modified to be used for cyber risks or cybersecurity. Finally, the ability for stakeholders to identify machine-readable cybersecurity datasets would be useful because it would allow for even clearer delineations or comparisons between datasets. Due to the lack of publicly available datasets, concrete benchmarks often cannot be applied.

Average cost of a breach of more than 50 million records.

Aamir, M., S.S.H. Rizvi, M.A. Hashmani, M. Zubair, and J. Ahmad. 2021. Machine learning classification of port scanning and DDoS attacks: A comparative analysis. Mehran University Research Journal of Engineering and Technology 40 (1): 215–229. .

Article   Google Scholar  

Aamir, M., and S.M.A. Zaidi. 2019. DDoS attack detection with feature engineering and machine learning: The framework and performance evaluation. International Journal of Information Security 18 (6): 761–785. .

Aassal, A. El, S. Baki, A. Das, and R.M. Verma. 2020. 2020. An in-depth benchmarking and evaluation of phishing detection research for security needs. IEEE Access 8: 22170–22192. .

Abu Al-Haija, Q., and S. Zein-Sabatto. 2020. An efficient deep-learning-based detection and classification system for cyber-attacks in IoT communication networks. Electronics 9 (12): 26. .

Adhikari, U., T.H. Morris, and S.Y. Pan. 2018. Applying Hoeffding adaptive trees for real-time cyber-power event and intrusion classification. IEEE Transactions on Smart Grid 9 (5): 4049–4060. .

Agarwal, A., P. Sharma, M. Alshehri, A.A. Mohamed, and O. Alfarraj. 2021. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Computer Science . .

Agrafiotis, I., J.R.C.. Nurse, M. Goldsmith, S. Creese, and D. Upton. 2018. A taxonomy of cyber-harms: Defining the impacts of cyber-attacks and understanding how they propagate. Journal of Cybersecurity 4: tyy006.

Agrawal, A., S. Mohammed, and J. Fiaidhi. 2019. Ensemble technique for intruder detection in network traffic. International Journal of Security and Its Applications 13 (3): 1–8. .

Ahmad, I., and R.A. Alsemmeari. 2020. Towards improving the intrusion detection through ELM (extreme learning machine). CMC Computers Materials & Continua 65 (2): 1097–1111. .

Ahmed, M., A.N. Mahmood, and J.K. Hu. 2016. A survey of network anomaly detection techniques. Journal of Network and Computer Applications 60: 19–31. .

Al-Jarrah, O.Y., O. Alhussein, P.D. Yoo, S. Muhaidat, K. Taha, and K. Kim. 2016. Data randomization and cluster-based partitioning for Botnet intrusion detection. IEEE Transactions on Cybernetics 46 (8): 1796–1806. .

Al-Mhiqani, M.N., R. Ahmad, Z.Z. Abidin, W. Yassin, A. Hassan, K.H. Abdulkareem, N.S. Ali, and Z. Yunos. 2020. A review of insider threat detection: Classification, machine learning techniques, datasets, open challenges, and recommendations. Applied Sciences—Basel 10 (15): 41. .

Al-Omari, M., M. Rawashdeh, F. Qutaishat, M. Alshira’H, and N. Ababneh. 2021. An intelligent tree-based intrusion detection model for cyber security. Journal of Network and Systems Management 29 (2): 18. .

Alabdallah, A., and M. Awad. 2018. Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System. KSII Transactions on Internet and Information Systems 12 (10): 5143–5158. .

Alazab, M., M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan. 2020. Intelligent mobile malware detection using permission requests and API calls. Future Generation Computer Systems—the International Journal of eScience 107: 509–521. .

Albahar, M.A., R.A. Al-Falluji, and M. Binsawad. 2020. An empirical comparison on malicious activity detection using different neural network-based models. IEEE Access 8: 61549–61564. .

AlEroud, A.F., and G. Karabatis. 2018. Queryable semantics to detect cyber-attacks: A flow-based detection approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 (2): 207–223. .

Algarni, A.M., V. Thayananthan, and Y.K. Malaiya. 2021. Quantitative assessment of cybersecurity risks for mitigating data breaches in business systems. Applied Sciences (switzerland) . .

Alhowaide, A., I. Alsmadi, and J. Tang. 2021. Towards the design of real-time autonomous IoT NIDS. Cluster Computing—the Journal of Networks Software Tools and Applications . .

Ali, S., and Y. Li. 2019. Learning multilevel auto-encoders for DDoS attack detection in smart grid network. IEEE Access 7: 108647–108659. .

AlKadi, O., N. Moustafa, B. Turnbull, and K.K.R. Choo. 2019. Mixture localization-based outliers models for securing data migration in cloud centers. IEEE Access 7: 114607–114618. .

Allianz. 2021. Allianz Risk Barometer. . Accessed 15 May 2021.

Almiani, M., A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and Razaque, A. 2020. Deep recurrent neural network for IoT intrusion detection system. Simulation Modelling Practice and Theory 101: 102031.

Alsaedi, A., N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar. 2020. TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access 8: 165130–165150. .

Alsamiri, J., and K. Alsubhi. 2019. Internet of Things cyber attacks detection using machine learning. International Journal of Advanced Computer Science and Applications 10 (12): 627–634.

Alsharafat, W. 2013. Applying artificial neural network and eXtended classifier system for network intrusion detection. International Arab Journal of Information Technology 10 (3): 230–238.

Google Scholar  

Amin, R.W., H.E. Sevil, S. Kocak, G. Francia III., and P. Hoover. 2021. The spatial analysis of the malicious uniform resource locators (URLs): 2016 dataset case study. Information (switzerland) 12 (1): 1–18. .

Arcuri, M.C., L.Z. Gai, F. Ielasi, and E. Ventisette. 2020. Cyber attacks on hospitality sector: Stock market reaction. Journal of Hospitality and Tourism Technology 11 (2): 277–290. .

Arp, D., M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C.E.R.T. Siemens. 2014. Drebin: Effective and explainable detection of android malware in your pocket. In Ndss 14: 23–26.

Ashtiani, M., and M.A. Azgomi. 2014. A distributed simulation framework for modeling cyber attacks and the evaluation of security measures. Simulation 90 (9): 1071–1102. .

Atefinia, R., and M. Ahmadi. 2021. Network intrusion detection using multi-architectural modular deep neural network. Journal of Supercomputing 77 (4): 3571–3593. .

Avila, R., R. Khoury, R. Khoury, and F. Petrillo. 2021. Use of security logs for data leak detection: A systematic literature review. Security and Communication Networks 2021: 29. .

Azeez, N.A., T.J. Ayemobola, S. Misra, R. Maskeliunas, and R. Damasevicius. 2019. Network Intrusion Detection with a Hashing Based Apriori Algorithm Using Hadoop MapReduce. Computers 8 (4): 15. .

