Become a Writer Today

Essays About Math: Top 10 Examples and Writing Prompts 

Love it or hate it, an understanding of math is said to be crucial to success. So, if you are writing essays about math, read our top essay examples.  

Mathematics is the study of numbers, shapes, and space using reason and usually a special system of symbols and rules for organizing them . It can be used for a variety of purposes, from calculating a business’s profit to estimating the mass of a black hole. However, it can be considered “controversial” to an extent.

Most students adore math or regard it as their least favorite. No other core subject has the same infamy as math for generating passionate reactions both for and against it. It has applications in every field, whether basic operations or complex calculus problems. Knowing the basics of math is necessary to do any work properly. 

If you are writing essays about Math, we have compiled some essay examples for you to get started. 

1. Mathematics: Problem Solving and Ideal Math Classroom by Darlene Gregory 

2. math essay by prasanna, 3. short essay on the importance of mathematics by jay prakash.

  • 4.  Math Anxiety by Elias Wong

5. Why Math Isn’t as Useless as We Think by Murtaza Ali

1. mathematics – do you love or hate it, 2. why do many people despise math, 3. how does math prepare you for the future, 4. is mathematics an essential skill, 5. mathematics in the modern world.

“The trait of the teacher that is being strict is we know that will really help the students to change. But it will give a stress and pressure to students and that is one of the causes why students begin to dislike math. As a student I want a teacher that is not so much strict and giving considerations to his students. A teacher that is not giving loads of things to do and must know how to understand the reasons of his students.”

Gregory discusses the reasons for most students’ hatred of math and how teachers handle the subject in class. She says that math teachers do not explain the topics well, give too much work, and demand nothing less than perfection. To her, the ideal math class would involve teachers being more considerate and giving less work. 

You might also be interested in our ordinal number explainer.

“Math is complicated to learn, and one needs to focus and concentrate more. Math is logical sometimes, and the logic needs to be derived out. Maths make our life easier and more straightforward. Math is considered to be challenging because it consists of many formulas that have to be learned, and many symbols and each symbol generally has its significance.”

In her essay, Prasanna gives readers a basic idea of what math is and its importance. She additionally lists down some of the many uses of mathematics in different career paths, namely managing finances, cooking, home modeling and construction, and traveling. Math may seem “useless” and “annoying” to many, but the essay gives readers a clear message: we need math to succeed. 

“In this modern age of Science and Technology, emphasis is given on Science such as Physics, Chemistry, Biology, Medicine and Engineering. Mathematics, which is a Science by any criterion, also is an efficient and necessary tool being employed by all these Sciences. As a matter of fact, all these Sciences progress only with the aid of Mathematics. So it is aptly remarked, ‘Mathematics is a Science of all Sciences and art of all arts.’”

As its title suggests, Prakash’s essay briefly explains why math is vital to human nature. As the world continues to advance and modernize, society emphasizes sciences such as medicine, chemistry, and physics. All sciences employ math; it cannot be studied without math. It also helps us better our reasoning skills and maximizes the human mind. It is not only necessary but beneficial to our everyday lives. 

4.   Math Anxiety by Elias Wong

“Math anxiety affects different not only students but also people in different ways. It’s important to be familiar with the thoughts you have about yourself and the situation when you encounter math. If you are aware of unrealistic or irrational thoughts you can work to replace those thoughts with more positive and realistic ones.”

Wong writes about the phenomenon known as “math anxiety.” This term is used to describe many people’s hatred or fear of math- they feel that they are incapable of doing it. This anxiety is caused mainly by students’ negative experiences in math class, which makes them believe they cannot do well. Wong explains that some people have brains geared towards math and others do not, but this should not stop people from trying to overcome their math anxiety. Through review and practice of basic mathematical skills, students can overcome them and even excel at math. 

“We see that math is not an obscure subject reserved for some pretentious intellectual nobility. Though we may not be aware of it, mathematics is embedded into many different aspects of our lives and our world — and by understanding it deeply, we may just gain a greater understanding of ourselves.”

Similar to some of the previous essays, Ali’s essay explains the importance of math. Interestingly, he tells a story of the life of a person name Kyle. He goes through the typical stages of life and enjoys typical human hobbies, including Rubik’s cube solving. Throughout this “Kyle’s” entire life, he performed the role of a mathematician in various ways. Ali explains that math is much more prevalent in our lives than we think, and by understanding it, we can better understand ourselves. 

Writing Prompts on Essays about Math

Math is a controversial subject that many people either passionately adore or despise. In this essay, reflect on your feelings towards math, and state your position on the topic. Then, give insights and reasons as to why you feel this way. Perhaps this subject comes easily to you, or perhaps it’s a subject that you find pretty challenging. For an insightful and compelling essay, you can include personal anecdotes to relate to your argument. 

Essays about Math: Why do many people despise math?

It is well-known that many people despise math. In this essay, discuss why so many people do not enjoy maths and struggle with this subject in school. For a compelling essay, gather interview data and statistics to support your arguments. You could include different sections correlating to why people do not enjoy this subject.

In this essay, begin by reading articles and essays about the importance of studying math. Then, write about the different ways that having proficient math skills can help you later in life. Next, use real-life examples of where maths is necessary, such as banking, shopping, planning holidays, and more! For an engaging essay, use some anecdotes from your experiences of using math in your daily life.

Many people have said that math is essential for the future and that you shouldn’t take a math class for granted. However, many also say that only a basic understanding of math is essential; the rest depends on one’s career. Is it essential to learn calculus and trigonometry? Choose your position and back up your claim with evidence. 

Prasanna’s essay lists down just a few applications math has in our daily lives. For this essay, you can choose any activity, whether running, painting, or playing video games, and explain how math is used there. Then, write about mathematical concepts related to your chosen activity and explain how they are used. Finally, be sure to link it back to the importance of math, as this is essentially the topic around which your essay is based. 

If you are interested in learning more, check out our essay writing tips !

For help with your essays, check out our round-up of the best essay checkers

essay on types of maths

Martin is an avid writer specializing in editing and proofreading. He also enjoys literary analysis and writing about food and travel.

View all posts

  • Share full article


Supported by

current events conversation

What Students Are Saying About the Value of Math

We asked teenagers: Do you see the point in learning math? The answer from many was “yes.”

essay on types of maths

By The Learning Network

“Mathematics, I now see, is important because it expands the world,” Alec Wilkinson writes in a recent guest essay . “It is a point of entry into larger concerns. It teaches reverence. It insists one be receptive to wonder. It requires that a person pay close attention.”

In our writing prompt “ Do You See the Point in Learning Math? ” we wanted to know if students agreed. Basic arithmetic, sure, but is there value in learning higher-level math, such as algebra, geometry and calculus? Do we appreciate math enough?

The answer from many students — those who love and those who “detest” the subject alike — was yes. Of course math helps us balance checkbooks and work up budgets, they said, but it also helps us learn how to follow a formula, appreciate music, draw, shoot three-pointers and even skateboard. It gives us different perspectives, helps us organize our chaotic thoughts, makes us more creative, and shows us how to think rationally.

Not all were convinced that young people should have to take higher-level math classes all through high school, but, as one student said, “I can see myself understanding even more how important it is and appreciating it more as I get older.”

Thank you to all the teenagers who joined the conversation on our writing prompts this week, including students from Bentonville West High School in Centerton, Ark, ; Harvard-Westlake School in Los Angeles ; and North High School in North St. Paul, Minn.

Please note: Student comments have been lightly edited for length, but otherwise appear as they were originally submitted.

“Math is a valuable tool and function of the world.”

As a musician, math is intrinsically related to my passion. As a sailor, math is intertwined with the workings of my boat. As a human, math is the building block for all that functions. When I was a child, I could very much relate to wanting a reason behind math. I soon learned that math IS the reason behind all of the world’s workings. Besides the benefits that math provides to one’s intellect, it becomes obvious later in life that math is a valuable tool and function of the world. In music for example, “adolescent mathematics” are used to portray functions of audio engineering. For example, phase shifting a sine wave to better project sound or understanding waves emitted by electricity and how they affect audio signals. To better understand music, math is a recurring pattern of intervals between generating pitches that are all mathematically related. The frets on a guitar are measured precisely to provide intervals based on a tuning system surrounding 440Hz, which is the mathematically calculated middle of the pitches humans can perceive and a string can effectively generate. The difference between intervals in making a chord are not all uniform, so guitar frets are placed in a way where all chords can sound equally consonant and not favor any chord. The power of mathematics! I am fascinated by the way that math creeps its way into all that I do, despite my plentiful efforts to keep it at a safe distance …

— Renan, Miami Country Day School

“Math isn’t about taking derivatives or solving for x, it’s about having the skills to do so and putting them to use elsewhere in life.”

I believe learning mathematics is both crucial to the learning and development of 21st century students and yet also not to be imposed upon learners too heavily. Aside from the rise in career opportunity in fields centered around mathematics, the skills gained while learning math are able to be translated to many facets of life after a student’s education. Learning mathematics develops problem solving skills which combine logic and reasoning in students as they grow. The average calculus student may complain of learning how to take derivatives, arguing that they will never have to use this after high school, and in that, they may be right. Many students in these math classes will become writers, musicians, or historians and may never take a derivative in their life after high school, and thus deem the skill to do so useless. However, learning mathematics isn’t about taking derivatives or solving for x, it’s about having the skills to do so and putting them to use elsewhere in life. A student who excels at calculus may never use it again, but with the skills of creativity and rational thinking presented by this course, learning mathematics will have had a profound effect on their life.

— Cam, Glenbard West

“Just stop and consider your hobbies and pastimes … all of it needs math.”

Math is timing, it’s logic, it’s precision, it’s structure, and it’s the way most of the physical world works. I love math — especially algebra and geometry — as it all follows a formula, and if you set it up just right, you can create almost anything you want in at least two different ways. Just stop and consider your hobbies and pastimes. You could be into skateboarding, basketball, or skiing. You could be like me, and sit at home for hours on end grinding out solves on a Rubik’s cube. Or you could be into sketching. Did you know that a proper drawing of the human face places the eyes exactly halfway down from the top of the head? All of it needs math. Author Alec Wilkinson, when sharing his high school doubting view on mathematics, laments “If I had understood how deeply mathematics is embedded in the world …” You can’t draw a face without proportions. You can’t stop with your skis at just any angle. You can’t get three points without shooting at least 22 feet away from the basket, and get this: you can’t even ride a skateboard if you can’t create four congruent wheels to put on it.

— Marshall, Union High School, Vancouver, WA

“Math gives us a different perspective on everyday activities.”

Even though the question “why do we even do math?” is asked all the time, there is a deeper meaning to the values it shares. Math gives us a different perspective on everyday activities, even if those activities in our routine have absolutely nothing to do with mathematical concepts itself. Geometry, for instance, allows us to think on a different level than simply achieving accuracy maintains. It trains our mind to look at something from various viewpoints as well as teaching us to think before acting and organizing chaotic thoughts. The build up of learning math can allow someone to mature beyond the point where if they didn’t learn math and thought through everything. It paves a way where we develop certain characteristics and traits that are favorable when assisting someone with difficult tasks in the future.

— Linden, Harvard-Westlake High School, CA

“Math teaches us how to think.”

As explained in the article, math is all around us. Shapes, numbers, statistics, you can find math in almost anything and everything. But is it important for all students to learn? I would say so. Math in elementary school years is very important because it teaches how to do simple calculations that can be used in your everyday life; however middle and high school math isn’t used as directly. Math teaches us how to think. It’s far different from any other subject in school, and truly understanding it can be very rewarding. There are also many career paths that are based around math, such as engineering, statistics, or computer programming, for example. These careers are all crucial for society to function, and many pay well. Without a solid background in math, these careers wouldn’t be possible. While math is a very important subject, I also feel it should become optional at some point, perhaps part way through high school. Upper level math classes often lose their educational value if the student isn’t genuinely interested in learning it. I would encourage all students to learn math, but not require it.

— Grey, Cary High School

“Math is a valuable tool for everyone to learn, but students need better influences to show them why it’s useful.”

Although I loved math as a kid, as I got older it felt more like a chore; all the kids would say “when am I ever going to use this in real life?” and even I, who had loved math, couldn’t figure out how it benefits me either. This was until I started asking my dad for help with my homework. He would go on and on about how he used the math I was learning everyday at work and even started giving me examples of when and where I could use it, which changed my perspective completely. Ultimately, I believe that math is a valuable tool for everyone to learn, but students need better influences to show them why it’s useful and where they can use it outside of class.

— Lilly, Union High School

“At the roots of math, it teaches people how to follow a process.”

I do believe that the math outside of arithmetic, percentages, and fractions are the only math skills truly needed for everyone, with all other concepts being only used for certain careers. However, at the same time, I can’t help but want to still learn it. I believe that at the roots of math, it teaches people how to follow a process. All mathematics is about following a formula and then getting the result of it as accurately as possible. It teaches us that in order to get the results needed, all the work must be put and no shortcuts or guesses can be made. Every equation, number, and symbol in math all interconnect with each other, to create formulas that if followed correctly gives us the answer needed. Everything is essential to getting the results needed, and skipping a step will lead to a wrong answer. Although I do understand why many would see no reason to learn math outside of arithmetic, I also see lessons of work ethics and understanding the process that can be applied to many real world scenarios.

— Takuma, Irvine High School

“I see now that math not only works through logic but also creativity.”

A story that will never finish resembling the universe constantly expanding, this is what math is. I detest math, but I love a never-ending tale of mystery and suspense. If we were to see math as an adventure it would make it more enjoyable. I have often had a closed mindset on math, however, viewing it from this perspective, I find it much more appealing. Teachers urge students to try on math and though it seems daunting and useless, once you get to higher math it is still important. I see now that math not only works through logic but also creativity and as the author emphasizes, it is “a fundamental part of the world’s design.” This view on math will help students succeed and have a more open mindset toward math. How is this never-ending story of suspense going to affect YOU?

— Audrey, Vancouver, WA union high school

“In some word problems, I encounter problems that thoroughly interest me.”

I believe math is a crucial thing to learn as you grow up. Math is easily my favorite subject and I wish more people would share my enthusiasm. As Alec Wilkinson writes, “Mathematics, I now see, is important because it expands the world.” I have always enjoyed math, but until the past year, I have not seen a point in higher-level math. In some of the word problems I deal with in these classes, I encounter problems that thoroughly interest me. The problems that I am working on in math involve the speed of a plane being affected by wind. I know this is not riveting to everyone, but I thoroughly wonder about things like this on a daily basis. The type of math used in the plane problems is similar to what Alec is learning — trigonometry. It may not serve the most use to me now, but I believe a thorough understanding of the world is a big part of living a meaningful life.

— Rehan, Cary High School

“Without high school classes, fewer people get that spark of wonder about math.”

I think that math should be required through high school because math is a use-it-or-lose-it subject. If we stop teaching math in high school and just teach it up to middle school, not only will many people lose their ability to do basic math, but we will have fewer and fewer people get that spark of wonder about math that the author had when taking math for a second time; after having that spark myself, I realized that people start getting the spark once they are in harder math classes. At first, I thought that if math stopped being required in high school, and was offered as an elective, then only people with the spark would continue with it, and everything would be okay. After thinking about the consequences of the idea, I realized that technology requires knowing the seemingly unneeded math. There is already a shortage of IT professionals, and stopping math earlier will only worsen that shortage. Math is tricky. If you try your best to understand it, it isn’t too hard. However, the problem is people had bad math teachers when they were younger, which made them hate math. I have learned that the key to learning math is to have an open mind.

— Andrew, Cary High School

“I think math is a waste of my time because I don’t think I will ever get it.”

In the article Mr. Wilkinson writes, “When I thought about mathematics at all as a boy it was to speculate about why I was being made to learn it, since it seemed plainly obvious that there was no need for it in adult life.” His experience as a boy resonates with my experience now. I feel like math is extremely difficult at some points and it is not my strongest subject. Whenever I am having a hard time with something I get a little upset with myself because I feel like I need to get everything perfect. So therefore, I think it is a waste of my time because I don’t think I will ever get it. At the age of 65 Mr. Wilkinson decided to see if he could learn more/relearn algebra, geometry and calculus and I can’t imagine myself doing this but I can see myself understanding even more how important it is and appreciating it more as I get older. When my dad was young he hated history but, as he got older he learned to appreciate it and see how we can learn from our past mistakes and he now loves learning new things about history.

— Kate, Cary High School

“Not all children need to learn higher level math.”

The higher levels of math like calculus, algebra, and geometry have shaped the world we live in today. Just designing a house relates to math. To be in many professions you have to know algebra, geometry, and calculus such as being an economist, engineer, and architect. Although higher-level math isn’t useful to some people. If you want to do something that pertains to math, you should be able to do so and learn those high levels of math. Many things children learn in math they will never use again, so learning those skills isn’t very helpful … Children went through so much stress and anxiety to learn these skills that they will never see again in their lives. In school, children are using their time learning calculus when they could be learning something more meaningful that can prepare them for life.

— Julyssa, Hanover Horton High School

“Once you understand the basics, more math classes should be a choice.”

I believe that once you get to the point where you have a great understanding of the basics of math, you should be able to take more useful classes that will prepare you for the future better, rather than memorizing equations after equations about weird shapes that will be irrelevant to anything in my future. Yes, all math levels can be useful to others’ futures depending on what career path they choose, but for the ones like me who know they are not planning on encountering extremely high level math equations on the daily, we should not have to take math after a certain point.

— Tessa, Glenbard West High School

“Math could shape the world if it were taught differently.”

If we learned how to balance checkbooks and learn about actual life situations, math could be more helpful. Instead of learning about rare situations that probably won’t come up in our lives, we should be learning how to live on a budget and succeed money-wise. Since it is a required class, learning this would save more people from going into debt and overspending. In schools today, we have to take a specific class that doesn’t sound appealing to the average teenager to learn how to save and spend money responsibly. If it was required in math to learn about that instead of how far Sally has to walk then we would be a more successful nation as a whole. Math could shape the world differently but the way it is taught in schools does not have much impact on everyday life.

— Becca, Bentonville West High School

“To be honest, I don’t see the point in learning all of the complicated math.”

In a realistic point of view, I need to know how to cut a cake or a piece of pie or know how to divide 25,000 dollars into 10 paychecks. On the other hand, I don’t need to know the arc and angle. I need to throw a piece of paper into a trash can. I say this because, in all reality and I know a lot of people say this but it’s true, when are we actually going to need this in our real world lives? Learning complicated math is a waste of precious learning time unless you desire to have a career that requires these studies like becoming an engineer, or a math professor. I think that the fact that schools are still requiring us to learn these types of mathematics is just ignorance from the past generations. I believe that if we have the technology to complete these problems in a few seconds then we should use this technology, but the past generations are salty because they didn’t have these resources so they want to do the same thing they did when they were learning math. So to be honest, I don’t see the point in learning all of the complicated math but I do think it’s necessary to know the basic math.

— Shai, Julia R Masterman, Philadelphia, PA

Learn more about Current Events Conversation here and find all of our posts in this column .


