Home

Empirical Research: Advantages, Drawbacks and Differences with Non-Empirical Research

Based on the purpose and available resources, researchers conduct empirical or non-empirical research. Researchers employ both of these methods in various fields using qualitative, quantitative, or secondary data. Let's look at the characteristics of empirical research and see how it is different from non-empirical research.

The empirical study is evidence-based research. That is to say, it uses evidence, experiment, or observation to test the hypotheses. It is a systematic collection and analysis of data. Empirical research allows researchers to find new and thorough insights into the issue.  Mariam-Webster dictionary defines the word "empirical" as:

                "originating in or based on observation or experience"

               "relying on experience or observation alone often without due regard for system and theory"

               "capable of being verified or disproved by observation or experiment"

Unlike non-empirical research, it does not just rely on theories but also tries to find the reasoning behind those theories in order to prove them. Non-empirical research is based on theories and logic, and researchers don't attempt to test them.  Although empirical research mostly depends on primary data, secondary data can also be beneficial for the theory side of the research.  The empirical research process includes the following:

  • Defining the issue
  • Theory generation and research questions
  • If available, studying existing theories about the issue
  • Choosing appropriate data collection methods  such as experiment or observation
  • Data gathering
  • Data coding , analysis, and evaluation
  • Data Interpretation and result
  • Reporting and publishing  the findings

Benefits of empirical research

  • Empirical research aims to find the meaning behind a particular phenomenon. In other words, it seeks answers to how and why something works the way it is.
  • By identifying the reasons why something happens, it is possible to replicate or prevent similar events.
  • The flexibility of the research allows the researchers to change certain aspects of the research and adjust them to new goals. 
  • It is more reliable because it represents a real-life experience and not just theories.
  • Data collected through empirical research may be less biased because the researcher is there during the collection process. In contrast, it is sometimes impossible to verify the accuracy of data in non-empirical research.

Drawbacks of empirical research

  • It can be time-consuming depending on the research subject.
  • It is not a cost-effective way of data collection in most cases because of the possible expensive methods of data gathering. Moreover, it may require traveling between multiple locations.
  • Lack of evidence and research subjects may not yield the desired result. A small sample size prevents generalization because it may not be enough to represent the target audience.
  • It isn't easy to get information on sensitive topics, and also, researchers may need participants' consent to use the data.

In most scientific fields, acting based solely on theories (or logic) is not enough. Empirical research makes it possible to measure the reliability of the theory before applying it. Researchers sometimes alternate between the two forms of research, as non-empirical research provides them with important information about the phenomenon, while empirical research helps them use that information to test the theory.

English

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

benefits of empirical research

Home Market Research

Empirical Research: Definition, Methods, Types and Examples

What is Empirical Research

Content Index

Empirical research: Definition

Empirical research: origin, quantitative research methods, qualitative research methods, steps for conducting empirical research, empirical research methodology cycle, advantages of empirical research, disadvantages of empirical research, why is there a need for empirical research.

Empirical research is defined as any research where conclusions of the study is strictly drawn from concretely empirical evidence, and therefore “verifiable” evidence.

This empirical evidence can be gathered using quantitative market research and  qualitative market research  methods.

For example: A research is being conducted to find out if listening to happy music in the workplace while working may promote creativity? An experiment is conducted by using a music website survey on a set of audience who are exposed to happy music and another set who are not listening to music at all, and the subjects are then observed. The results derived from such a research will give empirical evidence if it does promote creativity or not.

LEARN ABOUT: Behavioral Research

You must have heard the quote” I will not believe it unless I see it”. This came from the ancient empiricists, a fundamental understanding that powered the emergence of medieval science during the renaissance period and laid the foundation of modern science, as we know it today. The word itself has its roots in greek. It is derived from the greek word empeirikos which means “experienced”.

In today’s world, the word empirical refers to collection of data using evidence that is collected through observation or experience or by using calibrated scientific instruments. All of the above origins have one thing in common which is dependence of observation and experiments to collect data and test them to come up with conclusions.

LEARN ABOUT: Causal Research

Types and methodologies of empirical research

Empirical research can be conducted and analysed using qualitative or quantitative methods.

  • Quantitative research : Quantitative research methods are used to gather information through numerical data. It is used to quantify opinions, behaviors or other defined variables . These are predetermined and are in a more structured format. Some of the commonly used methods are survey, longitudinal studies, polls, etc
  • Qualitative research:   Qualitative research methods are used to gather non numerical data.  It is used to find meanings, opinions, or the underlying reasons from its subjects. These methods are unstructured or semi structured. The sample size for such a research is usually small and it is a conversational type of method to provide more insight or in-depth information about the problem Some of the most popular forms of methods are focus groups, experiments, interviews, etc.

Data collected from these will need to be analysed. Empirical evidence can also be analysed either quantitatively and qualitatively. Using this, the researcher can answer empirical questions which have to be clearly defined and answerable with the findings he has got. The type of research design used will vary depending on the field in which it is going to be used. Many of them might choose to do a collective research involving quantitative and qualitative method to better answer questions which cannot be studied in a laboratory setting.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

Quantitative research methods aid in analyzing the empirical evidence gathered. By using these a researcher can find out if his hypothesis is supported or not.

  • Survey research: Survey research generally involves a large audience to collect a large amount of data. This is a quantitative method having a predetermined set of closed questions which are pretty easy to answer. Because of the simplicity of such a method, high responses are achieved. It is one of the most commonly used methods for all kinds of research in today’s world.

Previously, surveys were taken face to face only with maybe a recorder. However, with advancement in technology and for ease, new mediums such as emails , or social media have emerged.

For example: Depletion of energy resources is a growing concern and hence there is a need for awareness about renewable energy. According to recent studies, fossil fuels still account for around 80% of energy consumption in the United States. Even though there is a rise in the use of green energy every year, there are certain parameters because of which the general population is still not opting for green energy. In order to understand why, a survey can be conducted to gather opinions of the general population about green energy and the factors that influence their choice of switching to renewable energy. Such a survey can help institutions or governing bodies to promote appropriate awareness and incentive schemes to push the use of greener energy.

Learn more: Renewable Energy Survey Template Descriptive Research vs Correlational Research

  • Experimental research: In experimental research , an experiment is set up and a hypothesis is tested by creating a situation in which one of the variable is manipulated. This is also used to check cause and effect. It is tested to see what happens to the independent variable if the other one is removed or altered. The process for such a method is usually proposing a hypothesis, experimenting on it, analyzing the findings and reporting the findings to understand if it supports the theory or not.

For example: A particular product company is trying to find what is the reason for them to not be able to capture the market. So the organisation makes changes in each one of the processes like manufacturing, marketing, sales and operations. Through the experiment they understand that sales training directly impacts the market coverage for their product. If the person is trained well, then the product will have better coverage.

  • Correlational research: Correlational research is used to find relation between two set of variables . Regression analysis is generally used to predict outcomes of such a method. It can be positive, negative or neutral correlation.

LEARN ABOUT: Level of Analysis

For example: Higher educated individuals will get higher paying jobs. This means higher education enables the individual to high paying job and less education will lead to lower paying jobs.

  • Longitudinal study: Longitudinal study is used to understand the traits or behavior of a subject under observation after repeatedly testing the subject over a period of time. Data collected from such a method can be qualitative or quantitative in nature.

For example: A research to find out benefits of exercise. The target is asked to exercise everyday for a particular period of time and the results show higher endurance, stamina, and muscle growth. This supports the fact that exercise benefits an individual body.

  • Cross sectional: Cross sectional study is an observational type of method, in which a set of audience is observed at a given point in time. In this type, the set of people are chosen in a fashion which depicts similarity in all the variables except the one which is being researched. This type does not enable the researcher to establish a cause and effect relationship as it is not observed for a continuous time period. It is majorly used by healthcare sector or the retail industry.

For example: A medical study to find the prevalence of under-nutrition disorders in kids of a given population. This will involve looking at a wide range of parameters like age, ethnicity, location, incomes  and social backgrounds. If a significant number of kids coming from poor families show under-nutrition disorders, the researcher can further investigate into it. Usually a cross sectional study is followed by a longitudinal study to find out the exact reason.

  • Causal-Comparative research : This method is based on comparison. It is mainly used to find out cause-effect relationship between two variables or even multiple variables.

For example: A researcher measured the productivity of employees in a company which gave breaks to the employees during work and compared that to the employees of the company which did not give breaks at all.

LEARN ABOUT: Action Research

Some research questions need to be analysed qualitatively, as quantitative methods are not applicable there. In many cases, in-depth information is needed or a researcher may need to observe a target audience behavior, hence the results needed are in a descriptive analysis form. Qualitative research results will be descriptive rather than predictive. It enables the researcher to build or support theories for future potential quantitative research. In such a situation qualitative research methods are used to derive a conclusion to support the theory or hypothesis being studied.

LEARN ABOUT: Qualitative Interview

  • Case study: Case study method is used to find more information through carefully analyzing existing cases. It is very often used for business research or to gather empirical evidence for investigation purpose. It is a method to investigate a problem within its real life context through existing cases. The researcher has to carefully analyse making sure the parameter and variables in the existing case are the same as to the case that is being investigated. Using the findings from the case study, conclusions can be drawn regarding the topic that is being studied.

For example: A report mentioning the solution provided by a company to its client. The challenges they faced during initiation and deployment, the findings of the case and solutions they offered for the problems. Such case studies are used by most companies as it forms an empirical evidence for the company to promote in order to get more business.

  • Observational method:   Observational method is a process to observe and gather data from its target. Since it is a qualitative method it is time consuming and very personal. It can be said that observational research method is a part of ethnographic research which is also used to gather empirical evidence. This is usually a qualitative form of research, however in some cases it can be quantitative as well depending on what is being studied.

For example: setting up a research to observe a particular animal in the rain-forests of amazon. Such a research usually take a lot of time as observation has to be done for a set amount of time to study patterns or behavior of the subject. Another example used widely nowadays is to observe people shopping in a mall to figure out buying behavior of consumers.

  • One-on-one interview: Such a method is purely qualitative and one of the most widely used. The reason being it enables a researcher get precise meaningful data if the right questions are asked. It is a conversational method where in-depth data can be gathered depending on where the conversation leads.

For example: A one-on-one interview with the finance minister to gather data on financial policies of the country and its implications on the public.

  • Focus groups: Focus groups are used when a researcher wants to find answers to why, what and how questions. A small group is generally chosen for such a method and it is not necessary to interact with the group in person. A moderator is generally needed in case the group is being addressed in person. This is widely used by product companies to collect data about their brands and the product.

For example: A mobile phone manufacturer wanting to have a feedback on the dimensions of one of their models which is yet to be launched. Such studies help the company meet the demand of the customer and position their model appropriately in the market.

  • Text analysis: Text analysis method is a little new compared to the other types. Such a method is used to analyse social life by going through images or words used by the individual. In today’s world, with social media playing a major part of everyone’s life, such a method enables the research to follow the pattern that relates to his study.

For example: A lot of companies ask for feedback from the customer in detail mentioning how satisfied are they with their customer support team. Such data enables the researcher to take appropriate decisions to make their support team better.

Sometimes a combination of the methods is also needed for some questions that cannot be answered using only one type of method especially when a researcher needs to gain a complete understanding of complex subject matter.

We recently published a blog that talks about examples of qualitative data in education ; why don’t you check it out for more ideas?

Since empirical research is based on observation and capturing experiences, it is important to plan the steps to conduct the experiment and how to analyse it. This will enable the researcher to resolve problems or obstacles which can occur during the experiment.

Step #1: Define the purpose of the research

This is the step where the researcher has to answer questions like what exactly do I want to find out? What is the problem statement? Are there any issues in terms of the availability of knowledge, data, time or resources. Will this research be more beneficial than what it will cost.

Before going ahead, a researcher has to clearly define his purpose for the research and set up a plan to carry out further tasks.

Step #2 : Supporting theories and relevant literature

The researcher needs to find out if there are theories which can be linked to his research problem . He has to figure out if any theory can help him support his findings. All kind of relevant literature will help the researcher to find if there are others who have researched this before, or what are the problems faced during this research. The researcher will also have to set up assumptions and also find out if there is any history regarding his research problem

Step #3: Creation of Hypothesis and measurement

Before beginning the actual research he needs to provide himself a working hypothesis or guess what will be the probable result. Researcher has to set up variables, decide the environment for the research and find out how can he relate between the variables.

Researcher will also need to define the units of measurements, tolerable degree for errors, and find out if the measurement chosen will be acceptable by others.