Bakdash, J.Z., S. Hutchinson, E.G. Zaroukian, L.R. Marusich, S. Thirumuruganathan, C. Sample, B. Hoffman, and G. Das. 2018. Malware in the future forecasting of analyst detection of cyber events. Journal of Cybersecurity . .

Barletta, V.S., D. Caivano, A. Nannavecchia, and M. Scalera. 2020. Intrusion detection for in-vehicle communication networks: An unsupervised Kohonen SOM approach. Future Internet . .

Barzegar, M., and M. Shajari. 2018. Attack scenario reconstruction using intrusion semantics. Expert Systems with Applications 108: 119–133. .

Bessy-Roland, Y., A. Boumezoued, and C. Hillairet. 2021. Multivariate Hawkes process for cyber insurance. Annals of Actuarial Science 15 (1): 14–39.

Bhardwaj, A., V. Mangat, and R. Vig. 2020. Hyperband tuned deep neural network with well posed stacked sparse AutoEncoder for detection of DDoS attacks in cloud. IEEE Access 8: 181916–181929. .

Bhati, B.S., C.S. Rai, B. Balamurugan, and F. Al-Turjman. 2020. An intrusion detection scheme based on the ensemble of discriminant classifiers. Computers & Electrical Engineering 86: 9. .

Bhattacharya, S., S.S.R. Krishnan, P.K.R. Maddikunta, R. Kaluri, S. Singh, T.R. Gadekallu, M. Alazab, and U. Tariq. 2020. A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. Electronics 9 (2): 16. .

Bibi, I., A. Akhunzada, J. Malik, J. Iqbal, A. Musaddiq, and S. Kim. 2020. A dynamic DL-driven architecture to combat sophisticated android malware. IEEE Access 8: 129600–129612. .

Biener, C., M. Eling, and J.H. Wirfs. 2015. Insurability of cyber risk: An empirical analysis. The   Geneva Papers on Risk and Insurance—Issues and Practice 40 (1): 131–158. .

Binbusayyis, A., and T. Vaiyapuri. 2019. Identifying and benchmarking key features for cyber intrusion detection: An ensemble approach. IEEE Access 7: 106495–106513. .

Biswas, R., and S. Roy. 2021. Botnet traffic identification using neural networks. Multimedia Tools and Applications . .

Bouyeddou, B., F. Harrou, B. Kadri, and Y. Sun. 2021. Detecting network cyber-attacks using an integrated statistical approach. Cluster Computing—the Journal of Networks Software Tools and Applications 24 (2): 1435–1453. .

Bozkir, A.S., and M. Aydos. 2020. LogoSENSE: A companion HOG based logo detection scheme for phishing web page and E-mail brand recognition. Computers & Security 95: 18. .

Brower, D., and M. McCormick. 2021. Colonial pipeline resumes operations following ransomware attack. Financial Times .

Cai, H., F. Zhang, and A. Levi. 2019. An unsupervised method for detecting shilling attacks in recommender systems by mining item relationship and identifying target items. The Computer Journal 62 (4): 579–597. .

Cebula, J.J., M.E. Popeck, and L.R. Young. 2014. A Taxonomy of Operational Cyber Security Risks Version 2 .

Chadza, T., K.G. Kyriakopoulos, and S. Lambotharan. 2020. Learning to learn sequential network attacks using hidden Markov models. IEEE Access 8: 134480–134497. .

Chatterjee, S., and S. Thekdi. 2020. An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems. Reliability Engineering and System Safety . .

Chattopadhyay, M., R. Sen, and S. Gupta. 2018. A comprehensive review and meta-analysis on applications of machine learning techniques in intrusion detection. Australasian Journal of Information Systems 22: 27.

Chen, H.S., and J. Fiscus. 2018. The inhospitable vulnerability: A need for cybersecurity risk assessment in the hospitality industry. Journal of Hospitality and Tourism Technology 9 (2): 223–234. .

Chhabra, G.S., V.P. Singh, and M. Singh. 2020. Cyber forensics framework for big data analytics in IoT environment using machine learning. Multimedia Tools and Applications 79 (23–24): 15881–15900. .

Chiba, Z., N. Abghour, K. Moussaid, A. Elomri, and M. Rida. 2019. Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms. Computers and Security 86: 291–317. .

Choras, M., and R. Kozik. 2015. Machine learning techniques applied to detect cyber attacks on web applications. Logic Journal of the IGPL 23 (1): 45–56. .

Chowdhury, S., M. Khanzadeh, R. Akula, F. Zhang, S. Zhang, H. Medal, M. Marufuzzaman, and L. Bian. 2017. Botnet detection using graph-based feature clustering. Journal of Big Data 4 (1): 14. .

Cost Of A Cyber Incident: Systematic Review And Cross-Validation, Cybersecurity & Infrastructure Agency , 1, (2020).

D’Hooge, L., T. Wauters, B. Volckaert, and F. De Turck. 2019. Classification hardness for supervised learners on 20 years of intrusion detection data. IEEE Access 7: 167455–167469. .

Damasevicius, R., A. Venckauskas, S. Grigaliunas, J. Toldinas, N. Morkevicius, T. Aleliunas, and P. Smuikys. 2020. LITNET-2020: An annotated real-world network flow dataset for network intrusion detection. Electronics 9 (5): 23. .

De Giovanni, A.L.D., and M. Pirra. 2020. On the determinants of data breaches: A cointegration analysis. Decisions in Economics and Finance . .

Deng, L., D. Li, X. Yao, and H. Wang. 2019. Retracted Article: Mobile network intrusion detection for IoT system based on transfer learning algorithm. Cluster Computing 22 (4): 9889–9904. .

Donkal, G., and G.K. Verma. 2018. A multimodal fusion based framework to reinforce IDS for securing Big Data environment using Spark. Journal of Information Security and Applications 43: 1–11. .

Dunn, C., N. Moustafa, and B. Turnbull. 2020. Robustness evaluations of sustainable machine learning models against data Poisoning attacks in the Internet of Things. Sustainability 12 (16): 17. .

Dwivedi, S., M. Vardhan, and S. Tripathi. 2021. Multi-parallel adaptive grasshopper optimization technique for detecting anonymous attacks in wireless networks. Wireless Personal Communications . .

Dyson, B. 2020. COVID-19 crisis could be ‘watershed’ for cyber insurance, says Swiss Re exec. . Accessed 7 May 2020.

EIOPA. 2018. Understanding cyber insurance—a structured dialogue with insurance companies. . Accessed 28 May 2018

Elijah, A.V., A. Abdullah, N.Z. JhanJhi, M. Supramaniam, and O.B. Abdullateef. 2019. Ensemble and deep-learning methods for two-class and multi-attack anomaly intrusion detection: An empirical study. International Journal of Advanced Computer Science and Applications 10 (9): 520–528.

Eling, M., and K. Jung. 2018. Copula approaches for modeling cross-sectional dependence of data breach losses. Insurance Mathematics & Economics 82: 167–180. .

Eling, M., and W. Schnell. 2016. What do we know about cyber risk and cyber risk insurance? Journal of Risk Finance 17 (5): 474–491. .