Extended Essay: Group 5: Mathematics

  • General Timeline
  • Group 1: English Language and Literature
  • Group 2: Language Acquisition
  • Group 3: Individuals and Societies
  • Group 4: Sciences
  • Group 5: Mathematics
  • Group 6: The Arts
  • Interdisciplinary essays
  • Six sub-categories for WSEE
  • IB Interdisciplinary EE Assessment Guide
  • Brainstorming
  • Pre-Writing
  • Research Techniques
  • The Research Question
  • Paraphrasing, Summarising and Quotations
  • Writing an EE Introduction
  • Writing the main body of your EE
  • Writing your EE Conclusion
  • Sources: Finding, Organising and Evaluating Them
  • Conducting Interviews and Surveys
  • Citing and Referencing
  • Check-in Sessions
  • First Formal Reflection
  • Second Formal Reflection
  • Final Reflection (Viva Voce)
  • Researcher's Reflection Space (RRS) Examples
  • Information for Supervisors
  • How is the EE Graded?
  • EE Online Resources
  • Stavanger Public Library
  • Exemplar Essays
  • Extended Essay Presentations
  • ISS High School Academic Honesty Policy


essay on types of maths

An extended essay (EE) in mathematics is intended for students who are writing on any topic that has a mathematical focus and it need not be confined to the theory of mathematics itself.

Essays in this group are divided into six categories:

  • the applicability of mathematics to solve both real and abstract problems
  • the beauty of mathematics—eg geometry or fractal theory
  • the elegance of mathematics in the proving of theorems—eg number theory
  • the history of mathematics: the origin and subsequent development of a branch of mathematics over a period of time, measured in tens, hundreds or thousands of years
  • the effect of technology on mathematics:
  • in forging links between different branches of mathematics,
  • or in bringing about a new branch of mathematics, or causing a particular branch to flourish.

These are just some of the many different ways that mathematics can be enjoyable or useful, or, as in many cases, both.

For an Introduction in a Mathematics EE look HERE . 

Choice of topic

The EE may be written on any topic that has a mathematical focus and it need not be confined to the theory of mathematics itself.

Students may choose mathematical topics from fields such as engineering, the sciences or the social sciences, as well as from mathematics itself.

Statistical analyses of experimental results taken from other subject areas are also acceptable, provided that they focus on the modeling process and discuss the limitations of the results; such essays should not include extensive non-mathematical detail.

A topic selected from the history of mathematics may also be appropriate, provided that a clear line of mathematical development is demonstrated. Concentration on the lives of, or personal rivalries between, mathematicians would be irrelevant and would not score highly on the assessment criteria.

It should be noted that the assessment criteria give credit for the nature of the investigation and for the extent that reasoned arguments are applied to an appropriate research question.

Students should avoid choosing a topic that gives rise to a trivial research question or one that is not sufficiently focused to allow appropriate treatment within the requirements of the EE.

Students will normally be expected either to extend their knowledge beyond that encountered in the Diploma Programme mathematics course they are studying or to apply techniques used in their mathematics course to modeling in an appropriately chosen topic.

However, it is very important to remember that it is an essay that is being written, not a research paper for a journal of advanced mathematics, and no result, however impressive, should be quoted without evidence of the student’s real understanding of it.

Example and Treatment of Topic

Examples of topics

These examples are just for guidance. Students must ensure their choice of topic is focused (left-hand column) rather than broad (right-hand column

essay on types of maths

Treatment of the topic

Whatever the title of the EE, students must apply good mathematical practice that is relevant to the

chosen topic, including:

• data analysed using appropriate techniques

• arguments correctly reasoned

• situations modeled using correct methodology

• problems clearly stated and techniques at the correct level of sophistication applied to their solution.

Research methods

Students must be advised that mathematical research is a long-term and open-ended exploration of a set of related mathematical problems that are based on personal observations. 

The answers to these problems connect to and build upon each other over time.

Students’ research should be guided by analysis of primary and secondary sources.

A primary source for research in mathematics involves:

• data-gathering

• visualization

• abstraction

• conjecturing

• proof.

A secondary source of research refers to a comprehensive review of scholarly work, including books, journal articles or essays in an edited collection.

A literature review for mathematics might not be as extensive as in other subjects, but students are expected to demonstrate their knowledge and understanding of the mathematics they are using in the context of the broader discipline, for example how the mathematics they are using has been applied before, or in a different area to the one they are investigating.

Writing the essay

Throughout the EE students should communicate mathematically:

• describing their way of thinking

• writing definitions and conjectures

• using symbols, theorems, graphs and diagrams

• justifying their conclusions.

There must be sufficient explanation and commentary throughout the essay to ensure that the reader does not lose sight of its purpose in a mass of mathematical symbols, formulae and analysis.

The unique disciplines of mathematics must be respected throughout. Relevant graphs and diagrams are often important and should be incorporated in the body of the essay, not relegated to an appendix.

However, lengthy printouts, tables of results and computer programs should not be allowed to interrupt the development of the essay, and should appear separately as footnotes or in an appendix. Proofs of key results may be included, but proofs of standard results should be either omitted or, if they illustrate an important point, included in an appendix.

Examples of topics, research questions and suggested approaches

Once students have identified their topic and written their research question, they can decide how to

research their answer. They may find it helpful to write a statement outlining their broad approach. These

examples are for guidance only.

essay on types of maths

An important note on “double-dipping”

Students must ensure that their EE does not duplicate other work they are submitting for the Diploma Programme. For example, students are not permitted to repeat any of the mathematics in their IA in their EE, or vice versa.

The mathematics EE and internal assessment

An EE in mathematics is not an extension of the internal assessment (IA) task. Students must ensure that they understand the differences between the two.

  • The EE is a more substantial piece of work that requires formal research
  • The IA is an exploration of an idea in mathematics.

It is not appropriate for a student to choose the same topic for an EE as the IA. There would be too much danger of duplication and it must therefore be discouraged.

  • << Previous: Group 4: Sciences
  • Next: Group 6: The Arts >>
  • Last Updated: May 2, 2024 8:11 AM
  • URL:

Math Essay Writing Guide

It is often met that students feel wondered when they are asked to write essays in math classes. Actually, the tasks of math essay writing want to make students demonstrate their knowledge and understanding of mathematical concepts and ideas.

This kind of essay is what students of both college and high school students can be asked to create. Yes, this type of writing is quite special, and having its own tricks and demands. Still, guides for writing a math essay is mostly the same as for those of other subjects.

If you think you do not have enough time or skill to complete a math essay on your own, remember about the possibility to ask for essay help online .

Set Up Your Topic

Just like any other essay, math writing is to be started from choosing a topic. Here are several possible ways to go. First one wants you to choose any mathematical concept that seems to be interesting for you, like one of those you discussed with a teacher and classmates and want to investigate it a bit deeper. Another way is, you can choose any math problem you have solved in the past.

For this type of writing, you show up a problem, and then show your way towards solving it and getting the right answer. Whatever the type of essay is, you need to provide a brainstorm and find the topic worrying your mind the most, as to write about something you need to research it seriously. For instance think about any particular concept or equation of mathematics you would like to spend a bit more time to investigate, and then note your thoughts on a paper.

Consider the Audience

Thinking about the audience that is going to read your essay is a must for any essay, same thing goes for math paper writing. Mathematician P. R. Halmos offers the way to think about the particular person while writing an essay, in the text of his article “How to Write Mathematics”.

Halmos says it is good to think about someone who has math ways that “can stand mending”. To say in other words, when writing an essay, do not try jumping above your head and write the text for the audience that has the same skill in math as you do. Yes, you write a math essay in order to present the idea or to explain a problem solution. But still, you want to prove your method to be the best one. Try convincing the reader in that, and the essay is guaranteed to be interesting.

Concept Essay in Math

In case of math, concept essays look similar to those for other classes. In fact, you need to write a regular expository essay to complete your task. To do that, you research a certain math concept, analyze it, then form and develop your upcoming theoretical ideas basing on the experience and knowledge you could get when providing the investigation, and then claim it as a usual thesis statement.

Start writing your essay with the intro, importing the topic through it. include your claim about the theory there. The, you need to develop your claim in the further text, and to present reliable evidences you found during the research to prove your viewpoint. Write a conclusion, tie up any loose ends and readdress your theoretical info according to the way how it was provided before.

Math Equation Essay

To complete an equation essay successfully, you should show up the problem and solution at once, in the essay intro. Then, explain the problem significance and factors that made you choose your certain way towards the solution. Both significance and rationale are the same with a thesis statement, they serve as the base ground for your argumentation here.

Compose a paragraph that clearly shows the reader how to solve the problem according to your vision, make a “how-to” user guide for the chosen problem. If the problem is complex, set up a helpful graph that could demonstrate your equation result. Explain what can be seen on that graph. Same thing: define variables carefully and precisely with sentences like “Let’s think n is any real number.” Show up your problem solving methodical, guide the reader through the used formulas and explain why you used exactly those ones.

Related Posts:

Free Math Help Resources

In case you have any suggestion, or if you would like to report a broken solver/calculator, please do not hesitate to contact us .

log in to your account

Reset password.

National Academies Press: OpenBook

High School Mathematics at Work: Essays and Examples for the Education of All Students (1998)

Chapter: part one: connecting mathematics with work and life, part one— connecting mathematics with work and life.

Mathematics is the key to opportunity. No longer just the language of science, mathematics now contributes in direct and fundamental ways to business, finance, health, and defense. For students, it opens doors to careers. For citizens, it enables informed decisions. For nations, it provides knowledge to compete in a technological community. To participate fully in the world of the future, America must tap the power of mathematics. (NRC, 1989, p. 1)

The above statement remains true today, although it was written almost ten years ago in the Mathematical Sciences Education Board's (MSEB) report Everybody Counts (NRC, 1989). In envisioning a future in which all students will be afforded such opportunities, the MSEB acknowledges the crucial role played by formulae and algorithms, and suggests that algorithmic skills are more flexible, powerful, and enduring when they come from a place of meaning and understanding. This volume takes as a premise that all students can develop mathematical understanding by working with mathematical tasks from workplace and everyday contexts . The essays in this report provide some rationale for this premise and discuss some of the issues and questions that follow. The tasks in this report illuminate some of the possibilities provided by the workplace and everyday life.

Contexts from within mathematics also can be powerful sites for the development of mathematical understanding, as professional and amateur mathematicians will attest. There are many good sources of compelling problems from within mathematics, and a broad mathematics education will include experience with problems from contexts both within and outside mathematics. The inclusion of tasks in this volume is intended to highlight particularly compelling problems whose context lies outside of mathematics, not to suggest a curriculum.

The operative word in the above premise is "can." The understandings that students develop from any encounter with mathematics depend not only on the context, but also on the students' prior experience and skills, their ways of thinking, their engagement with the task, the environment in which they explore the task—including the teacher, the students, and the tools—the kinds of interactions that occur in that environment, and the system of internal and external incentives that might be associated with the activity. Teaching and learning are complex activities that depend upon evolving and rarely articulated interrelationships among teachers, students, materials, and ideas. No prescription for their improvement can be simple.

This volume may be beneficially seen as a rearticulation and elaboration of a principle put forward in Reshaping School Mathematics :

Principle 3: Relevant Applications Should be an Integral Part of the Curriculum.

Students need to experience mathematical ideas in the context in which they naturally arise—from simple counting and measurement to applications in business and science. Calculators and computers make it possible now to introduce realistic applications throughout the curriculum.

The significant criterion for the suitability of an application is whether it has the potential to engage students' interests and stimulate their mathematical thinking. (NRC, 1990, p. 38)

Mathematical problems can serve as a source of motivation for students if the problems engage students' interests and aspirations. Mathematical problems also can serve as sources of meaning and understanding if the problems stimulate students' thinking. Of course, a mathematical task that is meaningful to a student will provide more motivation than a task that does not make sense. The rationale behind the criterion above is that both meaning and motivation are required. The motivational benefits that can be provided by workplace and everyday problems are worth mentioning, for although some students are aware that certain mathematics courses are necessary in order to gain entry into particular career paths, many students are unaware of how particular topics or problem-solving approaches will have relevance in any workplace. The power of using workplace and everyday problems to teach mathematics lies not so much in motivation, however, for no con-

text by itself will motivate all students. The real power is in connecting to students' thinking.

There is growing evidence in the literature that problem-centered approaches—including mathematical contexts, "real world" contexts, or both—can promote learning of both skills and concepts. In one comparative study, for example, with a high school curriculum that included rich applied problem situations, students scored somewhat better than comparison students on algebraic procedures and significantly better on conceptual and problem-solving tasks (Schoen & Ziebarth, 1998). This finding was further verified through task-based interviews. Studies that show superior performance of students in problem-centered classrooms are not limited to high schools. Wood and Sellers (1996), for example, found similar results with second and third graders.

Research with adult learners seems to indicate that "variation of contexts (as well as the whole task approach) tends to encourage the development of general understanding in a way which concentrating on repeated routine applications of algorithms does not and cannot" (Strässer, Barr, Evans, & Wolf, 1991, p. 163). This conclusion is consistent with the notion that using a variety of contexts can increase the chance that students can show what they know. By increasing the number of potential links to the diverse knowledge and experience of the students, more students have opportunities to excel, which is to say that the above premise can promote equity in mathematics education.

There is also evidence that learning mathematics through applications can lead to exceptional achievement. For example, with a curriculum that emphasizes modeling and applications, high school students at the North Carolina School of Science and Mathematics have repeatedly submitted winning papers in the annual college competition, Mathematical Contest in Modeling (Cronin, 1988; Miller, 1995).

The relationships among teachers, students, curricular materials, and pedagogical approaches are complex. Nonetheless, the literature does supports the premise that workplace and everyday problems can enhance mathematical learning, and suggests that if students engage in mathematical thinking, they will be afforded opportunities for building connections, and therefore meaning and understanding.

In the opening essay, Dale Parnell argues that traditional teaching has been missing opportunities for connections: between subject-matter and context, between academic and vocational education, between school and life, between knowledge and application, and between subject-matter disciplines. He suggests that teaching must change if more students are to learn mathematics. The question, then, is how to exploit opportunities for connections between high school mathematics and the workplace and everyday life.

Rol Fessenden shows by example the importance of mathematics in business, specifically in making marketing decisions. His essay opens with a dialogue among employees of a company that intends to expand its business into

Japan, and then goes on to point out many of the uses of mathematics, data collection, analysis, and non-mathematical judgment that are required in making such business decisions.

In his essay, Thomas Bailey suggests that vocational and academic education both might benefit from integration, and cites several trends to support this suggestion: change and uncertainty in the workplace, an increased need for workers to understand the conceptual foundations of key academic subjects, and a trend in pedagogy toward collaborative, open-ended projects. Further-more, he observes that School-to-Work experiences, first intended for students who were not planning to attend a four-year college, are increasingly being seen as useful in preparing students for such colleges. He discusses several such programs that use work-related applications to teach academic skills and to prepare students for college. Integration of academic and vocational education, he argues, can serve the dual goals of "grounding academic standards in the realistic context of workplace requirements and introducing a broader view of the potential usefulness of academic skills even for entry level workers."

Noting the importance and utility of mathematics for jobs in science, health, and business, Jean Taylor argues for continued emphasis in high school of topics such as algebra, estimation, and trigonometry. She suggests that workplace and everyday problems can be useful ways of teaching these ideas for all students.

There are too many different kinds of workplaces to represent even most of them in the classrooms. Furthermore, solving mathematics problems from some workplace contexts requires more contextual knowledge than is reasonable when the goal is to learn mathematics. (Solving some other workplace problems requires more mathematical knowledge than is reasonable in high school.) Thus, contexts must be chosen carefully for their opportunities for sense making. But for students who have knowledge of a workplace, there are opportunities for mathematical connections as well. In their essay, Daniel Chazan and Sandra Callis Bethell describe an approach that creates such opportunities for students in an algebra course for 10th through 12th graders, many of whom carried with them a "heavy burden of negative experiences" about mathematics. Because the traditional Algebra I curriculum had been extremely unsuccessful with these students, Chazan and Bethell chose to do something different. One goal was to help students see mathematics in the world around them. With the help of community sponsors, Chazen and Bethell asked students to look for mathematics in the workplace and then describe that mathematics and its applications to their classmates.

The tasks in Part One complement the points made in the essays by making direct connections to the workplace and everyday life. Emergency Calls (p. 42) illustrates some possibilities for data analysis and representation by discussing the response times of two ambulance companies. Back-of-the-Envelope Estimates (p. 45) shows how quick, rough estimates and calculations

are useful for making business decisions. Scheduling Elevators (p. 49) shows how a few simplifying assumptions and some careful reasoning can be brought together to understand the difficult problem of optimally scheduling elevators in a large office building. Finally, in the context of a discussion with a client of an energy consulting firm, Heating-Degree-Days (p. 54) illuminates the mathematics behind a common model of energy consumption in home heating.

Cronin, T. P. (1988). High school students win "college" competition. Consortium: The Newsletter of the Consortium for Mathematics and Its Applications , 26 , 3, 12.

Miller, D. E. (1995). North Carolina sweeps MCM '94. SIAM News , 28 (2).

National Research Council. (1989). Everybody counts: A report to the nation on the future of mathematics education . Washington, DC: National Academy Press.

National Research Council. (1990). Reshaping school mathematics: A philosophy and framework for curriculum . Washington, DC: National Academy Press.

Schoen, H. L. & Ziebarth, S. W. (1998). Assessment of students' mathematical performance (A Core-Plus Mathematics Project Field Test Progress Report). Iowa City: Core Plus Mathematics Project Evaluation Site, University of Iowa.

Strässer, R., Barr, G. Evans, J. & Wolf, A. (1991). Skills versus understanding. In M. Harris (Ed.), Schools, mathematics, and work (pp. 158-168). London: The Falmer Press.

Wood, T. & Sellers, P. (1996). Assessment of a problem-centered mathematics program: Third grade. Journal for Research in Mathematics Education , 27 (3), 337-353.

1— Mathematics as a Gateway to Student Success


Oregon State University

The study of mathematics stands, in many ways, as a gateway to student success in education. This is becoming particularly true as our society moves inexorably into the technological age. Therefore, it is vital that more students develop higher levels of competency in mathematics. 1

The standards and expectations for students must be high, but that is only half of the equation. The more important half is the development of teaching techniques and methods that will help all students (rather than just some students) reach those higher expectations and standards. This will require some changes in how mathematics is taught.

Effective education must give clear focus to connecting real life context with subject-matter content for the student, and this requires a more ''connected" mathematics program. In many of today's classrooms, especially in secondary school and college, teaching is a matter of putting students in classrooms marked "English," "history," or "mathematics," and then attempting to fill their heads with facts through lectures, textbooks, and the like. Aside from an occasional lab, workbook, or "story problem," the element of contextual teaching and learning is absent, and little attempt is made to connect what students are learning with the world in which they will be expected to work and spend their lives. Often the frag-

mented information offered to students is of little use or application except to pass a test.

What we do in most traditional classrooms is require students to commit bits of knowledge to memory in isolation from any practical application—to simply take our word that they "might need it later." For many students, "later" never arrives. This might well be called the freezer approach to teaching and learning. In effect, we are handing out information to our students and saying, "Just put this in your mental freezer; you can thaw it out later should you need it." With the exception of a minority of students who do well in mastering abstractions with little contextual experience, students aren't buying that offer. The neglected majority of students see little personal meaning in what they are asked to learn, and they just don't learn it.

I recently had occasion to interview 75 students representing seven different high schools in the Northwest. In nearly all cases, the students were juniors identified as vocational or general education students. The comment of one student stands out as representative of what most of these students told me in one way or another: "I know it's up to me to get an education, but a lot of times school is just so dull and boring. … You go to this class, go to that class, study a little of this and a little of that, and nothing connects. … I would like to really understand and know the application for what I am learning." Time and again, students were asking, "Why do I have to learn this?" with few sensible answers coming from the teachers.

My own long experience as a community college president confirms the thoughts of these students. In most community colleges today, one-third to one-half of the entering students are enrolled in developmental (remedial) education, trying to make up for what they did not learn in earlier education experiences. A large majority of these students come to the community college with limited mathematical skills and abilities that hardly go beyond adding, subtracting, and multiplying with whole numbers. In addition, the need for remediation is also experienced, in varying degrees, at four-year colleges and universities.