Step #4: Methodology, research design and data collection

In this step, the researcher has to define a strategy for conducting his research. He has to set up experiments to collect data which will enable him to propose the hypothesis. The researcher will decide whether he will need experimental or non experimental method for conducting the research. The type of research design will vary depending on the field in which the research is being conducted. Last but not the least, the researcher will have to find out parameters that will affect the validity of the research design. Data collection will need to be done by choosing appropriate samples depending on the research question. To carry out the research, he can use one of the many sampling techniques. Once data collection is complete, researcher will have empirical data which needs to be analysed.

LEARN ABOUT: Best Data Collection Tools

Step #5: Data Analysis and result

Data analysis can be done in two ways, qualitatively and quantitatively. Researcher will need to find out what qualitative method or quantitative method will be needed or will he need a combination of both. Depending on the unit of analysis of his data, he will know if his hypothesis is supported or rejected. Analyzing this data is the most important part to support his hypothesis.

Step #6: Conclusion

A report will need to be made with the findings of the research. The researcher can give the theories and literature that support his research. He can make suggestions or recommendations for further research on his topic.

Empirical research methodology cycle

A.D. de Groot, a famous dutch psychologist and a chess expert conducted some of the most notable experiments using chess in the 1940’s. During his study, he came up with a cycle which is consistent and now widely used to conduct empirical research. It consists of 5 phases with each phase being as important as the next one. The empirical cycle captures the process of coming up with hypothesis about how certain subjects work or behave and then testing these hypothesis against empirical data in a systematic and rigorous approach. It can be said that it characterizes the deductive approach to science. Following is the empirical cycle.

  • Observation: At this phase an idea is sparked for proposing a hypothesis. During this phase empirical data is gathered using observation. For example: a particular species of flower bloom in a different color only during a specific season.
  • Induction: Inductive reasoning is then carried out to form a general conclusion from the data gathered through observation. For example: As stated above it is observed that the species of flower blooms in a different color during a specific season. A researcher may ask a question “does the temperature in the season cause the color change in the flower?” He can assume that is the case, however it is a mere conjecture and hence an experiment needs to be set up to support this hypothesis. So he tags a few set of flowers kept at a different temperature and observes if they still change the color?
  • Deduction: This phase helps the researcher to deduce a conclusion out of his experiment. This has to be based on logic and rationality to come up with specific unbiased results.For example: In the experiment, if the tagged flowers in a different temperature environment do not change the color then it can be concluded that temperature plays a role in changing the color of the bloom.
  • Testing: This phase involves the researcher to return to empirical methods to put his hypothesis to the test. The researcher now needs to make sense of his data and hence needs to use statistical analysis plans to determine the temperature and bloom color relationship. If the researcher finds out that most flowers bloom a different color when exposed to the certain temperature and the others do not when the temperature is different, he has found support to his hypothesis. Please note this not proof but just a support to his hypothesis.
  • Evaluation: This phase is generally forgotten by most but is an important one to keep gaining knowledge. During this phase the researcher puts forth the data he has collected, the support argument and his conclusion. The researcher also states the limitations for the experiment and his hypothesis and suggests tips for others to pick it up and continue a more in-depth research for others in the future. LEARN MORE: Population vs Sample

LEARN MORE: Population vs Sample

There is a reason why empirical research is one of the most widely used method. There are a few advantages associated with it. Following are a few of them.

  • It is used to authenticate traditional research through various experiments and observations.
  • This research methodology makes the research being conducted more competent and authentic.
  • It enables a researcher understand the dynamic changes that can happen and change his strategy accordingly.
  • The level of control in such a research is high so the researcher can control multiple variables.
  • It plays a vital role in increasing internal validity .

Even though empirical research makes the research more competent and authentic, it does have a few disadvantages. Following are a few of them.

  • Such a research needs patience as it can be very time consuming. The researcher has to collect data from multiple sources and the parameters involved are quite a few, which will lead to a time consuming research.
  • Most of the time, a researcher will need to conduct research at different locations or in different environments, this can lead to an expensive affair.
  • There are a few rules in which experiments can be performed and hence permissions are needed. Many a times, it is very difficult to get certain permissions to carry out different methods of this research.
  • Collection of data can be a problem sometimes, as it has to be collected from a variety of sources through different methods.

LEARN ABOUT:  Social Communication Questionnaire

Empirical research is important in today’s world because most people believe in something only that they can see, hear or experience. It is used to validate multiple hypothesis and increase human knowledge and continue doing it to keep advancing in various fields.

For example: Pharmaceutical companies use empirical research to try out a specific drug on controlled groups or random groups to study the effect and cause. This way, they prove certain theories they had proposed for the specific drug. Such research is very important as sometimes it can lead to finding a cure for a disease that has existed for many years. It is useful in science and many other fields like history, social sciences, business, etc.

LEARN ABOUT: 12 Best Tools for Researchers

With the advancement in today’s world, empirical research has become critical and a norm in many fields to support their hypothesis and gain more knowledge. The methods mentioned above are very useful for carrying out such research. However, a number of new methods will keep coming up as the nature of new investigative questions keeps getting unique or changing.

Create a single source of real data with a built-for-insights platform. Store past data, add nuggets of insights, and import research data from various sources into a CRM for insights. Build on ever-growing research with a real-time dashboard in a unified research management platform to turn insights into knowledge.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

website optimization tools

20 Best Website Optimization Tools to Improve Your Website

Mar 22, 2024

digital customer experience software

15 Best Digital Customer Experience Software of 2024

product experience software

15 Best Product Experience Software of 2024

customer analytics software

15 Best Customer Analytics Software of 2024 | QuestionPro

Mar 21, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Purdue University

  • Ask a Librarian

Research: Overview & Approaches

  • Getting Started with Undergraduate Research
  • Planning & Getting Started
  • Building Your Knowledge Base
  • Locating Sources
  • Reading Scholarly Articles
  • Creating a Literature Review
  • Productivity & Organizing Research
  • Scholarly and Professional Relationships

Introduction to Empirical Research

Databases for finding empirical research, guided search, google scholar, examples of empirical research, sources and further reading.

  • Interpretive Research
  • Action-Based Research
  • Creative & Experimental Approaches

Your Librarian

Profile Photo

  • Introductory Video This video covers what empirical research is, what kinds of questions and methods empirical researchers use, and some tips for finding empirical research articles in your discipline.

Help Resources

  • Guided Search: Finding Empirical Research Articles This is a hands-on tutorial that will allow you to use your own search terms to find resources.

Google Scholar Search

  • Study on radiation transfer in human skin for cosmetics
  • Long-Term Mobile Phone Use and the Risk of Vestibular Schwannoma: A Danish Nationwide Cohort Study
  • Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services
  • Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles
  • Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women?

benefits of empirical research

  • << Previous: Scholarly and Professional Relationships
  • Next: Interpretive Research >>
  • Last Updated: Mar 20, 2024 3:58 PM
  • URL: https://guides.lib.purdue.edu/research_approaches

benefits of empirical research

The Plagiarism Checker Online For Your Academic Work

Start Plagiarism Check

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Plagiarism Check within 10min

Printing & Binding with 3D Live Preview

Empirical Research – Characteristics & Advantages

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Empirical-Research-250x160

Many people ascribe to the quote, “I will not believe it unless I see it.” What most don’t know is that this quote came from empirical research enthusiasts in the renaissance period and is currently a cornerstone for modern science and research. The word empirical has a Greek origin from empeirikos, meaning experienced.

Ireland

Inhaltsverzeichnis

  • 1 Empirical Research – FAQs
  • 2 Empirical Research: Definition
  • 3 Characteristics of Empirical Research
  • 4 Uses of Empirical Research
  • 5 Empirical Research Methods
  • 6 Empirical vs Non-Empirical Research
  • 7 Advantages of Empirical Research
  • 8 In a Nutshell

Empirical Research – FAQs

What is empirical research.

This is a type of research whose findings and conclusions are based on valid data or evidence. These pieces of evidence are collected using either or both qualitative research and quantitative research . In philosophy, empiricism is concluding direct observations and assessment instead of using logic alone.

What are examples of Empirical Research?

An excellent example of empirical research is the process of DNA testing and its findings.

What is Empirical and Non-Empirical Research?

While empirical research focuses on individual pieces of evidence and facts, the non-empirical study considers personal judgement and authoritative experience as necessary as the data collected.

What are the three types of research questions?

A research project can use either descriptive, relational, or causal questions to collect and analyse data.

What's the need for Empirical Research?

This form of research is quite useful in science, history, and business as it validates hypothesis, thus increasing human knowledge with tangible pieces of evidence.

Empirical Research: Definition

Empirical Resarch is a type of research where the conclusions and decisions are based on valid data or evidence. Empirical research  can be analyzed quantitatively or qualitatively. Instead of using only logic,  in philosophy empiricism is concluding direct observations and assessment.

Characteristics of Empirical Research

The distinctive feature of empirical research is its strictness in collecting and observing data and experiences to collect useful information that is used to create a provable analysis. For this reason, the research has six main characteristics, better known as the steps to complete empirical research.

1-90x90

Abstract/Purpose

The first step involves coming up with the foundational purpose of the research. The researcher answers questions like:

  • What do I want to find out?
  • How do I define the problem statement?
  • Is the data readily available?
  • Are there challenges that might limit the collection of data in terms of time, resources, language barrier, etc.?
  • What is the ratio between the research itself and the finding in terms of profitability? In short, is it worth the effort?

This is the area where the researcher goes deep into why he/she wants to perform it and what he/she seeks to find or prove from the outcome.

2-90x90

Introduction

The second step involves having an initial report for the research. Here, any facts ever documented on the same are highlighted plus the statement of hypotheses for the current study. Also, the parties involved describe tolerable errors, measurements, and acceptable methods in this section.

3-90x90

This is where the actual research takes place, plus the recording of the process and data. Researchers decide whether they will use experimental or non-experimental methods for data collection in relation t the hypotheses. Depending on the field of research, they will then carve out a research design that can maximise their resources and methods of data collection. Data collection techniques are then used, which might include sampling and questionnaire methods.

4-90x90

Some researchers merge this part with step 3, while others handle them separately. This is where the findings from the data collection methods are put together. The data is then cleaned and analysed.

5-90x90

Data analysis methods include qualitative or quantitative methods. From either or both of these methods, researchers check their findings to support or reject their hypothesis. A discussion on the interpretation and implications of the findings plus the study as a whole is then documented for formal use.

6-90x90

Finally, credit is given to whomever the credit is due. Citations or a bibliography with materials used in the report are also included.

Uses of Empirical Research

Thanks to it insisting on having tangible pieces of evidence, empirical research comes in handy in various disciplines. The most prevalent uses are in medicine, anthropology and law. In medicine, the research helps to prove several hypotheses that increase human knowledge on the body’s behaviour and adaptability to new methods of handling diseases.

In the legal field, this type of research helps to study how rules and regulations impact the society or a certain institution understudy while in anthropology, it follows human patterns to understand cultures.

Empirical Research Methods

The two main methods used in empirical research are quantitative and qualitative. In quantitative research , numerical data is used to collect information or any other quantifiable process. The most common examples are polls, longitudinal studies and surveys.

On the other hand, qualitative research focuses more on meaning, underlying reasons and opinions from the data collected. The method takes on an unstructured approach or semi-structured. By the nature of its data, the method provides in-depth information and is often a smaller sample. Its examples include interviews, groups, and experiments.

Empirical vs Non-Empirical Research

While empirical research stops at verifiable data, non-empirical research includes authoritative opinions and logic. This is to add some meaning to the data for further elaboration. In short, data from the non-empirical study is theorised. While empirical research uses qualitative and quantitative methods, a researcher using the non-empirical method will use a lot of systematic reviews, meta-analysis, and critical studies to conclude the matter at hand.

GOOD TO KNOW: Read our article about Research Methodology !

Advantages of Empirical Research

First and foremost, this form of research has increased the credibility of findings, making it easy for someone to make an argument out of facts instead of theoretical assumptions. It keeps works authentic, formal, and verifiable, thus increasing the quality depth of information.

Secondly, empirical research is quite flexible. The researcher has the authority to adjust methodologies and also the sample size to suit any form of necessity. All in all, it is easy and the most reliable type of research.

In a Nutshell

Empirical research is, in short, an essential approach to building up information and making provable arguments to support specific implications. To wrap this up:

  • Empirical research is a valid form of research that leaves no room for misinterpretation of information.
  • Both qualitative and quantitative methods help to draw viable conclusions and are useful in this form of research.
  • A researcher is free to explore the best approach to reach a viable conclusion within the empirical survey.

