geotechnical engineering Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

Analysis of Geotechnical Engineering Safety Technology in Urban Underground Space Construction

With the accelerating pace of urbanization, the development and application of urban underground space has attracted much attention. In the construction of urban underground space, geotechnical engineering safety is the key point for construction. Based on this, this paper analyzes the application of geotechnical engineering safety technology in urban underground space construction, in hope that this analysis can provide a scientific reference for the rational application of geotechnical engineering safety technology as well as the construction and development of urban underground space.

Experimental Study on Creep of Sandstone under Hydrochemical Corrosion

Abstract Corrosion creep of sandstone has great influence on the safety and stability of geotechnical engineering, and it is of great significance to study the creep characteristics of sandstone under the action of hydrochemical corrosion for the long-term stability of geotechnical engineering. Through creep test of corroded rock, the characteristics of rock deformation and strength are analyzed. Combined with electrochemical impedance spectroscopy (EIS), the microcracks of corroded sandstone during creep process are detected, and the variation law of equivalent circuit parameters and the development trend of microcracks during creep process of corroded sandstone are analyzed. The test results show that the creep characteristics of rock samples are related to the hydrochemical environment; The medium-and long-term strength of the solution with high pH value is relatively small, and the difference with uniaxial compressive strength is large; Moreover, there is a certain correlation between creep of rock samples and equivalent circuit parameters. In this paper, the influence of creep deformation, mechanical properties and hydrochemical environment on sandstone creep is analyzed, and the research results can provide reference for stability analysis of related geotechnical engineering.

Geotechnical engineering

Explore geotechnical engineering investigations hydrogeological problems during design and construction, ssi analysis in geotechnical engineering problems using a finite difference method, construction technology of slope reinforcement in geotechnical engineering, modern methods of diaphragm walls design.

This article addresses hazard reduction in deep excavations. The authors present a possible combination of prestressing of concrete structures (from bridge engineering) and prestressed structures of diaphragm walls from geotechnical engineering science. This innovative concept has not yet been shown in scientific articles. The “Sofistik” software (with TENDON module–SYSP/AXES/TOPP/TGEO) and its use is shown, with graphical presentations of the suggested solution. The authors compare the provided solution through usage of Sofistik and Plaxis software. The results show possible strengthening of sustainable construction by limitation of hazards and decreasing costs (via limitation of use of expensive steel reinforcement).

Geotechnical Test and Effective Processing Analysis of Geotechnical Engineering Investigation Based on Geographic Information System Under BP Neural Network

Fabric studies of ice-thrust shear zones as applied to problems in geotechnical engineering, development of an adaptive ctm–rpim method for modeling large deformation problems in geotechnical engineering, export citation format, share document.

Geotechnical Engineering - Research Topics

Geotechnics.

  • Information
  • Related Courses
  • Research Topics
  • Research Projects

Last Updated:

All topics of Geotechnical Engineering are research interest to our division, but current research is on the following topics:

  • Geotechnical Earthquake Engineering (Soil Liquefaction, Engineering Seismology, Seismic Hazard Analysis, Ground motion models, Seismic source characterization)
  • Collapsing soils, Dispersive soils,
  • Expansive soils (Swell amount and swell pressures, Lateral swell behavior)
  • Stabilization of soils by waste materials, Use of fly ash for soil stabilization
  • Soil stabilization by bacterial cementation
  • 2D and 3D Numerical Modeling,
  • Unsaturated Soils (Triaxial testing of unsaturated soils for modeling unsaturated soil strength and deformation, Soil-water retention curve prediction and hysteresis, Hydraulic conductivity function and flow modeling
  • Geotechnical testing system and methodology development,
  • Slopes and Landslides, Rainfall triggered landslides, Stabilization of slopes by passive piles
  • Embankment dams, Behavior of earth and rock fill dams under earthquake motions
  • Ground Improvement, Stone columns
  • Geosynthetics,
  • Offshore Geotechnical Engineering, Offshore foundations
  • Retaining walls and Deep Excavations,
  • Buried pipelines,
  • Uncertainty and risk calculations in geotechnical engineering
  • Transportation Soils and Pavement Design,
  • Software Engineering for geotechnical engineering,
  • Machine Learning and Artificial Intelligence for geotechnical problems,
  • Site survey and damage assessment with Unmanned Aerial Vehicles
  • Tunnel Design

research topics in geotechnical engineering

News Bulletin

CEITech Blog

Classroom Program

Open Faculty Positions

RE/TE Status Check

Offered Courses

Virtual Tour in K1 Building

Student Excuses

Yellow Vehicle Stickers

Brown Vehicle Stickers

Undergraduate Students Regulations

Graduate Students Regulations

Department of Civil Engineering, K1 Building, Üniversiteler Mah. Dumlupınar Blv. No:1, 06800 Çankaya/Ankara © ORTA DOĞU TEKNİK ÜNİVERSİTESİ ANKARA KAMPUSU

Book cover

  • © 2019

Recent Advances in Geotechnical Research

Institute of geotechnical engineering, university of natural resources and life sciences, vienna, austria.

You can also search for this editor in PubMed   Google Scholar

Provides a snapshot of the research activities of the Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences in Vienna, Austria

Includes topics in the fields of centrifuge model testing, constitutive model, granular physics, numerical simulation, soil bioengineering

written by experts in the field

Part of the book series: Springer Series in Geomechanics and Geoengineering (SSGG)

15k Accesses

41 Citations

1 Altmetric

  • Table of contents

About this book

Editors and affiliations, bibliographic information.

  • Publish with us

Buying options

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (19 chapters)

Front matter, role of plants—results of pore pressure monitoring in a slope.

  • M. S. Acharya

A Probabilistic 3-D Slope Stability Analysis for Forest Management

  • Alessio Cislaghi, Chiara Vergani, Enrico Antonio Chiaradia, Gian Battista Bischetti

Effect of Eccentricity and Boundary on Jet Formation of Soft Fine Sand

  • Deshan Cui, Wei Wu, Wei Xiang, Qiong Chen, Shun Wang

Experimental and Numerical Analysis of Stick-Slip Instability of Granular Materials

Combination of decisive properties of soil in science and geotechnics.

  • Werner Gerber

Effects of Mycorrhizal Fungi on Slope Stabilisation Functions of Plants

  • Frank Graf, Alexander Bast, Holger Gärtner, Anil Yildiz

Shear Strength of Granular Soil Under Saturated and Unsaturated Conditions

  • Gregor Idinger, Wei Wu

Failure of Unsaturated Soil Slopes Initiated by Self-weight Loading

Centrifuge study of soil arching in slope reinforced by piles.