What is the greatest sin committed in the teaching of mathematics today? It is the failure to help students use the magnificent power of the brain to make connections between the following:

  • subject-matter content and the context of use;
  • academic and vocational education;
  • school and other life experiences;
  • knowledge and application of knowledge; and
  • one subject-matter discipline and another.

Why is such failure so critical? Because understanding the idea of making the connection between subject-matter content and the context of application

is what students, at all levels of education, desperately require to survive and succeed in our high-speed, high-challenge, rapidly changing world.

Educational policy makers and leaders can issue reams of position papers on longer school days and years, site-based management, more achievement tests and better assessment practices, and other "hot" topics of the moment, but such papers alone will not make the crucial difference in what students know and can do. The difference will be made when classroom teachers begin to connect learning with real-life experiences in new, applied ways, and when education reformers begin to focus upon learning for meaning.

A student may memorize formulas for determining surface area and measuring angles and use those formulas correctly on a test, thereby achieving the behavioral objectives set by the teacher. But when confronted with the need to construct a building or repair a car, the same student may well be left at sea because he or she hasn't made the connection between the formulas and their real-life application. When students are asked to consider the Pythagorean Theorem, why not make the lesson active, where students actually lay out the foundation for a small building like a storage shed?

What a difference mathematics instruction could make for students if it were to stress the context of application—as well as the content of knowledge—using the problem-solving model over the freezer model. Teaching conducted upon the connected model would help more students learn with their thinking brain, as well as with their memory brain, developing the competencies and tools they need to survive and succeed in our complex, interconnected society.

One step toward this goal is to develop mathematical tasks that integrate subject-matter content with the context of application and that are aimed at preparing individuals for the world of work as well as for post-secondary education. Since many mathematics teachers have had limited workplace experience, they need many good examples of how knowledge of mathematics can be applied to real life situations. The trick in developing mathematical tasks for use in classrooms will be to keep the tasks connected to real life situations that the student will recognize. The tasks should not be just a contrived exercise but should stay as close to solving common problems as possible.

As an example, why not ask students to compute the cost of 12 years of schooling in a public school? It is a sad irony that after 12 years of schooling most students who attend the public schools have no idea of the cost of their schooling or how their education was financed. No wonder that some public schools have difficulty gaining financial support! The individuals being served by the schools have never been exposed to the real life context of who pays for the schools and why. Somewhere along the line in the teaching of mathematics, this real life learning opportunity has been missed, along with many other similar contextual examples.

The mathematical tasks in High School Mathematics at Work provide students (and teachers) with a plethora of real life mathematics problems and

challenges to be faced in everyday life and work. The challenge for teachers will be to develop these tasks so they relate as close as possible to where students live and work every day.

Parnell, D. (1985). The neglected majority . Washington, DC: Community College Press.

Parnell, D. (1995). Why do I have to learn this ? Waco, TX: CORD Communications.

D ALE P ARNELL is Professor Emeritus of the School of Education at Oregon State University. He has served as a University Professor, College President, and for ten years as the President and Chief Executive Officer of the American Association of Community Colleges. He has served as a consultant to the National Science Foundation and has served on many national commissions, such as the Secretary of Labor's Commission on Achieving Necessary Skills (SCANS). He is the author of the book The Neglected Majority which provided the foundation for the federally-funded Tech Prep Associate Degree Program.

2— Market Launch


L. L. Bean, Inc.

"OK, the agenda of the meeting is to review the status of our launch into Japan. You can see the topics and presenters on the list in front of you. Gregg, can you kick it off with a strategy review?"

"Happy to, Bob. We have assessed the possibilities, costs, and return on investment of opening up both store and catalog businesses in other countries. Early research has shown that both Japan and Germany are good candidates. Specifically, data show high preference for good quality merchandise, and a higher-than-average propensity for an active outdoor lifestyle in both countries. Education, age, and income data are quite different from our target market in the U.S., but we do not believe that will be relevant because the cultures are so different. In addition, the Japanese data show that they have a high preference for things American, and, as you know, we are a classic American company. Name recognition for our company is 14%, far higher than any of our American competition in Japan. European competitors are virtually unrecognized, and other Far Eastern competitors are perceived to be of lower quality than us. The data on these issues are quite clear.

"Nevertheless, you must understand that there is a lot of judgment involved in the decision to focus on Japan. The analyses are limited because the cultures are different and we expect different behavioral drivers. Also,

much of the data we need in Japan are simply not available because the Japanese marketplace is less well developed than in the U.S. Drivers' license data, income data, lifestyle data, are all commonplace here and unavailable there. There is little prior penetration in either country by American retailers, so there is no experience we can draw upon. We have all heard how difficult it will be to open up sales operations in Japan, but recent sales trends among computer sellers and auto parts sales hint at an easing of the difficulties.

"The plan is to open three stores a year, 5,000 square feet each. We expect to do $700/square foot, which is more than double the experience of American retailers in the U.S. but 45% less than our stores. In addition, pricing will be 20% higher to offset the cost of land and buildings. Asset costs are approximately twice their rate in the U.S., but labor is slightly less. Benefits are more thoroughly covered by the government. Of course, there is a lot of uncertainty in the sales volumes we are planning. The pricing will cover some of the uncertainty but is still less than comparable quality goods already being offered in Japan.

"Let me shift over to the competition and tell you what we have learned. We have established long-term relationships with 500 to 1000 families in each country. This is comparable to our practice in the U.S. These families do not know they are working specifically with our company, as this would skew their reporting. They keep us appraised of their catalog and shopping experiences, regardless of the company they purchase from. The sample size is large enough to be significant, but, of course, you have to be careful about small differences.

"All the families receive our catalog and catalogs from several of our competitors. They match the lifestyle, income, and education demographic profiles of the people we want to have as customers. They are experienced catalog shoppers, and this will skew their feedback as compared to new catalog shoppers.

"One competitor is sending one 100-page catalog per quarter. The product line is quite narrow—200 products out of a domestic line of 3,000. They have selected items that are not likely to pose fit problems: primarily outerwear and knit shirts, not many pants, mostly men's goods, not women's. Their catalog copy is in Kanji, but the style is a bit stilted we are told, probably because it was written in English and translated, but we need to test this hypothesis. By contrast, we have simply mailed them the same catalog we use in the U.S., even written in English.

"Customer feedback has been quite clear. They prefer our broader assortment by a ratio of 3:1, even though they don't buy most of the products. As the competitors figured, sales are focused on outerwear and knits, but we are getting more sales, apparently because they like looking at the catalog and spend more time with it. Again, we need further testing. Another hypothesis is that our brand name is simply better known.

"Interestingly, they prefer our English-language version because they find it more of an adventure to read the catalog in another language. This is probably

a built-in bias of our sampling technique because we specifically selected people who speak English. We do not expect this trend to hold in a general mailing.

"The English language causes an 8% error rate in orders, but orders are 25% larger, and 4% more frequent. If we can get them to order by phone, we can correct the errors immediately during the call.

"The broader assortment, as I mentioned, is resulting in a significantly higher propensity to order, more units per order, and the same average unit cost. Of course, paper and postage costs increase as a consequence of the larger format catalog. On the other hand, there are production efficiencies from using the same version as the domestic catalog. Net impact, even factoring in the error rate, is a significant sales increase. On the other hand, most of the time, the errors cause us to ship the wrong item which then needs to be mailed back at our expense, creating an impression in the customers that we are not well organized even though the original error was theirs.

"Final point: The larger catalog is being kept by the customer an average of 70 days, while the smaller format is only kept on average for 40 days. Assuming—we need to test this—that the length of time they keep the catalog is proportional to sales volumes, this is good news. We need to assess the overall impact carefully, but it appears that there is a significant population for which an English-language version would be very profitable."

"Thanks, Gregg, good update. Jennifer, what do you have on customer research?"

"Bob, there's far more that we need to know than we have been able to find out. We have learned that Japan is very fad-driven in apparel tastes and fascinated by American goods. We expect sales initially to sky-rocket, then drop like a stone. Later on, demand will level out at a profitable level. The graphs on page 3 [ Figure 2-1 ] show demand by week for 104 weeks, and we have assessed several scenarios. They all show a good underlying business, but the uncertainty is in the initial take-off. The best data are based on the Italian fashion boom which Japan experienced in the late 80s. It is not strictly analogous because it revolved around dress apparel instead of our casual and weekend wear. It is, however, the best information available.

essay on types of maths

FIGURE 2-1: Sales projections by week, Scenario A

essay on types of maths

FIGURE 2-2: Size distributions, U.S. vs. Japan

"Our effectiveness in positioning inventory for that initial surge will be critical to our long-term success. There are excellent data—supplied by MITI, I might add—that show that Japanese customers can be intensely loyal to companies that meet their high service expectations. That is why we prepared several scenarios. Of course, if we position inventory for the high scenario, and we experience the low one, we will experience a significant loss due to liquidations. We are still analyzing the long-term impact, however. It may still be worthwhile to take the risk if the 2-year ROI 1 is sufficient.

"We have solid information on their size scales [ Figure 2-2 ]. Seventy percent are small and medium. By comparison, 70% of Americans are large and extra large. This will be a challenge to manage but will save a few bucks on fabric.

"We also know their color preferences, and they are very different than Americans. Our domestic customers are very diverse in their tastes, but 80% of Japanese customers will buy one or two colors out of an offering of 15. We are still researching color choices, but it varies greatly for pants versus shirts, and for men versus women. We are confident we can find patterns, but we also know that it is easy to guess wrong in that market. If we guess wrong, the liquidation costs will be very high.

"Bad news on the order-taking front, however. They don't like to order by phone. …"

In this very brief exchange among decision-makers we observe the use of many critically important skills that were originally learned in public schools. Perhaps the most important is one not often mentioned, and that is the ability to convert an important business question into an appropriate mathematical one, to solve the mathematical problem, and then to explain the implications of the solution for the original business problem. This ability to inhabit simultaneously the business world and the mathematical world, to translate between the two, and, as a consequence, to bring clarity to complex, real-world issues is of extraordinary importance.

In addition, the participants in this conversation understood and interpreted graphs and tables, computed, approximated, estimated, interpolated, extrapolated, used probabilistic concepts to draw conclusions, generalized from

small samples to large populations, identified the limits of their analyses, discovered relationships, recognized and used variables and functions, analyzed and compared data sets, and created and interpreted models. Another very important aspect of their work was that they identified additional questions, and they suggested ways to shed light on those questions through additional analysis.

There were two broad issues in this conversation that required mathematical perspectives. The first was to develop as rigorous and cost effective a data collection and analysis process as was practical. It involved perhaps 10 different analysts who attacked the problem from different viewpoints. The process also required integration of the mathematical learnings of all 10 analysts and translation of the results into business language that could be understood by non-mathematicians.

The second broad issue was to understand from the perspective of the decision-makers who were listening to the presentation which results were most reliable, which were subject to reinterpretation, which were actually judgments not supported by appropriate analysis, and which were hypotheses that truly required more research. In addition, these business people would likely identify synergies in the research that were not contemplated by the analysts. These synergies need to be analyzed to determine if—mathematically—they were real. The most obvious one was where the inventory analysts said that the customers don't like to use the phone to place orders. This is bad news for the sales analysts who are counting on phone data collection to correct errors caused by language problems. Of course, we need more information to know the magnitude—or even the existance—of the problem.

In brief, the analyses that preceded the dialogue might each be considered a mathematical task in the business world:

  • A cost analysis of store operations and catalogs was conducted using data from existing American and possibly other operations.
  • Customer preferences research was analyzed to determine preferences in quality and life-style. The data collection itself could not be carried out by a high school graduate without guidance, but 80% of the analysis could.
  • Cultural differences were recognized as a causes of analytical error. Careful analysis required judgment. In addition, sources of data were identified in the U.S., and comparable sources were found lacking in Japan. A search was conducted for other comparable retail experience, but none was found. On the other hand, sales data from car parts and computers were assessed for relevance.
  • Rates of change are important in understanding how Japanese and American stores differ. Sales per square foot, price increases,
  • asset costs, labor costs and so forth were compared to American standards to determine whether a store based in Japan would be a viable business.
  • "Nielsen" style ratings of 1000 families were used to collect data. Sample size and error estimates were mentioned. Key drivers of behavior (lifestyle, income, education) were mentioned, but this list may not be complete. What needs to be known about these families to predict their buying behavior? What does "lifestyle" include? How would we quantify some of these variables?
  • A hypothesis was presented that catalog size and product diversity drive higher sales. What do we need to know to assess the validity of this hypothesis? Another hypothesis was presented about the quality of the translation. What was the evidence for this hypothesis? Is this a mathematical question? Sales may also be proportional to the amount of time a potential customer retains the catalog. How could one ascertain this?
  • Despite the abundance of data, much uncertainty remains about what to expect from sales over the first two years. Analysis could be conducted with the data about the possible inventory consequences of choosing the wrong scenario.
  • One might wonder about the uncertainty in size scales. What is so difficult about identifying the colors that Japanese people prefer? Can these preferences be predicted? Will this increase the complexity of the inventory management task?
  • Can we predict how many people will not use phones? What do they use instead?

As seen through a mathematical lens, the business world can be a rich, complex, and essentially limitless source of fascinating questions.

R OL F ESSENDEN is Vice-President of Inventory Planning and Control at L. L. Bean, Inc. He is also Co-Principal Investigator and Vice-Chair of Maine's State Systemic Initiative and Chair of the Strategic Planning Committee. He has previously served on the Mathematical Science Education Board, and on the National Alliance for State Science and Mathematics Coalitions (NASSMC).

3— Integrating Vocational and Academic Education


Columbia University

In high school education, preparation for work immediately after high school and preparation for post-secondary education have traditionally been viewed as incompatible. Work-bound high-school students end up in vocational education tracks, where courses usually emphasize specific skills with little attention to underlying theoretical and conceptual foundations. 1 College-bound students proceed through traditional academic discipline-based courses, where they learn English, history, science, mathematics, and foreign languages, with only weak and often contrived references to applications of these skills in the workplace or in the community outside the school. To be sure, many vocational teachers do teach underlying concepts, and many academic teachers motivate their lessons with examples and references to the world outside the classroom. But these enrichments are mostly frills, not central to either the content or pedagogy of secondary school education.

Rethinking Vocational and Academic Education

Educational thinking in the United States has traditionally placed priority on college preparation. Thus the distinct track of vocational education has been seen as an option for those students who are deemed not capable of success in the more desirable academic track. As vocational programs acquired a reputation

as a ''dumping ground," a strong background in vocational courses (especially if they reduced credits in the core academic courses) has been viewed as a threat to the college aspirations of secondary school students.

This notion was further reinforced by the very influential 1983 report entitled A Nation at Risk (National Commission on Excellence in Education, 1983), which excoriated the U.S. educational system for moving away from an emphasis on core academic subjects that, according to the report, had been the basis of a previously successful American education system. Vocational courses were seen as diverting high school students from core academic activities. Despite the dubious empirical foundation of the report's conclusions, subsequent reforms in most states increased the number of academic courses required for graduation and reduced opportunities for students to take vocational courses.

The distinction between vocational students and college-bound students has always had a conceptual flaw. The large majority of students who go to four-year colleges are motivated, at least to a significant extent, by vocational objectives. In 1994, almost 247,000 bachelors degrees were conferred in business administration. That was only 30,000 less than the total number (277,500) of 1994 bachelor degree conferred in English, mathematics, philosophy, religion, physical sciences and science technologies, biological and life sciences, social sciences, and history combined . Furthermore, these "academic" fields are also vocational since many students who graduate with these degrees intend to make their living working in those fields.

Several recent economic, technological, and educational trends challenge this sharp distinction between preparation for college and for immediate post-high-school work, or, more specifically, challenge the notion that students planning to work after high school have little need for academic skills while college-bound students are best served by an abstract education with only tenuous contact with the world of work:

  • First, many employers and analysts are arguing that, due to changes in the nature of work, traditional approaches to teaching vocational skills may not be effective in the future. Given the increasing pace of change and uncertainty in the workplace, young people will be better prepared, even for entry level positions and certainly for subsequent positions, if they have an underlying understanding of the scientific, mathematical, social, and even cultural aspects of the work that they will do. This has led to a growing emphasis on integrating academic and vocational education. 2
  • Views about teaching and pedagogy have increasingly moved toward a more open and collaborative "student-centered" or "constructivist" teaching style that puts a great deal of emphasis on having students work together on complex, open-ended projects. This reform strategy is now widely implemented through the efforts of organizations such as the Coalition of Essential Schools, the National Center for Restructuring Education, Schools, and Teaching at
  • Teachers College, and the Center for Education Research at the University of Wisconsin at Madison. Advocates of this approach have not had much interaction with vocational educators and have certainly not advocated any emphasis on directly preparing high school students for work. Nevertheless, the approach fits well with a reformed education that integrates vocational and academic skills through authentic applications. Such applications offer opportunities to explore and combine mathematical, scientific, historical, literary, sociological, economic, and cultural issues.
  • In a related trend, the federal School-to-Work Opportunities Act of 1994 defines an educational strategy that combines constructivist pedagogical reforms with guided experiences in the workplace or other non-work settings. At its best, school-to-work could further integrate academic and vocational learning through appropriately designed experiences at work.
  • The integration of vocational and academic education and the initiatives funded by the School-to-Work Opportunities Act were originally seen as strategies for preparing students for work after high school or community college. Some educators and policy makers are becoming convinced that these approaches can also be effective for teaching academic skills and preparing students for four-year college. Teaching academic skills in the context of realistic and complex applications from the workplace and community can provide motivational benefits and may impart a deeper understanding of the material by showing students how the academic skills are actually used. Retention may also be enhanced by giving students a chance to apply the knowledge that they often learn only in the abstract. 3
  • During the last twenty years, the real wages of high school graduates have fallen and the gap between the wages earned by high school and college graduates has grown significantly. Adults with no education beyond high school have very little chance of earning enough money to support a family with a moderate lifestyle. 4 Given these wage trends, it seems appropriate and just that every high school student at least be prepared for college, even if some choose to work immediately after high school.

Innovative Examples

There are many examples of programs that use work-related applications both to teach academic skills and to prepare students for college. One approach is to organize high school programs around broad industrial or occupational areas, such as health, agriculture, hospitality, manufacturing, transportation, or the arts. These broad areas offer many opportunities for wide-ranging curricula in all academic disciplines. They also offer opportunities for collaborative work among teachers from different disciplines. Specific skills can still be taught in this format but in such a way as to motivate broader academic and theoretical themes. Innovative programs can now be found in many vocational

high schools in large cities, such as Aviation High School in New York City and the High School of Agricultural Science and Technology in Chicago. Other schools have organized schools-within-schools based on broad industry areas.

Agriculturally based activities, such as 4H and Future Farmers of America, have for many years used the farm setting and students' interest in farming to teach a variety of skills. It takes only a little imagination to think of how to use the social, economic, and scientific bases of agriculture to motivate and illustrate skills and knowledge from all of the academic disciplines. Many schools are now using internships and projects based on local business activities as teaching tools. One example among many is the integrated program offered by the Thomas Jefferson High School for Science and Technology in Virginia, linking biology, English, and technology through an environmental issues forum. Students work as partners with resource managers at the Mason Neck National Wildlife Refuge and the Mason Neck State Park to collect data and monitor the daily activities of various species that inhabit the region. They search current literature to establish a hypothesis related to a real world problem, design an experiment to test their hypothesis, run the experiment, collect and analyze data, draw conclusions, and produce a written document that communicates the results of the experiment. The students are even responsible for determining what information and resources are needed and how to access them. Student projects have included making plans for public education programs dealing with environmental matters, finding solutions to problems caused by encroaching land development, and making suggestions for how to handle the overabundance of deer in the region.