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

What is Empirical Research? Definition, Methods, Examples

Appinio Research · 09.02.2024 · 35min read

What is Empirical Research Definition Methods Examples

Ever wondered how we gather the facts, unveil hidden truths, and make informed decisions in a world filled with questions? Empirical research holds the key.

In this guide, we'll delve deep into the art and science of empirical research, unraveling its methods, mysteries, and manifold applications. From defining the core principles to mastering data analysis and reporting findings, we're here to equip you with the knowledge and tools to navigate the empirical landscape.

What is Empirical Research?

Empirical research is the cornerstone of scientific inquiry, providing a systematic and structured approach to investigating the world around us. It is the process of gathering and analyzing empirical or observable data to test hypotheses, answer research questions, or gain insights into various phenomena. This form of research relies on evidence derived from direct observation or experimentation, allowing researchers to draw conclusions based on real-world data rather than purely theoretical or speculative reasoning.

Characteristics of Empirical Research

Empirical research is characterized by several key features:

  • Observation and Measurement : It involves the systematic observation or measurement of variables, events, or behaviors.
  • Data Collection : Researchers collect data through various methods, such as surveys, experiments, observations, or interviews.
  • Testable Hypotheses : Empirical research often starts with testable hypotheses that are evaluated using collected data.
  • Quantitative or Qualitative Data : Data can be quantitative (numerical) or qualitative (non-numerical), depending on the research design.
  • Statistical Analysis : Quantitative data often undergo statistical analysis to determine patterns , relationships, or significance.
  • Objectivity and Replicability : Empirical research strives for objectivity, minimizing researcher bias . It should be replicable, allowing other researchers to conduct the same study to verify results.
  • Conclusions and Generalizations : Empirical research generates findings based on data and aims to make generalizations about larger populations or phenomena.

Importance of Empirical Research

Empirical research plays a pivotal role in advancing knowledge across various disciplines. Its importance extends to academia, industry, and society as a whole. Here are several reasons why empirical research is essential:

  • Evidence-Based Knowledge : Empirical research provides a solid foundation of evidence-based knowledge. It enables us to test hypotheses, confirm or refute theories, and build a robust understanding of the world.
  • Scientific Progress : In the scientific community, empirical research fuels progress by expanding the boundaries of existing knowledge. It contributes to the development of theories and the formulation of new research questions.
  • Problem Solving : Empirical research is instrumental in addressing real-world problems and challenges. It offers insights and data-driven solutions to complex issues in fields like healthcare, economics, and environmental science.
  • Informed Decision-Making : In policymaking, business, and healthcare, empirical research informs decision-makers by providing data-driven insights. It guides strategies, investments, and policies for optimal outcomes.
  • Quality Assurance : Empirical research is essential for quality assurance and validation in various industries, including pharmaceuticals, manufacturing, and technology. It ensures that products and processes meet established standards.
  • Continuous Improvement : Businesses and organizations use empirical research to evaluate performance, customer satisfaction, and product effectiveness. This data-driven approach fosters continuous improvement and innovation.
  • Human Advancement : Empirical research in fields like medicine and psychology contributes to the betterment of human health and well-being. It leads to medical breakthroughs, improved therapies, and enhanced psychological interventions.
  • Critical Thinking and Problem Solving : Engaging in empirical research fosters critical thinking skills, problem-solving abilities, and a deep appreciation for evidence-based decision-making.

Empirical research empowers us to explore, understand, and improve the world around us. It forms the bedrock of scientific inquiry and drives progress in countless domains, shaping our understanding of both the natural and social sciences.

How to Conduct Empirical Research?

So, you've decided to dive into the world of empirical research. Let's begin by exploring the crucial steps involved in getting started with your research project.

1. Select a Research Topic

Selecting the right research topic is the cornerstone of a successful empirical study. It's essential to choose a topic that not only piques your interest but also aligns with your research goals and objectives. Here's how to go about it:

  • Identify Your Interests : Start by reflecting on your passions and interests. What topics fascinate you the most? Your enthusiasm will be your driving force throughout the research process.
  • Brainstorm Ideas : Engage in brainstorming sessions to generate potential research topics. Consider the questions you've always wanted to answer or the issues that intrigue you.
  • Relevance and Significance : Assess the relevance and significance of your chosen topic. Does it contribute to existing knowledge? Is it a pressing issue in your field of study or the broader community?
  • Feasibility : Evaluate the feasibility of your research topic. Do you have access to the necessary resources, data, and participants (if applicable)?

2. Formulate Research Questions

Once you've narrowed down your research topic, the next step is to formulate clear and precise research questions . These questions will guide your entire research process and shape your study's direction. To create effective research questions:

  • Specificity : Ensure that your research questions are specific and focused. Vague or overly broad questions can lead to inconclusive results.
  • Relevance : Your research questions should directly relate to your chosen topic. They should address gaps in knowledge or contribute to solving a particular problem.
  • Testability : Ensure that your questions are testable through empirical methods. You should be able to gather data and analyze it to answer these questions.
  • Avoid Bias : Craft your questions in a way that avoids leading or biased language. Maintain neutrality to uphold the integrity of your research.

3. Review Existing Literature

Before you embark on your empirical research journey, it's essential to immerse yourself in the existing body of literature related to your chosen topic. This step, often referred to as a literature review, serves several purposes:

  • Contextualization : Understand the historical context and current state of research in your field. What have previous studies found, and what questions remain unanswered?
  • Identifying Gaps : Identify gaps or areas where existing research falls short. These gaps will help you formulate meaningful research questions and hypotheses.
  • Theory Development : If your study is theoretical, consider how existing theories apply to your topic. If it's empirical, understand how previous studies have approached data collection and analysis.
  • Methodological Insights : Learn from the methodologies employed in previous research. What methods were successful, and what challenges did researchers face?

4. Define Variables

Variables are fundamental components of empirical research. They are the factors or characteristics that can change or be manipulated during your study. Properly defining and categorizing variables is crucial for the clarity and validity of your research. Here's what you need to know:

  • Independent Variables : These are the variables that you, as the researcher, manipulate or control. They are the "cause" in cause-and-effect relationships.
  • Dependent Variables : Dependent variables are the outcomes or responses that you measure or observe. They are the "effect" influenced by changes in independent variables.
  • Operational Definitions : To ensure consistency and clarity, provide operational definitions for your variables. Specify how you will measure or manipulate each variable.
  • Control Variables : In some studies, controlling for other variables that may influence your dependent variable is essential. These are known as control variables.

Understanding these foundational aspects of empirical research will set a solid foundation for the rest of your journey. Now that you've grasped the essentials of getting started, let's delve deeper into the intricacies of research design.

Empirical Research Design

Now that you've selected your research topic, formulated research questions, and defined your variables, it's time to delve into the heart of your empirical research journey – research design . This pivotal step determines how you will collect data and what methods you'll employ to answer your research questions. Let's explore the various facets of research design in detail.

Types of Empirical Research

Empirical research can take on several forms, each with its own unique approach and methodologies. Understanding the different types of empirical research will help you choose the most suitable design for your study. Here are some common types:

  • Experimental Research : In this type, researchers manipulate one or more independent variables to observe their impact on dependent variables. It's highly controlled and often conducted in a laboratory setting.
  • Observational Research : Observational research involves the systematic observation of subjects or phenomena without intervention. Researchers are passive observers, documenting behaviors, events, or patterns.
  • Survey Research : Surveys are used to collect data through structured questionnaires or interviews. This method is efficient for gathering information from a large number of participants.
  • Case Study Research : Case studies focus on in-depth exploration of one or a few cases. Researchers gather detailed information through various sources such as interviews, documents, and observations.
  • Qualitative Research : Qualitative research aims to understand behaviors, experiences, and opinions in depth. It often involves open-ended questions, interviews, and thematic analysis.
  • Quantitative Research : Quantitative research collects numerical data and relies on statistical analysis to draw conclusions. It involves structured questionnaires, experiments, and surveys.

Your choice of research type should align with your research questions and objectives. Experimental research, for example, is ideal for testing cause-and-effect relationships, while qualitative research is more suitable for exploring complex phenomena.

Experimental Design

Experimental research is a systematic approach to studying causal relationships. It's characterized by the manipulation of one or more independent variables while controlling for other factors. Here are some key aspects of experimental design:

  • Control and Experimental Groups : Participants are randomly assigned to either a control group or an experimental group. The independent variable is manipulated for the experimental group but not for the control group.
  • Randomization : Randomization is crucial to eliminate bias in group assignment. It ensures that each participant has an equal chance of being in either group.
  • Hypothesis Testing : Experimental research often involves hypothesis testing. Researchers formulate hypotheses about the expected effects of the independent variable and use statistical analysis to test these hypotheses.

Observational Design

Observational research entails careful and systematic observation of subjects or phenomena. It's advantageous when you want to understand natural behaviors or events. Key aspects of observational design include:

  • Participant Observation : Researchers immerse themselves in the environment they are studying. They become part of the group being observed, allowing for a deep understanding of behaviors.
  • Non-Participant Observation : In non-participant observation, researchers remain separate from the subjects. They observe and document behaviors without direct involvement.
  • Data Collection Methods : Observational research can involve various data collection methods, such as field notes, video recordings, photographs, or coding of observed behaviors.

Survey Design

Surveys are a popular choice for collecting data from a large number of participants. Effective survey design is essential to ensure the validity and reliability of your data. Consider the following:

  • Questionnaire Design : Create clear and concise questions that are easy for participants to understand. Avoid leading or biased questions.
  • Sampling Methods : Decide on the appropriate sampling method for your study, whether it's random, stratified, or convenience sampling.
  • Data Collection Tools : Choose the right tools for data collection, whether it's paper surveys, online questionnaires, or face-to-face interviews.

Case Study Design

Case studies are an in-depth exploration of one or a few cases to gain a deep understanding of a particular phenomenon. Key aspects of case study design include:

  • Single Case vs. Multiple Case Studies : Decide whether you'll focus on a single case or multiple cases. Single case studies are intensive and allow for detailed examination, while multiple case studies provide comparative insights.
  • Data Collection Methods : Gather data through interviews, observations, document analysis, or a combination of these methods.

Qualitative vs. Quantitative Research

In empirical research, you'll often encounter the distinction between qualitative and quantitative research . Here's a closer look at these two approaches:

  • Qualitative Research : Qualitative research seeks an in-depth understanding of human behavior, experiences, and perspectives. It involves open-ended questions, interviews, and the analysis of textual or narrative data. Qualitative research is exploratory and often used when the research question is complex and requires a nuanced understanding.
  • Quantitative Research : Quantitative research collects numerical data and employs statistical analysis to draw conclusions. It involves structured questionnaires, experiments, and surveys. Quantitative research is ideal for testing hypotheses and establishing cause-and-effect relationships.

Understanding the various research design options is crucial in determining the most appropriate approach for your study. Your choice should align with your research questions, objectives, and the nature of the phenomenon you're investigating.

Data Collection for Empirical Research

Now that you've established your research design, it's time to roll up your sleeves and collect the data that will fuel your empirical research. Effective data collection is essential for obtaining accurate and reliable results.

Sampling Methods

Sampling methods are critical in empirical research, as they determine the subset of individuals or elements from your target population that you will study. Here are some standard sampling methods:

  • Random Sampling : Random sampling ensures that every member of the population has an equal chance of being selected. It minimizes bias and is often used in quantitative research.
  • Stratified Sampling : Stratified sampling involves dividing the population into subgroups or strata based on specific characteristics (e.g., age, gender, location). Samples are then randomly selected from each stratum, ensuring representation of all subgroups.
  • Convenience Sampling : Convenience sampling involves selecting participants who are readily available or easily accessible. While it's convenient, it may introduce bias and limit the generalizability of results.
  • Snowball Sampling : Snowball sampling is instrumental when studying hard-to-reach or hidden populations. One participant leads you to another, creating a "snowball" effect. This method is common in qualitative research.
  • Purposive Sampling : In purposive sampling, researchers deliberately select participants who meet specific criteria relevant to their research questions. It's often used in qualitative studies to gather in-depth information.

The choice of sampling method depends on the nature of your research, available resources, and the degree of precision required. It's crucial to carefully consider your sampling strategy to ensure that your sample accurately represents your target population.