  • Guoping Lei, Sara Usai, Wei Wu

Quantitative Description of Orthotropic Fabric of Sand

  • Xue-feng Li, Yu-qi He, Jing-qiao Liu, Wei Wu

A Novel Description of Plastic Strain Direction

  • Xue-feng Li, Yu-qi He, Liang Kong, Wei Wu, Yan-chang Wang

Experimental and Numerical Study on Heat Transfer of Soil Around Underground Cable

  • Jia Lin, Andreas Bolzer, Herbert Schort, Markus Rauchecker, Wei Wu

Analytical Solutions for Steady Granular Flows in Simple Configurations

  • Chong Peng, Xiaogang Guo, Wei Wu

Measuring the Tensile Strength of Phleum pratense L. Roots

  • Markus Rauchecker, Karin Wriessnig, Wei Wu

Shallow Landslides: Retrospective Analysis of the Protective Effects of Forest and Conclusions for Prediction

  • Christian Rickli, Peter Bebi, Frank Graf, Christine Moos

Simulation of Rainfall-Induced Landslide of the Vegetated Slope

  • Barbara Maria Świtała, Wei Wu

Behaviour of Reinforced Sand with Synthetic Fibres in a Centrifuge

  • Rick Veenhof, Wei Wu

Extension of a Basic Hypoplastic Model for Cohesive Soils

  • Shun Wang, Wei Wu

Temperature Effect on the Compressive Strength of Frozen Soils: A Review

  • Guofang Xu, Jilin Qi, Wei Wu

This book provides a snapshot of the research activities of the Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences in Vienna, Austria. The topics are broad ranged including:

·         Centrifuge model testing

·         Constitutive model

·         Granular physics

·         Numerical simulation

·         Soil bioengineering

The topics reflect our geotechnical research in a changing world. Traditional topics in foundation engineering are fading out and new topics are emerging. The European Commission is gratefully acknowledged for funding the following projects within its program FP7 and Horizon2020: MUMOLADE (Multiscale modelling of landslide and debris flow), REVENUES (Reinforced Vegetation Numerical Evaluation of Slopes) and GEORAMP (Geohazards - Risk Assessment, Mitigation and Prevention).

  • Slope stability
  • Soil bio-engineering
  • Unsaturated soil
  • Centrifuge testing
  • Constitutive modelling
  • Frozen soil
  • Energy cable

Book Title : Recent Advances in Geotechnical Research

Editors : Wei Wu

Series Title : Springer Series in Geomechanics and Geoengineering

DOI : https://doi.org/10.1007/978-3-319-89671-7

Publisher : Springer Cham

eBook Packages : Engineering , Engineering (R0)

Copyright Information : Springer International Publishing AG, part of Springer Nature 2019

Hardcover ISBN : 978-3-319-89670-0 Published: 12 June 2018

Softcover ISBN : 978-3-030-07827-0 Published: 03 January 2019

eBook ISBN : 978-3-319-89671-7 Published: 01 June 2018

Series ISSN : 1866-8755

Series E-ISSN : 1866-8763

Edition Number : 1

Number of Pages : VIII, 236

Number of Illustrations : 37 b/w illustrations, 95 illustrations in colour

Topics : Geoengineering, Foundations, Hydraulics , Geotechnical Engineering & Applied Earth Sciences

Policies and ethics

  • Find a journal
  • Track your research

Priority Research Centre for Geotechnical Science and Engineering

Priority Research Centre for Geotechnical Science and Engineering

Priority Research Centre for Geotechnical Science and Engineering

Research Strengths

Leading research in geomechanics.

The Centre for Geotechnical Science and Engineering focuses on the development of innovative test procedures, field monitoring techniques, mathematical models, and computational methods to predict the behaviour of soils, rock and other materials. By linking two of Australia’s leading research teams, namely the Geotechnical Research Group and Diffusion in Solids Group, the Centre is uniquely equipped to study a range of problems with length scales that vary over several orders of magnitude. The outcomes of this research are delivering improvements in the safety, efficiency and reliability of civil infrastructure and mechanical technology.

The Centre is currently conducting research in five key areas:

Geoinfrastructure

Geoinfrastructure

Key research areas include:

  • Unsaturated soil mechanics
  • Rock mechanics
  • Soft soil engineering
  • Pipelines crossing geographically challenging environments
  • Ground improvement for infrastructure on soft or problematic soils
  • Hazard assessment and risk mitigation for landslides, rockfalls and debris flow
  • Utilisation of underground rock face stability
  • Stochastic optimisation of construction and performance of built infrastructure
  • Infrastructure on problematic soils and rocks
  • Renewal and remediation of ageing infrastructure
  • Recycling of construction waste for geotechnical purposes

Geoenvironment

Geoenvironment

  • Futureproofing infrastructure against climate change
  • Mine subsidence and groundwater (including waste dumps)
  • Particle characterisation of granular materials
  • Environmental geotechnics of coal mine spoil
  • Mechanics of hard and soft soils
  • Landslides and rockfall

Georisk

  • Rockfall hazard and risk mitigation
  • New technologies for remote and continuous monitoring of slope movements
  • Efficient numerical and probabilistic methods for risk assessment in geotechnical engineering
  • Probabilistic geotechnical site investigation using geotechnical, geophysical and geological information
  • Reliability analysis of geoinfrastructures based on site investigation data
  • Risk assessments and early warning systems of rainfall induced landslides
  • Landslide susceptibility prediction of regional landslides
  • Data-driven predictive maintenance for rail track
  • Bayesian back analysis for settlement of prediction of embankments built on soft soils
  • Reliability updating of single piles and pile groups based on load tests
  • Novel probabilistic characterisation of complex joint structures for the optimisation of mine operations

Computational Geomechanics

Computational Geomechanics

  • Limit analysis methods
  • Particle Finite Element analysis methods
  • Phase-Field Finite Element analysis methods
  • Discrete element and discontinuous deformation analysis methods
  • Adaptive coupling of continuum and dis-continuum methods for dynamic analysis
  • Discrete modelling (DEM) of bonded and unbonded granular materials
  • Discontinuum Deformation Analysis (DDA)
  • Adaptive coupling of continuum and discontinuum methods for dynamic problems
  • Dynamic impact problems and fragmentation
  • Soil-machine interaction problems
  • Soil-inclusion and soil-structure interaction problems
  • Dynamic coupled finite element analysis for soil structure interaction problems

Materials

  • Thermal transport in Composites and Porous Media
  • Investigation of Mass Transport in High Entropy Alloys
  • High Energy Density - High Delivery Rate Thermal Energy Storage
  • Increasing Solar Power Efficiency
  • Maximising Metallic Foams

Professor Anna Giacomini

Professor Anna Giacomini

More contact details

The University of Newcastle acknowledges the traditional custodians of the lands within our footprint areas: Awabakal, Darkinjung, Biripai, Worimi, Wonnarua, and Eora Nations. We also pay respect to the wisdom of our Elders past and present.

Are you visiting our site from South Asia ? Head to our dedicated page with all the information you need to study at the University of Newcastle. Close

您是否在中国访问我们的网址? 前往 专属页面 ,查询你在纽卡斯尔大学学习所需的所有信息。 Close

  • Visit the University of Nebraska–Lincoln
  • Apply to the University of Nebraska–Lincoln
  • Give to the University of Nebraska–Lincoln

Search Form

Geotechnical and materials engineering research.

Geotechnical and materials engineers are interrelated with other civil engineering disciplines such as structural engineering, construction engineering, and architectural engineering to plan, design, build, and maintain critical infrastructure systems such as bridges, buildings, roadways, rails, dams, foundations, retaining walls, slopes, and tunnels. Geotechnical engineering investigates various geomaterials (e.g., soils and rocks) and determines the most effective way to support the desired structure. Geotechnical engineers plan and design foundation systems and other structures such as dams, levees, tunnels, and landfills. Moreover, they mitigate the influences of naturally occurring phenomena such as floods, landslides, and earthquakes; and develop safe and environmentally sustainable sources of energy and minerals. Materials engineering involves the design and development of construction materials to meet specific properties and performance criteria. In addition to mechanical properties, durability, sustainability, and economical efficiency of materials are of importance and must be optimized.

Materials engineers select and design construction materials and mixtures such as cementitious materials and concrete mixes, asphaltic materials and mixtures, soils-aggregates with stabilization, fiber-reinforced composites, metals, woods, and polymeric materials (plastics). They also characterize properties of materials, monitor the quality of materials used for construction, develop materials specifications for better design, repair, and maintenance of key civil infrastructure systems.