These examples suggest the potential that a more integrated education could have for all students. Thus continuing to maintain a sharp distinction between vocational and academic instruction in high school does not serve the interests of many of those students headed for four-year or two-year college or of those who expect to work after high school. Work-bound students will be better prepared for work if they have stronger academic skills, and a high-quality curriculum that integrates school-based learning into work and community applications is an effective way to teach academic skills for many students.

Despite the many examples of innovative initiatives that suggest the potential for an integrated view, the legacy of the duality between vocational and academic education and the low status of work-related studies in high school continue to influence education and education reform. In general, programs that deviate from traditional college-prep organization and format are still viewed with suspicion by parents and teachers focused on four-year college. Indeed, college admissions practices still very much favor the traditional approaches. Interdisciplinary courses, "applied" courses, internships, and other types of work experience that characterize the school-to-work strategy or programs that integrate academic and vocational education often do not fit well into college admissions requirements.

Joining Work and Learning

What implications does this have for the mathematics standards developed by the National Council of Teachers of Mathematics (NCTM)? The general principle should be to try to design standards that challenge rather than reinforce the distinction between vocational and academic instruction. Academic teachers of mathematics and those working to set academic standards need to continue to try to understand the use of mathematics in the workplace and in everyday life. Such understandings would offer insights that could suggest reform of the traditional curriculum, but they would also provide a better foundation for teaching mathematics using realistic applications. The examples in this volume are particularly instructive because they suggest the importance of problem solving, logic, and imagination and show that these are all important parts of mathematical applications in realistic work settings. But these are only a beginning.

In order to develop this approach, it would be helpful if the NCTM standards writers worked closely with groups that are setting industry standards. 5 This would allow both groups to develop a deeper understanding of the mathematics content of work.

The NCTM's Curriculum Standards for Grades 9-12 include both core standards for all students and additional standards for "college-intending" students. The argument presented in this essay suggests that the NCTM should dispense with the distinction between college intending and non-college intending students. Most of the additional standards, those intended only for the "college intending" students, provide background that is necessary or beneficial for the calculus sequence. A re-evaluation of the role of calculus in the high school curriculum may be appropriate, but calculus should not serve as a wedge to separate college-bound from non-college-bound students. Clearly, some high school students will take calculus, although many college-bound students will not take calculus either in high school or in college. Thus in practice, calculus is not a characteristic that distinguishes between those who are or are not headed for college. Perhaps standards for a variety of options beyond the core might be offered. Mathematics standards should be set to encourage stronger skills for all students and to illustrate the power and usefulness of mathematics in many settings. They should not be used to institutionalize dubious distinctions between groups of students.

Bailey, T. & Merritt, D. (1997). School-to-work for the collegebound . Berkeley, CA: National Center for Research in Vocational Education.

Hoachlander, G . (1997) . Organizing mathematics education around work . In L.A. Steen (Ed.), Why numbers count: Quantitative literacy for tomorrow's America , (pp. 122-136). New York: College Entrance Examination Board.

Levy, F. & Murnane, R. (1992). U.S. earnings levels and earnings inequality: A review of recent trends and proposed explanations. Journal of Economic Literature , 30 , 1333-1381.

National Commission on Excellence in Education. (1983). A nation at risk: The imperative for educational reform . Washington, DC: Author.

T HOMAS B AILEY is an Associate Professor of Economics Education at Teachers College, Columbia University. He is also Director of the Institute on Education and the Economy and Director of the Community College Research Center, both at Teachers College. He is also on the board of the National Center for Research in Vocational Education.

4— The Importance of Workplace and Everyday Mathematics


Rutgers University

For decades our industrial society has been based on fossil fuels. In today's knowledge-based society, mathematics is the energy that drives the system. In the words of the new WQED television series, Life by the Numbers , to create knowledge we "burn mathematics." Mathematics is more than a fixed tool applied in known ways. New mathematical techniques and analyses and even conceptual frameworks are continually required in economics, in finance, in materials science, in physics, in biology, in medicine.

Just as all scientific and health-service careers are mathematically based, so are many others. Interaction with computers has become a part of more and more jobs, and good analytical skills enhance computer use and troubleshooting. In addition, virtually all levels of management and many support positions in business and industry require some mathematical understanding, including an ability to read graphs and interpret other information presented visually, to use estimation effectively, and to apply mathematical reasoning.

What Should Students Learn for Today's World?

Education in mathematics and the ability to communicate its predictions is more important than ever for moving from low-paying jobs into better-paying ones. For example, my local paper, The Times of Trenton , had a section "Focus

on Careers" on October 5, 1997 in which the majority of the ads were for high technology careers (many more than for sales and marketing, for example).

But precisely what mathematics should students learn in school? Mathematicians and mathematics educators have been discussing this question for decades. This essay presents some thoughts about three areas of mathematics—estimation, trigonometry, and algebra—and then some thoughts about teaching and learning.

Estimation is one of the harder skills for students to learn, even if they experience relatively little difficulty with other aspects of mathematics. Many students think of mathematics as a set of precise rules yielding exact answers and are uncomfortable with the idea of imprecise answers, especially when the degree of precision in the estimate depends on the context and is not itself given by a rule. Yet it is very important to be able to get an approximate sense of the size an answer should be, as a way to get a rough check on the accuracy of a calculation (I've personally used it in stores to detect that I've been charged twice for the same item, as well as often in my own mathematical work), a feasibility estimate, or as an estimation for tips.

Trigonometry plays a significant role in the sciences and can help us understand phenomena in everyday life. Often introduced as a study of triangle measurement, trigonometry may be used for surveying and for determining heights of trees, but its utility extends vastly beyond these triangular applications. Students can experience the power of mathematics by using sine and cosine to model periodic phenomena such as going around and around a circle, going in and out with tides, monitoring temperature or smog components changing on a 24-hour cycle, or the cycling of predator-prey populations.

No educator argues the importance of algebra for students aiming for mathematically-based careers because of the foundation it provides for the more specialized education they will need later. Yet, algebra is also important for those students who do not currently aspire to mathematics-based careers, in part because a lack of algebraic skills puts an upper bound on the types of careers to which a student can aspire. Former civil rights leader Robert Moses makes a good case for every student learning algebra, as a means of empowering students and providing goals, skills, and opportunities. The same idea was applied to learning calculus in the movie Stand and Deliver . How, then, can we help all students learn algebra?

For me personally, the impetus to learn algebra was at least in part to learn methods of solution for puzzles. Suppose you have 39 jars on three shelves. There are twice as many jars on the second shelf as the first, and four more jars on the third shelf than on the second shelf. How many jars are there on each shelf? Such problems are not important by themselves, but if they show the students the power of an idea by enabling them to solve puzzles that they'd like to solve, then they have value. We can't expect such problems to interest all students. How then can we reach more students?

Workplace and Everyday Settings as a Way of Making Sense

One of the common tools in business and industry for investigating mathematical issues is the spreadsheet, which is closely related to algebra. Writing a rule to combine the elements of certain cells to produce the quantity that goes into another cell is doing algebra, although the variables names are cell names rather than x or y . Therefore, setting up spreadsheet analyses requires some of the thinking that algebra requires.

By exploring mathematics via tasks which come from workplace and everyday settings, and with the aid of common tools like spreadsheets, students are more likely to see the relevance of the mathematics and are more likely to learn it in ways that are personally meaningful than when it is presented abstractly and applied later only if time permits. Thus, this essay argues that workplace and everyday tasks should be used for teaching mathematics and, in particular, for teaching algebra. It would be a mistake, however, to rely exclusively on such tasks, just as it would be a mistake to teach only spreadsheets in place of algebra.

Communicating the results of an analysis is a fundamental part of any use of mathematics on a job. There is a growing emphasis in the workplace on group work and on the skills of communicating ideas to colleagues and clients. But communicating mathematical ideas is also a powerful tool for learning, for it requires the student to sharpen often fuzzy ideas.

Some of the tasks in this volume can provide the kinds of opportunities I am talking about. Another problem, with clear connections to the real world, is the following, taken from the book entitled Consider a Spherical Cow: A Course in Environmental Problem Solving , by John Harte (1988). The question posed is: How does biomagnification of a trace substance occur? For example, how do pesticides accumulate in the food chain, becoming concentrated in predators such as condors? Specifically, identify the critical ecological and chemical parameters determining bioconcentrations in a food chain, and in terms of these parameters, derive a formula for the concentration of a trace substance in each link of a food chain. This task can be undertaken at several different levels. The analysis in Harte's book is at a fairly high level, although it still involves only algebra as a mathematical tool. The task could be undertaken at a more simple level or, on the other hand, it could be elaborated upon as suggested by further exercises given in that book. And the students could then present the results of their analyses to each other as well as the teacher, in oral or written form.

Concepts or Procedures?

When teaching mathematics, it is easy to spend so much time and energy focusing on the procedures that the concepts receive little if any attention. When teaching algebra, students often learn the procedures for using the quadratic formula or for solving simultaneous equations without thinking of intersections of curves and lines and without being able to apply the procedures in unfamiliar settings. Even

when concentrating on word problems, students often learn the procedures for solving "coin problems" and "train problems" but don't see the larger algebraic context. The formulas and procedures are important, but are not enough.

When using workplace and everyday tasks for teaching mathematics, we must avoid falling into the same trap of focusing on the procedures at the expense of the concepts. Avoiding the trap is not easy, however, because just like many tasks in school algebra, mathematically based workplace tasks often have standard procedures that can be used without an understanding of the underlying mathematics. To change a procedure to accommodate a changing business climate, to respond to changes in the tax laws, or to apply or modify a procedure to accommodate a similar situation, however, requires an understanding of the mathematical ideas behind the procedures. In particular, a student should be able to modify the procedures for assessing energy usage for heating (as in Heating-Degree-Days, p. 54) in order to assess energy usage for cooling in the summer.

To prepare our students to make such modifications on their own, it is important to focus on the concepts as well as the procedures. Workplace and everyday tasks can provide opportunities for students to attach meaning to the mathematical calculations and procedures. If a student initially solves a problem without algebra, then the thinking that went into his or her solution can help him or her make sense out of algebraic approaches that are later presented by the teacher or by other students. Such an approach is especially appropriate for teaching algebra, because our teaching of algebra needs to reach more students (too often it is seen by students as meaningless symbol manipulation) and because algebraic thinking is increasingly important in the workplace.

An Example: The Student/Professor Problem

To illustrate the complexity of learning algebra meaningfully, consider the following problem from a study by Clement, Lockhead, & Monk (1981):

Write an equation for the following statement: "There are six times as many students as professors at this university." Use S for the number of students and P for the number of professors. (p. 288)

The authors found that of 47 nonscience majors taking college algebra, 57% got it wrong. What is more surprising, however, is that of 150 calculus-level students, 37% missed the problem.

A first reaction to the most common wrong answer, 6 S = P , is that the students simply translated the words of the problems into mathematical symbols without thinking more deeply about the situation or the variables. (The authors note that some textbooks instruct students to use such translation.)

By analyzing transcripts of interviews with students, the authors found this approach and another (faulty) approach, as well. These students often drew a diagram showing six students and one professor. (Note that we often instruct students to draw diagrams when solving word problems.) Reasoning

from the diagram, and regarding S and P as units, the student may write 6 S = P , just as we would correctly write 12 in. = 1 ft. Such reasoning is quite sensible, though it misses the fundamental intent in the problem statement that S is to represent the number of students, not a student.

Thus, two common suggestions for students—word-for-word translation and drawing a diagram—can lead to an incorrect answer to this apparently simple problem, if the students do not more deeply contemplate what the variables are intended to represent. The authors found that students who wrote and could explain the correct answer, S = 6 P , drew upon a richer understanding of what the equation and the variables represent.

Clearly, then, we must encourage students to contemplate the meanings of variables. Yet, part of the power and efficiency of algebra is precisely that one can manipulate symbols independently of what they mean and then draw meaning out of the conclusions to which the symbolic manipulations lead. Thus, stable, long-term learning of algebraic thinking requires both mastery of procedures and also deeper analytical thinking.

Paradoxically, the need for sharper analytical thinking occurs alongside a decreased need for routine arithmetic calculation. Calculators and computers make routine calculation easier to do quickly and accurately; cash registers used in fast food restaurants sometimes return change; checkout counters have bar code readers and payment takes place by credit cards or money-access cards.

So it is education in mathematical thinking, in applying mathematical computation, in assessing whether an answer is reasonable, and in communicating the results that is essential. Teaching mathematics via workplace and everyday problems is an approach that can make mathematics more meaningful for all students. It is important, however, to go beyond the specific details of a task in order to teach mathematical ideas. While this approach is particularly crucial for those students intending to pursue careers in the mathematical sciences, it will also lead to deeper mathematical understanding for all students.

Clement, J., Lockhead, J., & Monk, G. (1981). Translation difficulties in learning mathematics. American Mathematical Monthly , 88 , 286-290.

Harte, J. (1988). Consider a spherical cow: A course in environmental problem solving . York, PA: University Science Books.

J EAN E. T AYLOR is Professor of Mathematics at Rutgers, the State University of New Jersey. She is currently a member of the Board of Directors of the American Association for the Advancement of Science and formerly chaired its Section A Nominating Committee. She has served as Vice President and as a Member-at-Large of the Council of the American Mathematical Society, and served on its Executive Committee and its Nominating Committee. She has also been a member of the Joint Policy Board for Mathematics, and a member of the Board of Advisors to The Geometry Forum (now The Mathematics Forum) and to the WQED television series, Life by the Numbers .

5— Working with Algebra


Michigan State University


Holt High School

Teaching a mathematics class in which few of the students have demonstrated success is a difficult assignment. Many teachers avoid such assignments, when possible. On the one hand, high school mathematics teachers, like Bertrand Russell, might love mathematics and believe something like the following:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. … Remote from human passions, remote even from the pitiful facts of nature, the generations have gradually created an ordered cosmos, where pure thought can dwell as in its nature home, and where one, at least, of our nobler impulses can escape from the dreary exile of the natural world. (Russell, 1910, p. 73)

But, on the other hand, students may not have the luxury, in their circumstances, of appreciating this beauty. Many of them may not see themselves as thinkers because contemplation would take them away from their primary

focus: how to get by in a world that was not created for them. Instead, like Jamaica Kincaid, they may be asking:

What makes the world turn against me and all who look like me? I won nothing, I survey nothing, when I ask this question, the luxury of an answer that will fill volumes does not stretch out before me. When I ask this question, my voice is filled with despair. (Kincaid, 1996, pp. 131-132)

Our Teaching and Issues it Raised

During the 1991-92 and 1992-93 school years, we (a high school teacher and a university teacher educator) team taught a lower track Algebra I class for 10th through 12th grade students. 1 Most of our students had failed mathematics before, and many needed to pass Algebra I in order to complete their high school mathematics requirement for graduation. For our students, mathematics had become a charged subject; it carried a heavy burden of negative experiences. Many of our students were convinced that neither they nor their peers could be successful in mathematics.

Few of our students did well in other academic subjects, and few were headed on to two- or four-year colleges. But the students differed in their affiliation with the high school. Some, called ''preppies" or "jocks" by others, were active participants in the school's activities. Others, "smokers" or "stoners," were rebelling to differing degrees against school and more broadly against society. There were strong tensions between members of these groups. 2

Teaching in this setting gives added importance and urgency to the typical questions of curriculum and motivation common to most algebra classes. In our teaching, we explored questions such as the following:

  • What is it that we really want high school students, especially those who are not college-intending, to study in algebra and why?
  • What is the role of algebra's manipulative skills in a world with graphing calculators and computers? How do the manipulative skills taught in the traditional curriculum give students a new perspective on, and insight into, our world?
  • If our teaching efforts depend on students' investment in learning, on what grounds can we appeal to them, implicitly or explicitly, for energy and effort? In a tracked, compulsory setting, how can we help students, with broad interests and talents and many of whom are not college-intending, see value in a shared exploration of algebra?

An Approach to School Algebra

As a result of thinking about these questions, in our teaching we wanted to avoid being in the position of exhorting students to appreciate the beauty or utility of algebra. Our students were frankly skeptical of arguments based on

utility. They saw few people in their community using algebra. We had also lost faith in the power of extrinsic rewards and punishments, like failing grades. Many of our students were skeptical of the power of the high school diploma to alter fundamentally their life circumstances. We wanted students to find the mathematical objects we were discussing in the world around them and thus learn to value the perspective that this mathematics might give them on their world.

To help us in this task, we found it useful to take what we call a "relationships between quantities" approach to school algebra. In this approach, the fundamental mathematical objects of study in school algebra are functions that can be represented by inputs and outputs listed in tables or sketched or plotted on graphs, as well as calculation procedures that can be written with algebraic symbols. 3 Stimulated, in part, by the following quote from August Comte, we viewed these functions as mathematical representations of theories people have developed for explaining relationships between quantities.

In the light of previous experience, we must acknowledge the impossibility of determining, by direct measurement, most of the heights and distances we should like to know. It is this general fact which makes the science of mathematics necessary. For in renouncing the hope, in almost every case, of measuring great heights or distances directly, the human mind has had to attempt to determine them indirectly, and it is thus that philosophers were led to invent mathematics. (Quoted in Serres, 1982, p. 85)

The "Sponsor" Project

Using this approach to the concept of function, during the 1992-93 school year, we designed a year-long project for our students. The project asked pairs of students to find the mathematical objects we were studying in the workplace of a community sponsor. Students visited the sponsor's workplace four times during the year—three after-school visits and one day-long excused absence from school. In these visits, the students came to know the workplace and learned about the sponsor's work. We then asked students to write a report describing the sponsor's workplace and answering questions about the nature of the mathematical activity embedded in the workplace. The questions are organized in Table 5-1 .

Using These Questions

In order to determine how the interviews could be structured and to provide students with a model, we chose to interview Sandra's husband, John Bethell, who is a coatings inspector for an engineering firm. When asked about his job, John responded, "I argue for a living." He went on to describe his daily work inspecting contractors painting water towers. Since most municipalities contract with the lowest bidder when a water tower needs to be painted, they will often hire an engineering firm to make sure that the contractor works according to specification. Since the contractor has made a low bid, there are strong

TABLE 5-1: Questions to ask in the workplace

financial incentives for the contractor to compromise on quality in order to make a profit.

In his work John does different kinds of inspections. For example, he has a magnetic instrument to check the thickness of the paint once it has been applied to the tower. When it gives a "thin" reading, contractors often question the technology. To argue for the reading, John uses the surface area of the tank, the number of paint cans used, the volume of paint in the can, and an understanding of the percentage of this volume that evaporates to calculate the average thickness of the dry coating. Other examples from his workplace involve the use of tables and measuring instruments of different kinds.

Some Examples of Students' Work

When school started, students began working on their projects. Although many of the sponsors initially indicated that there were no mathematical dimensions to their work, students often were able to show sponsors places where the mathematics we were studying was to be found. For example, Jackie worked with a crop and soil scientist. She was intrigued by the way in which measurement of weight is used to count seeds. First, her sponsor would weigh a test batch of 100 seeds to generate a benchmark weight. Then, instead of counting a large number of seeds, the scientist would weigh an amount of seeds and compute the number of seeds such a weight would contain.

Rebecca worked with a carpeting contractor who, in estimating costs, read the dimensions of rectangular rooms off an architect's blueprint, multiplied to find the area of the room in square feet (doing conversions where necessary), then multiplied by a cost per square foot (which depended on the type of carpet) to compute the cost of the carpet. The purpose of these estimates was to prepare a bid for the architect where the bid had to be as low as possible without making the job unprofitable. Rebecca used a chart ( Table 5-2 ) to explain this procedure to the class.