Data Collection Instruments

Data collection instruments are the tools you use to gather information from your participants or sources. These instruments should be designed to capture the data you need accurately. Here are some popular data collection instruments:

  • Questionnaires : Questionnaires consist of structured questions with predefined response options. When designing questionnaires, consider the clarity of questions, the order of questions, and the response format (e.g., Likert scale, multiple-choice).
  • Interviews : Interviews involve direct communication between the researcher and participants. They can be structured (with predetermined questions) or unstructured (open-ended). Effective interviews require active listening and probing for deeper insights.
  • Observations : Observations entail systematically and objectively recording behaviors, events, or phenomena. Researchers must establish clear criteria for what to observe, how to record observations, and when to observe.
  • Surveys : Surveys are a common data collection instrument for quantitative research. They can be administered through various means, including online surveys, paper surveys, and telephone surveys.
  • Documents and Archives : In some cases, data may be collected from existing documents, records, or archives. Ensure that the sources are reliable, relevant, and properly documented.

To streamline your process and gather insights with precision and efficiency, consider leveraging innovative tools like Appinio . With Appinio's intuitive platform, you can harness the power of real-time consumer data to inform your research decisions effectively. Whether you're conducting surveys, interviews, or observations, Appinio empowers you to define your target audience, collect data from diverse demographics, and analyze results seamlessly.

By incorporating Appinio into your data collection toolkit, you can unlock a world of possibilities and elevate the impact of your empirical research. Ready to revolutionize your approach to data collection?

Book a Demo

Data Collection Procedures

Data collection procedures outline the step-by-step process for gathering data. These procedures should be meticulously planned and executed to maintain the integrity of your research.

  • Training : If you have a research team, ensure that they are trained in data collection methods and protocols. Consistency in data collection is crucial.
  • Pilot Testing : Before launching your data collection, conduct a pilot test with a small group to identify any potential problems with your instruments or procedures. Make necessary adjustments based on feedback.
  • Data Recording : Establish a systematic method for recording data. This may include timestamps, codes, or identifiers for each data point.
  • Data Security : Safeguard the confidentiality and security of collected data. Ensure that only authorized individuals have access to the data.
  • Data Storage : Properly organize and store your data in a secure location, whether in physical or digital form. Back up data to prevent loss.

Ethical Considerations

Ethical considerations are paramount in empirical research, as they ensure the well-being and rights of participants are protected.

  • Informed Consent : Obtain informed consent from participants, providing clear information about the research purpose, procedures, risks, and their right to withdraw at any time.
  • Privacy and Confidentiality : Protect the privacy and confidentiality of participants. Ensure that data is anonymized and sensitive information is kept confidential.
  • Beneficence : Ensure that your research benefits participants and society while minimizing harm. Consider the potential risks and benefits of your study.
  • Honesty and Integrity : Conduct research with honesty and integrity. Report findings accurately and transparently, even if they are not what you expected.
  • Respect for Participants : Treat participants with respect, dignity, and sensitivity to cultural differences. Avoid any form of coercion or manipulation.
  • Institutional Review Board (IRB) : If required, seek approval from an IRB or ethics committee before conducting your research, particularly when working with human participants.

Adhering to ethical guidelines is not only essential for the ethical conduct of research but also crucial for the credibility and validity of your study. Ethical research practices build trust between researchers and participants and contribute to the advancement of knowledge with integrity.

With a solid understanding of data collection, including sampling methods, instruments, procedures, and ethical considerations, you are now well-equipped to gather the data needed to answer your research questions.

Empirical Research Data Analysis

Now comes the exciting phase of data analysis, where the raw data you've diligently collected starts to yield insights and answers to your research questions. We will explore the various aspects of data analysis, from preparing your data to drawing meaningful conclusions through statistics and visualization.

Data Preparation

Data preparation is the crucial first step in data analysis. It involves cleaning, organizing, and transforming your raw data into a format that is ready for analysis. Effective data preparation ensures the accuracy and reliability of your results.

  • Data Cleaning : Identify and rectify errors, missing values, and inconsistencies in your dataset. This may involve correcting typos, removing outliers, and imputing missing data.
  • Data Coding : Assign numerical values or codes to categorical variables to make them suitable for statistical analysis. For example, converting "Yes" and "No" to 1 and 0.
  • Data Transformation : Transform variables as needed to meet the assumptions of the statistical tests you plan to use. Common transformations include logarithmic or square root transformations.
  • Data Integration : If your data comes from multiple sources, integrate it into a unified dataset, ensuring that variables match and align.
  • Data Documentation : Maintain clear documentation of all data preparation steps, as well as the rationale behind each decision. This transparency is essential for replicability.

Effective data preparation lays the foundation for accurate and meaningful analysis. It allows you to trust the results that will follow in the subsequent stages.

Descriptive Statistics

Descriptive statistics help you summarize and make sense of your data by providing a clear overview of its key characteristics. These statistics are essential for understanding the central tendencies, variability, and distribution of your variables. Descriptive statistics include:

  • Measures of Central Tendency : These include the mean (average), median (middle value), and mode (most frequent value). They help you understand the typical or central value of your data.
  • Measures of Dispersion : Measures like the range, variance, and standard deviation provide insights into the spread or variability of your data points.
  • Frequency Distributions : Creating frequency distributions or histograms allows you to visualize the distribution of your data across different values or categories.

Descriptive statistics provide the initial insights needed to understand your data's basic characteristics, which can inform further analysis.

Inferential Statistics

Inferential statistics take your analysis to the next level by allowing you to make inferences or predictions about a larger population based on your sample data. These methods help you test hypotheses and draw meaningful conclusions. Key concepts in inferential statistics include:

  • Hypothesis Testing : Hypothesis tests (e.g., t-tests, chi-squared tests) help you determine whether observed differences or associations in your data are statistically significant or occurred by chance.
  • Confidence Intervals : Confidence intervals provide a range within which population parameters (e.g., population mean) are likely to fall based on your sample data.
  • Regression Analysis : Regression models (linear, logistic, etc.) help you explore relationships between variables and make predictions.
  • Analysis of Variance (ANOVA) : ANOVA tests are used to compare means between multiple groups, allowing you to assess whether differences are statistically significant.

Inferential statistics are powerful tools for drawing conclusions from your data and assessing the generalizability of your findings to the broader population.

Qualitative Data Analysis

Qualitative data analysis is employed when working with non-numerical data, such as text, interviews, or open-ended survey responses. It focuses on understanding the underlying themes, patterns, and meanings within qualitative data. Qualitative analysis techniques include:

  • Thematic Analysis : Identifying and analyzing recurring themes or patterns within textual data.
  • Content Analysis : Categorizing and coding qualitative data to extract meaningful insights.
  • Grounded Theory : Developing theories or frameworks based on emergent themes from the data.
  • Narrative Analysis : Examining the structure and content of narratives to uncover meaning.

Qualitative data analysis provides a rich and nuanced understanding of complex phenomena and human experiences.

Data Visualization

Data visualization is the art of representing data graphically to make complex information more understandable and accessible. Effective data visualization can reveal patterns, trends, and outliers in your data. Common types of data visualization include:

  • Bar Charts and Histograms : Used to display the distribution of categorical or discrete data.
  • Line Charts : Ideal for showing trends and changes in data over time.
  • Scatter Plots : Visualize relationships and correlations between two variables.
  • Pie Charts : Display the composition of a whole in terms of its parts.
  • Heatmaps : Depict patterns and relationships in multidimensional data through color-coding.
  • Box Plots : Provide a summary of the data distribution, including outliers.
  • Interactive Dashboards : Create dynamic visualizations that allow users to explore data interactively.

Data visualization not only enhances your understanding of the data but also serves as a powerful communication tool to convey your findings to others.

As you embark on the data analysis phase of your empirical research, remember that the specific methods and techniques you choose will depend on your research questions, data type, and objectives. Effective data analysis transforms raw data into valuable insights, bringing you closer to the answers you seek.

How to Report Empirical Research Results?

At this stage, you get to share your empirical research findings with the world. Effective reporting and presentation of your results are crucial for communicating your research's impact and insights.

1. Write the Research Paper

Writing a research paper is the culmination of your empirical research journey. It's where you synthesize your findings, provide context, and contribute to the body of knowledge in your field.

  • Title and Abstract : Craft a clear and concise title that reflects your research's essence. The abstract should provide a brief summary of your research objectives, methods, findings, and implications.
  • Introduction : In the introduction, introduce your research topic, state your research questions or hypotheses, and explain the significance of your study. Provide context by discussing relevant literature.
  • Methods : Describe your research design, data collection methods, and sampling procedures. Be precise and transparent, allowing readers to understand how you conducted your study.
  • Results : Present your findings in a clear and organized manner. Use tables, graphs, and statistical analyses to support your results. Avoid interpreting your findings in this section; focus on the presentation of raw data.
  • Discussion : Interpret your findings and discuss their implications. Relate your results to your research questions and the existing literature. Address any limitations of your study and suggest avenues for future research.
  • Conclusion : Summarize the key points of your research and its significance. Restate your main findings and their implications.
  • References : Cite all sources used in your research following a specific citation style (e.g., APA, MLA, Chicago). Ensure accuracy and consistency in your citations.
  • Appendices : Include any supplementary material, such as questionnaires, data coding sheets, or additional analyses, in the appendices.

Writing a research paper is a skill that improves with practice. Ensure clarity, coherence, and conciseness in your writing to make your research accessible to a broader audience.

2. Create Visuals and Tables

Visuals and tables are powerful tools for presenting complex data in an accessible and understandable manner.

  • Clarity : Ensure that your visuals and tables are clear and easy to interpret. Use descriptive titles and labels.
  • Consistency : Maintain consistency in formatting, such as font size and style, across all visuals and tables.
  • Appropriateness : Choose the most suitable visual representation for your data. Bar charts, line graphs, and scatter plots work well for different types of data.
  • Simplicity : Avoid clutter and unnecessary details. Focus on conveying the main points.
  • Accessibility : Make sure your visuals and tables are accessible to a broad audience, including those with visual impairments.
  • Captions : Include informative captions that explain the significance of each visual or table.

Compelling visuals and tables enhance the reader's understanding of your research and can be the key to conveying complex information efficiently.

3. Interpret Findings

Interpreting your findings is where you bridge the gap between data and meaning. It's your opportunity to provide context, discuss implications, and offer insights. When interpreting your findings:

  • Relate to Research Questions : Discuss how your findings directly address your research questions or hypotheses.
  • Compare with Literature : Analyze how your results align with or deviate from previous research in your field. What insights can you draw from these comparisons?
  • Discuss Limitations : Be transparent about the limitations of your study. Address any constraints, biases, or potential sources of error.
  • Practical Implications : Explore the real-world implications of your findings. How can they be applied or inform decision-making?
  • Future Research Directions : Suggest areas for future research based on the gaps or unanswered questions that emerged from your study.

Interpreting findings goes beyond simply presenting data; it's about weaving a narrative that helps readers grasp the significance of your research in the broader context.

With your research paper written, structured, and enriched with visuals, and your findings expertly interpreted, you are now prepared to communicate your research effectively. Sharing your insights and contributing to the body of knowledge in your field is a significant accomplishment in empirical research.

Examples of Empirical Research

To solidify your understanding of empirical research, let's delve into some real-world examples across different fields. These examples will illustrate how empirical research is applied to gather data, analyze findings, and draw conclusions.

Social Sciences

In the realm of social sciences, consider a sociological study exploring the impact of socioeconomic status on educational attainment. Researchers gather data from a diverse group of individuals, including their family backgrounds, income levels, and academic achievements.

Through statistical analysis, they can identify correlations and trends, revealing whether individuals from lower socioeconomic backgrounds are less likely to attain higher levels of education. This empirical research helps shed light on societal inequalities and informs policymakers on potential interventions to address disparities in educational access.

Environmental Science

Environmental scientists often employ empirical research to assess the effects of environmental changes. For instance, researchers studying the impact of climate change on wildlife might collect data on animal populations, weather patterns, and habitat conditions over an extended period.

By analyzing this empirical data, they can identify correlations between climate fluctuations and changes in wildlife behavior, migration patterns, or population sizes. This empirical research is crucial for understanding the ecological consequences of climate change and informing conservation efforts.

Business and Economics

In the business world, empirical research is essential for making data-driven decisions. Consider a market research study conducted by a business seeking to launch a new product. They collect data through surveys, focus groups, and consumer behavior analysis.

By examining this empirical data, the company can gauge consumer preferences, demand, and potential market size. Empirical research in business helps guide product development, pricing strategies, and marketing campaigns, increasing the likelihood of a successful product launch.

Psychological studies frequently rely on empirical research to understand human behavior and cognition. For instance, a psychologist interested in examining the impact of stress on memory might design an experiment. Participants are exposed to stress-inducing situations, and their memory performance is assessed through various tasks.