The Geotechnical and Materials faculty in the UNL Department of Civil Engineering conduct research on both fundamental and applied aspects, and cover a wide variety of technical topics of research. Specific research areas of interests include:

  • Advanced/smart/multifunctional/engineered materials
  • Characterization of material properties and behavior
  • Constitutive modeling of damage-induced behavior and durability
  • Dynamics/Earthquake engineering
  • Earth retaining geotechnical system
  • Energy geotechnology
  • Foundations
  • Geoenvironmental engineering
  • Grouting and soil improvement
  • Highway and airfield pavement engineering
  • Mechanics and modeling of construction materials and geotechnical systems
  • Multi-physics and multi-scale mechanics and modeling
  • Nondestructive testing and evaluation
  • Rehabilitation/renewal of geotechnical and geoenvironmental systems
  • Sensors and field instrumentation/measurement
  • Slope, levee, dam analysis
  • Sustainable/resilient infrastructure

Geotechnical and Materials Engineering

Jongwan Eun

Jongwan Eun

Jiong Hu

Seunghee Kim

David Lange

David Lange

Mojdeh Pajouh

Mojdeh Pajouh

Chung Song

Jamilla Teixeira

Matthew Williamson

Matthew Williamson

Faculty personal webpages.

  • Dr. Jongwan Eun
  • Dr. Hamzeh Haghshenas Fatmehsari
  • Dr. Jiong Hu
  • Dr. Congrui Grace Jin
  • Dr. Seunghee Kim
  • Dr. Mojdeh Pajouh

research topics in geotechnical engineering

GeoSystems Engineering

research topics in geotechnical engineering

Faculty Research Overview

research topics in geotechnical engineering

Norman Abrahamson

  • Adjunct Professor

research topics in geotechnical engineering

Adda Athanasopoulos-Zekkos

  • Associate Professor

research topics in geotechnical engineering

Jonathan D. Bray

  • Faculty Chair in Earthquake Engineering Excellence

research topics in geotechnical engineering

Steven D. Glaser

  • Professor Emeritus

research topics in geotechnical engineering

Robert Kayen

  • Professor, Adjunct Faculty Senior Scientist, U. S. Geological Survey

research topics in geotechnical engineering

James W. Rector

research topics in geotechnical engineering

Michael Riemer

research topics in geotechnical engineering

Yoram N. Rubin

research topics in geotechnical engineering

Nicholas Sitar

  • Edward G. Cahill and John R. Cahill Professor of Civil Engineering

research topics in geotechnical engineering

Kenichi Soga

  • Donald H. McLaughlin Chair in Mineral Engineering Chancellor's Professor

research topics in geotechnical engineering

Dimitrios Zekkos

Dr. Abrahamson has been involved in strong motion seismology for over two decades. He has extensive experience in the practical application of seismology to the development of deterministic and probabilistic seismic criteria (response spectra and time histories) for engineering design or analyses. He has been involved in developing design ground motions for hundreds of projects including dams, bridges, nuclear power plants, nuclear waste repositories, water and gas pipelines, rail lines, ports, landfills, hospitals, electric substations, and office buildings. About 3/4 of these projects have been in the Western US and the other 1/4 have been in the Eastern US or outside of the US.

Dr. Abrahamson has published over 100 papers on ground motion and seismic hazard. He has been a leader in the development of empirical ground motion models, including using advanced statistical methods for regression analyses. He was involved in the development of the first ground motion models that included hanging wall effects, directivity effects, and fling effects. His ground motion models have been widely used in practice. He was one of the leaders of the NGA project conducted funded through the Pacific Engineering Research (PEER) Center ( http://peer.berkeley.edu/ ) and was the developer of one of the new NGA ground motion models. He is currently one of the leaders for a NGA-style project for the eastern U.S. and is leading a project to develop new ground motion models for subduction earthquakes.

Dr Abrahamson developed the time-domain spectral matching method (RSPMATCH) that allows the engineer to modify time histories for match the target response spectrum while preserving the key non-stationary character of the time history. This computer program is freely available and is a standard approach that is used in engineering practice. He has also developed models of the spatial variation of ground motion over short distances. These models have been used in for seismic analyses of nuclear power plants and for long-span bridges. 

Dr. Abrahamson served as the technical leader for the PG&E/DOE program on extreme ground motions. This program integrated advanced numerical modeling of ground motions, empirical ground motion models, non-linear site response analyses, and observations of fragile geologic features to constrain the ground motions at very long return periods that are needed for critical facilities such as the proposed nuclear waste repository at Yucca Mountain.  

At PG&E, Dr. Abrahamson is responsible for developing ground for seismic evaluations of PG&E facilities including nuclear power plants, nuclear waste storage, dams, penstocks, electric substations, office buildings, and gas pipelines. He is also responsible for the technical management of the PG&E seismic research program.

As a consultant, Dr. Abrahamson has been involved in the ground motion studies for several major engineering projects in California. Projects include the Caltrans major toll bridge retrofit projects, the CalFed project for the Sacramento Delta levee system, the BART seismic retrofit project, and the SFO expansion. He has been involved in developing ground motion for nuclear plants and dams in the United States and in other countries.

1

Adda Athanasopoulos-Zekkos is an Associate Professor in the Civil and Environmental Engineering Department at the University of California, Berkeley. Prior to her appointment at Cal, she was an Associate Professor and the Graduate Chair in the Civil and Environmental Engineering Department at the University of Michigan. She holds a joint BS/MSc in Civil Engineering from the University of Patras, Greece (2003), and received her MSc (2004) and PhD (2008) Degrees in Geotechnical Engineering from the University of California, Berkeley. She has received the NSF CAREER award (2013), the 2014 Faculty Excellence Award by the CEE Dept at the Univ. of Michigan, the 2015 ASCE Arthur Casagrande Award and the 2015 ASCE Thomas Middlebrooks Award, and more recently the 2016 Chi Epsilon (XE) Outstanding Teaching Award.

Dr. Athanasopoulos-Zekkos has actively communicated her research results through more than 60 publications, including ~24 archival journal papers and 40+ peer-reviewed conference papers. She has given ~26 invited presentations (for both academia and industry) both in the US and abroad, and was a key contributor to several technical reports produced following disaster reconnaissance efforts supported by GEER. Some notable presentations include the 2017 Berkeley Geoengineering Distinguished Lecture Series, the Annual ACEC NY Geotechnical Symposium, and the Impact Testing for Site Characterization Workshop at SuperPile ’19.

Her research focuses on assessing and mitigating the impact of multi-hazard stressors on geotechnical engineering infrastructure, with particular emphasis on challenges due to age-related deterioration, population growth and densification, natural and human-made hazards, and new demands from climate change. Prof. Athanasopoulos-Zekkos and her research team have improved our understanding of (1) the seismic response of flood protection systems such as levees that are old and rapidly deteriorating as well as threatened by increasing demands due to increasing water levels, (2) the performance of critical systems such as ports during earthquakes by conducting unique testing of challenging materials such as gravels, (3) the effects of man-induced vibrations from pile driving in dense urban environments and near critical infrastructure such as bridges and retaining walls, and (4) the use of new materials, advanced sensing and next-generation laboratory and field testing to inform us on efficient and sustainable mitigation and seismic reinforcement of aging systems.