Joe and Mick, also working in construction, found out that in laying pipes, there is a "one by one" rule of thumb. When digging a trench for the placement of the pipe, the non-parallel sides of the trapezoidal cross section must have a slope of 1 foot down for every one foot across. This ratio guarantees that the dirt in the hole will not slide down on itself. Thus, if at the bottom of the hole, the trapezoid must have a certain width in order to fit the pipe, then on ground level the hole must be this width plus twice the depth of the hole. Knowing in advance how wide the hole must be avoids lengthy and costly trial and error.

Other students found that functions were often embedded in cultural artifacts found in the workplace. For example, a student who visited a doctor's office brought in an instrument for predicting the due dates of pregnant women, as well as providing information about average fetal weight and length ( Figure 5-1 ).

TABLE 5-2: Cost of carpet worksheet

essay on types of maths

FIGURE 5-1: Pregnancy wheel

While the complexities of organizing this sort of project should not be minimized—arranging sponsors, securing parental permission, and meeting administrators and parent concerns about the requirement of off-campus, after-school work—we remain intrigued by the potential of such projects for helping students see mathematics in the world around them. The notions of identifying central mathematical objects for a course and then developing ways of identifying those objects in students' experience seems like an important alternative to the use of application-based materials written by developers whose lives and social worlds may be quite different from those of students.

Chazen, D. (1996). Algebra for all students? Journal of Mathematical Behavior , 15 (4), 455-477.

Eckert, P. (1989). Jocks and burnouts: Social categories and identity in the high school . New York: Teachers College Press.

Fey, J. T., Heid, M. K., et al. (1995). Concepts in algebra: A technological approach . Dedham, MA: Janson Publications.

Kieran, C., Boileau, A., & Garancon, M. (1996). Introducing algebra by mean of a technology-supported, functional approach. In N. Bednarz et al. (Eds.), Approaches to algebra , (pp. 257-293). Kluwer Academic Publishers: Dordrecht, The Netherlands.

Kincaid, J. (1996). The autobiography of my mother . New York: Farrar, Straus, Giroux.

Nemirovsky, R. (1996). Mathematical narratives, modeling and algebra. In N. Bednarz et al. (Eds.) Approaches to algebra , (pp. 197-220). Kluwer Academic Publishers: Dordrecht, The Netherlands.

Russell, B. (1910). Philosophical Essays . London: Longmans, Green.

Schwartz, J. & Yerushalmy, M. (1992). Getting students to function in and with algebra. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy , (MAA Notes, Vol. 25, pp. 261-289). Washington, DC: Mathematical Association of America.

Serres, M. (1982). Mathematics and philosophy: What Thales saw … In J. Harari & D. Bell (Eds.), Hermes: Literature, science, philosophy , (pp. 84-97). Baltimore, MD: Johns Hopkins.

Thompson, P. (1993). Quantitative reasoning, complexity, and additive structures. Educational Studies in Mathematics , 25 , 165-208.

Yerushalmy, M. & Schwartz, J. L. (1993). Seizing the opportunity to make algebra mathematically and pedagogically interesting. In T. A. Romberg, E. Fennema, & T. P. Carpenter (Eds.), Integrating research on the graphical representation of functions , (pp. 41-68). Hillsdale, NJ: Lawrence Erlbaum Associates.

D ANIEL C HAZAN is an Associate Professor of Teacher Education at Michigan State University. To assist his research in mathematics teaching and learning, he has taught algebra at the high school level. His interests include teaching mathematics by examining student ideas, using computers to support student exploration, and the potential for the history and philosophy of mathematics to inform teaching.

S ANDRA C ALLIS B ETHELL has taught mathematics and Spanish at Holt High School for 10 years. She has also completed graduate work at Michigan State University and Western Michigan University. She has interest in mathematics reform, particularly in meeting the needs of diverse learners in algebra courses.

Emergency Calls

A city is served by two different ambulance companies. City logs record the date, the time of the call, the ambulance company, and the response time for each 911 call ( Table 1 ). Analyze these data and write a report to the City Council (with supporting charts and graphs) advising it on which ambulance company the 911 operators should choose to dispatch for calls from this region.

TABLE 1: Ambulance dispatch log sheet, May 1–30

This problem confronts the student with a realistic situation and a body of data regarding two ambulance companies' response times to emergency calls. The data the student is provided are typically "messy"—just a log of calls and response times, ordered chronologically. The question is how to make sense of them. Finding patterns in data such as these requires a productive mixture of mathematics common sense, and intellectual detective work. It's the kind of reasoning that students should be able to do—the kind of reasoning that will pay off in the real world.

Mathematical Analysis

In this case, a numerical analysis is not especially informative. On average, the companies are about the same: Arrow has a mean response time of 11.4 minutes compared to 11.6 minutes for Metro. The spread of the data is also not very helpful. The ranges of their distributions are exactly the same: from 6 minutes to 19 minutes. The standard deviation of Arrow's response time is a little longer—4.3 minutes versus 3.4 minutes for Metro—indicating that Arrow's response times fluctuate a bit more.

Graphs of the response times (Figures 1 and 2 ) reveal interesting features. Both companies, especially Arrow, seem to have bimodal distributions, which is to say that there are two clusters of data without much data in between.

essay on types of maths

FIGURE 1: Distribution of Arrow's response times

essay on types of maths

FIGURE 2: Distribution of Metro's response times

The distributions for both companies suggest that there are some other factors at work. Might a particular driver be the problem? Might the slow response times for either company be on particular days of the week or at particular times of day? Graphs of the response time versus the time of day (Figures 3 and 4 ) shed some light on these questions.

essay on types of maths

FIGURE 3: Arrow response times by time of day

essay on types of maths

FIGURE 4: Metro response times by time of day

These graphs show that Arrow's response times were fast except between 5:30 AM and 9:00 AM, when they were about 9 minutes slower on average. Similarly, Metro's response times were fast except between about 3:30 PM and 6:30 PM, when they were about 5 minutes slower. Perhaps the locations of the companies make Arrow more susceptible to the morning rush hour and Metro more susceptible to the afternoon rush hour. On the other hand, the employees on Arrow's morning shift or Metro's afternoon shift may not be efficient. To avoid slow responses, one could recommend to the City Council that Metro be called during the morning and that Arrow be called during the afternoon. A little detective work into the sources of the differences between the companies may yield a better recommendation.

Comparisons may be drawn between two samples in various contexts—response times for various services (taxis, computer-help desks, 24-hour hot lines at automobile manufacturers) being one class among many. Depending upon the circumstances, the data may tell very different stories. Even in the situation above, if the second pair of graphs hadn't offered such clear explanations, one might have argued that although the response times for Arrow were better on average the spread was larger, thus making their "extremes" more risky. The fundamental idea is using various analysis and representation techniques to make sense of data when the important factors are not necessarily known ahead of time.

Back-of-the-Envelope Estimates

Practice "back-of-the-envelope" estimates based on rough approximations that can be derived from common sense or everyday observations. Examples:

  • Consider a public high school mathematics teacher who feels that students should work five nights a week, averaging about 35 minutes a night, doing focused on-task work and who intends to grade all homework with comments and corrections. What is a reasonable number of hours per week that such a teacher should allocate for grading homework?
  • How much paper does The New York Times use in a week? A paper company that wishes to make a bid to become their sole supplier needs to know whether they have enough current capacity. If the company were to store a two-week supply of newspaper, will their empty 14,000 square foot warehouse be big enough?

Some 50 years ago, physicist Enrico Fermi asked his students at the University of Chicago, "How many piano tuners are there in Chicago?" By asking such questions, Fermi wanted his students to make estimates that involved rough approximations so that their goal would be not precision but the order of magnitude of their result. Thus, many people today call these kinds of questions "Fermi questions." These generally rough calculations often require little more than common sense, everyday observations, and a scrap of paper, such as the back of a used envelope.

Scientists and mathematicians use the idea of order of magnitude , usually expressed as the closest power of ten, to give a rough sense of the size of a quantity. In everyday conversation, people use a similar idea when they talk about "being in the right ballpark." For example, a full-time job at minimum wage yields an annual income on the order of magnitude of $10,000 or 10 4 dollars. Some corporate executives and professional athletes make annual salaries on the order of magnitude of $10,000,000 or 10 7 dollars. To say that these salaries differ by a factor of 1000 or 10 3 , one can say that they differ by three orders of magnitude. Such a lack of precision might seem unscientific or unmathematical, but such approximations are quite useful in determining whether a more precise measurement is feasible or necessary, what sort of action might be required, or whether the result of a calculation is "in the right ballpark." In choosing a strategy to protect an endangered species, for example, scientists plan differently if there are 500 animals remaining than if there are 5,000. On the other hand, determining whether 5,200 or 6,300 is a better estimate is not necessary, as the strategies will probably be the same.

Careful reasoning with everyday observations can usually produce Fermi estimates that are within an order of magnitude of the exact answer (if there is one). Fermi estimates encourage students to reason creatively with approximate quantities and uncertain information. Experiences with such a process can help an individual function in daily life to determine the reasonableness of numerical calculations, of situations or ideas in the workplace, or of a proposed tax cut. A quick estimate of some revenue- or profit-enhancing scheme may show that the idea is comparable to suggesting that General Motors enter the summer sidewalk lemonade market in your neighborhood. A quick estimate could encourage further investigation or provide the rationale to dismiss the idea.

Almost any numerical claim may be treated as a Fermi question when the problem solver does not have access to all necessary background information. In such a situation, one may make rough guesses about relevant numbers, do a few calculations, and then produce estimates.

The examples are solved separately below.

Grading Homework

Although many component factors vary greatly from teacher to teacher or even from week to week, rough calculations are not hard to make. Some important factors to consider for the teacher are: how many classes he or she teaches, how many students are in each of the classes, how much experience has the teacher had in general and has the teacher previously taught the classes, and certainly, as part of teaching style, the kind of homework the teacher assigns, not to mention the teacher's efficiency in grading.

Suppose the teacher has 5 classes averaging 25 students per class. Because the teacher plans to write corrections and comments, assume that the students' papers contain more than a list of answers—they show some student work and, perhaps, explain some of the solutions. Grading such papers might take as long as 10 minutes each, or perhaps even longer. Assuming that the teacher can grade them as quickly as 3 minutes each, on average, the teacher's grading time is:

essay on types of maths

This is an impressively large number, especially for a teacher who already spends almost 25 hours/week in class, some additional time in preparation, and some time meeting with individual students. Is it reasonable to expect teachers to put in that kind of time? What compromises or other changes might the teacher make to reduce the amount of time? The calculation above offers four possibilities: Reduce the time spent on each homework paper, reduce the number of students per class, reduce the number of classes taught each day, or reduce the number of days per week that homework will be collected. If the teacher decides to spend at most 2 hours grading each night, what is the total number of students for which the teacher should have responsibility? This calculation is a partial reverse of the one above:

essay on types of maths

If the teacher still has 5 classes, that would mean 8 students per class!

The New York Times

Answering this question requires two preliminary estimates: the circulation of The New York Times and the size of the newspaper. The answers will probably be different on Sundays. Though The New York Times is a national newspaper, the number of subscribers outside the New York metropolitan area is probably small compared to the number inside. The population of the New York metropolitan area is roughly ten million people. Since most families buy at most one copy, and not all families buy The New York Times , the circulation might be about 1 million newspapers each day. (A circulation of 500,000 seems too small and 2 million seems too big.) The Sunday and weekday editions probably have different

circulations, but assume that they are the same since they probably differ by less than a factor of two—much less than an order of magnitude. When folded, a weekday edition of the paper measures about 1/2 inch thick, a little more than 1 foot long, and about 1 foot wide. A Sunday edition of the paper is the same width and length, but perhaps 2 inches thick. For a week, then, the papers would stack 6 × 1/2 + 2 = 5 inches thick, for a total volume of about 1 ft × 1 ft × 5/12 ft = 0.5 ft 3 .

The whole circulation, then, would require about 1/2 million cubic feet of paper per week, or about 1 million cubic feet for a two-week supply.

Is the company's warehouse big enough? The paper will come on rolls, but to make the estimates easy, assume it is stacked. If it were stacked 10 feet high, the supply would require 100,000 square feet of floor space. The company's 14,000 square foot storage facility will probably not be big enough as its size differs by almost an order of magnitude from the estimate. The circulation estimate and the size of the newspaper estimate should each be within a factor of 2, implying that the 100,000 square foot estimate is off by at most a factor of 4—less than an order of magnitude.

How big a warehouse is needed? An acre is 43,560 square feet so about two acres of land is needed. Alternatively, a warehouse measuring 300 ft × 300 ft (the length of a football field in both directions) would contain 90,000 square feet of floor space, giving a rough idea of the size.

After gaining some experience with these types of problems, students can be encouraged to pay close attention to the units and to be ready to make and support claims about the accuracy of their estimates. Paying attention to units and including units as algebraic quantities in calculations is a common technique in engineering and the sciences. Reasoning about a formula by paying attention only to the units is called dimensional analysis.

Sometimes, rather than a single estimate, it is helpful to make estimates of upper and lower bounds. Such an approach reinforces the idea that an exact answer is not the goal. In many situations, students could first estimate upper and lower bounds, and then collect some real data to determine whether the answer lies between those bounds. In the traditional game of guessing the number of jelly beans in a jar, for example, all students should be able to estimate within an order of magnitude, or perhaps within a factor of two. Making the closest guess, however, involves some chance.

Fermi questions are useful outside the workplace. Some Fermi questions have political ramifications:

  • How many miles of streets are in your city or town? The police chief is considering increasing police presence so that every street is patrolled by car at least once every 4 hours.
  • When will your town fill up its landfill? Is this a very urgent matter for the town's waste management personnel to assess in depth?
  • In his 1997 State of the Union address, President Clinton renewed his call for a tax deduction of up to $10,000 for the cost of college tuition. He estimates that 16.5 million students stand to benefit. Is this a reasonable estimate of the number who might take advantage of the tax deduction? How much will the deduction cost in lost federal revenue?

Creating Fermi problems is easy. Simply ask quantitative questions for which there is no practical way to determine exact values. Students could be encouraged to make up their own. Examples are: ''How many oak trees are there in Illinois?" or "How many people in the U.S. ate chicken for dinner last night?" "If all the people in the world were to jump in the ocean, how much would it raise the water level?" Give students the opportunity to develop their own Fermi problems and to share them with each other. It can stimulate some real mathematical thinking.

Scheduling Elevators

In some buildings, all of the elevators can travel to all of the floors, while in others the elevators are restricted to stopping only on certain floors. What is the advantage of having elevators that travel only to certain floors? When is this worth instituting?

Scheduling elevators is a common example of an optimization problem that has applications in all aspects of business and industry. Optimal scheduling in general not only can save time and money, but it can contribute to safety (e.g., in the airline industry). The elevator problem further illustrates an important feature of many economic and political arguments—the dilemma of trying simultaneously to optimize several different needs.

Politicians often promise policies that will be the least expensive, save the most lives, and be best for the environment. Think of flood control or occupational safety rules, for example. When we are lucky, we can perhaps find a strategy of least cost, a strategy that saves the most lives, or a strategy that damages the environment least. But these might not be the same strategies: generally one cannot simultaneously satisfy two or more independent optimization conditions. This is an important message for students to learn, in order to become better educated and more critical consumers and citizens.

In the elevator problem, customer satisfaction can be emphasized by minimizing the average elevator time (waiting plus riding) for employees in an office building. Minimizing wait-time during rush hours means delivering many people quickly, which might be accomplished by filling the elevators and making few stops. During off-peak hours, however, minimizing wait-time means maximizing the availability of the elevators. There is no reason to believe that these two goals will yield the same strategy. Finding the best strategy for each is a mathematical problem; choosing one of the two strategies or a compromise strategy is a management decision, not a mathematical deduction.

This example serves to introduce a complex topic whose analysis is well within the range of high school students. Though the calculations require little more than arithmetic, the task puts a premium on the creation of reasonable alternative strategies. Students should recognize that some configurations (e.g., all but one elevator going to the top floor and the one going to all the others) do not merit consideration, while others are plausible. A systematic evaluation of all possible configurations is usually required to find the optimal solution. Such a systematic search of the possible solution space is important in many modeling situations where a formal optimal strategy is not known. Creating and evaluating reasonable strategies for the elevators is quite appropriate for high school student mathematics and lends itself well to thoughtful group effort. How do you invent new strategies? How do you know that you have considered all plausible strategies? These are mathematical questions, and they are especially amenable to group discussion.

Students should be able to use the techniques first developed in solving a simple case with only a few stories and a few elevators to address more realistic situations (e.g., 50 stories, five elevators). Using the results of a similar but simpler problem to model a more complicated problem is an important way to reason in mathematics. Students

need to determine what data and variables are relevant. Start by establishing the kind of building—a hotel, an office building, an apartment building? How many people are on the different floors? What are their normal destinations (e.g., primarily the ground floor or, perhaps, a roof-top restaurant). What happens during rush hours?

To be successful at the elevator task, students must first develop a mathematical model of the problem. The model might be a graphical representation for each elevator, with time on the horizontal axis and the floors represented on the vertical axis, or a tabular representation indicating the time spent on each floor. Students must identify the pertinent variables and make simplifying assumptions about which of the possible floors an elevator will visit.

This section works through some of the details in a particularly simple case. Consider an office building with six occupied floors, employing 240 people, and a ground floor that is not used for business. Suppose there are three elevators, each of which can hold 10 people. Further suppose that each elevator takes approximately 25 seconds to fill on the ground floor, then takes 5 seconds to move between floors and 15 seconds to open and close at each floor on which it stops.

Scenario One

What happens in the morning when everyone arrives for work? Assume that everyone arrives at approximately the same time and enters the elevators on the ground floor. If all elevators go to all floors and if the 240 people are evenly divided among all three elevators, each elevator will have to make 8 trips of 10 people each.

When considering a single trip of one elevator, assume for simplicity that 10 people get on the elevator at the ground floor and that it stops at each floor on the way up, because there may be an occupant heading to each floor. Adding 5 seconds to move to each floor and 15 seconds to stop yields 20 seconds for each of the six floors. On the way down, since no one is being picked up or let off, the elevator does not stop, taking 5 seconds for each of six floors for a total of 30 seconds. This round-trip is represented in Table 1 .

TABLE 1: Elevator round-trip time, Scenario one

Since each elevator makes 8 trips, the total time will be 1,400 seconds or 23 minutes, 20 seconds.

Scenario Two

Now suppose that one elevator serves floors 1–3 and, because of the longer trip, two elevators are assigned to floors 4–6. The elevators serving the top

TABLE 2: Elevator round-trip times, Scenario two

floors will save 15 seconds for each of floors 1–3 by not stopping. The elevator serving the bottom floors will save 20 seconds for each of the top floors and will save time on the return trip as well. The times for these trips are shown in Table 2 .

Assuming the employees are evenly distributed among the floors (40 people per floor), elevator A will transport 120 people, requiring 12 trips, and elevators B and C will transport 120 people, requiring 6 trips each. These trips will take 1200 seconds (20 minutes) for elevator A and 780 seconds (13 minutes) for elevators B and C, resulting in a small time savings (about 3 minutes) over the first scenario. Because elevators B and C are finished so much sooner than elevator A, there is likely a more efficient solution.

Scenario Three

The two round-trip times in Table 2 do not differ by much because the elevators move quickly between floors but stop at floors relatively slowly. This observation suggests that a more efficient arrangement might be to assign each elevator to a pair of floors. The times for such a scenario are listed in Table 3 .