By analyzing the data collected, the psychologist can determine whether stress has a significant effect on memory recall. This empirical research contributes to our understanding of the complex interplay between psychological factors and cognitive processes.

These examples highlight the versatility and applicability of empirical research across diverse fields. Whether in medicine, social sciences, environmental science, business, or psychology, empirical research serves as a fundamental tool for gaining insights, testing hypotheses, and driving advancements in knowledge and practice.

Conclusion for Empirical Research

Empirical research is a powerful tool for gaining insights, testing hypotheses, and making informed decisions. By following the steps outlined in this guide, you've learned how to select research topics, collect data, analyze findings, and effectively communicate your research to the world. Remember, empirical research is a journey of discovery, and each step you take brings you closer to a deeper understanding of the world around you. Whether you're a scientist, a student, or someone curious about the process, the principles of empirical research empower you to explore, learn, and contribute to the ever-expanding realm of knowledge.

How to Collect Data for Empirical Research?

Introducing Appinio , the real-time market research platform revolutionizing how companies gather consumer insights for their empirical research endeavors. With Appinio, you can conduct your own market research in minutes, gaining valuable data to fuel your data-driven decisions.

Appinio is more than just a market research platform; it's a catalyst for transforming the way you approach empirical research, making it exciting, intuitive, and seamlessly integrated into your decision-making process.

Here's why Appinio is the go-to solution for empirical research:

  • From Questions to Insights in Minutes : With Appinio's streamlined process, you can go from formulating your research questions to obtaining actionable insights in a matter of minutes, saving you time and effort.
  • Intuitive Platform for Everyone : No need for a PhD in research; Appinio's platform is designed to be intuitive and user-friendly, ensuring that anyone can navigate and utilize it effectively.
  • Rapid Response Times : With an average field time of under 23 minutes for 1,000 respondents, Appinio delivers rapid results, allowing you to gather data swiftly and efficiently.
  • Global Reach with Targeted Precision : With access to over 90 countries and the ability to define target groups based on 1200+ characteristics, Appinio empowers you to reach your desired audience with precision and ease.

Register now EN

Get free access to the platform!

Join the loop 💌

Be the first to hear about new updates, product news, and data insights. We'll send it all straight to your inbox.

Get the latest market research news straight to your inbox! 💌

Wait, there's more

What is Predictive Modeling Definition Types Techniques

21.03.2024 | 28min read

What is Predictive Modeling? Definition, Types, Techniques

What is Brand Equity Definition Model Measurement Examples

18.03.2024 | 29min read

What is Brand Equity? Definition, Measurement, Examples

Discrete vs Continuous Data Differences and Examples

14.03.2024 | 23min read

Discrete vs. Continuous Data: Differences and Examples

Table of Content

What is empirical research definition, types, and more.

Navigate data's complexities with empirical research, distinguishing truth from speculation. Explore types, methods, and more.

benefits of empirical research

Research is crucial in many fields, involving a systematic exploration to confirm facts or draw specific conclusions. Empirical research, widely applied in different areas, aims to validate new facts. Grasping the significance of empirical research and knowing how to carry it out can aid in making decisions backed by a thorough investigation. 

What Do You Mean by Empirical Research?

The empirical research method is a study based on observation and direct experience to understand phenomena and draw conclusions based on real-world observations.

Empirical Research Examples

Consider a scenario where a study aims to determine if people add a product to their online cart due to product ratings. To investigate this, an experiment is carried out using an online shopping attitude survey . One group of participants is exposed to ratings, while another group is not exposed to any product ratings. The researchers then observe the behavior of these groups. The findings from this research will provide concrete evidence on whether product ratings impact the decision to purchase.

Types of Methodologies for Empirical Research

Quantitative research.

Quantitative research collects numerical data to analyze specific behaviors, opinions, or defined variables . Here are some methods used in quantitative empirical research:

benefits of empirical research

This calls for collecting information from a group of people using a questionnaire. When conducting surveys, it's essential to pose straightforward, brief, and easy questions for participants to respond to. Survey participants can provide their answers through various channels, whether it be on paper, online through emails, or on social media. Administering surveys is generally a straightforward approach to obtaining information, whether from the general public or a specific audience.

Experimental Research

This process includes forming an idea and checking it through experimentation. Researchers can change one variable and see how it impacts other variables, helping them figure out if there's a clear connection. They can then examine the findings to confirm if their initial idea is correct.

Longitudinal Study

A longitudinal study involves observing a subject's characteristics or actions by testing them repeatedly over a period. The data collected from this method can be either qualitative or quantitative. For instance, marketers could track the buying patterns of a particular demographic, such as young adults, over several years. By repeatedly collecting data on their product design preferences, brand loyalty, and spending habits, researchers can gain insights into how these factors evolve over time. 

Cross-Sectional Research

Cross-sectional research is a way of studying people by looking at them during a particular time. In this method, researchers pick a group of individuals with similar characteristics, excluding the ones they are studying. This helps ensure that any findings are likely caused by the variable under investigation. For instance, researchers assess consumer preferences for different packaging designs at a specific time. Participants from the target market evaluate various options, providing immediate feedback. This approach offers a quick snapshot of consumer opinions on packaging, helping companies make informed decisions based on current preferences.

Correlational Research

Correlational research is a method used to find connections and prevalence among different factors. It often uses regression as a statistical tool to predict outcomes, showing whether there's a negative, neutral, or positive correlation between variables. For example, researchers might explore the relationship between how much time individuals spend watching television and their overall well-being. By collecting data on both variables from a diverse group of participants, the researchers can analyze whether there is a correlation between the time spent watching TV and factors like happiness or stress levels.

Qualitative Research

Qualitative research is useful for collecting information that isn't in numbers or can't be measured easily. It usually involves semi-structured or unstructured approaches, letting researchers uncover personal meanings, reasons, and opinions from participants. Qualitative empirical research often involves a small group of people and conversational methods to get detailed information and deeper insights into a problem. Examples of methods used in qualitative research include:

benefits of empirical research

Observational Method

It involves watching and collecting descriptive information about a subject. The observational method gives researchers personal insights, helping them form detailed opinions about their studies. It's commonly used in ethnographic research, which looks at the culture of different groups of people.

One-on-One Interview

This is an entirely qualitative method that includes directly talking to a subject. Researchers often use it to get accurate and meaningful information about a subject. It's a conversational approach where specific questions are asked to guide the discussion. 

Focus Group

Focus groups are employed when researchers seek answers to questions of why, what, and how. A small group is typically chosen, and in-person interaction may not be necessary. If an in-person discussion is involved, a moderator is usually required. This method is commonly utilized by product companies to gather information about their brands and products.

For instance, in media/ad testing with focus groups, a company may evaluate a new soft drink advertisement. A small group views different ad versions and discusses their impressions, preferences, and memorable elements. This feedback helps the company refine its advertising strategy before a wider campaign launch.

Text Analysis

This qualitative empirical research method enables the analysis of an individual's social life . It's a contemporary approach leveraging the growing importance of social media and technology. Researchers can examine the specific words and images an individual uses to draw meaningful conclusions.

How to Conduct Empirical Research?

Empirical research relies on observation and experiences, so planning and analysis are crucial. Let’s take an example of media/ad/shopper testing as the research base to understand the steps to conduct empirical research - 

Step 1: Define the Research Objective

Clearly outline the study's goal, such as evaluating the effectiveness of a new packaging design for a consumer product or an advertisement of a new series. Consider potential issues with the resources schedule and ensure the study's benefits justify the costs.

Step 2: Review Relevant Literature and Theories

Identify theories or previous studies on consumer responses to packaging changes or new series ad releases. Understand how these insights can inform the study's outcomes.

Step 3: Formulate Hypothesis and Measurements

Develop an initial hypothesis, considering variables like consumer perception, brand appeal, and market competitiveness. Define units of measurement, such as consumer preferences and purchasing behavior, ensuring they align with industry standards.

Step 4: Define Research Design, Methodology, and Data Collection Techniques

Choose an appropriate research approach, whether qualitative research or quantitative research , to assess consumer reactions to the new packaging. Consider using focus groups and one-on-one interviews for in-depth insights and gather data on consumer reactions.

Step #5: Conduct Data Analysis and Frame the Results

Analyze the collected data, considering both quantitative metrics and qualitative feedback from focus groups and interviews. Assess whether the new packaging positively influences consumer perceptions and purchasing decisions. 

Evaluate consumer research tools powered by Insights AI that are powered by AI to give you unbiased feedback considering the emotions and behaviour of the respondent. 

Step 6: Draw Conclusions

Prepare a comprehensive report presenting the findings, including the impact of the new packaging or advertisement on consumer behavior. If sharing the results widely, convert the report into an article for publication and recommend further research areas in the packaging and media testing domain. Use a plagiarism checker to ensure the originality and credibility of the research.

You can also utilize the Gen AI feature in Decode to draw conclusions from your studies by just asking the Decode co-pilot, a virtual assistant. 

{{cta-button}}

Empirical Research Cycle

benefits of empirical research

Observation

A media researcher observes audience reactions to a new television show by monitoring social media comments, ratings, and viewership numbers. This initial data collection serves as the basis for forming hypotheses about the show's popularity.

Based on the observations, the researcher may induce a hypothesis that suggests the show's popularity is linked to its engaging storyline and relatable characters. This assumption is then examined and tested against the collected data.

Using deductive reasoning, the researcher concludes that if the show's popularity is consistently associated with positive audience engagement and high ratings, it can be inferred that engaging content is a significant factor.

To test the hypothesis, the researcher designs a survey asking viewers about their reasons for liking the show and analyzes the responses. Statistical methods are employed to determine if there's a significant correlation between positive viewer feedback and the show's popularity.

In the final stage, the researcher evaluates the survey results, considering the empirical data, viewer comments, and any challenges encountered during the research. The findings are used to draw conclusions about the factors contributing to the show's success, and this information becomes the basis for further media testing or content development.

{{cta-case}}

Advantages and Disadvantages of Empirical Research

Advantages of empirical research.

Empirical research is widely used for several reasons, and here are some of its advantages:

  • Authentication of Traditional Research: It validates traditional research through experiments and observations.
  • Enhanced Competence and Authenticity: This methodology enhances the competency and authenticity of the conducted research.
  • Adaptability to Dynamic Changes: Researchers can understand and adapt to dynamic changes by utilizing empirical research and adjusting their strategies accordingly.
  • High Control Level: Empirical research offers a high level of control, allowing researchers to manage multiple variables.
  • Increased Internal Validity: It plays a crucial role in boosting internal validity, ensuring the accuracy of the research outcomes.

Disadvantages of Empirical Research

While empirical research brings competency and authenticity, it also has some drawbacks:

  • Time-Consuming Nature: Collecting data from various sources and dealing with numerous parameters can make this research time-consuming requiring patience.
  • Costly Endeavor: Conducting research in different locations or environments may lead to increased expenses.
  • Permission Challenges: Obtaining consent for certain experimental methods can be difficult, as there are strict rules governing their execution.
  • Data Collection Challenges: Collecting data from various sources through different methods can be problematic at times.

Bottom Line

In a world full of data, empirical research is crucial for finding out what's true. It involves carefully observing and experiencing things to draw conclusions based on real-world evidence. This type of research uses both numbers (quantitative) and descriptions (qualitative) to understand various topics.

To conduct empirical research, you need a step-by-step plan. This includes setting clear goals, looking at existing research, making educated guesses (hypotheses), picking the right methods, analyzing data, and reaching sensible conclusions.

The research cycle involves watching, making guesses, drawing logical conclusions, testing those guesses, and finally evaluating everything.

While empirical research has benefits like proving traditional research, increasing competence, and adapting to changes, it also has challenges like being time-consuming, expensive, and dealing with permission and data collection issues.

In summary, understanding and using empirical research helps us make informed decisions in different fields by carefully studying and validating information through a systematic process.

Frequently Asked Questions:

What do you mean by empirical research.

Empirical research is a type of study that relies on observing and measuring real-life phenomena as directly witnessed by the researcher. The collected data can be analyzed in relation to a theory or hypothesis, but the conclusions are grounded in actual experiences.

Theoretical vs Empirical Research

Empirical refers to information derived from observations or personal experiences, while theoretical is associated with ideas and hypotheses. In research contexts, these terms are commonly used to describe data, methods, or probabilities.

What are the benefits of Empirical Research?

Empirical research strives to understand the significance of a specific phenomenon. In simpler terms, it seeks to uncover how and why something operates the way it does. By pinpointing the reasons behind occurrences, it becomes feasible to reproduce or avoid similar events.