Eling, M., and J. Wirfs. 2019. What are the actual costs of cyber risk events? European Journal of Operational Research 272 (3): 1109–1119. .

Eling, M. 2020. Cyber risk research in business and actuarial science. European Actuarial Journal 10 (2): 303–333.

Elmasry, W., A. Akbulut, and A.H. Zaim. 2019. Empirical study on multiclass classification-based network intrusion detection. Computational Intelligence 35 (4): 919–954. .

Elsaid, S.A., and N.S. Albatati. 2020. An optimized collaborative intrusion detection system for wireless sensor networks. Soft Computing 24 (16): 12553–12567. .

Estepa, R., J.E. Díaz-Verdejo, A. Estepa, and G. Madinabeitia. 2020. How much training data is enough? A case study for HTTP anomaly-based intrusion detection. IEEE Access 8: 44410–44425. .

European Council. 2021. Cybersecurity: how the EU tackles cyber threats. . Accessed 10 May 2021

Falco, G. et al. 2019. Cyber risk research impeded by disciplinary barriers. Science (American Association for the Advancement of Science) 366 (6469): 1066–1069.

Fan, Z.J., Z.P. Tan, C.X. Tan, and X. Li. 2018. An improved integrated prediction method of cyber security situation based on spatial-time analysis. Journal of Internet Technology 19 (6): 1789–1800. .

Fang, Z.J., M.C. Xu, S.H. Xu, and T.Z. Hu. 2021. A framework for predicting data breach risk: Leveraging dependence to cope with sparsity. IEEE Transactions on Information Forensics and Security 16: 2186–2201. .

Farkas, S., O. Lopez, and M. Thomas. 2021. Cyber claim analysis using Generalized Pareto regression trees with applications to insurance. Insurance: Mathematics and Economics 98: 92–105. .

Farsi, H., A. Fanian, and Z. Taghiyarrenani. 2019. A novel online state-based anomaly detection system for process control networks. International Journal of Critical Infrastructure Protection 27: 11. .

Ferrag, M.A., L. Maglaras, S. Moschoyiannis, and H. Janicke. 2020. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications 50: 19. .

Field, M. 2018. WannaCry cyber attack cost the NHS £92m as 19,000 appointments cancelled. . Accessed 9 May 2018.

FitchRatings. 2021. U.S. Cyber Insurance Market Update (Spike in Claims Leads to Decline in 2020 Underwriting Performance). .

Fossaceca, J.M., T.A. Mazzuchi, and S. Sarkani. 2015. MARK-ELM: Application of a novel Multiple Kernel Learning framework for improving the robustness of network intrusion detection. Expert Systems with Applications 42 (8): 4062–4080. .

Franke, U., and J. Brynielsson. 2014. Cyber situational awareness–a systematic review of the literature. Computers & security 46: 18–31.

Freeha, K., K.J. Hwan, M. Lars, and M. Robin. 2021. Data breach management: An integrated risk model. Information & Management 58 (1): 103392. .

Ganeshan, R., and P. Rodrigues. 2020. Crow-AFL: Crow based adaptive fractional lion optimization approach for the intrusion detection. Wireless Personal Communications 111 (4): 2065–2089. .

GAO. 2021. CYBER INSURANCE—Insurers and policyholders face challenges in an evolving market. . Accessed 16 May 2021.

Garber, J. 2021. Colonial Pipeline fiasco foreshadows impact of Biden energy policy. . Accessed 4 May 2021.

Gauthama Raman, M.R., N. Somu, S. Jagarapu, T. Manghnani, T. Selvam, K. Krithivasan, and V.S. Shankar Sriram. 2020. An efficient intrusion detection technique based on support vector machine and improved binary gravitational search algorithm. Artificial Intelligence Review 53 (5): 3255–3286. .

Gavel, S., A.S. Raghuvanshi, and S. Tiwari. 2021. Distributed intrusion detection scheme using dual-axis dimensionality reduction for Internet of things (IoT). Journal of Supercomputing . .

GDPR.EU. 2021. FAQ. . Accessed 10 May 2021.

Georgescu, T.M., B. Iancu, and M. Zurini. 2019. Named-entity-recognition-based automated system for diagnosing cybersecurity situations in IoT networks. Sensors (switzerland) . .

Giudici, P., and E. Raffinetti. 2020. Cyber risk ordering with rank-based statistical models. AStA Advances in Statistical Analysis . .

Goh, J., S. Adepu, K.N. Junejo, and A. Mathur. 2016. A dataset to support research in the design of secure water treatment systems. In CRITIS.

Gong, X.Y., J.L. Lu, Y.F. Zhou, H. Qiu, and R. He. 2021. Model uncertainty based annotation error fixing for web attack detection. Journal of Signal Processing Systems for Signal Image and Video Technology 93 (2–3): 187–199. .

Goode, S., H. Hoehle, V. Venkatesh, and S.A. Brown. 2017. USER compensation as a data breach recovery action: An investigation of the sony playstation network breach. MIS Quarterly 41 (3): 703–727.

Guo, H., S. Huang, C. Huang, Z. Pan, M. Zhang, and F. Shi. 2020. File entropy signal analysis combined with wavelet decomposition for malware classification. IEEE Access 8: 158961–158971. .

Habib, M., I. Aljarah, and H. Faris. 2020. A Modified multi-objective particle swarm optimizer-based Lévy flight: An approach toward intrusion detection in Internet of Things. Arabian Journal for Science and Engineering 45 (8): 6081–6108. .

Hajj, S., R. El Sibai, J.B. Abdo, J. Demerjian, A. Makhoul, and C. Guyeux. 2021. Anomaly-based intrusion detection systems: The requirements, methods, measurements, and datasets. Transactions on Emerging Telecommunications Technologies 32 (4): 36. .

Heartfield, R., G. Loukas, A. Bezemskij, and E. Panaousis. 2021. Self-configurable cyber-physical intrusion detection for smart homes using reinforcement learning. IEEE Transactions on Information Forensics and Security 16: 1720–1735. .

Hemo, B., T. Gafni, K. Cohen, and Q. Zhao. 2020. Searching for anomalies over composite hypotheses. IEEE Transactions on Signal Processing 68: 1181–1196.

Hindy, H., D. Brosset, E. Bayne, A.K. Seeam, C. Tachtatzis, R. Atkinson, and X. Bellekens. 2020. A taxonomy of network threats and the effect of current datasets on intrusion detection systems. IEEE Access 8: 104650–104675. .

Hong, W., D. Huang, C. Chen, and J. Lee. 2020. Towards accurate and efficient classification of power system contingencies and cyber-attacks using recurrent neural networks. IEEE Access 8: 123297–123309. .

Husák, M., M. Zádník, V. Bartos, and P. Sokol. 2020. Dataset of intrusion detection alerts from a sharing platform. Data in Brief 33: 106530.

IBM Security. 2020. Cost of a Data breach Report. . Accessed 19 May 2021.