Again assuming 40 employees per floor, each elevator will deliver 80 people, requiring 8 trips, taking at most a total of 920 seconds. Thus this assignment of elevators results in a time savings of almost 35% when compared with the 1400 seconds it would take to deliver all employees via unassigned elevators.

TABLE 3: Elevator round-trip times, Scenario three

Perhaps this is the optimal solution. If so, then the above analysis of this simple case suggests two hypotheses:

  • The optimal solution assigns each floor to a single elevator.
  • If the time for stopping is sufficiently larger than the time for moving between floors, each elevator should serve the same number of floors.

Mathematically, one could try to show that this solution is optimal by trying all possible elevator assignments or by carefully reasoning, perhaps by showing that the above hypotheses are correct. Practically, however, it doesn't matter because this solution considers only the morning rush hour and ignores periods of low use.

The assignment is clearly not optimal during periods of low use, and much of the inefficiency is related to the first hypothesis for rush hour optimization: that each floor is served by a single elevator. With this condition, if an employee on floor 6 arrives at the ground floor just after elevator C has departed, for example, she or he will have to wait nearly two minutes for elevator C to return, even if elevators A and B are idle. There are other inefficiencies that are not considered by focusing on the rush hour. Because each floor is served by a single elevator, an employee who wishes to travel from floor 3 to floor 6, for example, must go via the ground floor and switch elevators. Most employees would prefer more flexibility than a single elevator serving each floor.

At times when the elevators are not all busy, unassigned elevators will provide the quickest response and the greatest flexibility.

Because this optimal solution conflicts with the optimal rush hour solution, some compromise is necessary. In this simple case, perhaps elevator A could serve all floors, elevator B could serve floors 1-3, and elevator C could serve floors 4-6.

The second hypothesis, above, deserves some further thought. The efficiency of the rush hour solution Table 3 is due in part to the even division of employees among the floors. If employees were unevenly distributed with, say, 120 of the 240 people working on the top two floors, then elevator C would need to make 12 trips, taking a total of 1380 seconds, resulting in almost no benefit over unassigned elevators. Thus, an efficient solution in an actual building must take into account the distribution of the employees among the floors.

Because the stopping time on each floor is three times as large as the traveling time between floors (15 seconds versus 5 seconds), this solution effectively ignores the traveling time by assigning the same number of employees to each elevator. For taller buildings, the traveling time will become more significant. In those cases fewer employees should be assigned to the elevators that serve the upper floors than are assigned to the elevators that serve the lower floors.

The problem can be made more challenging by altering the number of elevators, the number of floors, and the number of individuals working on each floor. The rate of movement of elevators can be determined by observing buildings in the local area. Some elevators move more quickly than others. Entrance and exit times could also be measured by students collecting

data on local elevators. In a similar manner, the number of workers, elevators, and floors could be taken from local contexts.

A related question is, where should the elevators go when not in use? Is it best for them to return to the ground floor? Should they remain where they were last sent? Should they distribute themselves evenly among the floors? Or should they go to floors of anticipated heavy traffic? The answers will depend on the nature of the building and the time of day. Without analysis, it will not be at all clear which strategy is best under specific conditions. In some buildings, the elevators are controlled by computer programs that "learn" and then anticipate the traffic patterns in the building.

A different example that students can easily explore in detail is the problem of situating a fire station or an emergency room in a city. Here the key issue concerns travel times to the region being served, with conflicting optimization goals: average time vs. maximum time. A location that minimizes the maximum time of response may not produce the least average time of response. Commuters often face similar choices in selecting routes to work. They may want to minimize the average time, the maximum time, or perhaps the variance, so that their departure and arrival times are more predictable.

Most of the optimization conditions discussed so far have been expressed in units of time. Sometimes, however, two optimization conditions yield strategies whose outcomes are expressed in different (and sometimes incompatible) units of measurement. In many public policy issues (e.g., health insurance) the units are lives and money. For environmental issues, sometimes the units themselves are difficult to identify (e.g., quality of life).

When one of the units is money, it is easy to find expensive strategies but impossible to find ones that have virtually no cost. In some situations, such as airline safety, which balances lives versus dollars, there is no strategy that minimize lives lost (since additional dollars always produce slight increases in safety), and the strategy that minimizes dollars will be at $0. Clearly some compromise is necessary. Working with models of different solutions can help students understand the consequences of some of the compromises.


An energy consulting firm that recommends and installs insulation and similar energy saving devices has received a complaint from a customer. Last summer she paid $540 to insulate her attic on the prediction that it would save 10% on her natural gas bills. Her gas bills have been higher than the previous winter, however, and now she wants a refund on the cost of the insulation. She admits that this winter has been colder than the last, but she had expected still to see some savings.

The facts: This winter the customer has used 1,102 therms, whereas last winter she used only 1,054 therms. This winter has been colder: 5,101 heating-degree-days this winter compared to 4,201 heating-degree-days last winter. (See explanation below.) How does a representative of the energy consulting firm explain to this customer that the accumulated heating-degree-days measure how much colder this winter has been, and then explain how to calculate her anticipated versus her actual savings.

Explaining the mathematics behind a situation can be challenging and requires a real knowledge of the context, the procedures, and the underlying mathematical concepts. Such communication of mathematical ideas is a powerful learning device for students of mathematics as well as an important skill for the workplace. Though the procedure for this problem involves only proportions, a thorough explanation of the mathematics behind the procedure requires understanding of linear modeling and related algebraic reasoning, accumulation and other precursors of calculus, as well as an understanding of energy usage in home heating.

The customer seems to understand that a straight comparison of gas usage does not take into account the added costs of colder weather, which can be significant. But before calculating any anticipated or actual savings, the customer needs some understanding of heating-degree-days. For many years, weather services and oil and gas companies have been using heating-degree-days to explain and predict energy usage and to measure energy savings of insulation and other devices. Similar degree-day units are also used in studying insect populations and crop growth. The concept provides a simple measure of the accumulated amount of cold or warm weather over time. In the discussion that follows, all temperatures are given in degrees Fahrenheit, although the process is equally workable using degrees Celsius.

Suppose, for example, that the minimum temperature in a city on a given day is 52 degrees and the maximum temperature is 64 degrees. The average temperature for the day is then taken to be 58 degrees. Subtracting that result from 65 degrees (the cutoff point for heating), yields 7 heating-degree-days for the day. By recording high and low temperatures and computing their average each day, heating-degree-days can be accumulated over the course of a month, a winter, or any period of time as a measure of the coldness of that period.

Over five consecutive days, for example, if the average temperatures were 58, 50, 60, 67, and 56 degrees Fahrenheit, the calculation yields 7, 15, 5, 0, and 9 heating-degree-days respectively, for a total accumulation of 36 heating-degree-days for the five days. Note that the fourth day contributes 0 heating-degree-days to the total because the temperature was above 65 degrees.

The relationship between average temperatures and heating-degree-days is represented graphically in Figure 1 . The average temperatures are shown along the solid line graph. The area of each shaded rectangle represents the number of heating-degree-days for that day, because the width of each rectangle is one day and the height of each rectangle is the number of degrees below 65 degrees. Over time, the sum of the areas of the rectangles represents the number of heating-degree-days accumulated during the period. (Teachers of calculus will recognize connections between these ideas and integral calculus.)

The statement that accumulated heating-degree-days should be proportional to gas or heating oil usage is based primarily on two assumptions: first, on a day for which the average temperature is above 65 degrees, no heating should be required, and therefore there should be no gas or heating oil usage; second, a day for which the average temperature is 25 degrees (40 heating-degree-days) should require twice as much heating as a day for which the average temperature is 45

essay on types of maths

FIGURE 1: Daily heating-degree-days

degrees (20 heating-degree-days) because there is twice the temperature difference from the 65 degree cutoff.

The first assumption is reasonable because most people would not turn on their heat if the temperature outside is above 65 degrees. The second assumption is consistent with Newton's law of cooling, which states that the rate at which an object cools is proportional to the difference in temperature between the object and its environment. That is, a house which is 40 degrees warmer than its environment will cool at twice the rate (and therefore consume energy at twice the rate to keep warm) of a house which is 20 degrees warmer than its environment.

The customer who accepts the heating-degree-day model as a measure of energy usage can compare this winter's usage with that of last winter. Because 5,101/4,201 = 1.21, this winter has been 21% colder than last winter, and therefore each house should require 21% more heat than last winter. If this customer hadn't installed the insulation, she would have required 21% more heat than last year, or about 1,275 therms. Instead, she has required only 5% more heat (1,102/1,054 = 1.05), yielding a savings of 14% off what would have been required (1,102/1,275 = .86).

Another approach to this would be to note that last year the customer used 1,054 therms/4,201 heating-degree-days = .251 therms/heating-degree-day, whereas this year she has used 1,102 therms/5,101 heating-degree-days = .216 therms/heating-degree-day, a savings of 14%, as before.

How good is the heating-degree-day model in predicting energy usage? In a home that has a thermometer and a gas meter or a gauge on a tank, students could record daily data for gas usage and high and low temperature to test the accuracy of the model. Data collection would require only a few minutes per day for students using an electronic indoor/outdoor thermometer that tracks high and low temperatures. Of course, gas used for cooking and heating water needs to be taken into account. For homes in which the gas tank has no gauge or doesn't provide accurate enough data, a similar experiment could be performed relating accumulated heating-degree-days to gas or oil usage between fill-ups.

It turns out that in well-sealed modern houses, the cutoff temperature for heating can be lower than 65 degrees (sometimes as low as 55 degrees) because of heat generated by light bulbs, appliances, cooking, people, and pets. At temperatures sufficiently below the cutoff, linearity turns out to be a good assumption. Linear regression on the daily usage data (collected as suggested above) ought to find an equation something like U = -.251( T - 65), where T is the average temperature and U is the gas usage. Note that the slope, -.251, is the gas usage per heating-degree-day, and 65 is the cutoff. Note also that the accumulation of heating-degree-days takes a linear equation and turns it into a proportion. There are some important data analysis issues that could be addressed by such an investigation. It is sometimes dangerous, for example, to assume linearity with only a few data points, yet this widely used model essentially assumes linearity from only one data point, the other point having coordinates of 65 degrees, 0 gas usage.

Over what range of temperatures, if any, is this a reasonable assumption? Is the standard method of computing average temperature a good method? If, for example, a day is mostly near 20 degrees but warms up to 50 degrees for a short time in the afternoon, is 35 heating-degree-days a good measure of the heating required that day? Computing averages of functions over time is a standard problem that can be solved with integral calculus. With knowledge of typical and extreme rates of temperature change, this could become a calculus problem or a problem for approximate solution by graphical methods without calculus, providing background experience for some of the important ideas in calculus.

Students could also investigate actual savings after insulating a home in their school district. A customer might typically see 8-10% savings for insulating roofs, although if the house is framed so that the walls act like chimneys, ducting air from the house and the basement into the attic, there might be very little savings. Eliminating significant leaks, on the other hand, can yield savings of as much as 25%.

Some U.S. Department of Energy studies discuss the relationship between heating-degree-days and performance and find the cutoff temperature to be lower in some modern houses. State energy offices also have useful documents.

What is the relationship between heating-degree-days computed using degrees Fahrenheit, as above, and heating-degree-days computed using degrees Celsius? Showing that the proper conversion is a direct proportion and not the standard Fahrenheit-Celsius conversion formula requires some careful and sophisticated mathematical thinking.

Traditionally, vocational mathematics and precollege mathematics have been separate in schools. But the technological world in which today's students will work and live calls for increasing connection between mathematics and its applications. Workplace-based mathematics may be good mathematics for everyone.

High School Mathematics at Work illuminates the interplay between technical and academic mathematics. This collection of thought-provoking essays—by mathematicians, educators, and other experts—is enhanced with illustrative tasks from workplace and everyday contexts that suggest ways to strengthen high school mathematical education.

This important book addresses how to make mathematical education of all students meaningful—how to meet the practical needs of students entering the work force after high school as well as the needs of students going on to postsecondary education.

The short readable essays frame basic issues, provide background, and suggest alternatives to the traditional separation between technical and academic mathematics. They are accompanied by intriguing multipart problems that illustrate how deep mathematics functions in everyday settings—from analysis of ambulance response times to energy utilization, from buying a used car to "rounding off" to simplify problems.

The book addresses the role of standards in mathematics education, discussing issues such as finding common ground between science and mathematics education standards, improving the articulation from school to work, and comparing SAT results across settings.

Experts discuss how to develop curricula so that students learn to solve problems they are likely to encounter in life—while also providing them with approaches to unfamiliar problems. The book also addresses how teachers can help prepare students for postsecondary education.

For teacher education the book explores the changing nature of pedagogy and new approaches to teacher development. What kind of teaching will allow mathematics to be a guide rather than a gatekeeper to many career paths? Essays discuss pedagogical implication in problem-centered teaching, the role of complex mathematical tasks in teacher education, and the idea of making open-ended tasks—and the student work they elicit—central to professional discourse.

High School Mathematics at Work presents thoughtful views from experts. It identifies rich possibilities for teaching mathematics and preparing students for the technological challenges of the future. This book will inform and inspire teachers, teacher educators, curriculum developers, and others involved in improving mathematics education and the capabilities of tomorrow's work force.


Welcome to OpenBook!

You're looking at OpenBook,'s online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

“What is Mathematics?” and why we should ask, where one should experience and learn that, and how to teach it

  • Conference paper
  • Open Access
  • First Online: 02 November 2017
  • Cite this conference paper

You have full access to this open access conference paper

essay on types of maths

  • Günter M. Ziegler 3 &
  • Andreas Loos 4  

Part of the book series: ICME-13 Monographs ((ICME13Mo))

110k Accesses

9 Citations

3 Altmetric

“What is Mathematics?” [with a question mark!] is the title of a famous book by Courant and Robbins, first published in 1941, which does not answer the question. The question is, however, essential: The public image of the subject (of the science, and of the profession) is not only relevant for the support and funding it can get, but it is also crucial for the talent it manages to attract—and thus ultimately determines what mathematics can achieve, as a science, as a part of human culture, but also as a substantial component of economy and technology. In this lecture we thus

discuss the image of mathematics (where “image” might be taken literally!),

sketch a multi-facetted answer to the question “What is Mathematics?,”

stress the importance of learning “What is Mathematics” in view of Klein’s “double discontinuity” in mathematics teacher education,

present the “Panorama project” as our response to this challenge,

stress the importance of telling stories in addition to teaching mathematics, and finally,

suggest that the mathematics curricula at schools and at universities should correspondingly have space and time for at least three different subjects called Mathematics.

This paper is a slightly updated reprint of: Günter M. Ziegler and Andreas Loos, Learning and Teaching “ What is Mathematics ”, Proc. International Congress of Mathematicians, Seoul 2014, pp. 1201–1215; reprinted with kind permission by Prof. Hyungju Park, the chairman of ICM 2014 Organizing Committee.

You have full access to this open access chapter,  Download conference paper PDF

Similar content being viewed by others

essay on types of maths

The Missing Element for Teachers: Learning What Mathematics Is

essay on types of maths

Educational Paths to Mathematics: Which Paths Forward to What Mathematics?

essay on types of maths

Mathematics at the Center of Distinct Fields: A Response to Michael and Ted

What is mathematics.

Defining mathematics. According to Wikipedia in English, in the March 2014 version, the answer to “What is Mathematics?” is

Mathematics is the abstract study of topics such as quantity (numbers), [2] structure, [3] space, [2] and change. [4][5][6] There is a range of views among mathematicians and philosophers as to the exact scope and definition of mathematics. [7][8] Mathematicians seek out patterns (Highland & Highland, 1961 , 1963 ) and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof. When mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity for as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.

None of this is entirely wrong, but it is also not satisfactory. Let us just point out that the fact that there is no agreement about the definition of mathematics, given as part of a definition of mathematics, puts us into logical difficulties that might have made Gödel smile. Footnote 1

The answer given by Wikipedia in the current German version, reads (in our translation):

Mathematics […] is a science that developed from the investigation of geometric figures and the computing with numbers. For mathematics , there is no commonly accepted definition; today it is usually described as a science that investigates abstract structures that it created itself by logical definitions using logic for their properties and patterns.

This is much worse, as it portrays mathematics as a subject without any contact to, or interest from, a real world.

The borders of mathematics. Is mathematics “stand-alone”? Could it be defined without reference to “neighboring” subjects, such as physics (which does appear in the English Wikipedia description)? Indeed, one possibility to characterize mathematics describes the borders/boundaries that separate it from its neighbors. Even humorous versions of such “distinguishing statements” such as

“Mathematics is the part of physics where the experiments are cheap.”

“Mathematics is the part of philosophy where (some) statements are true—without debate or discussion.”

“Mathematics is computer science without electricity.” (So “Computer science is mathematics with electricity.”)

contain a lot of truth and possibly tell us a lot of “characteristics” of our subject. None of these is, of course, completely true or completely false, but they present opportunities for discussion.

What we do in mathematics . We could also try to define mathematics by “what we do in mathematics”: This is much more diverse and much more interesting than the Wikipedia descriptions! Could/should we describe mathematics not only as a research discipline and as a subject taught and learned at school, but also as a playground for pupils, amateurs, and professionals, as a subject that presents challenges (not only for pupils, but also for professionals as well as for amateurs), as an arena for competitions, as a source of problems, small and large, including some of the hardest problems that science has to offer, at all levels from elementary school to the millennium problems (Csicsery, 2008 ; Ziegler, 2011 )?

What we teach in mathematics classes . Education bureaucrats might (and probably should) believe that the question “What is Mathematics?” is answered by high school curricula. But what answers do these give?

This takes us back to the nineteenth century controversies about what mathematics should be taught at school and at the Universities. In the German version this was a fierce debate. On the one side it saw the classical educational ideal as formulated by Wilhelm von Humboldt (who was involved in the concept for and the foundation 1806 of the Berlin University, now named Humboldt Universität, and to a certain amount shaped the modern concept of a university); here mathematics had a central role, but this was the classical “Greek” mathematics, starting from Euclid’s axiomatic development of geometry, the theory of conics, and the algebra of solving polynomial equations, not only as cultural heritage, but also as a training arena for logical thinking and problem solving. On the other side of the fight were the proponents of “Realbildung”: Realgymnasien and the technical universities that were started at that time tried to teach what was needed in commerce and industry: calculation and accounting, as well as the mathematics that could be useful for mechanical and electrical engineering—second rate education in the view of the classical German Gymnasium.

This nineteenth century debate rests on an unnatural separation into the classical, pure mathematics, and the useful, applied mathematics; a division that should have been overcome a long time ago (perhaps since the times of Archimedes), as it is unnatural as a classification tool and it is also a major obstacle to progress both in theory and in practice. Nevertheless the division into “classical” and “current” material might be useful in discussing curriculum contents—and the question for what purpose it should be taught; see our discussion in the Section “ Three Times Mathematics at School? ”.

The Courant–Robbins answer . The title of the present paper is, of course, borrowed from the famous and very successful book by Richard Courant and Herbert Robbins. However, this title is a question—what is Courant and Robbins’ answer? Indeed, the book does not give an explicit definition of “What is Mathematics,” but the reader is supposed to get an idea from the presentation of a diverse collection of mathematical investigations. Mathematics is much bigger and much more diverse than the picture given by the Courant–Robbins exposition. The presentation in this section was also meant to demonstrate that we need a multi-facetted picture of mathematics: One answer is not enough, we need many.

Why Should We Care?

The question “What is Mathematics?” probably does not need to be answered to motivate why mathematics should be taught, as long as we agree that mathematics is important.