   Dr. Athanasopoulos-Zekkos research work on investigating the response of levees under extreme load conditions and developing methods for assessing the vulnerability of these systems has had a profound impact on the practice of civil engineering with respect to such infrastructure (e.g. Athanasopoulos-Zekkos and Seed, 2013). Furthermore, her recommendations on ground motion selection for dynamic analyses of earthen levees (both in the context of soil liquefaction triggering and seismic slope stability) are a valuable tool for engineers as they enable them to select a smaller set of ground motions that will provide the average response of the system (e.g. Athanasopoulos-Zekkos and Saadi, 2012, and Athanasopoulos-Zekkos et al., 2013). Her research group is also working on assessing the feasibility of using non-conventional materials, like fiber reinforced concrete mixes (e.g. ECC or bendable concrete) to strengthen levees and dams in terms of their seismic performance and also underseepage.

     Prof. Athanasopoulos-Zekkos is currently working on developing an integrated approach for the liquefaction assessment of gravelly soils, that combines large-scale dynamic physical experiments with high-end discrete element analysis, and refine and calibrate the resulting methodology using field performance data from field case histories from documented seismic events. Specifically she co-developed and have been using a prototype 300-mm diameter cyclic simple shear (CSS) device to evaluate the cyclic (and monotonic) undrained shear response of gravelly soils in the laboratory (Zekkos et al., 2016). She is also working on a next-generation dynamic cone penetration test (DPT) that is equipped with key instrumentation and will be used for field testing along with in-situ shear wave velocity (Vs) measurements (Athanasopoulos-Zekkos et al., 2019). Shear wave velocity measurements on CSS specimens tested in the laboratory will allow for the multi-scale assessment from meso-scale (laboratory) response to the macro scale (field) response.

   Adda’s research work on the effectiveness of EPS Geofoam inclusion as seismic isolation for retaining systems has also provided invaluable insights in the response of such systems by conducting the first ever centrifuge tests of retaining walls with EPS Geofoam inclusions and clearly documenting the observed reduction in seismic earth pressures (Athanasopoulos-Zekkos et al., 2013). This work has been supported by the European Manufacturers of EPS Association, a further testament to the benefit provided by this research and its applicability in engineering practice.

    Finally, Dr. Athanasopoulos-Zekkos’ research work on pile-driving induced vibrations has resulted in a simplified procedure for estimating expected intensity of vibrations (by computing peak particle velocities) at different depths and distances from the driven piles for sandy sites and is currently the standard practice at the Michigan DOT for pile driving monitoring decisions, and has also been used by several other consultants (Grizi et al., 2016). This work was nominated for an AASHTO award by the Geotechnical division of MDOT in 2014.

1

Jonathan D. Bray, Ph.D., P.E., NAE is the Faculty Chair in Earthquake Engineering Excellence at Berkeley. He earned engineering degrees from West Point, Stanford, and Berkeley. Dr. Bray is a registered professional civil engineer and has served as a consultant on several important engineering projects and peer review panels. He has authored more than 350 research publications on topics that include liquefaction and its effects on structures, seismic performance of earth structures, earthquake ground motions, and earthquake fault rupture propagation. He leads the National Science Foundation (NSF) sponsored Geotechnical Extreme Events Reconnaissance (GEER) Association ( geerassociation.org ). Dr. Bray is a member of the US National Academy of Engineering and has received several honors, including the Ishihara Lecture, Peck Award, Joyner Lecture, Middlebrooks Award, Huber Research Prize, Packard Foundation Fellowship, and NSF Presidential Young Investigator Award. 

Professor Bray has supervised the research of 32 Ph.D. students. Much of this research was in response to issues raised following major earthquakes. For example, the Bray and Sancio (2006) liquefaction of fine-grained soil criteria followed observations of silt liquefaction in the 1999 Kocaeli, Turkey earthquake (Bray et al. 2004). The simplified seismic slope displacement procedures of Bray and Travasarou (2007, 2009) were calibrated to provide results consistent with post-earthquake field measurements of earth dams and municipal solid waste (MSW) landfills. Damage observed during the 1994 Northridge earthquake motivated studies of the engineering properties of MSW with insights on its shear strength by Bray et al. (2009). The devastating effects of near-fault, pulse ground motions due to forward-directivity led to characterization schemes developed by Bray et al. (2009) and Hayden et al. (2014). Geotechnical mitigation measures proposed in Oettle and Bray (2013) are well-founded by observations of the effects of surface fault rupture following several important earthquakes. Lastly, recent studies documenting and discerning lessons from the effects of soil liquefaction on office buildings in Christchurch, New Zealand (e.g., Bray et al. 2014, 2017) have provided key insights on the important roles of the CPT and cyclic laboratory testing to characterize soil deposits and on the use of dynamic soil-structure-interaction (SSI) effective stress analyses to evaluate shear-induced liquefaction building settlement. A simplified procedure for evaluating liquefaction-induced building settlement is proposed in his 2017 Ishihara Lecture.

Significant research thrusts also utilize advanced geotechnical centrifuge modeling and advanced numerical tools such as discrete element modeling (DEM). The Dashti et al. (2010a,b) centrifuge experiments identified and evaluated the relative importance of key shear-induced and volumetric-induced liquefaction mechanisms. Mason et al. (2013), Trombetta et al. (2014), and Hayden et al. (2015) explored key dynamic SSI responses of structures founded on non-liquefiable and liquefiable ground. O’Sullivan et al. (2002, 2003a,b, 2004) emphasized the need to utilize realistic 3D sphere-cluster particles to capture the response of granular media. Work is continuing with Ph.D. Candidate Garcia who has developed a parallel-computing algorithm for evaluating fault rupture propagation through sand deposits.  

1

Steven D. Glaser is a professor in the Dept. of Civil and Environmental Engineering, University of California, Berkeley, distinguished affiliate professor at the Technical University of Munich, and a research scientist at the Lawrence Berkeley National Laboratory.  Glaser’s engineering training was at The University of Texas at Austin.  He also has a B.A. in philosophy from Clark University, 1975.  He completed the apprentice program of Local 77 of the International Union of Operating Engineers, following which Glaser worked eight years as a driller, including one year in Iraq.

Glaser has worked on many aspects of rock mechanics and rock physics, most often by applying principles from geophysics. His work in this field has been published in Nature, Journal of Geophysical Research and other significant journals. Glaser currently operates the largest wireless network in the world, monitoring forest hydrology of snow melt and water balance in the Sierra Nevada ( arho.org ;  https://vimeo.com/162487136 ). 

The Glaser lab has a laboratory earthquake device that is now being used by the third PhD student.  The device can duplicate virtually any fault behavior leading up to gross rupture using lightly loaded PMMA.  We are beginning to use extended fault source models to interpret the nanoseismic signals recoded during tests.  We make use of the absolutely calibrated Glaser-type displacement sensor, which has a noise floor of 0.2 fm.  We have examined asperity mechanics, effects of fault healing time, preslip mechanisms, slow-slip, and the mechanics of foreshock swarms. ( https://www.youtube.com/watch?v=AMw490jPDlA&feature=youtu.be )

Glaser is currently working on an experiment looking at injection-induced seismicity from injecting cold water into hot rock.  We are investigating the effects of thermal contraction, and injected water flashing to steam, as proximate causes of fault weakening. In particular we are modeling the Geysers geothermal field in N. California.  The experiments take place in our true-triaxial geothermal reservoir simulator. Integral to this device is a high-pressure boiler that floods 250 mm cubes of rock with 2 MPa steam, duplicating the Geysers. The dynamic junction-level displacement ‘seeds’ that lead to macro-rupture will be studied through nano-seismic imaging using high temperature increased sensitivity Glaser-type sensors.  We have just finished an experiment looking at the efficiency of using supercritical CO2 as the circulating fluid in an enhanced geothermal reservoir.