IEEE. 2021. IEEE Quick Facts. . Accessed 11 May 2021.

Kilincer, I.F., F. Ertam, and S. Abdulkadir. 2021. Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks 188: 107840. .

Jaber, A.N., and S. Ul Rehman. 2020. FCM-SVM based intrusion detection system for cloud computing environment. Cluster Computing—the Journal of Networks Software Tools and Applications 23 (4): 3221–3231. .

Jacobs, J., S. Romanosky, B. Edwards, M. Roytman, and I. Adjerid. 2019. Exploit prediction scoring system (epss). arXiv:1908.04856

Jacobsen, A. et al. 2020. FAIR principles: Interpretations and implementation considerations. Data Intelligence 2 (1–2): 10–29. .

Jahromi, A.N., S. Hashemi, A. Dehghantanha, R.M. Parizi, and K.K.R. Choo. 2020. An enhanced stacked LSTM method with no random initialization for malware threat hunting in safety and time-critical systems. IEEE Transactions on Emerging Topics in Computational Intelligence 4 (5): 630–640. .

Jang, S., S. Li, and Y. Sung. 2020. FastText-based local feature visualization algorithm for merged image-based malware classification framework for cyber security and cyber defense. Mathematics 8 (3): 13. .

Javeed, D., T.H. Gao, and M.T. Khan. 2021. SDN-enabled hybrid DL-driven framework for the detection of emerging cyber threats in IoT. Electronics 10 (8): 16. .

Johnson, P., D. Gorton, R. Lagerstrom, and M. Ekstedt. 2016. Time between vulnerability disclosures: A measure of software product vulnerability. Computers & Security 62: 278–295. .

Johnson, P., R. Lagerström, M. Ekstedt, and U. Franke. 2018. Can the common vulnerability scoring system be trusted? A Bayesian analysis. IEEE Transactions on Dependable and Secure Computing 15 (6): 1002–1015. .

Junger, M., V. Wang, and M. Schlömer. 2020. Fraud against businesses both online and offline: Crime scripts, business characteristics, efforts, and benefits. Crime Science 9 (1): 13. .

Kalutarage, H.K., H.N. Nguyen, and S.A. Shaikh. 2017. Towards a threat assessment framework for apps collusion. Telecommunication Systems 66 (3): 417–430. .

Kamarudin, M.H., C. Maple, T. Watson, and N.S. Safa. 2017. A LogitBoost-based algorithm for detecting known and unknown web attacks. IEEE Access 5: 26190–26200. .

Kasongo, S.M., and Y.X. Sun. 2020. A deep learning method with wrapper based feature extraction for wireless intrusion detection system. Computers & Security 92: 15. .

Keserwani, P.K., M.C. Govil, E.S. Pilli, and P. Govil. 2021. A smart anomaly-based intrusion detection system for the Internet of Things (IoT) network using GWO–PSO–RF model. Journal of Reliable Intelligent Environments 7 (1): 3–21. .

Keshk, M., E. Sitnikova, N. Moustafa, J. Hu, and I. Khalil. 2021. An integrated framework for privacy-preserving based anomaly detection for cyber-physical systems. IEEE Transactions on Sustainable Computing 6 (1): 66–79. .

Khan, I.A., D.C. Pi, A.K. Bhatia, N. Khan, W. Haider, and A. Wahab. 2020. Generating realistic IoT-based IDS dataset centred on fuzzy qualitative modelling for cyber-physical systems. Electronics Letters 56 (9): 441–443. .

Khraisat, A., I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab. 2020. Hybrid intrusion detection system based on the stacking ensemble of C5 decision tree classifier and one class support vector machine. Electronics 9 (1): 18. .

Khraisat, A., I. Gondal, P. Vamplew, and J. Kamruzzaman. 2019. Survey of intrusion detection systems: Techniques, datasets and challenges. Cybersecurity 2 (1): 20. .

Kilincer, I.F., F. Ertam, and A. Sengur. 2021. Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks 188: 16. .

Kim, D., and H.K. Kim. 2019. Automated dataset generation system for collaborative research of cyber threat analysis. Security and Communication Networks 2019: 10. .

Kim, G., C. Lee, J. Jo, and H. Lim. 2020. Automatic extraction of named entities of cyber threats using a deep Bi-LSTM-CRF network. International Journal of Machine Learning and Cybernetics 11 (10): 2341–2355. .

Kirubavathi, G., and R. Anitha. 2016. Botnet detection via mining of traffic flow characteristics. Computers & Electrical Engineering 50: 91–101. .

Kiwia, D., A. Dehghantanha, K.K.R. Choo, and J. Slaughter. 2018. A cyber kill chain based taxonomy of banking Trojans for evolutionary computational intelligence. Journal of Computational Science 27: 394–409. .

Koroniotis, N., N. Moustafa, and E. Sitnikova. 2020. A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework. Future Generation Computer Systems 110: 91–106. .

Kruse, C.S., B. Frederick, T. Jacobson, and D. Kyle Monticone. 2017. Cybersecurity in healthcare: A systematic review of modern threats and trends. Technology and Health Care 25 (1): 1–10.

Kshetri, N. 2018. The economics of cyber-insurance. IT Professional 20 (6): 9–14. .

Kumar, R., P. Kumar, R. Tripathi, G.P. Gupta, T.R. Gadekallu, and G. Srivastava. 2021. SP2F: A secured privacy-preserving framework for smart agricultural Unmanned Aerial Vehicles. Computer Networks . .

Kumar, R., and R. Tripathi. 2021. DBTP2SF: A deep blockchain-based trustworthy privacy-preserving secured framework in industrial internet of things systems. Transactions on Emerging Telecommunications Technologies 32 (4): 27. .

Laso, P.M., D. Brosset, and J. Puentes. 2017. Dataset of anomalies and malicious acts in a cyber-physical subsystem. Data in Brief 14: 186–191. .

Lee, J., J. Kim, I. Kim, and K. Han. 2019. Cyber threat detection based on artificial neural networks using event profiles. IEEE Access 7: 165607–165626. .

Lee, S.J., P.D. Yoo, A.T. Asyhari, Y. Jhi, L. Chermak, C.Y. Yeun, and K. Taha. 2020. IMPACT: Impersonation attack detection via edge computing using deep Autoencoder and feature abstraction. IEEE Access 8: 65520–65529. .

Leong, Y.-Y., and Y.-C. Chen. 2020. Cyber risk cost and management in IoT devices-linked health insurance. The Geneva Papers on Risk and Insurance—Issues and Practice 45 (4): 737–759. .

Levi, M. 2017. Assessing the trends, scale and nature of economic cybercrimes: overview and Issues: In Cybercrimes, cybercriminals and their policing, in crime, law and social change. Crime, Law and Social Change 67 (1): 3–20. .

Li, C., K. Mills, D. Niu, R. Zhu, H. Zhang, and H. Kinawi. 2019a. Android malware detection based on factorization machine. IEEE Access 7: 184008–184019. .