Is Empirical quantitative or qualitative?

Empirical research is often thought of as the same as quantitative research, but to be precise, it's any research that relies on direct observation.

Empirical Method Psychology Example

Suppose a researcher aims to investigate the impact of listening to happy music on promoting prosocial behavior. In this scenario, an empirical analysis could involve conducting an experiment where one group of participants is exposed to happy music while another group is not exposed to any music at all.

benefits of empirical research

Get your Product Pack Design tested against competitors

benefits of empirical research

Got a question? Check out our FAQ’s

Book a demo.

  • This is some text inside of a div block.

benefits of empirical research

2.1 Why Is Research Important?

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine that your sister, Maria, expresses concern about her two-year-old child, Umberto. Umberto does not speak as much or as clearly as the other children in his daycare or others in the family. Umberto's pediatrician undertakes some screening and recommends an evaluation by a speech pathologist, but does not refer Maria to any other specialists. Maria is concerned that Umberto's speech delays are signs of a developmental disorder, but Umberto's pediatrician does not; she sees indications of differences in Umberto's jaw and facial muscles. Hearing this, you do some internet searches, but you are overwhelmed by the breadth of information and the wide array of sources. You see blog posts, top-ten lists, advertisements from healthcare providers, and recommendations from several advocacy organizations. Why are there so many sites? Which are based in research, and which are not?

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were White males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically Black higher education institutions, increasing the number of Black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-1-why-is-research-important

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Form Builder
  • Survey Maker
  • AI Form Generator
  • AI Survey Tool
  • AI Quiz Maker
  • Store Builder
  • WordPress Plugin

benefits of empirical research

HubSpot CRM

benefits of empirical research

Google Sheets

benefits of empirical research

Google Analytics

benefits of empirical research

Microsoft Excel

benefits of empirical research

  • Popular Forms
  • Job Application Form Template
  • Rental Application Form Template
  • Hotel Accommodation Form Template
  • Online Registration Form Template
  • Employment Application Form Template
  • Application Forms
  • Booking Forms
  • Consent Forms
  • Contact Forms
  • Donation Forms
  • Customer Satisfaction Surveys
  • Employee Satisfaction Surveys
  • Evaluation Surveys
  • Feedback Surveys
  • Market Research Surveys
  • Personality Quiz Template
  • Geography Quiz Template
  • Math Quiz Template
  • Science Quiz Template
  • Vocabulary Quiz Template

Try without registration Quick Start

Read engaging stories, how-to guides, learn about forms.app features.

Inspirational ready-to-use templates for getting started fast and powerful.

Spot-on guides on how to use forms.app and make the most out of it.

benefits of empirical research

See the technical measures we take and learn how we keep your data safe and secure.

  • Integrations
  • Help Center
  • Sign In Sign Up Free
  • What is empirical research: Methods, types & examples

What is empirical research: Methods, types & examples

Defne Çobanoğlu

Having opinions on matters based on observation is okay sometimes. Same as having theories on the subject you want to solve. However, some theories need to be tested. Just like Robert Oppenheimer says, “Theory will take you only so far .” 

In that case, when you have your research question ready and you want to make sure it is correct, the next step would be experimentation. Because only then you can test your ideas and collect tangible information. Now, let us start with the empirical research definition:

  • What is empirical research?

Empirical research is a research type where the aim of the study is based on finding concrete and provable evidence . The researcher using this method to draw conclusions can use both quantitative and qualitative methods. Different than theoretical research, empirical research uses scientific experimentation and investigation. 

Using experimentation makes sense when you need to have tangible evidence to act on whatever you are planning to do. As the researcher, you can be a marketer who is planning on creating a new ad for the target audience, or you can be an educator who wants the best for the students. No matter how big or small, data gathered from the real world using this research helps break down the question at hand. 

  • When to use empirical research?

Empirical research methods are used when the researcher needs to gather data analysis on direct, observable, and measurable data. Research findings are a great way to make grounded ideas. Here are some situations when one may need to do empirical research:

1. When quantitative or qualitative data is needed

There are times when a researcher, marketer, or producer needs to gather data on specific research questions to make an informed decision. And the concrete data gathered in the research process gives a good starting point.

2. When you need to test a hypothesis

When you have a hypothesis on a subject, you can test the hypothesis through observation or experiment. Making a planned study is a great way to collect information and test whether or not your hypothesis is correct.

3. When you want to establish causality

Experimental research is a good way to explore whether or not there is any correlation between two variables. Researchers usually establish causality by changing a variable and observing if the independent variable changes accordingly.

  • Types of empirical research

The aim of empirical research is to collect information about a subject from the people by doing experimentation and other data collection methods. However, the methods and data collected are divided into two groups: one collects numerical data, and the other one collects opinion-like data. Let us see the difference between these two types:

Quantitative research

Quantitative research methods are used to collect data in a numerical way. Therefore, the results gathered by these methods will be numbers, statistics, charts, etc. The results can be used to quantify behaviors, opinions, and other variables. Quantitative research methods are surveys, questionnaires, and experimental research.

Qualitiative research

Qualitative research methods are not used to collect numerical answers, instead, they are used to collect the participants’ reasons, opinions, and other meaningful aspects. Qualitative research methods include case studies, observations, interviews, focus groups, and text analysis.

  • 5 steps to conduct empirical research

Necessary steps for empirical research

Necessary steps for empirical research

When you want to collect direct and concrete data on a subject, empirical research is a great way to go. And, just like every other project and research, it is best to have a clear structure in mind. This is even more important in studies that may take a long time, such as experiments that take years. Let us look at a clear plan on how to do empirical research:

1. Define the research question

The very first step of every study is to have the question you will explore ready. Because you do not want to change your mind in the middle of the study after investing and spending time on the experimentation.

2. Go through relevant literature

This is the step where you sit down and do a desk research where you gather relevant data and see if other researchers have tried to explore similar research questions. If so, you can see how well they were able to answer the question or what kind of difficulties they faced during the research process.

3. Decide on the methodology

Once you are done going through the relevant literature, you can decide on which method or methods you can use. The appropriate methods are observation, experimentation, surveys, interviews, focus groups, etc.

4. Do data analysis

When you get to this step, it means you have successfully gathered enough data to make a data analysis. Now, all you need to do is look at the data you collected and make an informed analysis.

5. Conclusion

This is the last step, where you are finished with the experimentation and data analysis process. Now, it is time to decide what to do with this information. You can publish a paper and make informed decisions about whatever your goal is.

  • Empirical research methodologies

Some essential methodologies to conduct empirical research

Some essential methodologies to conduct empirical research

The aim of this type of research is to explore brand-new evidence and facts. Therefore, the methods should be primary and gathered in real life, directly from the people. There is more than one method for this goal, and it is up to the researcher to use which one(s). Let us see the methods of empirical research: 

  • Observation

The method of observation is a great way to collect information on people without the effect of interference. The researcher can choose the appropriate area, time, or situation and observe the people and their interactions with one another. The researcher can be just an outside observer or can be a participant as an observer or a full participant.

  • Experimentation

The experimentation process can be done in the real world by intervening in some elements to unify the environment for all participants. This method can also be done in a laboratory environment. The experimentation process is good for being able to change the variables according to the aim of the study.

The case study method is done by making an in-depth analysis of already existing cases. When the parameters and variables are similar to the research question at hand, it is wise to go through what was researched before.

  • Focus groups

The case study method is done by using a group of individuals or multiple groups and using their opinions, characteristics, and responses. The scientists gather the data from this group and generalize it to the whole population.

Surveys are an effective way to gather data directly from people. It is a systematic approach to collecting information. If it is done in an online setting as an online survey , it would be even easier to reach out to people and ask their opinions in open-ended or close-ended questions.

Interviews are similar to surveys as you are using questions to collect information and opinions of the people. Unlike a survey, this process is done face-to-face, as a phone call, or as a video call.

  • Advantages of empirical research

Empirical research is effective for many reasons, and helps researchers from numerous fields. Here are some advantages of empirical research to have in mind for your next research:

  • Empirical research improves the internal validity of the study.
  • Empirical evidence gathered from the study is used to authenticate the research question.
  • Collecting provable evidence is important for the success of the study.
  • The researcher is able to make informed decisions based on the data collected using empirical research.
  • Disadvantages of empirical research

After learning about the positive aspects of empirical research, it is time to mention the negative aspects. Because this type may not be suitable for everyone and the researcher should be mindful of the disadvantages of empirical research. Here are the disadvantages of empirical research:

  • As it is similar to other research types, a case study where experimentation is included will be time-consuming no matter what. It has more steps and variables than concluding a secondary research.
  • There are a lot of variables that need to be controlled and considered. Therefore, it may be a challenging task to be mindful of all the details.
  • Doing evidence-based research can be expensive if you need to complete it on a large scale.
  • When you are conducting an experiment, you may need some waivers and permissions.
  • Frequently asked questions about empirical research

Empirical research is one of the many research types, and there may be some questions in mind about its similarities and differences to other research types.

Is empirical research qualitative or quantitative?

The data collected by empirical research can be qualitative, quantitative, or a mix of both. It is up to the aim of researcher to what kind of data is needed and searched for.

Is empirical research the same as quantitative research?

As quantitative research heavily relies on data collection methods of observation and experimentation, it is, in nature, an empirical study. Some professors may even use the terms interchangeably. However, that does not mean that empirical research is only a quantitative one.

What is the difference between theoretical and empirical research?

Empirical studies are based on data collection to prove theories or answer questions, and it is done by using methods such as observation and experimentation. Therefore, empirical research relies on finding evidence that backs up theories. On the other hand, theoretical research relies on theorizing on empirical research data and trying to make connections and correlations.

What is the difference between conceptual and empirical research?

Conceptual research is about thoughts and ideas and does not involve any kind of experimentation. Empirical research, on the other hand, works with provable data and hard evidence.

What is the difference between empirical vs applied research?

Some scientists may use these two terms interchangeably however, there is a difference between them. Applied research involves applying theories to solve real-life problems. On the other hand, empirical research involves the obtaining and analysis of data to test hypotheses and theories.

  • Final words

Empirical research is a good means when the goal of your study is to find concrete data to go with. You may need to do empirical research when you need to test a theory, establish causality, or need qualitative/quantitative data. For example, you are a scientist and want to know if certain colors have an effect on people’s moods, or you are a marketer and want to test your theory on ad places on websites. 

In both scenarios, you can collect information by using empirical research methods and make informed decisions afterward. These are just the two of empirical research examples. This research type can be applied to many areas of work life and social sciences. Lastly, for all your research needs, you can visit forms.app to use its many useful features and over 1000 form and survey templates!

Defne is a content writer at forms.app. She is also a translator specializing in literary translation. Defne loves reading, writing, and translating professionally and as a hobby. Her expertise lies in survey research, research methodologies, content writing, and translation.

  • Form Features
  • Data Collection

Table of Contents

Related posts.

Quantitive data analysis: Definition, types & examples

Quantitive data analysis: Definition, types & examples

What is 360-degree feedback? And is it effective?

What is 360-degree feedback? And is it effective?

Eren Eltemur

15 best Formstack alternatives to check out in 2023

15 best Formstack alternatives to check out in 2023

Canvas | University | Ask a Librarian

  • Library Homepage
  • Arrendale Library

Empirical Research: Quantitative & Qualitative

  • Empirical Research

Introduction: What is Empirical Research?

Quantitative methods, qualitative methods.

  • Quantitative vs. Qualitative
  • Reference Works for Social Sciences Research
  • Contact Us!

 Call us at 706-776-0111

  Chat with a Librarian

  Send Us Email

  Library Hours

Empirical research  is based on phenomena that can be observed and measured. Empirical research derives knowledge from actual experience rather than from theory or belief. 

Key characteristics of empirical research include:

  • Specific research questions to be answered;
  • Definitions of the population, behavior, or phenomena being studied;
  • Description of the methodology or research design used to study this population or phenomena, including selection criteria, controls, and testing instruments (such as surveys);
  • Two basic research processes or methods in empirical research: quantitative methods and qualitative methods (see the rest of the guide for more about these methods).

(based on the original from the Connelly LIbrary of LaSalle University)

benefits of empirical research

Empirical Research: Qualitative vs. Quantitative

Learn about common types of journal articles that use APA Style, including empirical studies; meta-analyses; literature reviews; and replication, theoretical, and methodological articles.

Academic Writer

© 2024 American Psychological Association.

  • More about Academic Writer ...