1

Robert Kayen teaches Engineering Geology, extreme-event modeling methods, and Engineering Geomatics in the Dept. of Civil and Environmental Engineering, and for nearly three decades has also worked as a research scientist at the United States Geological Survey, Menlo Park, CA.  He serves as an Adjunct Professor in the Department of Civil and Environmental engineering at UCLA, and previously was a Visiting Professor and Visiting Scholar at Kobe University, Japan.  He earned his undergraduate training in civil engineering and geology from Tufts University in Massachusetts, and has Masters degrees in both Geology and Civil Engineering.  His doctoral work at the University of California, Berkeley started a career–long interest in the probabilistic assessment of seismic-soil liquefaction.

Kayen has authored over 350 research publications in the fields of earthquake geotechnical engineering, LIDAR, Structure-From-Motion geomatics, engineering geophysics, marine-geotechnics, and marine methane hydrate stability. He is one of the founders and a long-time steering committee member of the National Science Foundation (NSF) sponsored Geotechnical Extreme Events Reconnaissance (GEER) Association (geerassociation.org).  Dr. Kayen has received honors that include the Middlebrooks Award from ASCE, United States Department of Justice Commendation awarded by the Environmental Division, and the NASA-Ames Honor Award. In 2017, he was an SFGI-U.C. Berkeley Distinguished Lecturer.  He is the current Vice-Chairman of the Marine Engineering Geology Commission of the IAEG.  He was the editor of a multi-volume U.S. Geological Survey Professional Paper Series on ‘Earthquake Hazards of the Pacific Northwest Coastal and Marine Regions’.

Kayen has led a decade-long international research program to acquire field-shear wave velocities at most the world’s well-documents liquefaction case-histories, principally in Japan, China, Taiwan, United States, Chile, and the Mediterranean region of Europe.  These globally-derived data have been useful to synthesize and model the most comprehensive shear wave velocity-based catalog for soil-liquefaction triggering relationships.  The analytical foundation of these probabilistic models are Bayesian inference and System Reliability models. A cornerstone of his research is the use of non-invasive surface wave-dispersion to model the shear wave properties of the ground.  These methods include the multi-channel assessment of surface waves and ambient vibration methods such as spatial autocorrelation.  Collaborations with researchers at UC Berkeley, Middle Eastern Technical University, and Cal Poly have led to parallel assessment methodologies for the Cone Penetration Test and Standard Penetration Test.

Geotechnical engineering methods are validated through comparison with field-data of surface deformations and sub-surface state properties.  Recent advances in non-invasive surface imaging technology allow us to rapidly and inexpensively map spatial aspects of deformations.  Kayen is one of the pioneers in the application of LIDAR laser-technology to geosystem problems.  Recent work is expanding that focus to include photogrammetric computational imaging (Structure-From-Motion, SFM) using unmanned-aerial systems (UAS) to create ultra high-resolution three-dimensional models of surface damage. LIDAR and SFM technologies in earthquake engineering allow for the rapid capture of failure morphologies and their permanent archiving.

1

Professor Rector has been a member of the Berkeley Faculty since 1992. He is an expert in applied seismology with a focus on both near surface seismology and deep oil and gas reservoir imaging and has been a seminal contributor to seismic while drilling, crosswell seismic, near surface imaging, interferometry, anisotropic imaging, passive seismic, fracture mapping, and machine learning in seismology.  He has supervised over 40 PhD and Masters’ thesis and holds a faculty appointment in the Department of Earth and Planetary Science and the Lawrence Berkeley National Laboratory.  In addition to his work at Berkeley, he founded several successful commercial seismic technology companies, works with many of the major oil companies, and has patented a number of innovative technologies. He has won several major awards in the Society of Exploration Geophysicists, and has served as Editor in Chief of the Journal of Applied Seismology.

Rector’s work in oil and gas is focused on fracking and he has been a keynote speaker recently with his talk entitled “Fact and Fiction in Fracking”. His research has been focused on improving the quality of microseismic data analysis. Compared to conventional event locations, event locations in real world situations have been dramatically improved through the development of Baysian machine learning algorithms and the incorporation of other arrivals such as head waves

He is also applying his expertise in seismic imaging to environmental and near surface geophysics. This work is aimed at understanding the mechanical properties of the soil and rock in the first 100 m of the earth. He developed and patented a new technique that uses tomographic techniques to analyze surface waves which provides a cost-effective 3D extension of conventional 2-D analysis in MASW. This information can be used to characterize near surface soil profiles (for example to design building parameters), to detect voids, and to find near surface objects (bunkers, buried pipes, etc.), and to characterize fluids and flow such as contaminant transport and groundwater.

1

Michael Riemer is an Adjunct Professor in Civil and Environmental Engineering, as well as the manager of the geotechnical laboratories at UC Berkeley since 1992. He completed his undergraduate studies at Virginia Tech in Civil Engineering, and focused on Geotechnical engineering for his Masters and Doctoral studies at UC Berkeley.  From 2000 through 2003, he also served as Manager of the Lifelines Research Program within the Pacific Earthquake Engineering Research (PEER) Center, coordinating a $1.3 million program of user-directed research ranging from ground motions through soil and structure response, to network risk and emergency response.

His research interests center on static and dynamic property evaluation for a broad range of geomaterials, from naturally occurring silty sands and deep clay deposits through mine tailings, rubble fills and Municipal Solid Waste. 

The testing conditions necessary for such measurements range in scale from conventional lab samples to triaxial testing at 12” diameter; confining pressures range from a few psi to over 60 atm.; and deformations range from a few microns to nearly a foot.  As such, an important part of the research is the development, refinement and upgrading of equipment across multiple scales and the incorporation of newer technologies within existing facilities.

One such example is the implementation of the Elastomer Strain Gauge (Safaqah & Riemer, 2007), a deformable elastic strip containing a metallic-filled capillary that can be attached to conventional latex or other membranes and deployed as a local strain sensor. Depending on the signal conditioning, these are capable of measuring strains as low as 0.001% up through 25%, and have been utilized both in extension and torsional shear.                                                  

In addition to his own research, Prof. Riemer often collaborates with other faculty in the program, training research students in advanced laboratory testing techniques, modifying existing research equipment to enhance particular capabilities for a specific project, or developing specialized procedures for given research goals.

1

Yoram Rubin received his undergraduate and master degree in civil engineering at the Technion (Israel) and his PhD degree in mechanical engineering at Tel-Aviv University. Following an appointment as a post-doc at Stanford University, he joined the faculty of the Dept. of Civil and Environmental Engineering at UC Berkeley where he has been an active member of both the Geoengineering and Environmental Engineering programs. Rubin is the recipient of the Hydrology Sciences Award of the American Geophysical Union. He is also a Fellow of the American Geophysical Union. In 2016 he was awarded the Darcy Medal by the European Geophysical Union.