Li, D.Q., and Q.M. Li. 2020. Adversarial deep ensemble: evasion attacks and defenses for malware detection. IEEE Transactions on Information Forensics and Security 15: 3886–3900. .

Li, D.Q., Q.M. Li, Y.F. Ye, and S.H. Xu. 2021. A framework for enhancing deep neural networks against adversarial malware. IEEE Transactions on Network Science and Engineering 8 (1): 736–750. .

Li, R.H., C. Zhang, C. Feng, X. Zhang, and C.J. Tang. 2019b. Locating vulnerability in binaries using deep neural networks. IEEE Access 7: 134660–134676. .

Li, X., M. Xu, P. Vijayakumar, N. Kumar, and X. Liu. 2020. Detection of low-frequency and multi-stage attacks in industrial Internet of Things. IEEE Transactions on Vehicular Technology 69 (8): 8820–8831. .

Liu, H.Y., and B. Lang. 2019. Machine learning and deep learning methods for intrusion detection systems: A survey. Applied Sciences—Basel 9 (20): 28. .

Lopez-Martin, M., B. Carro, and A. Sanchez-Esguevillas. 2020. Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications . .

Loukas, G., D. Gan, and Tuan Vuong. 2013. A review of cyber threats and defence approaches in emergency management. Future Internet 5: 205–236.

Luo, C.C., S. Su, Y.B. Sun, Q.J. Tan, M. Han, and Z.H. Tian. 2020. A convolution-based system for malicious URLs detection. CMC—Computers Materials Continua 62 (1): 399–411.

Mahbooba, B., M. Timilsina, R. Sahal, and M. Serrano. 2021. Explainable artificial intelligence (XAI) to enhance trust management in intrusion detection systems using decision tree model. Complexity 2021: 11. .

Mahdavifar, S., and A.A. Ghorbani. 2020. DeNNeS: Deep embedded neural network expert system for detecting cyber attacks. Neural Computing & Applications 32 (18): 14753–14780. .

Mahfouz, A., A. Abuhussein, D. Venugopal, and S. Shiva. 2020. Ensemble classifiers for network intrusion detection using a novel network attack dataset. Future Internet 12 (11): 1–19. .

Maleks Smith, Z., E. Lostri, and J.A. Lewis. 2020. The hidden costs of cybercrime. . Accessed 16 May 2021.

Malik, J., A. Akhunzada, I. Bibi, M. Imran, A. Musaddiq, and S.W. Kim. 2020. Hybrid deep learning: An efficient reconnaissance and surveillance detection mechanism in SDN. IEEE Access 8: 134695–134706. .

Manimurugan, S. 2020. IoT-Fog-Cloud model for anomaly detection using improved Naive Bayes and principal component analysis. Journal of Ambient Intelligence and Humanized Computing . .

Martin, A., R. Lara-Cabrera, and D. Camacho. 2019. Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset. Information Fusion 52: 128–142. .

Mauro, M.D., G. Galatro, and A. Liotta. 2020. Experimental review of neural-based approaches for network intrusion management. IEEE Transactions on Network and Service Management 17 (4): 2480–2495. .

McLeod, A., and D. Dolezel. 2018. Cyber-analytics: Modeling factors associated with healthcare data breaches. Decision Support Systems 108: 57–68. .

Meira, J., R. Andrade, I. Praca, J. Carneiro, V. Bolon-Canedo, A. Alonso-Betanzos, and G. Marreiros. 2020. Performance evaluation of unsupervised techniques in cyber-attack anomaly detection. Journal of Ambient Intelligence and Humanized Computing 11 (11): 4477–4489. .

Miao, Y., J. Ma, X. Liu, J. Weng, H. Li, and H. Li. 2019. Lightweight fine-grained search over encrypted data in Fog computing. IEEE Transactions on Services Computing 12 (5): 772–785. .

Miller, C., and C. Valasek. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015 (S 91).

Mireles, J.D., E. Ficke, J.H. Cho, P. Hurley, and S.H. Xu. 2019. Metrics towards measuring cyber agility. IEEE Transactions on Information Forensics and Security 14 (12): 3217–3232. .

Mishra, N., and S. Pandya. 2021. Internet of Things applications, security challenges, attacks, intrusion detection, and future visions: A systematic review. IEEE Access . .

Monshizadeh, M., V. Khatri, B.G. Atli, R. Kantola, and Z. Yan. 2019. Performance evaluation of a combined anomaly detection platform. IEEE Access 7: 100964–100978. .

Moreno, V.C., G. Reniers, E. Salzano, and V. Cozzani. 2018. Analysis of physical and cyber security-related events in the chemical and process industry. Process Safety and Environmental Protection 116: 621–631. .

Moro, E.D. 2020. Towards an economic cyber loss index for parametric cover based on IT security indicator: A preliminary analysis. Risks . .

Moustafa, N., E. Adi, B. Turnbull, and J. Hu. 2018. A new threat intelligence scheme for safeguarding industry 4.0 systems. IEEE Access 6: 32910–32924. .

Moustakidis, S., and P. Karlsson. 2020. A novel feature extraction methodology using Siamese convolutional neural networks for intrusion detection. Cybersecurity . .

Mukhopadhyay, A., S. Chatterjee, K.K. Bagchi, P.J. Kirs, and G.K. Shukla. 2019. Cyber Risk Assessment and Mitigation (CRAM) framework using Logit and Probit models for cyber insurance. Information Systems Frontiers 21 (5): 997–1018. .

Murphey, H. 2021a. Biden signs executive order to strengthen US cyber security. . Accessed 7 May 2021.

Murphey, H. 2021b. Millions of connected devices have security flaws, study shows. . Accessed 6 May 2021.

Murugesan, V., M. Shalinie, and M.H. Yang. 2018. Design and analysis of hybrid single packet IP traceback scheme. IET Networks 7 (3): 141–151. .

Mwitondi, K.S., and S.A. Zargari. 2018. An iterative multiple sampling method for intrusion detection. Information Security Journal 27 (4): 230–239. .

Neto, N.N., S. Madnick, A.M.G. De Paula, and N.M. Borges. 2021. Developing a global data breach database and the challenges encountered. ACM Journal of Data and Information Quality 13 (1): 33. .

Nurse, J.R.C., L. Axon, A. Erola, I. Agrafiotis, M. Goldsmith, and S. Creese. 2020. The data that drives cyber insurance: A study into the underwriting and claims processes. In 2020 International conference on cyber situational awareness, data analytics and assessment (CyberSA), 15–19 June 2020.

Oliveira, N., I. Praca, E. Maia, and O. Sousa. 2021. Intelligent cyber attack detection and classification for network-based intrusion detection systems. Applied Sciences—Basel 11 (4): 21. .

Page, M.J. et al. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews 10 (1): 89. .

Pajouh, H.H., R. Javidan, R. Khayami, A. Dehghantanha, and K.R. Choo. 2019. A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks. IEEE Transactions on Emerging Topics in Computing 7 (2): 314–323. .