However, a one-sided answer to the question leads to one-sided concepts of what mathematics should be taught.

At the same time a one-dimensional picture of “What is Mathematics” will fail to motivate kids at school to do mathematics, it will fail to motivate enough pupils to study mathematics, or even to think about mathematics studies as a possible career choice, and it will fail to motivate the right students to go into mathematics studies, or into mathematics teaching. If the answer to the question “What is Mathematics”, or the implicit answer given by the public/prevailing image of the subject, is not attractive, then it will be very difficult to motivate why mathematics should be learned—and it will lead to the wrong offers and the wrong choices as to what mathematics should be learned.

Indeed, would anyone consider a science that studies “abstract” structures that it created itself (see the German Wikipedia definition quoted above) interesting? Could it be relevant? If this is what mathematics is, why would or should anyone want to study this, get into this for a career? Could it be interesting and meaningful and satisfying to teach this?

Also in view of the diversity of the students’ expectations and talents, we believe that one answer is plainly not enough. Some students might be motivated to learn mathematics because it is beautiful, because it is so logical, because it is sometimes surprising. Or because it is part of our cultural heritage. Others might be motivated, and not deterred, by the fact that mathematics is difficult. Others might be motivated by the fact that mathematics is useful, it is needed—in everyday life, for technology and commerce, etc. But indeed, it is not true that “the same” mathematics is needed in everyday life, for university studies, or in commerce and industry. To other students, the motivation that “it is useful” or “it is needed” will not be sufficient. All these motivations are valid, and good—and it is also totally valid and acceptable that no single one of these possible types of arguments will reach and motivate all these students.

Why do so many pupils and students fail in mathematics, both at school and at universities? There are certainly many reasons, but we believe that motivation is a key factor. Mathematics is hard. It is abstract (that is, most of it is not directly connected to everyday-life experiences). It is not considered worth-while. But a lot of the insufficient motivation comes from the fact that students and their teachers do not know “What is Mathematics.”

Thus a multi-facetted image of mathematics as a coherent subject, all of whose many aspects are well connected, is important for a successful teaching of mathematics to students with diverse (possible) motivations.

This leads, in turn, to two crucial aspects, to be discussed here next: What image do students have of mathematics? And then, what should teachers answer when asked “What is Mathematics”? And where and how and when could they learn that?

The Image of Mathematics

A 2008 study by Mendick, Epstein, and Moreau ( 2008 ), which was based on an extensive survey among British students, was summarized as follows:

Many students and undergraduates seem to think of mathematicians as old, white, middle-class men who are obsessed with their subject, lack social skills and have no personal life outside maths. The student’s views of maths itself included narrow and inaccurate images that are often limited to numbers and basic arithmetic.

The students’ image of what mathematicians are like is very relevant and turns out to be a massive problem, as it defines possible (anti-)role models, which are crucial for any decision in the direction of “I want to be a mathematician.” If the typical mathematician is viewed as an “old, white, male, middle-class nerd,” then why should a gifted 16-year old girl come to think “that’s what I want to be when I grow up”? Mathematics as a science, and as a profession, looses (or fails to attract) a lot of talent this way! However, this is not the topic of this presentation.

On the other hand the first and the second diagnosis of the quote from Mendick et al. ( 2008 ) belong together: The mathematicians are part of “What is Mathematics”!

And indeed, looking at the second diagnosis, if for the key word “mathematics” the images that spring to mind don’t go beyond a per se meaningless “ \( a^{2} + b^{2} = c^{2} \) ” scribbled in chalk on a blackboard—then again, why should mathematics be attractive, as a subject, as a science, or as a profession?

We think that we have to look for, and work on, multi-facetted and attractive representations of mathematics by images. This could be many different, separate images, but this could also be images for “mathematics as a whole.”

Four Images for “What Is Mathematics?”

Striking pictorial representations of mathematics as a whole (as well as of other sciences!) and of their change over time can be seen on the covers of the German “Was ist was” books. The history of these books starts with the series of “How and why” Wonder books published by Grosset and Dunlop, New York, since 1961, which was to present interesting subjects (starting with “Dinosaurs,” “Weather,” and “Electricity”) to children and younger teenagers. The series was published in the US and in Great Britain in the 1960s and 1970s, but it was and is much more successful in Germany, where it was published (first in translation, then in volumes written in German) by Ragnar Tessloff since 1961. Volume 18 in the US/UK version and Volume 12 in the German version treats “Mathematics”, first published in 1963 (Highland & Highland, 1963 ), but then republished with the same title but a new author and contents in 2001 (Blum, 2001 ). While it is worthwhile to study the contents and presentation of mathematics in these volumes, we here focus on the cover illustrations (see Fig.  1 ), which for the German edition exist in four entirely different versions, the first one being an adaption of the original US cover of (Highland & Highland, 1961 ).

The four covers of “Was ist was. Band 12: Mathematik” (Highland & Highland, 1963 ; Blum, 2001 )

All four covers represent a view of “What is Mathematics” in a collage mode, where the first one represents mathematics as a mostly historical discipline (starting with the ancient Egyptians), while the others all contain a historical allusion (such as pyramids, Gauß, etc.) alongside with objects of mathematics (such as prime numbers or \( \pi \) , dices to illustrate probability, geometric shapes). One notable object is the oddly “two-colored” Möbius band on the 1983 cover, which was changed to an entirely green version in a later reprint.

One can discuss these covers with respect to their contents and their styles, and in particular in terms of attractiveness to the intended buyers/readers. What is over-emphasized? What is missing? It seems more important to us to

think of our own images/representations for “What is Mathematics”,

think about how to present a multi-facetted image of “What is Mathematics” when we teach.

Indeed, the topics on the covers of the “Was ist was” volumes of course represent interesting (?) topics and items discussed in the books. But what do they add up to? We should compare this to the image of mathematics as represented by school curricula, or by the university curricula for teacher students.

In the context of mathematics images, let us mention two substantial initiatives to collect and provide images from current mathematics research, and make them available on internet platforms, thus providing fascinating, multi-facetted images of mathematics as a whole discipline:

Guy Métivier et al.: “Image des Maths. La recherche mathématique en mots et en images” [“Images of Maths. Mathematical research in words and images”], CNRS, France, at (texts in French)

Andreas D. Matt, Gert-Martin Greuel et al.: “IMAGINARY. open mathematics,” Mathematisches Forschungsinstitut Oberwolfach, at (texts in German, English, and Spanish).

The latter has developed from a very successful travelling exhibition of mathematics images, “IMAGINARY—through the eyes of mathematics,” originally created on occasion of and for the German national science year 2008 “Jahr der Mathematik. Alles was zählt” [“Year of Mathematics 2008. Everything that counts”], see , which was highly successful in communicating a current, attractive image of mathematics to the German public—where initiatives such as the IMAGINARY exhibition had a great part in the success.

Teaching “What Is Mathematics” to Teachers

More than 100 years ago, in 1908, Felix Klein analyzed the education of teachers. In the introduction to the first volume of his “Elementary Mathematics from a Higher Standpoint” he wrote (our translation):

At the beginning of his university studies, the young student is confronted with problems that do not remind him at all of what he has dealt with up to then, and of course, he forgets all these things immediately and thoroughly. When after graduation he becomes a teacher, he has to teach exactly this traditional elementary mathematics, and since he can hardly link it with his university mathematics, he soon readopts the former teaching tradition and his studies at the university become a more or less pleasant reminiscence which has no influence on his teaching (Klein, 1908 ).

This phenomenon—which Klein calls the double discontinuity —can still be observed. In effect, the teacher students “tunnel” through university: They study at university in order to get a degree, but nevertheless they afterwards teach the mathematics that they had learned in school, and possibly with the didactics they remember from their own school education. This problem observed and characterized by Klein gets even worse in a situation (which we currently observe in Germany) where there is a grave shortage of Mathematics teachers, so university students are invited to teach at high school long before graduating from university, so they have much less university education to tunnel at the time when they start to teach in school. It may also strengthen their conviction that University Mathematics is not needed in order to teach.

How to avoid the double discontinuity is, of course, a major challenge for the design of university curricula for mathematics teachers. One important aspect however, is tied to the question of “What is Mathematics?”: A very common highschool image/concept of mathematics, as represented by curricula, is that mathematics consists of the subjects presented by highschool curricula, that is, (elementary) geometry, algebra (in the form of arithmetic, and perhaps polynomials), plus perhaps elementary probability, calculus (differentiation and integration) in one variable—that’s the mathematics highschool students get to see, so they might think that this is all of it! Could their teachers present them a broader picture? The teachers after their highschool experience studied at university, where they probably took courses in calculus/analysis, linear algebra, classical algebra, plus some discrete mathematics, stochastics/probability, and/or numerical analysis/differential equations, perhaps a programming or “computer-oriented mathematics” course. Altogether they have seen a scope of university mathematics where no current research becomes visible, and where most of the contents is from the nineteenth century, at best. The ideal is, of course, that every teacher student at university has at least once experienced how “doing research on your own” feels like, but realistically this rarely happens. Indeed, teacher students would have to work and study and struggle a lot to see the fascination of mathematics on their own by doing mathematics; in reality they often do not even seriously start the tour and certainly most of them never see the “glimpse of heaven.” So even if the teacher student seriously immerges into all the mathematics on the university curriculum, he/she will not get any broader image of “What is Mathematics?”. Thus, even if he/she does not tunnel his university studies due to the double discontinuity, he/she will not come back to school with a concept that is much broader than that he/she originally gained from his/her highschool times.

Our experience is that many students (teacher students as well as classical mathematics majors) cannot name a single open problem in mathematics when graduating the university. They have no idea of what “doing mathematics” means—for example, that part of this is a struggle to find and shape the “right” concepts/definitions and in posing/developing the “right” questions and problems.

And, moreover, also the impressions and experiences from university times will get old and outdated some day: a teacher might be active at a school for several decades—while mathematics changes! Whatever is proved in mathematics does stay true, of course, and indeed standards of rigor don’t change any more as much as they did in the nineteenth century, say. However, styles of proof do change (see: computer-assisted proofs, computer-checkable proofs, etc.). Also, it would be good if a teacher could name “current research focus topics”: These do change over ten or twenty years. Moreover, the relevance of mathematics in “real life” has changed dramatically over the last thirty years.

The Panorama Project

For several years, the present authors have been working on developing a course [and eventually a book (Loos & Ziegler, 2017 )] called “Panorama der Mathematik” [“Panorama of Mathematics”]. It primarily addresses mathematics teacher students, and is trying to give them a panoramic view on mathematics: We try to teach an overview of the subject, how mathematics is done, who has been and is doing it, including a sketch of main developments over the last few centuries up to the present—altogether this is supposed to amount to a comprehensive (but not very detailed) outline of “What is Mathematics.” This, of course, turns out to be not an easy task, since it often tends to feel like reading/teaching poetry without mastering the language. However, the approach of Panorama is complementing mathematics education in an orthogonal direction to the classic university courses, as we do not teach mathematics but present (and encourage to explore ); according to the response we get from students they seem to feel themselves that this is valuable.

Our course has many different components and facets, which we here cast into questions about mathematics. All these questions (even the ones that “sound funny”) should and can be taken seriously, and answered as well as possible. For each of them, let us here just provide at most one line with key words for answers:

When did mathematics start?

Numbers and geometric figures start in stone age; the science starts with Euclid?

How large is mathematics? How many Mathematicians are there?

The Mathematics Genealogy Project had 178854 records as of 12 April 2014.

How is mathematics done, what is doing research like?

Collect (auto)biographical evidence! Recent examples: Frenkel ( 2013 ) , Villani ( 2012 ).

What does mathematics research do today? What are the Grand Challenges?

The Clay Millennium problems might serve as a starting point.

What and how many subjects and subdisciplines are there in mathematics?

See the Mathematics Subject Classification for an overview!

Why is there no “Mathematical Industry”, as there is e.g. Chemical Industry?

There is! See e.g. Telecommunications, Financial Industry, etc.

What are the “key concepts” in mathematics? Do they still “drive research”?

Numbers, shapes, dimensions, infinity, change, abstraction, …; they do.

What is mathematics “good for”?

It is a basis for understanding the world, but also for technological progress.

Where do we do mathematics in everyday life?

Not only where we compute, but also where we read maps, plan trips, etc.

Where do we see mathematics in everyday life?

There is more maths in every smart phone than anyone learns in school.

What are the greatest achievements of mathematics through history?

Make your own list!

An additional question is how to make university mathematics more “sticky” for the tunneling teacher students, how to encourage or how to force them to really connect to the subject as a science. Certainly there is no single, simple, answer for this!

Telling Stories About Mathematics

How can mathematics be made more concrete? How can we help students to connect to the subject? How can mathematics be connected to the so-called real world?

Showing applications of mathematics is a good way (and a quite beaten path). Real applications can be very difficult to teach since in most advanced, realistic situation a lot of different mathematical disciplines, theories and types of expertise have to come together. Nevertheless, applications give the opportunity to demonstrate the relevance and importance of mathematics. Here we want to emphasize the difference between teaching a topic and telling about it. To name a few concrete topics, the mathematics behind weather reports and climate modelling is extremely difficult and complex and advanced, but the “basic ideas” and simplified models can profitably be demonstrated in highschool, and made plausible in highschool level mathematical terms. Also success stories like the formula for the Google patent for PageRank (Page, 2001 ), see Langville and Meyer ( 2006 ), the race for the solution of larger and larger instances of the Travelling Salesman Problem (Cook, 2011 ), or the mathematics of chip design lend themselves to “telling the story” and “showing some of the maths” at a highschool level; these are among the topics presented in the first author’s recent book (Ziegler, 2013b ), where he takes 24 images as the starting points for telling stories—and thus developing a broader multi-facetted picture of mathematics.

Another way to bring maths in contact with non-mathematicians is the human level. Telling stories about how maths is done and by whom is a tricky way, as can be seen from the sometimes harsh reactions on to postings that try to excavate the truth behind anecdotes and legends. Most mathematicians see mathematics as completely independent from the persons who explored it. History of mathematics has the tendency to become gossip , as Gian-Carlo Rota once put it (Rota, 1996 ). The idea seems to be: As mathematics stands for itself, it has also to be taught that way.

This may be true for higher mathematics. However, for pupils (and therefore, also for teachers), transforming mathematicians into humans can make science more tangible, it can make research interesting as a process (and a job?), and it can be a starting/entry point for real mathematics. Therefore, stories can make mathematics more sticky. Stories cannot replace the classical approaches to teaching mathematics. But they can enhance it.

Stories are the way by which knowledge has been transferred between humans for thousands of years. (Even mathematical work can be seen as a very abstract form of storytelling from a structuralist point of view.) Why don’t we try to tell more stories about mathematics, both at university and in school—not legends, not fairy tales, but meta-information on mathematics—in order to transport mathematics itself? See (Ziegler, 2013a ) for an attempt by the first author in this direction.

By stories, we do not only mean something like biographies, but also the way of how mathematics is created or discovered: Jack Edmonds’ account (Edmonds, 1991 ) of how he found the blossom shrink algorithm is a great story about how mathematics is actually done . Think of Thomas Harriot’s problem about stacking cannon balls into a storage space and what Kepler made out of it: the genesis of a mathematical problem. Sometimes scientists even wrap their work into stories by their own: see e.g. Leslie Lamport’s Byzantine Generals (Lamport, Shostak, & Pease, 1982 ).

Telling how research is done opens another issue. At school, mathematics is traditionally taught as a closed science. Even touching open questions from research is out of question, for many good and mainly pedagogical reasons. However, this fosters the image of a perfect science where all results are available and all problems are solved—which is of course completely wrong (and moreover also a source for a faulty image of mathematics among undergraduates).

Of course, working with open questions in school is a difficult task. None of the big open questions can be solved with an elementary mathematical toolbox; many of them are not even accessible as questions. So the big fear of discouraging pupils is well justified. On the other hand, why not explore mathematics by showing how questions often pop up on the way? Posing questions in and about mathematics could lead to interesting answers—in particular to the question of “What is Mathematics, Really?”

Three Times Mathematics at School?

So, what is mathematics? With school education in mind, the first author has argued in Ziegler ( 2012 ) that we are trying cover three aspects the same time, which one should consider separately and to a certain extent also teach separately:

A collection of basic tools, part of everyone’s survival kit for modern-day life—this includes everything, but actually not much more than, what was covered by Adam Ries’ “Rechenbüchlein” [“Little Book on Computing”] first published in 1522, nearly 500 years ago;

A field of knowledge with a long history, which is a part of our culture and an art, but also a very productive basis (indeed a production factor) for all modern key technologies. This is a “story-telling” subject.

An introduction to mathematics as a science—an important, highly developed, active, huge research field.

Looking at current highschool instruction, there is still a huge emphasis on Mathematics I, with a rather mechanical instruction on arithmetic, “how to compute correctly,” and basic problem solving, plus a rather formal way of teaching Mathematics III as a preparation for possible university studies in mathematics, sciences or engineering. Mathematics II, which should provide a major component of teaching “What is Mathematics,” is largely missing. However, this part also could and must provide motivation for studying Mathematics I or III!

What Is Mathematics, Really?

There are many, and many different, valid answers to the Courant-Robbins question “What is Mathematics?”

A more philosophical one is given by Reuben Hersh’s book “What is Mathematics, Really?” Hersh ( 1997 ), and there are more psychological ones, on the working level. Classics include Jacques Hadamard’s “Essay on the Psychology of Invention in the Mathematical Field” and Henri Poincaré’s essays on methodology; a more recent approach is Devlin’s “Introduction to Mathematical Thinking” Devlin ( 2012 ), or Villani’s book ( 2012 ).

And there have been many attempts to describe mathematics in encyclopedic form over the last few centuries. Probably the most recent one is the gargantuan “Princeton Companion to Mathematics”, edited by Gowers et al. ( 2008 ), which indeed is a “Princeton Companion to Pure Mathematics.”

However, at a time where ZBMath counts more than 100,000 papers and books per year, and 29,953 submissions to the math and math-ph sections of in 2016, it is hopeless to give a compact and simple description of what mathematics really is, even if we had only the “current research discipline” in mind. The discussions about the classification of mathematics show how difficult it is to cut the science into slices, and it is even debatable whether there is any meaningful way to separate applied research from pure mathematics.

Probably the most diplomatic way is to acknowledge that there are “many mathematics.” Some years ago Tao ( 2007 ) gave an open list of mathematics that is/are good for different purposes—from “problem-solving mathematics” and “useful mathematics” to “definitive mathematics”, and wrote:

As the above list demonstrates, the concept of mathematical quality is a high-dimensional one, and lacks an obvious canonical total ordering. I believe this is because mathematics is itself complex and high-dimensional, and evolves in unexpected and adaptive ways; each of the above qualities represents a different way in which we as a community improve our understanding and usage of the subject.

In this sense, many answers to “What is Mathematics?” probably show as much about the persons who give the answers as they manage to characterize the subject.

According to Wikipedia , the same version, the answer to “Who is Mathematics” should be:

Mathematics , also known as Allah Mathematics , (born: Ronald Maurice Bean [1] ) is a hip hop producer and DJ for the Wu-Tang Clan and its solo and affiliate projects. This is not the mathematics we deal with here.

Blum, W. (2001). Was ist was. Band 12: Mathematik , Tessloff Verlag, Nürnberg. Revised version, with new cover, 2010.

Google Scholar  

Cook, W. (2011). In pursuit of the traveling salesman: Mathematics at the limits of computation . Princeton NJ: Princeton University Press.

Courant, R., & Robbins, H. (1941). What is mathematics? an elementary approach to ideas and methods (2nd ed.), Oxford: Oxford University Press. Stewart, I (ed), 1996.