Quantitative Research

A quantitative research project is characterized by having a population about which the researcher wants to draw conclusions, but it is not possible to collect data on the entire population.

  • For an observational study, it is necessary to select a proper, statistical random sample and to use methods of statistical inference to draw conclusions about the population. 
  • For an experimental study, it is necessary to have a random assignment of subjects to experimental and control groups in order to use methods of statistical inference.

Statistical methods are used in all three stages of a quantitative research project.

For observational studies, the data are collected using statistical sampling theory. Then, the sample data are analyzed using descriptive statistical analysis. Finally, generalizations are made from the sample data to the entire population using statistical inference.

For experimental studies, the subjects are allocated to experimental and control group using randomizing methods. Then, the experimental data are analyzed using descriptive statistical analysis. Finally, just as for observational data, generalizations are made to a larger population.

Iversen, G. (2004). Quantitative research . In M. Lewis-Beck, A. Bryman, & T. Liao (Eds.), Encyclopedia of social science research methods . (pp. 897-898). Thousand Oaks, CA: SAGE Publications, Inc.

Qualitative Research

What makes a work deserving of the label qualitative research is the demonstrable effort to produce richly and relevantly detailed descriptions and particularized interpretations of people and the social, linguistic, material, and other practices and events that shape and are shaped by them.

Qualitative research typically includes, but is not limited to, discerning the perspectives of these people, or what is often referred to as the actor’s point of view. Although both philosophically and methodologically a highly diverse entity, qualitative research is marked by certain defining imperatives that include its case (as opposed to its variable) orientation, sensitivity to cultural and historical context, and reflexivity. 

In its many guises, qualitative research is a form of empirical inquiry that typically entails some form of purposive sampling for information-rich cases; in-depth interviews and open-ended interviews, lengthy participant/field observations, and/or document or artifact study; and techniques for analysis and interpretation of data that move beyond the data generated and their surface appearances. 

Sandelowski, M. (2004).  Qualitative research . In M. Lewis-Beck, A. Bryman, & T. Liao (Eds.),  Encyclopedia of social science research methods . (pp. 893-894). Thousand Oaks, CA: SAGE Publications, Inc.

  • Next: Quantitative vs. Qualitative >>
  • Last Updated: Mar 22, 2024 10:47 AM
  • URL: https://library.piedmont.edu/empirical-research
  • Ebooks & Online Video
  • New Materials
  • Renew Checkouts
  • Faculty Resources
  • Friends of the Library
  • Library Services
  • Request Books from Demorest
  • Our Mission
  • Library History
  • Ask a Librarian!
  • Making Citations
  • Working Online

Friend us on Facebook!

Arrendale Library Piedmont University 706-776-0111

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

OvationMR

Understanding Empirical Research

A deep dive into understanding empirical research, in this article….

  • Introduction

What is empirical research?

Components of empirical research

  • Qualitative empirical research
  • Quantitative empirical research
  • Approach to analysis
  • Why use empirical research

You might also like…

Content creators and social media influencers in the digital economy.

by Jim Whaley

  What does the state of influencer marketing look like in 2024? Discover how content creators and influencers are enmeshed in the digital economy....

Qualitative Market Research: The Complete 2023 Guide

by Chloe West

  Qualitative market research helps collect key non-numerical data for analysis. Learn the qualitative research benefits, methods, and more.  Inside...

Ancient Greece was an era that produced some of the greatest philosophers with unique perspectives that stemmed from equally unique beliefs. Among them were some that adhered to the dogmatic doctrines popular and commonly held at that time.

Empirical Data Hero

Then there were those who rejected them and instead favored evidence collected by observation of phenomenon through senses.

These were called empiricists. Their belief in this theory of knowledge was what gave birth to the concept of empiricism in scientific research . It evolved into the term empirical, which referred to data collection using evidence obtained through observation using the senses or with calibrated scientific instruments.  

Based on this, empirical research is a type of investigation where the researcher infers a conclusion by testing empirical evidence. It provides a more concrete conclusion to an inquiry as it uses real-world evidence.

This approach to research is important for marketers to understand as it simplifies decision-making. For example, let’s consider a company that wants to investigate whether their web designers are more productive working from home; as a part of new remote work policies.

To test this with empirical research, they will conduct an experiment where they make two groups, sending one to work from home while the other remains in-house for a certain period. The evidence observed from this experiment will help them determine whether switching to remote work is the right decision.

Using this method of investigation, the researcher can get more in-depth data. In the example stated above, the company can assess productivity levels, individual employee performance, software effectiveness, work efficiency, etc.

Compared to empirical data, the results of a survey that simply asked for employee preference for remote work will not be as productive. The latter won’t provide verifiable evidence that is required to make a decision that impacts the productivity of the entire organization.

There are a few elements that all empirical studies contain:

  • The research question , which can be obtained from previous experience, literature, or other similar studies – basically the objective of your study;
  • Research design based on the research question;
  • Research methodology , which refers to the method for data collection and analysis;
  • Data collection , which is primary in most studies
  • The sample , which should be representative of a larger population;
  • Reliability , which means the results can be recreated later;

Empirical research components

Empirical research methodology for data collection

There are essentially two methodologies the researchers use, quantitative research and qualitative research.  The research methodology the researcher chooses depends on the research question and the field in which the results will be utilized.

Qualitative Empirical Research

This qualitative research methodology is collected non-numerical data and provides more detailed insights into the sample’s opinions underlying reasons regarding the hypothesis being tested.

This method is conversational and can be structures or unstructured. Researchers opt for this methodology when they want to observe the subjects’ behavior. The data gathered is more descriptive than predictive.

Some of the common methods for collecting qualitative data include:

Observation

This is when the researcher collects empirical evidence by observing the sample over a particular period. For example, a marketer can observe how their chosen sample responds to a new type of grocery store layout.

  • Case Studies

Instead of collecting primary data, the researcher obtains evidence from existing cases that match the parameters and variables of the research design in question. For example, a tea company researching a blue ocean strategy may collect empirical data from existing cases where other tea companies applied this strategy.

This method is pretty self-explanatory. By asking the right questions, the researcher can obtain empirical data from people who have observed or experienced the phenomenon related to the study.

Focus Groups

A moderator guides discussion between a sampled group of people to find their opinions on the research topic. Like interviews, the online focus group questions are specific and consider the variables of the research.

Quantitative Empirical Research

This method of data collection is used when the researcher wants to obtain numerical data. The quantitative method in empirical research quantifies opinions, much like any other research. Different ways of collecting quantitative data include:

Surveys or Questionnaires

Usually deployed to a larger sample size compared to qualitative empirical research, surveys include a set of predetermined questions based on research variables and the phenomenon being studied. This method is the most commonly used (via online surveys using a market research panel or customer list) as it provides a larger amount of data.

Behavioral Data / Passive Metering

Typically permission-based, it is possible to match panelist’s online and mobile transactional behavior with survey attitude and intention responses. It is possible to track: search, shopping, purchase, ad views, media consumption, and social media activity while correlating many of these transactions.

Experiments

This is where empirical research truly shines. This is used when the researcher tests their hypothesis by setting up an experiment and manipulates the variables to observe how the phenomenon changes with each alteration.

For example, let’s consider the marketing department of a confectionary company is trying to find why their new product failed. They may set up an experiment by changing different aspects of the product, e.g., the flavor, the appearance, the packaging, and the price. This will help them figure out the cause of the failure.

Other methods of collective quantitative empirical data include causal-comparative, cross-sectional, longitudinal, and correlational research.

Approach to Analysis of Empirical Research

When you have to bring a theoretical perspective in your empirical research, you can take the inductive approach or a deductive approach.

The Inductive approach is interpretive, where you form a theory after collecting empirical evidence. It generally uses qualitative research methods and looks into how people perceive a certain phenomenon.

On the other hand, the Deductive approach is when the researcher establishes a hypothesis and develops a theoretical position before testing it against the data. Unlike the inductive approach, the deductive approach is positivist and uses quantitative methods in a highly-structured methodology.

Research team analyzing empirical research data

Why Use Empirical Research

When it comes to market research, empirical research provides certain advantages over-simplistic survey analyses. It is one of the most commonly used research methods because:

  • It provides data and results that can be used to confirm existing theories and authenticate traditional research through experiments and observation;
  • It enables the research to observe dynamic changes in the phenomenon being observed;
  • It allows the researcher to have more control over the variables involved in the study;
  • It increases internal validity.

While these advantages are why empirical research is a preferred market research approach, some cons may prevent some marketers from using it.

  • Empirical research is relatively more time consuming as experiments and observations for collecting primary data involve multiple variables and parameters;
  • Based on the research question, the researcher may need to collect data from samples placed in different locations or environments – it can get expensive.

The importance of empirical research since is Ancient Greek beginnings has only grown. This is because human decisions rely on evidence. Marketers and decision-makers are more likely to lean on the side that can be proven and validated.

If an approach is scientifically proven to work, it is a more plausible alternative to a conclusion based solely on assumptions without investigation.

Jim Whaley

Jim Whaley  is a business leader, market research expert, and writer. He posts frequently on  The Standard Ovation  and other industry blogs.

OvationMR is a global provider of first-party data  for those seeking solutions that require information for informed business decisions.

OvationMR is a leader in delivering insights  and reliable results across a variety of industry sectors around the globe consistently for market research professionals and management consultants.

Visit: https://www.ovationmr.com .

OvationMR contact form for empirical data

Need help with your project?

We are ready to offer you:

Our latest Panel Book

Esomar28 response, a project estimate/proposal, [email protected], +1.212.653.8750, 39 broadway, suite 2010, new york, ny 10006 usa.

ovationmr footer logo

  • Ovation Blog
  • View Panel Book

Calculators

  • Sample-Size
  • Margin-of-Error
  • B2B Audiences
  • Consumer Audiences
  • Academic Surveys
  • Research Design
  • Start Sampling Now
  • Survey Programming

            Visit Us:

           39 Broadway

                Suite 2010

  • New York, NY 10006

        +1.212.653.8750

ovationmr footer logo

  • Academic Survey Resources
  • 39 Broadway

Who benefits from benefits? Empirical research on tangible incentives

  • Original Paper
  • Published: 03 July 2013
  • Volume 8 , pages 327–350, ( 2014 )

Cite this article

  • Andrea Hammermann 1 &
  • Alwine Mohnen 2  

1552 Accesses

15 Citations

Explore all metrics

Although a broad field of literature on incentive theory exists, economic research on employer-provided tangible goods (hereafter called benefits) is still in its infancy. The empirical study by Oyer (Res Labor Econ 28:429–467, 2008 ) is one of few exceptions focusing empirically on the dispersion of tangible incentives. In our study, we test some of his findings by drawing on a German data set. We use two waves of the German Socio-Economic Panel data (2006, 2008) to analyze the occurrence of benefits and their effects on employees’ satisfaction. Our results provide evidence for economic as well as psychological explanations. Looking at differences in firms’ and employees’ characteristics we find that cost efficiency concerns, the purpose to signal good working conditions and the aim to ease employees’ effort costs are evident reasons to provide benefits. Furthermore, analyzing the impact of tangible and monetary incentives on satisfaction and employees’ feeling of being acknowledged by employers, we find different motivational effects. Our results support the psychological explanation that benefits are evaluated separately from other monetary wage components and are more likely to express employers’ concern for their employees and recognition of their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

The data used in this paper were extracted using the Add-On package PanelWhiz v3.0 (Nov 2010) for Stata. PanelWhiz was written by Dr. John P. Haisken-DeNew ([email protected]). The PanelWhiz generated DO file to retrieve the SOEP data used here, and any PanelWhiz Plugins are available upon request. Any data or computational errors in this paper are our own. Haisken-DeNew and Hahn ( 2006 ) describe PanelWhiz in detail.

It might be disputable if “expenses” belong to the set of tangible incentives because they are paid in cash. Nevertheless, we decided to include expenses in our analysis because we believe that it is part of the benefit question for good reason. First, expenses are not part of the employees’ payrolls and are directly connected to a business trip and therefore to a specific experience. Second, the costs of an accommodation or a service are paid by the company but the employee does not have the full option value of money.

To be able to include works council in our regression we assumed no changes for works council in 2006 and 2008 and constructed a dummy variable equals one if a works council exists within a firm in 2006. This assumption became necessary because the questionnaire in 2008 does not include any information on works council.

The multinomial logit regression is an extension of the logit model, allowing more than two discrete outcomes without a required order of the categorical dependent variable (for a short summary of the econometric methodology, see Constant and Zimmermann 2003 ).