Parra, G.D., P. Rad, K.K.R. Choo, and N. Beebe. 2020. Detecting Internet of Things attacks using distributed deep learning. Journal of Network and Computer Applications 163: 13. .

Paté-Cornell, M.E., M. Kuypers, M. Smith, and P. Keller. 2018. Cyber risk management for critical infrastructure: A risk analysis model and three case studies. Risk Analysis 38 (2): 226–241. .

Pooser, D.M., M.J. Browne, and O. Arkhangelska. 2018. Growth in the perception of cyber risk: evidence from U.S. P&C Insurers. The Geneva Papers on Risk and Insurance—Issues and Practice 43 (2): 208–223. .

Pu, G., L. Wang, J. Shen, and F. Dong. 2021. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Science and Technology 26 (2): 146–153. .

Qiu, J., W. Luo, L. Pan, Y. Tai, J. Zhang, and Y. Xiang. 2019. Predicting the impact of android malicious samples via machine learning. IEEE Access 7: 66304–66316. .

Qu, X., L. Yang, K. Guo, M. Sun, L. Ma, T. Feng, S. Ren, K. Li, and X. Ma. 2020. Direct batch growth hierarchical self-organizing mapping based on statistics for efficient network intrusion detection. IEEE Access 8: 42251–42260. .

Rahman, Md.S., S. Halder, Md. Ashraf Uddin, and U.K. Acharjee. 2021. An efficient hybrid system for anomaly detection in social networks. Cybersecurity 4 (1): 10. .

Ramaiah, M., V. Chandrasekaran, V. Ravi, and N. Kumar. 2021. An intrusion detection system using optimized deep neural network architecture. Transactions on Emerging Telecommunications Technologies 32 (4): 17. .

Raman, M.R.G., K. Kannan, S.K. Pal, and V.S.S. Sriram. 2016. Rough set-hypergraph-based feature selection approach for intrusion detection systems. Defence Science Journal 66 (6): 612–617. .

Rathore, S., J.H. Park. 2018. Semi-supervised learning based distributed attack detection framework for IoT. Applied Soft Computing 72: 79–89. .

Romanosky, S., L. Ablon, A. Kuehn, and T. Jones. 2019. Content analysis of cyber insurance policies: How do carriers price cyber risk? Journal of Cybersecurity (oxford) 5 (1): tyz002.

Sarabi, A., P. Naghizadeh, Y. Liu, and M. Liu. 2016. Risky business: Fine-grained data breach prediction using business profiles. Journal of Cybersecurity 2 (1): 15–28. .

Sardi, Alberto, Alessandro Rizzi, Enrico Sorano, and Anna Guerrieri. 2021. Cyber risk in health facilities: A systematic literature review. Sustainability 12 (17): 7002.

Sarker, Iqbal H., A.S.M. Kayes, Shahriar Badsha, Hamed Alqahtani, Paul Watters, and Alex Ng. 2020. Cybersecurity data science: An overview from machine learning perspective. Journal of Big Data 7 (1): 41. .

Scopus. 2021. Factsheet. . Accessed 11 May 2021.

Sentuna, A., A. Alsadoon, P.W.C. Prasad, M. Saadeh, and O.H. Alsadoon. 2021. A novel Enhanced Naïve Bayes Posterior Probability (ENBPP) using machine learning: Cyber threat analysis. Neural Processing Letters 53 (1): 177–209. .

Shaukat, K., S.H. Luo, V. Varadharajan, I.A. Hameed, S. Chen, D.X. Liu, and J.M. Li. 2020. Performance comparison and current challenges of using machine learning techniques in cybersecurity. Energies 13 (10): 27. .

Sheehan, B., F. Murphy, M. Mullins, and C. Ryan. 2019. Connected and autonomous vehicles: A cyber-risk classification framework. Transportation Research Part a: Policy and Practice 124: 523–536. .

Sheehan, B., F. Murphy, A.N. Kia, and R. Kiely. 2021. A quantitative bow-tie cyber risk classification and assessment framework. Journal of Risk Research 24 (12): 1619–1638.

Shlomo, A., M. Kalech, and R. Moskovitch. 2021. Temporal pattern-based malicious activity detection in SCADA systems. Computers & Security 102: 17. .

Singh, K.J., and T. De. 2020. Efficient classification of DDoS attacks using an ensemble feature selection algorithm. Journal of Intelligent Systems 29 (1): 71–83. .

Skrjanc, I., S. Ozawa, T. Ban, and D. Dovzan. 2018. Large-scale cyber attacks monitoring using Evolving Cauchy Possibilistic Clustering. Applied Soft Computing 62: 592–601. .

Smart, W. 2018. Lessons learned review of the WannaCry Ransomware Cyber Attack. . Accessed 7 May 2021.

Sornette, D., T. Maillart, and W. Kröger. 2013. Exploring the limits of safety analysis in complex technological systems. International Journal of Disaster Risk Reduction 6: 59–66. .

Sovacool, B.K. 2008. The costs of failure: A preliminary assessment of major energy accidents, 1907–2007. Energy Policy 36 (5): 1802–1820. .

SpringerLink. 2021. Journal Search. . Accessed 11 May 2021.

Stojanovic, B., K. Hofer-Schmitz, and U. Kleb. 2020. APT datasets and attack modeling for automated detection methods: A review. Computers & Security 92: 19. .

Subroto, A., and A. Apriyana. 2019. Cyber risk prediction through social media big data analytics and statistical machine learning. Journal of Big Data . .

Tan, Z., A. Jamdagni, X. He, P. Nanda, R.P. Liu, and J. Hu. 2015. Detection of denial-of-service attacks based on computer vision techniques. IEEE Transactions on Computers 64 (9): 2519–2533. .

Tidy, J. 2021. Irish cyber-attack: Hackers bail out Irish health service for free. . Accessed 6 May 2021.

Tuncer, T., F. Ertam, and S. Dogan. 2020. Automated malware recognition method based on local neighborhood binary pattern. Multimedia Tools and Applications 79 (37–38): 27815–27832. .

Uhm, Y., and W. Pak. 2021. Service-aware two-level partitioning for machine learning-based network intrusion detection with high performance and high scalability. IEEE Access 9: 6608–6622. .

Ulven, J.B., and G. Wangen. 2021. A systematic review of cybersecurity risks in higher education. Future Internet 13 (2): 1–40. .

Vaccari, I., G. Chiola, M. Aiello, M. Mongelli, and E. Cambiaso. 2020. MQTTset, a new dataset for machine learning techniques on MQTT. Sensors 20 (22): 17. .

Valeriano, B., and R.C. Maness. 2014. The dynamics of cyber conflict between rival antagonists, 2001–11. Journal of Peace Research 51 (3): 347–360. .

Varghese, J.E., and B. Muniyal. 2021. An Efficient IDS framework for DDoS attacks in SDN environment. IEEE Access 9: 69680–69699. .