Rubin’s research covers hydrogeology and the study of spatial variability and uncertainty (geostatistics).  A major focus of research is Subsurface Characterization and Risk Assessment related to groundwater. Groundwater is one of the major sources of drinking water, and it is widely used in the agricultural and the industrial sector. Understanding how contaminants are transported in the subsurface and evaluating the risks they pose to humans are important environmental issues. For example, an accidental oil spill or the occurrence of leaking hazardous waste storage may severely affect groundwater quality. Thus, characterization of the subsurface is vital in order to maintain the long-term health of subsurface water resources and of water-stressed ecosystems, as well as for controlling subsurface contamination and reducing human health risks. Modeling flow and transport processes in geological media is a significant challenge, given the underlying heterogeneity in the subsurface and the difficulty in characterizing it. Soil properties, such as hydraulic conductivity and porosity, exhibit a high degree of spatial variability at all length scales. Hence, characterizing geological media, which means obtaining 3D images of the important media properties, is a major challenge. The problem of subsurface characterization is simple to define: proving a three-dimensional image of the subsurface, analogous to CT-SCAN for humans, only at a much larger scale. Such imaging is still largely elusive, and environmental remediation efforts have suffered, because of the huge price tag involved. Geological media are defined by complex patterns of spatial variability in geological and hydrogeological parameters. Current methods are failing to reach this goal because of the poor spatial coverage (e.g., depth of penetration) and resolution they offer, and because they rely extensively on invasive drilling, which is in many cases is prohibited, and is almost always prohibitively expensive. Costly overdesign is employed to compensate for uncertainty, leading to huge societal costs associated with environmental remediation. Our goal here is to develop methods for surveying and generating 3D images the subsurface using minimally invasive measurement techniques, and by assimilating multi-type, multi-scale data. 

In recent years he expanded his research to cover issues of risk and environmental impact in large scale geoengineering projects such as large-scale tunnels.  One example is the environmental impact analysis conducted by Rubin’s lab related for the 11km Mingtang Tunnel in China (Anhui province), where the focus has been on eliminating any adverse impact to the pristine ecosystem overlying the tunnel). More recently, Rubin’ s lab started working on the risk associated with the construction of a 13-km tunnel in Yunnan Province (shown in the picture is the entrance to the incline shaft). One of the major challenges here is modeling groundwater flow in a Karst rock formation, where low-Reynolds flow (in soils) is taking place next to high Reynolds numbers (in Karst caves and in faults).  

A new effort is also taking place towards development of instrumentation (see the figure below).

1

Nicholas Sitar holds the Edward G. Cahill and John R. Cahill Chair in Civil and Environmental Engineering. His undergraduate training is in Geological Engineering at the University of Windsor in Ontario, Canada, and he has completed M.S. in Hydrogeology and Ph.D. in Geotechnical Engineering, both from Stanford University. His research activities encompass a broad range of areas in engineering geology, geological engineering, groundwater hydrology, and risk and reliability, with an overarching interest in natural hazard evaluation, modeling, and mitigation. His research is driven by coupling field observations with experimental and numerical analyses.

His experience with the challenges in field data acquisition in landslide monitoring led to his involvement in the early development of sensor boards and applications for wireless sensor systems, motes, capable of ad-hoc networking, remote data acquisition, and position tracking. Among the prototype demonstrations was an environmental sensor demonstration network for tracking of wildfires in Northern California. The basic sensor boards demonstrated in these experiments and their derivatives are now used by researchers worldwide and are starting to be implemented in engineering practice.

His involvement in geotechnical earthquake engineering started with post-earthquake investigation of seismically induced landslides in Guatemala in 1976. Since then his focus has been the seismic response of underground space, seismic earth pressures on retaining structures, and seismic slope stability. His most recent research with his graduate students (L. Al-Atik, R.G. Mikola, G. Candia and N. Wagner) focused on the seismic response of retaining walls and basements. This effort combined field observations with extensive experimental work using geotechnical centrifuge and numerical modeling to develop new guidance for analysis and design of these structures in high seismicity regions (for more information see:  10.21418/G8WC7H ).

The overall focus of his research in rock mechanics has been the influence of kinematics on the response of fractured rock masses. His current research is focusing on the behavior of jointed rock masses under different environmental conditions, including rock fall hazard identification using acoustic emission monitoring, evaluation of conditions leading rock erosion in unlined spillways, and kinematics of large rock slides.  With student M. Gardner he is currently leading an effort to develop a new generation of numerical codes for modeling dynamic response of jointed rock masses and rock fluid interaction. This effort aims to combine 3-D DEM rock mass model with LBM fluid model while taking advantage of new developments in parallel computing in order to make analyses of realistic field-scale problems achievable and suitable for wide application in research and practice.

The overarching element in his research, starting with his Ph.D. dissertation, has been the influence of geologic environment on the properties of sedimentary deposits.  He and his students have performed extensive studies of the influence of depositional fabric on the stability of steep slopes in sands and gravels. He is currently embarking on the exploration of the influence of depositional fabric on the strength characteristics of fluvial sediments from micro- to macro-scale.

1

http://geomechanics.berkeley.edu/

Kenichi Soga, FREng, FICE, is the Donald H. McLaughlin Chair in Mineral Engineering and a Chancellor’s Professor at the University of California, Berkeley. He is also a faculty scientist at Lawrence Berkeley National Laboratory. He received his B.Eng. and M.Eng. from Kyoto University, Japan, and Ph.D. from the University of California, Berkeley, US. Prior to his move to UC-Berkeley in 2016, he was Professor of Civil Engineering at the University of Cambridge, UK. He is the chair of Technical Committee TC105 "Getechnics from Micro to Macro" of the International Society for Soil Mechanics and Geotechncial Engineering and is an editor-in-chief of ICE Smart Infrastructure and Construction Journal. He is also chair of ASCE Infrastructure Resilience Divison-Emerging Technologies Committee. He is a Bakar Fellow of UC Berkeley, promoting commercialization of smart infrastructure technologies.He is co-author of “Fundamentals of soil behavior, 3rd edition” with Professor James Mitchell. His research interests are fundamental soil behavior, computational geomechanics and infrastructure sensing and modeling.

Professor Soga and his research team have been developing innovative sensor technologies for civil infrastructur systems. The technologies include distributed fiber optics (FO) sensing, wireless sensor network (WSN), low power micro-electro-mechanical sensors, energy harvesting and computer vision. They have been deployed in tunnels, deep excavations, piles and slopes, leading to industry adoption and commercial spin offs. These activities resulted in the establishment of the Cambridge Centre for Smart Infrastructure and Construction ( https://www-smartinfrastructure.eng.cam.ac.uk/ ) at Cambridge. He is co-author of “Distributed Fibre Optic Strain Sensing for Monitoring Civil Infrastructure” and “Wireless Sensor Networks for Civil Infrastructure Monitoring”, which are available from ICE publishing. At Berkeley, he initiated research projects to test these technologies to improve infrastructure resilience. His group also develops high performance computing based infrastuture models for transporation network and pipeline networks. The main goal of these projects is to promote the concept of performance based design, construction and maintenance of our civil engineering structures by actively monitoring and modeling them throughout their lifetime.

His interest in computational geotechnics started when he was working on UC Berkeley’s finite element code FEAP his PhD research 25 years ago. Over the years, his research team has developed new codes for geotechnical engineering applications.  These include: (i) Coupled fluid flow-deformation Material Point Method code for large deformation landslide analysis, (ii) Lattice Boltzmann Method-Discrete Element Method code for particle-scale solid-fluid interaction analysis, (iii) Coupled Lattice Element Method code for hydraulic fracturing simulations, and (iv) Thermo-Hydro-Mechanical code to solve energy geostructures and methane hydrate problems. The research also investigates the role of various constitutive models in understanding the fundamental deformation mechanisms of various geotechnical problems. The current research activities utilize high performance computing facility and techniques to conduct large scale simulations.

The overall arching theme of his research is investigation of fundamental soil behavior in geotechnical engineering using the research tools described above. The current research topics include: (i) thermo-hydro-mechanical interactions for geothermal and deep geomechanics problems, (ii) large deformation for landslides and sand production, (iii) soil fabric and micro-macro relationships for developing models for microbial induced-cementing and soil erosion, and (iv) long term performance of underground structures.