At this point we would like to state that due to the lack of data it is impossible to eliminate the possibility that the correlation of benefit recipient and personnel characteristics is not due to employees’ sorting but based on the reason that the firms adapt their offers of certain benefits to certain type of employees. The latter is certainly true for rarely used benefits such as a membership to an exclusive golf club but in our opinion less likely for the universal and unisex benefits focused in our study. Therefore, we believe that the given explanation of self-selection is conclusive even if not impeccable verifiable.

Agreement or Disagreement to the following statements ( Dummy variables ):

I receive the recognition I deserve from my superiors. ( recog_superior ); When I consider all my accomplishments and efforts, the recognition I've received seems fitting. ( recog_performance ); When I consider all my accomplishments and efforts, my chances of personal advancement seem fitting. ( recog_career ); When I think about all my accomplishments, my pay seems appropriate. ( recog_wage ).

Variable “money” equals the sum of the following additional gross payments in the previous year if employee has not changed her workplace in 2005: 13th, 14th month salary, additional Christmas bonus, vacation pay, profit-sharing bonuses or other bonuses.

Backes-Gellner U, Tuor SN (2010) Avoiding labor shortages by employer signaling: on the importance of good work climate and labor relations. Ind Labor Relat Rev 63(2):271–286

Google Scholar  

Becker GS (1962) Investment in human capital: a theoretical analysis. J Polit Econ 70(5):9–49

Article   Google Scholar  

Bewley T (2004) Fairness, reciprocity, and wage rigidity. IZA discussion papers 1137

Constant A, Zimmermann KF (2003) Occupational choice across generations. Appl Econ Q 49(4):299–317

Cornelissen T, Heywood JS, Jorjahn U (2011) Performance pay, risk attitudes and job satisfactions. Labor Econ 18(2):229–239

Dohmen T, Falk A, Huffman D, Sunde U (2009) Homo reciprocans: survey evidence on behavioural outcomes. Econ J 119(536):592–612

Ellingsen T, Johannesson M (2007) Paying respect. J Econ Perspect 21(4):135–149

Ferriman K, Lubinski D, Benbow CP (2009) Work preferences, life values, and personal views of top math/science graduate students and the profoundly gifted: developmental changes and sex differences during young adulthood and parenthood. J Pers Soc Psychol 97(3):517–532

Frey BS (1997) Not just for the money: an economic theory of personal motivation. Edward Elgar Pub, Cheltenham

Grubb MD, Oyer P (2008) Who benefits from tax-advantaged employee benefits? Evidence from university parking. NBER working paper series 14062

Grund C, Sliwka D (2007) Reference-dependent preferences and the impact of wage increases on job satisfaction: theory and evidence. J Inst Theor Econ 163(2):313–335

Haisken-DeNew JP, Hahn M (2006) PanelWhiz: a flexible modularized stata interface for accessing large scale panel data sets. http://panelwhiz.com/docs/PanelWhiz_Introduction.pdf

Heineck G, Wölfel O (2012) Parental risk attitudes and children’s secondary school track choice. Econ Educ Rev 31(5):727–743

Heyman J, Ariely D (2004) Effort for payment. A tale of two markets. Psychol Sci 15(11):787–793

Holst E, Busch A (2009) Der “Gender Pay Gap” in Führungspositionen der Privatwirtschaft in Deutschland. SOEP papers 169

Jeffrey SA (2009) Justifiability and the motivational power of tangible noncash incentives. Hum Perform 22(2):143–155

Jeffrey SA, Shaffer V (2007) The motivational properties of tangible incentives. Compens Benefits Rev 39(3):44–50

Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47(2):263–291

Kube S, Maréchal M, Puppe C (2012a) The currency of reciprocity—gift-exchange in the workplace. Am Econ Rev 102(4):1644–1662

Kube S, Maréchal MA, Puppe C (2012b) Do wage cuts damage work morale? Evidence from a natural field experiment. J Eur Econ Assoc (preprint)

Lacetera N, Macis M (2010) Do all material incentives for pro-social activities backfire? The response to cash and non-cash incentives for blood donations. J Econ Psychol 31(4):738–748

Lazear E (1998) Personnel economics for managers. Wiley, New York

Lazear EP, Oyer PE (2007) Personnel economics. NBER working paper series 13480

Marino AM, Zábojník J (2008) Work-related perks, agency problems, and optimal incentive contracts. Rand J Econ 39(2):565–585

Oyer PE (2005) Can employee benefits ease the effects of nominal wage rigidity? Evidence from labor negotiations. Working paper Stanford Graduate School of Business

Oyer PE (2008) Salary or benefits? Res Labor Econ 28:429–467

Prendergast C, Stole LA (2001) The non-monetary nature of gifts. Eur Econ Rev 45(10):1793–1810

Rajan R, Wulf J (2006) Are perks purely managerial excess? J Financ Econ 79(1):1–33

Reskin BF (1993) Sex segregation in the workplace. Annu Rev Sociol 19(1):241–270

Smith KT (2010) Work-life balance perspectives of future marketing professionals. Serv Market Q 31(4):434–447

Smith JC (2013) Pay growth, fairness and job satisfaction: implications for nominal and real wage rigidity. CAGE working paper 130

Thaler RH (1999) Mental accounting matters. J Behav Dec Making 12(3):183–206

Voßmerbäumer J (2013) Incentive effects and the income tax treatment of employer-provided workplace benefits. RMS 7(1):61–84

Wagner GG, Burkhauser RV, Behringer F (1993) The English language public use file of the German socio-economic panel. J Hum Resour 28(2):429–433

Download references

Acknowledgments

We would like to thank our two referees, Anastasia Danilov and the participants of the Tinbergen Institute/ZEW Conference (2010) in Rotterdam and the 14. Kolloquium zur Personalökonomie (2011) in Zurich for valuable remarks which have helped to improve our work. All errors are our own.

Author information

Authors and affiliations.

Institut der deutschen Wirtschaft Köln, Konrad-Adenauer-Ufer 21, P.O. Box 101942, 50459, Cologne, Germany

Andrea Hammermann

TUM University, Arcisstraße 21, 80333, Munich, Germany

Alwine Mohnen

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Andrea Hammermann .

See Tables  1 , 2 , 3 , 4 .

Rights and permissions

Reprints and permissions

About this article

Hammermann, A., Mohnen, A. Who benefits from benefits? Empirical research on tangible incentives. Rev Manag Sci 8 , 327–350 (2014). https://doi.org/10.1007/s11846-013-0107-3

Download citation

Received : 06 April 2012

Accepted : 13 June 2013

Published : 03 July 2013

Issue Date : July 2014

DOI : https://doi.org/10.1007/s11846-013-0107-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Nonmonetary incentives
  • Work motivation

JEL Classification

  • Find a journal
  • Publish with us
  • Track your research

COMMENTS

  1. What Is Empirical Research? Definition, Types & Samples in 2024

    Despite the many benefits it brings, empirical research is far from perfect. The following are some of its drawbacks: Being evidence-based, data collection is a common problem especially when the research involves different sources and multiple methods. It can be time-consuming, especially for longitudinal research.

  2. Empirical Research: Advantages, Drawbacks and Differences ...

    Benefits of empirical research. Empirical research aims to find the meaning behind a particular phenomenon. In other words, it seeks answers to how and why something works the way it is. By identifying the reasons why something happens, it is possible to replicate or prevent similar events.

  3. Empirical Research: The Burdens and the Benefits

    search if the academics are to travel this road. This paving process should begin once the business community is made aware of (1) how academics perceive and weigh the burdens and the benefits of empirical research and (2) how they can influence those. factors to make empirical research more academically desirable.

  4. Empirical Research: Definition, Methods, Types and Examples

    Empirical research is defined as any research where conclusions of the study is strictly drawn from concretely empirical evidence, and therefore "verifiable" evidence. ... This supports the fact that exercise benefits an individual body. Cross sectional: Cross sectional study is an observational type of method, in which a set of audience is ...

  5. Empirical Research

    Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services. ... Strategies for Empirical Research in Writing is a particularly accessible approach to both qualitative and quantitative empirical research methods, helping novices appreciate the value of empirical research in writing while easing their fears ...

  6. Empirical Research

    In empirical research, knowledge is developed from factual experience as opposed to theoretical assumption and usually involved the use of data sources like datasets or fieldwork, but can also be based on observations within a laboratory setting. Testing hypothesis or answering definite questions is a primary feature of empirical research.

  7. Empirical Research

    Advantages of Empirical Research. First and foremost, this form of research has increased the credibility of findings, making it easy for someone to make an argument out of facts instead of theoretical assumptions. It keeps works authentic, formal, and verifiable, thus increasing the quality depth of information.

  8. What is Empirical Research? Definition, Methods, Examples

    Empirical research is characterized by several key features: Observation and Measurement: It involves the systematic observation or measurement of variables, events, or behaviors. Data Collection: Researchers collect data through various methods, such as surveys, experiments, observations, or interviews.

  9. Empirical research

    A scientist gathering data for her research. Empirical research is research using empirical evidence.It is also a way of gaining knowledge by means of direct and indirect observation or experience. Empiricism values some research more than other kinds. Empirical evidence (the record of one's direct observations or experiences) can be analyzed quantitatively or qualitatively.

  10. (PDF) Empirical Research: The Burdens and the Benefits

    A recent empirical study has led to some enlightening possibilities as to how academics perceive the advantages and disadvantages of empirical versus conceptual research, and what strategy the ...

  11. PDF Empirical Research Papers

    Empirical researchers observe, measure, record, and analyze data with the goal of generating knowledge. Empirical research may explore, describe, or explain behaviors or phenomena in humans, animals, or the natural world. It may use any number of quantitative or qualitative methods, ranging from laboratory experiments to surveys to artifact ...

  12. What is Empirical Research? Definition, Types, and More

    Theoretical vs Empirical Research. Empirical refers to information derived from observations or personal experiences, while theoretical is associated with ideas and hypotheses. In research contexts, these terms are commonly used to describe data, methods, or probabilities. What are the benefits of Empirical Research?

  13. 2.1 Why Is Research Important?

    Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck.

  14. What is empirical research: Methods, types & examples

    Empirical research is a research type where the aim of the study is based on finding concrete and provable evidence. The researcher using this method to draw conclusions can use both quantitative and qualitative methods. Different than theoretical research, empirical research uses scientific experimentation and investigation. ...

  15. Conduct empirical research

    Share this content. Empirical research is research that is based on observation and measurement of phenomena, as directly experienced by the researcher. The data thus gathered may be compared against a theory or hypothesis, but the results are still based on real life experience. The data gathered is all primary data, although secondary data ...

  16. Empirical Research: Quantitative & Qualitative

    Empirical research is based on observed and measured phenomena and derives knowledge from actual experience rather than from theory or belief.. Key characteristics of empirical research to look for: Specific research questions to be answered; Definitions of the population, behavior, or phenomena being studied;

  17. The Importance of Empirical Research

    In order help people in need find effective treatment, and to aid service providers/policy makers in selecting treatments, many of the major psychological associations of the West have accepted some form of evidence-based practice policy for their members. For...

  18. Introduction to systematic review and meta-analysis

    Formulating research questions. A systematic review attempts to gather all available empirical research by using clearly defined, systematic methods to obtain answers to a specific question. A meta-analysis is the statistical process of analyzing and combining results from several similar studies.

  19. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  20. Empirical Research Provides Reliable Data

    Based on this, empirical research is a type of investigation where the researcher infers a conclusion by testing empirical evidence. It provides a more concrete conclusion to an inquiry as it uses real-world evidence. This approach to research is important for marketers to understand as it simplifies decision-making.

  21. What is empirical research? (Plus types and methods)

    Empirical research is one technique that many people use when identifying problems to obtain specific, measurable results. This form of research helps gather data that inform product development, increase employee retention rates and boost customer satisfaction. In this article, we define empirical research, explore how to use it effectively ...

  22. Understanding Nature and Its Cognitive Benefits

    This article describes empirical research on the cognitive benefits of interacting with natural environments and several theories that have been proposed to explain these effects. We also propose future directions that may be useful in exploring the extent of nature's effects on cognitive performance and some potential mediating factors ...

  23. Who benefits from benefits? Empirical research on tangible incentives

    Although a broad field of literature on incentive theory exists, economic research on employer-provided tangible goods (hereafter called benefits) is still in its infancy. The empirical study by Oyer (Res Labor Econ 28:429-467, 2008) is one of few exceptions focusing empirically on the dispersion of tangible incentives. In our study, we test some of his findings by drawing on a German data ...