Varsha, M. V., P. Vinod, K.A. Dhanya. 2017 Identification of malicious android app using manifest and opcode features. Journal of Computer Virology and Hacking Techniques 13 (2): 125–138.

Velliangiri, S., and H.M. Pandey. 2020. Fuzzy-Taylor-elephant herd optimization inspired Deep Belief Network for DDoS attack detection and comparison with state-of-the-arts algorithms. Future Generation Computer Systems—the International Journal of Escience 110: 80–90. .

Verma, A., and V. Ranga. 2020. Machine learning based intrusion detection systems for IoT applications. Wireless Personal Communications 111 (4): 2287–2310. .

Vidros, S., C. Kolias, G. Kambourakis, and L. Akoglu. 2017. Automatic detection of online recruitment frauds: Characteristics, methods, and a public dataset. Future Internet 9 (1): 19. .

Vinayakumar, R., M. Alazab, K.P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman. 2019. Deep learning approach for intelligent intrusion detection system. IEEE Access 7: 41525–41550. .

Walker-Roberts, S., M. Hammoudeh, O. Aldabbas, M. Aydin, and A. Dehghantanha. 2020. Threats on the horizon: Understanding security threats in the era of cyber-physical systems. Journal of Supercomputing 76 (4): 2643–2664. .

Web of Science. 2021. Web of Science: Science Citation Index Expanded. . Accessed 11 May 2021.

World Economic Forum. 2020. WEF Global Risk Report. . Accessed 13 May 2020.

Xin, Y., L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang. 2018. Machine learning and deep learning methods for cybersecurity. IEEE Access 6: 35365–35381. .

Xu, C., J. Zhang, K. Chang, and C. Long. 2013. Uncovering collusive spammers in Chinese review websites. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management.

Yang, J., T. Li, G. Liang, W. He, and Y. Zhao. 2019. A Simple recurrent unit model based intrusion detection system with DCGAN. IEEE Access 7: 83286–83296. .

Yuan, B.G., J.F. Wang, D. Liu, W. Guo, P. Wu, and X.H. Bao. 2020. Byte-level malware classification based on Markov images and deep learning. Computers & Security 92: 12. .

Zhang, S., X.M. Ou, and D. Caragea. 2015. Predicting cyber risks through national vulnerability database. Information Security Journal 24 (4–6): 194–206. .

Zhang, Y., P. Li, and X. Wang. 2019. Intrusion detection for IoT based on improved genetic algorithm and deep belief network. IEEE Access 7: 31711–31722.

Zheng, Muwei, Hannah Robbins, Zimo Chai, Prakash Thapa, and Tyler Moore. 2018. Cybersecurity research datasets: taxonomy and empirical analysis. In 11th {USENIX} workshop on cyber security experimentation and test ({CSET} 18).

Zhou, X., W. Liang, S. Shimizu, J. Ma, and Q. Jin. 2021. Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Transactions on Industrial Informatics 17 (8): 5790–5798. .

Zhou, Y.Y., G. Cheng, S.Q. Jiang, and M. Dai. 2020. Building an efficient intrusion detection system based on feature selection and ensemble classifier. Computer Networks 174: 17. .

Download references

Open Access funding provided by the IReL Consortium.

Author information

Authors and affiliations.

University of Limerick, Limerick, Ireland

Frank Cremer, Barry Sheehan, Arash N. Kia, Martin Mullins & Finbarr Murphy

TH Köln University of Applied Sciences, Cologne, Germany

Michael Fortmann & Stefan Materne

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Barry Sheehan .

Ethics declarations

Conflict of interest.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 334 kb)

Supplementary file1 (docx 418 kb), rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit .

Reprints and permissions

About this article

Cremer, F., Sheehan, B., Fortmann, M. et al. Cyber risk and cybersecurity: a systematic review of data availability. Geneva Pap Risk Insur Issues Pract 47 , 698–736 (2022).

Download citation

Received : 15 June 2021

Accepted : 20 January 2022

Published : 17 February 2022

Issue Date : July 2022


Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Cyber insurance
  • Systematic review
  • Cybersecurity
  • Find a journal
  • Publish with us
  • Track your research

Help | Advanced Search

Computer Science > Cryptography and Security

Title: federated learning in healthcare: model misconducts, security, challenges, applications, and future research directions -- a systematic review.

Abstract: Data privacy has become a major concern in healthcare due to the increasing digitization of medical records and data-driven medical research. Protecting sensitive patient information from breaches and unauthorized access is critical, as such incidents can have severe legal and ethical complications. Federated Learning (FL) addresses this concern by enabling multiple healthcare institutions to collaboratively learn from decentralized data without sharing it. FL's scope in healthcare covers areas such as disease prediction, treatment customization, and clinical trial research. However, implementing FL poses challenges, including model convergence in non-IID (independent and identically distributed) data environments, communication overhead, and managing multi-institutional collaborations. A systematic review of FL in healthcare is necessary to evaluate how effectively FL can provide privacy while maintaining the integrity and usability of medical data analysis. In this study, we analyze existing literature on FL applications in healthcare. We explore the current state of model security practices, identify prevalent challenges, and discuss practical applications and their implications. Additionally, the review highlights promising future research directions to refine FL implementations, enhance data security protocols, and expand FL's use to broader healthcare applications, which will benefit future researchers and practitioners.

Submission history

Access paper:.

  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .


Assessing the Feasibility of Processing a Paper-based Multilingual Social Needs Screening Questionnaire Using Artificial Intelligence

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Obinna I. Ekekezie
  • For correspondence: [email protected]
  • Info/History
  • Supplementary material
  • Preview PDF

The collection of Social Determinants of Health (SDoH) data is increasingly mandated by healthcare payers, yet traditional paper-based methods pose challenges in terms of cost effectiveness, accuracy, and completeness when manually entered into Electronic Health Records (EHRs). This study explores the application of artificial intelligence (AI), specifically using a document understanding model (Microsoft Azure Document Intelligence) and large language models (OpenAI’s GPT-4 Turbo and GPT-3.5 Turbo), to automate the conversion of paper-based Social Determinants of Health (SDoH) questionnaires into structured, machine-readable formats that could theoretically be incorporated into EHRs. Using a dataset of synthetic and scanned examples, the study compares the performance of the GPT-3.5 and 4 Turbo base models and fine-tuned GPT-3.5 Turbo models on this task. Findings indicate that GPT-4 Turbo outperforms GPT-3.5 Turbo in accuracy and consistency, with fine-tuning enhancing GPT-3.5 Turbo’s performance and consistency in several languages. These results suggest that AI could prove to be an accurate alternative to manual data entry, with important implications for improving how SDoH data is incorporated into EHRs. Future research should address data privacy, security concerns, cost considerations, and the technical aspects of incorporating AI-generated data into EHRs.