More information about his research group can be found from  http://geomechanics.berkeley.edu/ .

1

Dimitrios Zekkos, P.E., is an Associate Professor in the Department who joined UC Berkeley in January 2020. He has previously worked for a major consulting firm in the Bay Area and was a Faculty member at the University of Michigan as an Assistant and then Associate Professor. His research and scientific papers have been recognized by a number of Awards by organizations such as the American Society of Civil Engineers and the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). He is also founder of ARGO-E, an infrastructure informatics firm and a Board Member of Elxis Group, based in Greece, which is the entity behind Geoengineer.org. He serves as Chair of the ASCE Geo-Institute Geoenvironmental Engineering Technical Committee and Chair of the Innovation and Development Committee of the ISSMGE.

Prof. Zekkos' research interests span the fields of geotechnical engineering, geoenvironmental engineering and earthquake engineering. His research approach has commonly involved designing and employing innovative experimental (in the laboratory and the field), and computational approaches that aim to provide new insights and inform improved models of earth material response to static and dynamic loads.

Prof. Zekkos has also been devising and implementing autonomy-enabled approaches for characterization & post-disaster reconnaissance of infrastructure systems. His research team has deployed Unmanned Aerial Vehicles (UAV) to enable the development of large coverage, high resolution, spatially distributed datasets on the performance of infrastructure systems following natural disasters. These UAVs have been used to characterize not only the surface, but also the subsurface conditions  by taking advantage of the capacity of UAVs to analyze the field data mid-flight and make mid-flight decisions autonomously. His research team has been successful in developing a UAV swarm-based approach for subsurface characterization using seismic geophysics, and specifically the Multichannel Analysis of Surface Waves (MASW) technique.

Prof. Zekkos has been conducting research on landslides using the latest technological tools for data acquisition and analysis. Sensor-equipped UAVs and satellites are used to generate high resolution topography for hundreds to thousands of square kilometers. High resolution optical and infrared data can be used to provide an assessment of rockmass characteristics, and moisture conditions using digital image analyses in 3D. The data collected is used in 1D, 2D or 3D landslide models that span many square kilometers.

Prof. Zekkos has been also developing frameworks and objective criteria for the selection and modification of input ground motions that are used as input in seismic design of civil infrastructure. His research team explored the conditions under which time domain or frequency domain modified ground motions can result in “reasonable” input ground motions, using thousands of ground motions.

Prof. Zekkos research thrust on Resiliency of Municipal Solid Waste (MSW) Landfills has been spanning more than 15 years and involved the development of characterization approaches and testing schemes to improve our understanding of the mechanical response of MSW. He has combined field and laboratory testing approaches to provide insights on material behavior. For example, in the laboratory, he co-developed a unique 300-mm diameter cyclic simple shear (CSS) with shear wave velocity measurements, and has conducted 300-mm diameter triaxial testing. In the field, he has used seismic geophysical techniques, such as the Multichannel Analyses of Surface Waves (MASW) and the Microtremor Analysis Methods, self-powered autonomous sensors for long-term deployment, and UAVs.  He also characterized the nonlinear dynamic properties of MSW in-situ using the NHERI @UT large-size mobile vibroseis.  

Prof. Zekkos is promoting energy harvesting in Next-Generation Municipal Solid Waste (MSW) Facilities, by investigating the physico-bio-chemical processes of anaerobic degradation of MSW.  His research group developed large-size degradation simulators to degrade MSW specimens in anaerobic conditions with testing durations up to 1500 days. This testing guided the development of a coupled bio-chemo-physical computational performance model (CPM) and predicts energy output. Self-powered, autonomous, surface and subsurface distributed wireless nodes paired with land-based robots and UAVs provide critical input to this model.

More information about his research directions can be found  here .

1

3D model of complex of landslides caused by 2015 Lefkada earthquake (left) and UAV conducting survey using optical, infrared and methane sensors (right).

1

Left: Vibroseis to shake intensely soils and solid waste and assess the nonlinear dynamic properties of materials in-situ.

Right: 2D profile of shear wave velocity of solid waste.

1

Satellite-based mapping vs. modelled landslides for a 4 square kilometer area affected by an earthquake.

1

SEM imagery of incinerated material

Latest Research News

Bgc engineering joins uc berkeley's geosystems corporate partnership program.

research topics in geotechnical engineering

The Geosystems program is pleased to announce that BGC Engineering has joined the program's Corporate Partnership at the Blue level. Through this partnership, BGC and UC Berkeley will establish strong ties and BGC will support graduate students in the Geosystems group. Matt Lato of BGC is the leading liaison along with UC Berkeley alumnus Scott Anderson. They will participate in a number of activities including the Industry Leadership Summit, ...

Geosystems PhD student Weibing Gong joins Faculty at Missouri Science and Technology

research topics in geotechnical engineering

PhD student Weibing Gong completed his doctoral thesis in August and has already joined the Faculty of the Geosciences, Geological and Petroleum Engineering Department at Missouri Science and Technology as an Assistant Professor. Weibing's thesis was on "A Numerical Model for Regional-Scale Back-Calculation and Prediction of Earthquake-Induced Landslides" under the supervision of Professor Dimitrios Zekkos and Prof. Marin Clark from the Univ ...

Geosystems Post Doctoral Researcher Dr. Kim to join SDSMT as Assistant Professor

research topics in geotechnical engineering

Dr. Jongchan Kim, a post doctoral researcher working with Prof. Adda Athanasopoulos-Zekkos and Prof. Dimitrios Zekkos has accepted a faculty position at the South Dakota School of Mines and Technology's Civil & Environmental Engineering Department. Dr. Kim has been working on the characterization of gravelly soils using the large size cyclic simple shear device at UC Berkeley and has made important contributions towards improvi ...

The 2022 Geotechnical Engineering Research Symposium was a success!

research topics in geotechnical engineering

The sixth annual UC Berkeley Geotechnical Engineering Research Symposium was held on November 18, 2022, at the Banatao Auditorium in Sutardja Dai Hall. The symposium showcased current research works in the GeoSystems Engineering group at UC Berkeley and bridged academic and industry communities.   The keynote speakers for the event were four Ph.D. and postdoctoral researchers in the GeoSystems Engineering program. They presented their ...

PhD students Gomberg and Kassem participate in GEER expedition to Puerto Rico to Map Precipitation-Induced Landslides after Hurricane Fiona

research topics in geotechnical engineering

PhD students Drew Gomberg and Mirna Kassem, advised by Professor Dimitrios Zekkos, just returned from an expedition in Puerto Rico as part of a GEER (Geotechnical Extreme Event Reconnaissance) deployment. The one-week field deployment aimed to collect data about precipitation-induced landslides caused by the recent 2022 Hurricane Fiona. This was in collaboration with colleagues from the University of Puerto Rico (led by Prof. Alesa ...

We thank the following platinum and gold sponsors for supporting our students:

ENGEO

  • Frontiers in Earth Science
  • Structural Geology and Tectonics
  • Research Topics

Applications of Geotechnical Mechanics in Underground Engineering

Total Downloads

Total Views and Downloads

About this Research Topic

With the rapid development of the economy, the scale of underground projects in national defense, transportation, water conservancy and other industries has grown rapidly. Underground space has become developing land resources all over the world. Underground space development often faces a geological ...

Keywords : Geotechnical mechanics, Numerical simulation, Experimental study, Excavation support, Tunnel deformation, Excavation damaged zone

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, recent articles, submission deadlines.

Submission closed.

Participating Journals

Total views.