Description This study explores the application of artificial intelligence (AI), specifically using a document understanding model (Microsoft Azure Document Intelligence) and large language models (OpenAI’s GPT-4 Turbo and GPT-3.5 Turbo), to automate the conversion of paper-based Social Determinants of Health (SDoH) questionnaires into structured, machine-readable formats that could theoretically be incorporated into a patient’s electronic health records (EHRs).

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

- Additional mention of related prior research in introduction - More robust dataset and methodology yielding new results - Revised manuscript and supplemental files accordingly

Data Availability

All data produced in the present study are available upon reasonable request to the author. In addition, a GitHub repo containing the results from assessing GPT-3.5 Turbo on the training synthetic examples and from comparing models on the two testing datasets (synthetic and scanned) as well as the LLM calls and responses is available. The repo also contains the notebooks (HTML) referenced in the Supplementary Appendix.

View the discussion thread.

Supplementary Material

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
  • Addiction Medicine (324)
  • Allergy and Immunology (632)
  • Anesthesia (168)
  • Cardiovascular Medicine (2397)
  • Dentistry and Oral Medicine (289)
  • Dermatology (207)
  • Emergency Medicine (381)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (846)
  • Epidemiology (11789)
  • Forensic Medicine (10)
  • Gastroenterology (705)
  • Genetic and Genomic Medicine (3763)
  • Geriatric Medicine (350)
  • Health Economics (637)
  • Health Informatics (2406)
  • Health Policy (938)
  • Health Systems and Quality Improvement (904)
  • Hematology (342)
  • HIV/AIDS (785)
  • Infectious Diseases (except HIV/AIDS) (13338)
  • Intensive Care and Critical Care Medicine (769)
  • Medical Education (367)
  • Medical Ethics (105)
  • Nephrology (401)
  • Neurology (3521)
  • Nursing (199)
  • Nutrition (528)
  • Obstetrics and Gynecology (678)
  • Occupational and Environmental Health (667)
  • Oncology (1831)
  • Ophthalmology (538)
  • Orthopedics (220)
  • Otolaryngology (287)
  • Pain Medicine (234)
  • Palliative Medicine (66)
  • Pathology (447)
  • Pediatrics (1036)
  • Pharmacology and Therapeutics (426)
  • Primary Care Research (424)
  • Psychiatry and Clinical Psychology (3186)
  • Public and Global Health (6175)
  • Radiology and Imaging (1288)
  • Rehabilitation Medicine and Physical Therapy (751)
  • Respiratory Medicine (831)
  • Rheumatology (380)
  • Sexual and Reproductive Health (372)
  • Sports Medicine (324)
  • Surgery (403)
  • Toxicology (50)
  • Transplantation (172)
  • Urology (147)
  • Computer Vision
  • Federated Learning
  • Reinforcement Learning
  • Natural Language Processing
  • New Releases
  • 100s of AI Courses
  • Advisory Board Members
  • 🐝 Partnership and Promotion


Key Advantages of Federated Learning

  • Enhanced Privacy: Federated learning significantly reduces the risk of data breaches and misuse by keeping data on local devices. Sensitive information never leaves the device, ensuring user privacy is maintained.
  • Improved Security: Since raw data is not transmitted over the network, the attack surface for potential breaches is minimized. Federated learning can incorporate secure aggregation techniques to protect model updates from being intercepted and reverse-engineered.
  • Scalability: Federated learning leverages the computational power of edge devices, reducing the need for large-scale centralized infrastructure. This decentralized approach allows for scalable AI solutions that can operate efficiently across vast networks of devices.

Recent Advances in Federated Learning

  • Local model training on each device and periodic averaging of model parameters across devices.
  • Balances computational load and communication overhead.
  • Secure aggregation protocols.
  • Ensure model updates are aggregated without revealing individual updates.
  • Use cryptographic methods for enhanced privacy and security.
  • Methods proposed to handle data heterogeneity.
  • Data sharing strategies and personalized federated learning approaches.
  • Model compression techniques to reduce communication costs.

Applications of Federated Learning

  • Collaborative medical research without compromising patient confidentiality.
  • Example: Brain tumor segmentation across multiple hospitals without sharing patient data.
  • Development of robust fraud detection systems while preserving user privacy.
  • Financial institutions collaboratively train models on transaction data.
  • Improvement of predictive text and personalized recommendations on smartphones.
  • Models trained locally on user devices, maintaining privacy.
  • Enhancing the capabilities of interconnected devices.
  • Example: Smart home systems that learn user preferences locally.

Challenges for Federated Learning

Despite its advantages, federated learning faces several challenges that must be addressed for wider adoption. One of the primary challenges is the issue of non-IID (independent and identically distributed) data. In real-world scenarios, data across devices can be highly heterogeneous, which complicates the training process and may lead to biased models. Researchers have proposed methods to address data heterogeneity, such as data-sharing strategies and personalized federated learning approaches.

Another challenge is the high communication cost associated with transmitting model updates. Efficient communication protocols and model compression techniques are essential to mitigate this issue & ensure the feasibility of federated learning in resource-constrained environments. The integration of federated learning with other emerging technologies holds great potential. For instance, combining FL with blockchain can enhance security and transparency in decentralized AI systems. 5G networks will provide the bandwidth & low latency to support large-scale federated learning deployments.

Federated learning represents a paradigm shift in AI, offering a decentralized approach that enhances privacy and security. FL addresses critical concerns associated with traditional AI methods by enabling collaborative model training without centralized data collection. Despite the challenges, ongoing research paves the way for the broader adoption of federated learning across various industries. As this field continues to evolve, federated learning has the potential to become a cornerstone of secure and privacy-preserving AI systems.


database security research paper

Aswin AK is a consulting intern at MarkTechPost. He is pursuing his Dual Degree at the Indian Institute of Technology, Kharagpur. He is passionate about data science and machine learning, bringing a strong academic background and hands-on experience in solving real-life cross-domain challenges.

Exploring the Frontiers of Artificial Intelligence: A Comprehensive Analysis of Reinforcement Learning, Generative Adversarial Networks, and Ethical Implications in Modern AI Systems

  • OpenRLHF: An Open-Source AI Framework Enabling Efficient Reinforcement Learning from Human Feedback RLHF Scaling
  • Quantum Machine Learning for Accelerating EEG Signal Analysis
  • TRANSMI: A Machine Learning Framework to Create Baseline Models Adapted for Transliterated Data from Existing Multilingual Pretrained Language Models mPLMs without Any Training


Pyramidinfer: allowing efficient kv cache compression for scalable llm inference, this machine learning paper from stanford and the university of toronto proposes observational scaling laws: highlighting the surprising predictability of complex scaling phenomena, transformative applications of deep learning in regulatory genomics and biological imaging, ai wearables: transforming day-to-day life, cohere ai releases aya23 models: transformative multilingual nlp with 8b and 35b parameter models, this machine learning paper from stanford and the university of toronto proposes observational scaling....

  • AI Magazine
  • Privacy & TC
  • Cookie Policy

🐝 🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others...

Thank You 🙌

Privacy Overview

--> AGU