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Pacific Earthquake Engineering Research Center

Full program, thursday, january 18, 2024 day 1 technology components for regional simulations, friday, january 19, 2024 day 2 focus on the san francisco bay area and the peer-lbnl database.

IMAGES

  1. Good research topics in Geotechnical Engineering

    research topics in geotechnical engineering

  2. Projects

    research topics in geotechnical engineering

  3. Geotechnical Engineering

    research topics in geotechnical engineering

  4. Geotechnical Engineering

    research topics in geotechnical engineering

  5. What are some good research topics in geotechnical engineering for M.Tech dissertation?

    research topics in geotechnical engineering

  6. Geotechnical Earthquake Engineering Handbook by Robert W. Day

    research topics in geotechnical engineering

VIDEO

  1. 11.1 geotechnical eng

  2. Semester 6

  3. Geotechnical Engineering unit 1 Aktu|soil classification|phase diagram|volumetric relationship #aktu

  4. The Geotechnical Engineer's Report #shorts #structuralengineering

  5. Meet a Geotechnical Engineer

  6. GEOTECHNICAL ENGINEERING 1 TOPIC 4 SOIL CLASSIFICATION

COMMENTS

  1. geotechnical engineering Latest Research Papers

    geotechnical engineering Recently Published Documents TOTAL DOCUMENTS 1465 (FIVE YEARS 445) H-INDEX 42 (FIVE YEARS 9) Latest Documents Most Cited Documents Contributed Authors Related Sources Related Keywords Analysis of Geotechnical Engineering Safety Technology in Urban Underground Space Construction

  2. Insights in Geotechnical Engineering: 2021

    This editorial initiative in question, led by Prof. Jie Han, Specialty Chief Editor of Frontiers in Geotechnical Engineering is focused on new insights, novel developments, current challenges, latest discoveries, recent advances, and future perspectives in the field of Geotechnical Engineering.

  3. Geotechnical Engineering

    Last Updated: Türkçe All topics of Geotechnical Engineering are research interest to our division, but current research is on the following topics: Geotechnical Earthquake Engineering (Soil Liquefaction, Engineering Seismology, Seismic Hazard Analysis, Ground motion models, Seismic source characterization) Collapsing soils, Dispersive soils,

  4. Special Issue "Recent Advances in Geotechnical Engineering"

    Interests: spatio-temporal impact assessment; developing eco-efficient and sustainable strategies for urban development; construction and geotechnical practices; utilizing life cycle impact assessment; emissions modelling, and remote sensing and spatial data analysis Special Issues, Collections and Topics in MDPI journals Special Issue Information

  5. Topical Collection "New Advances in Geotechnical Engineering"

    Authors are encouraged to submit original research articles, case studies, reviews, position papers, and theoretical and numerical papers including, but not limited to the following topics: problematic (collapsing, dispersive, expansive, soft) soils; slopes and landslides; laboratory testing and field application methods; mining engineering; gro...

  6. Journal of Geotechnical and Geoenvironmental Engineering

    The Journal of Geotechnical and Geoenvironmental Engineering covers the broad area of practice known as geotechnical engineering. Papers are welcomed on topics such as foundations, retaining structures, soil dynamics, engineering behavior of soil and rock, site characterization, slope stability, dams, rock engineering, earthquake engineering, environmental geotechnics, geosynthetics, computer ...

  7. Frontiers

    To showcase some recent advancements in geotechnical engineering, this Research Topic includes five papers covering earth structures, soil-structure interactions, advanced numerical methods, artificial intelligence, and case studies. A brief summary of each published paper in this Research Topic is presented below.

  8. Recent Advances in Geotechnical Research

    The topics are broad ranged including: · Centrifuge model testing · Constitutive model · Granular physics · Numerical simulation · Soil bioengineering . The topics reflect our geotechnical research in a changing world. Traditional topics in foundation engineering are fading out and new topics are emerging.

  9. Rising Stars in Geotechnical Engineering

    Impact About this Research Topic Manuscript Summary Submission Deadline 22 February 2024 Manuscript Submission Deadline 11 June 2024 Guidelines Geotechnical engineering plays a pivotal role in shaping the foundations of our built environment.

  10. Frontiers in Built Environment

    Articles. Part of an innovative journal that aims to advance our knowledge of civil engineering, this section sheds light on the progress made in the past decade in the Geotechnical Engineering field.

  11. 93612 PDFs

    Geotechnical Engineering | Explore the latest full-text research PDFs, articles, conference papers, preprints and more on GEOTECHNICAL ENGINEERING. Find methods information, sources,...

  12. Geotechnical Engineering

    Geotechnical engineering is the systematic application of techniques which allows construction on, in, or with geomaterials, i.e., soil and rock. Every civil engineering structure and construction is related to soil in some way, and subsequently, its design will depend on properties of the soil or rock.

  13. Research Strengths / Geotechnical Science and Engineering / Institutes

    Key research areas include: Rockfall hazard and risk mitigation New technologies for remote and continuous monitoring of slope movements Efficient numerical and probabilistic methods for risk assessment in geotechnical engineering Probabilistic geotechnical site investigation using geotechnical, geophysical and geological information

  14. Geotechnical and Materials Engineering Research

    Geotechnical engineering investigates various geomaterials (e.g., soils and rocks) and determines the most effective way to support the desired structure. Geotechnical engineers plan and design foundation systems and other structures such as dams, levees, tunnels, and landfills. ... and cover a wide variety of technical topics of research ...

  15. Research

    The overall arching theme of his research is investigation of fundamental soil behavior in geotechnical engineering using the research tools described above. The current research topics include: (i) thermo-hydro-mechanical interactions for geothermal and deep geomechanics problems, (ii) large deformation for landslides and sand production, (iii ...

  16. 93612 PDFs

    Geotechnical Engineering | Explore the latest full-text research PDFs, articles, conference papers, preprints and more on GEOTECHNICAL ENGINEERING. Find methods information, sources, references or ...

  17. Novel Approaches of Marine Geotechnical Engineering: Risk and

    Keywords: marine infrastructures, marine ecology, habitat, marine soil behavior, geohazards, stability, design . Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements.Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at ...

  18. Good research topics in Geotechnical Engineering

    Various research approaches for these topics can be: Experimentation - Physical modeling like Model scale testing or full-scale testing or centrifuge modeling. It depends on facility available...

  19. Applications of Geotechnical Mechanics in Underground Engineering

    This research topic aims to understand the geotechnical mechanics problems encountered in underground engineering comprehensively. By studying the relationship between mechanical characteristics of geotechnical materials and underground structures, there will be a systematic understanding of the physical characteristics of geotechnical ...

  20. Geotechnical Engineering

    Top Research Topics at Geotechnical engineering? The journal tackles a plethora of topics, such as Geotechnical engineering, Pile, Structural engineering, Soil water and Soil mechanics. Shear (geology), Finite element method and Strength of materials are some topics wherein Geotechnical engineering research discussed in it have an impact. While ...

  21. What are the trending research topics in Geotechnical Engineering

    What are the trending research topics in Geotechnical Engineering? i wanted to know the recent trending research interests in the field of Geotechnical engineering Geotechnical...

  22. Contribution of ChatGPT and similar generative artificial ...

    Abstract. This research study investigates the influence of ChatGPT on geotechnical engineering and soil mechanics. Positioned as an advanced language model, ChatGPT has emerged as a formidable asset for enhancing communication, collaboration, and problem-solving within the geotechnics domain.

  23. Workshop Program

    The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. ... to research programs focused on performance-based earthquake engineering in disciplines including structural and geotechnical engineering, geology/seismology, lifelines ...