Csicsery, G. (2008). Hard problems. the road to the world’s toughest math contest , Documentary film, 82 minutes (feature)/45 minutes (classroom version), Washington, DC: Mathematical Association of America.

Devlin, K. J. (2012). Introduction to mathematical thinking , published by Keith Devlin, Palo Alto CA.

Edmonds, J. (1991). A glimpse of heaven, In: J. K. Lenstra, A. Schrijver, & A. Rinnooy Kan (eds.) History of mathematical programming—A collection of personal reminiscences (pp. 32–54). Amsterdam: CWI and North-Holland.

Frenkel, E. (2013). Love & math. The heart of hidden reality . Philadelphia PA: Basic Books/Perseus Books.

Gowers, Timothy, Leader, Imre, & Barrow-Green, June (Eds.). (2008). The princeton companion to mathematics . Princeton NJ: Princeton University Press.

Highland, E. H., & Highland, H. J. (1961). The how and why wonder book of mathematics . New York: Grosset & Dunlop.

Highland, E. H., & Highland, H. J. (1963). Was ist was. Band 12: Mathematik , Neuer Tessloff Verlag, Hamburg, 1963. Revised edition 1969. New cover 1983.

Hersh, R. (1997). What is mathematics, really? . Oxford: Oxford University Press.

Klein, F.(1933). Elementarmathematik vom höheren Standpunkte aus. Teil I: Arithmetik, Algebra, Analysis , B. G. Teubner, Leipzig, 1908. Vierte Auflage. Heidelberg: Springer.

Lamport, L., Shostak, R., & Pease, M. (1982). The byzantine generals problem. ACM Transactions on Programming Languages and Systems, 4, 382–401.

Article   Google Scholar  

Langville, A. N., & Meyer, C. D. (2006). Google’s pagerank and beyond. The science of search engine rankings . Princeton and Oxford: Princeton University Press.

Loos, A., & Ziegler, G. M. (2017). Panorama der Mathematik . Heidelberg: Springer Spectrum, to appear.

Mendick, H., Epstein, D., & Moreau, M.-P. (2008). Mathematical images and identities: Education, entertainment, social justice . London: Institute for Policy Studies in Education, London Metropolitan University.

Page, L. (2001) Method for node ranking in a linked database , United States Patent No. US 6,285,999 B1, (submitted: January 9, 1998),

Rota, G.-C. (1996). Indiscrete thoughts . Basel: Birkhäuser.

Tao, T. (2007). What is good mathematics? Bulletin of the American Mathematical Society, 44 (4), 623–634.

Villani, C. (2012). Théorème vivant . Paris: Bernard Grasset. (in French).

Ziegler, G. M. (2011). Three competitions. In D. Schleicher & M. Lackmann (Eds.), Invitation to mathematics. From competition to research (pp. 195–205). Berlin: Springer.

Chapter   Google Scholar  

Ziegler, G. M. (2012). Mathematics school education provides answers—To which questions? EMS Newsletter (84), 8–11.

Ziegler, G. M.(2013a). Do I count? stories from mathematics , Boca Raton FL: CRC Press/Taylor & Francis. English translation of “Darf ich Zahlen? Geschichten aus der Mathematik”, Piper, München, 2010.

Ziegler, G. M. (2013b). Mathematik—Das ist doch keine Kunst! . München: Knaus.

Download references


The authors’ work has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 247029, the DFG Research Center Matheon, and the the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”.

Author information

Authors and affiliations.

Institut Für Mathematik, FU Berlin, Arnimallee 2, 14195, Berlin, Germany

Günter M. Ziegler

Zeit Online, Askanischer Platz 1, 10963, Berlin, Germany

Andreas Loos

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Günter M. Ziegler .

Editor information

Editors and affiliations.

Faculty of Education, Universität Hamburg, Hamburg, Hamburg, Germany

Gabriele Kaiser

Rights and permissions

Open Access Except where otherwise noted, this chapter is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit .

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this paper

Cite this paper.

Ziegler, G.M., Loos, A. (2017). “What is Mathematics?” and why we should ask, where one should experience and learn that, and how to teach it. In: Kaiser, G. (eds) Proceedings of the 13th International Congress on Mathematical Education. ICME-13 Monographs. Springer, Cham.

Download citation


Published : 02 November 2017

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-62596-6

Online ISBN : 978-3-319-62597-3

eBook Packages : Education Education (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Types of Exams

Anita Frederiks; Kate Derrington; and Cristy Bartlett



There are many different types of exams and exam questions that you may need to prepare for at university.  Each type of exam has different considerations and preparation, in addition to knowing the course material.  This chapter extends the discussion from the previous chapter and examines different types of exams, including multiple choice, essay, and maths exams, and some strategies specific for those exam types.  The aim of this chapter is to provide you with an overview of the different types of exams and the specific strategies for preparing and undertaking them.

The COVID19 pandemic has led to a number of activities previously undertaken on campus becoming online activities.  This includes exams, so we have provided advice for both on campus (or in person) exams as well as alternative and online exams. We recommend that you read the chapter Preparing for Exams before reading this chapter about the specific types of exams that you will be undertaking.

Types of exams

During your university studies you may have exams that require you to attend in person, either on campus or at a study centre, or you may have online exams. Regardless of whether you take the exam in person or online, your exams may have different requirements and it is important that you know what those requirements are. We have provided an overview of closed, restricted, and open exams below, but always check the specific requirements for your exams.

Closed exams

These exams allow you to bring only your writing and drawing instruments. Formula sheets (in the case of maths and statistics exams) may or may not be provided.

Restricted exams

These exams allow you to bring in only specific things such as a single page of notes, or in the case of maths exams, a calculator or a formula sheet. You may be required to hand in your notes or formula sheet with your exam paper.

Open book exams

These exams allow you to have access to any printed or written material and a calculator (if required) during the exam. If you are completing your exam online, you may also be able to access online resources. The emphasis in open book exams is on conceptual understanding and application of knowledge rather than just the ability to recall facts.

Myth: You may think open book exams will be easier than closed exams because you can have all your study materials with you.

Reality: Open book exams require preparation, a good understanding of your content and an effective system of organising your notes so you can find the relevant information quickly during your exam. Open book exams generally require more detailed responses. You are required to demonstrate your knowledge and understanding of a subject as well as your ability to find and apply information applicable to the topic.  Questions in open book exams often require complex answers and you are expected to use reason and evidence to support your responses. The more organised you are, the more time you have to focus on answering your questions and less time on searching for information in your notes and books. Consider these tips in the table below when preparing for an open book exam.

Tips for preparing your materials for open or unrestricted exams

  • Organise your notes logically with headings and page numbers
  • Use different colours to highlight and separate different topics
  • Be familiar with the layout of any books you will be using during the exam. Use sticky notes to mark important information for quick reference during the exam.
  • Use your learning objectives from each week or for each new module of content, to help determine what is important (and likely to be on the exam).
  • Create an alphabetical index for all the important topics likely to be on the exam. Include the page numbers, in your notes or textbooks, of where to find the relevant information on these topics.
  • If you have a large quantity of other documents, for example if you are a law student, consider binding legislation and cases or place them in a folder. Use sticky notes to indicate the most relevant sections.
  • Write a summary page which includes, where relevant, important definitions, formulas, rules, graphs and diagrams with examples if required.
  • Know how to use your calculator efficiently and effectively (if required).

Take home exams

These are a special type of open book exam where you are provided with the exam paper and are able to complete it away from an exam centre over a set period of time.  You are able to use whatever books, journals, websites you have available and as a result, take-home exams usually require more exploration and in-depth responses than other types of exams.

It is just as important to be organised with take home exams. Although there is usually a longer period available for completing these types of exams, the risk is that you can spend too long researching and not enough time planning and writing your exam. It is also important to allow enough time for submitting your completed exam.

  Tips for completing take home exams

  • Arrange for a quiet and organised space to do the exam
  • Tell your family or house mates that you will be doing a take-home exam and that you would appreciate their cooperation
  • Make sure you know the correct date of submission for the exam paper
  • Know the exam format, question types and content that will be covered
  • As with open book exams, read your textbook and work through any chapter questions
  • Do preliminary research and bookmark useful websites or download relevant journal articles
  • Take notes and/or mark sections of your textbook with sticky notes
  • Organise and classify your notes in a logical order so once you know the exam topic you will be able to find what you need to answer it easily

When answering open book and take-home exams remember these three steps below.

Three steps of analysing question

Multiple choice

Multiple choice questions are often used in online assignments, quizzes, and exams. It is tempting to think that these types of questions are easier than short answer or essay questions because the answer is right in front of you. However, like other types of assessment, multiple choice questions require you to understand and apply the content from your study materials or lectures. This requires preparation and thorough content knowledge to be able to retrieve the correct answer quickly. The following sections discuss strategies on effectively preparing for, and answering, multiple choice questions, the typical format of multiple choice questions, and some common myths about these types of questions.

Preparing for multiple choice questions

  •  Prepare as you do for other types of exams (see the Preparing for Exams chapter for study strategies).
  • Find past or practice exam papers (where available), and practise doing multiple choice questions.
  • Create your own multiple choice questions to assess the content, this prompts you to think about the material more deeply and is a good way to practise answering multiple choice questions.
  • If there are quizzes in your course, complete these (you may be able to have multiple attempts to help build your skills).
  • Calculate the time allowed for answering the multiple-choice section of the exam. Ideally do this before you get to the exam if you know the details.

Strategies for use during the exam

  • Consider the time allocated per question to guide how you use your time in the exam.  Don’t spend all of your time on one question, leaving the rest unanswered.  Figure 23.3 provides some strategies for managing questions during the exam.
  • Carefully mark your response to the questions and ensure that your answer matches the question number on the answer sheet.
  • Review your answers if you have time once you have answered all questions on the exam.

Three tips for multiple chocie exams

Format of multiple choice questions

The most frequently used format of a multiple choice question has two components, the question (may include additional detail or statement) and possible answers.

Table 23.1 Multiple choice questions

The example below is of a simple form of multiple choice question.

An example of a simple form of a multiple choice question

Multiple choice myths

Multiple chocie exam

These are some of the common myths about multiple choice questions that are NOT accurate:

  • You don’t need to study for multiple choice tests
  • Multiple choice questions are easy to get right
  • Getting these questions correct is just good luck
  • Multiple choice questions take very little time to read and answer
  • Multiple choice questions cannot cover complex concepts or ideas
  • C is most likely correct
  • Answers will always follow a pattern, e.g., badcbadcbadc
  • You get more questions correct if you alternate your answers

None of the answers above are correct! Multiple choice questions may appear short with the answer provided, but this does not mean that you will be able to complete them quickly.  Some questions require thought and further calculations before you can determine the answer.

Short answer exams

Short answer, or extended response exams focus on knowledge and understanding of terms and concepts along with the relationships between them. Depending on your study area, short answer responses could require you to write a sentence or a short paragraph or to solve a mathematical problem. Check the expectations with your lecturer or tutor prior to your exam. Try the preparation strategies suggested in the section below.

Preparation strategies for short answer responses

  • Concentrate on key terms and concepts
  • It is not advised to prepare and learn specific answers as you may not get that exact question on exam day; instead know how to apply your content.
  • Learn similarities and differences between similar terms and concepts, e.g. stalagmite and stalactite.
  • Learn some relevant examples or supporting evidence you can apply to demonstrate your application and understanding.

There are also some common mistakes to avoid when completing your short answer exam as seen below.

Common mistakes in short answer responses

  • Misinterpreting the question
  • Not answering the question sufficiently
  • Not providing an example
  • Response not structured or focused
  • Wasting time on questions worth fewer marks
  • Leaving questions unanswered
  • Not showing working (if calculations were required)

Use these three tips in Figure 23.6 when completing your short answer responses.

Use the keywords in the question (e.g. define, explain, analyse...) to know how to appropriately answer the question. Read and answer all parts of the question. You may be required to do more than one thing, e.g. “Define and give an example of...”.

Essay exams

As with other types of exams, you should adjust your preparation to suit the style of questions you will be asked. Essay exam questions require a response with multiple paragraphs and should be logical and well-structured.

It is preferable not to prepare and learn an essay in anticipation of the question you may get on the exam. Instead, it is better to learn the information that you would need to include in an essay and be able to apply this to the specific question on exam day. Although you may have an idea of the content that will be examined, usually you will not know the exact question. If your exam is handwritten, ensure that your writing is legible. You won’t get any marks if your writing cannot be read by your marker. You may wish to practise your handwriting, so you are less fatigued in the exam.

Follow these three tips in Figure 23.7 below for completing an essay exam.

Three tips for essay exams

Case study exams

Case study questions in exams are often quite complex and include multiple details. This is deliberate to allow you to demonstrate your problem solving and critical thinking abilities. Case study exams require you to apply your knowledge to a real-life situation. The exam question may include information in various formats including a scenario, client brief, case history, patient information, a graph, or table. You may be required to answer a series of questions or interpret or conduct an analysis. Follow the tips below in Figure 23.8 for completing a case study response.

Three tips for case study exams

Maths exams

This section covers strategies for preparing and completing, maths-based exams. When preparing for a maths exam, an important consideration is the type of exam you will be sitting and what you can, and cannot, bring in with you (for in person exams). Maths exams may be open, restricted or closed. More information about each of these is included in Table 23.2 below.  The information about the type of exam for your course can be found in the examination information provided by your university.

Table 23.2 Types of maths exams

Once you have considered the type of exam you will be taking and know what materials you will be able to use, you need to focus on preparing for the exam. Preparation for your maths exams should be happening throughout the semester.

Maths exam preparation tips

  • Review the information about spaced practice in the previous chapter Preparing for Exams to maximise your exam preparation
  • It is best NOT to start studying the night before the exam. Cramming doesn’t work as well as spending regular time studying throughout the course. See additional information on cramming in the previous chapter Preparing for Exams ).
  • Review your notes and make a concise list of important concepts and formulae
  • Make sure you know these formulae and more importantly, how to use them
  • Work through your tutorial problems again (without looking at the solutions). Do not just read over them. Working through problems will help you to remember how to do them.
  • Work through any practice or past exams which have been provided to you. You can also make your own practice exam by finding problems from your course materials. See the Practice Testing section in the previous Preparing for Exams chapter for more information.
  • When working through practice exams, give yourself a time limit. Don’t use your notes or books, treat it like the real exam.
  • Finally, it is essential to get a good night’s sleep before the exam so you are well rested and can concentrate when you take the exam.

Multiple choice questions in maths exams

Multiple choice questions in maths exams normally test your knowledge of concepts and may require you to complete calculations. For more information about answering multiple choice questions, please see the multiple choice exam section in this chapter.

Short answer questions in maths exams


These type of questions in a maths exam require you to write a short answer response to the question and provide any mathematical working.  Things to remember for these question types include:

  • what the question is asking you to do?
  • what information are you given?
  • is there anything else you need to do (multi-step questions) to get the answer?
  • Highlight/underline the key words. If possible, draw a picture—this helps to visualise the problem (and there may be marks associated with diagrams).
  • Show all working! Markers cannot give you makes if they cannot follow your working.
  • Check your work.
  • Ensure that your work is clear and able to be read.

Exam day tips

Before you start your maths exam, you should take some time to peruse (read through) the exam.  Regardless of whether your exam has a dedicated perusal time, we recommend that you spend time at the beginning of the exam to read through the whole exam. Below are some strategies for perusing and completing maths based exams.

When you commence your exam:

  • Read the exam instructions carefully, if you have any queries, clarify with your exam supervisor
  • During the perusal time, write down anything you are worried about forgetting during the exam
  • Read each question carefully, look for key words, make notes and write formulae
  • Prioritise questions. Do the questions you are most comfortable with first and spend more time on the questions worth more marks. This will help you to maximise your marks.

Once you have read through your options and made a plan on how to best approach your exam, it is time to focus on completing your maths exam. During your exam:

  • Label each question clearly—this will allow the marker to find each question (and part), as normally you can answer questions in any order you want! (If you are required to answer the questions in a particular order it will be included as part of your exam instructions.)
  • If you get stuck, write down anything you know about that type of question – it could earn you marks
  • The process is important—show that you understand the process by writing your working or the process, even if the numbers don’t work out
  • If you get really stuck on a question, don’t spend too long on it.  Complete the other questions, something might come to you when you are working on a different question.
  • Where possible, draw pictures even if you can’t find the words to explain
  • Avoid using whiteout to correct mistakes, use a single line to cross out incorrect working
  • Don’t forget to use the correct units of measurement
  • If time permits, check your working and review your work once you have answered all the questions

This chapter provided an overview of different types of exams and some specific preparation strategies.  Practising for the specific type of exam you will be completing has a number of benefits, including helping you to become comfortable (or at least familiar) with the type of exam and allowing you to focus on answering the questions themselves.  It also allows you to adapt your exam preparation to best prepare you for the exam.

  • Know your exam type and practise answering those types of questions.
  • Ensure you know the requirements for your specific type of exam (e.g., closed, restricted, open book) and what materials you can use in the exam.
  • Multiple choice exams – read the response options carefully.
  • Short answer exams– double check that you have answered all parts of the question.
  • Essay exams – practise writing essay responses under timed exam conditions.
  • Case study exams – ensure that you refer to the case in your response.
  • Maths exams – include your working for maths and statistics exams
  • For handwritten exams write legibly, so your maker can read your work.

Academic Success Copyright © 2021 by Anita Frederiks; Kate Derrington; and Cristy Bartlett is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Math Article

Algebra is one of the oldest branches in the history of mathematics that deals with number theory, geometry, and analysis. The definition of algebra sometimes states that the study of the mathematical symbols and the rules involves manipulating these mathematical symbols. Algebra includes almost everything right from solving elementary equations to the study of abstractions. Algebra equations are included in many chapters of Maths, which students will learn in their academics. Also, there are several formulas and identities present in algebra.

What is Algebra?

Algebra helps solve the mathematical equations and allows to derive unknown quantities, like the bank interest, proportions, percentages. We can use the variables in the algebra to represent the unknown quantities that are coupled in such a way as to rewrite the equations.

The algebraic formulas are used in our daily lives to find the distance and volume of containers and figure out the sales prices as and when needed. Algebra is constructive in stating a mathematical equation and relationship by using letters or other symbols representing the entities. The unknown quantities in the equation can be solved through algebra.

Some of the main topics coming under algebra include Basics of algebra, exponents, simplification of algebraic expressions, polynomials, quadratic equations, etc.


In BYJU’S, students will get the complete details of algebra, including its equations, terms, formulas, etc. Also, solve examples based on algebra concepts and practice worksheets to better understand the fundamentals of algebra. Algebra 1 and algebra 2 are the Maths courses included for students in their early and later stages of academics, respectively. Like, algebra 1 is the elementary algebra practised in classes 7,8 or sometimes 9, where basics of algebra are taught. But, algebra 2 is advanced algebra, which is practised at the high school level. The algebra problems will involve expressions, polynomials, the system of equations, real numbers, inequalities, etc. Learn more algebra symbols that are used in Maths.

essay on types of maths

Branches of Algebra

As it is known that,  algebra is the concept based on unknown values called variables. The important concept of algebra is equations. It follows various rules to perform arithmetic operations. The rules are used to make sense of sets of data that involve two or more variables. It is used to analyse many things around us. You will probably use the concept of algebra without realising it. Algebra is divided into different sub-branches such as elementary algebra, advanced algebra, abstract algebra, linear algebra, and commutative algebra.

Algebra 1 or Elementary Algebra

Elementary Algebra covers the traditional topics studied in a modern elementary algebra course. Arithmetic includes numbers along with mathematical operations like +,  -,  x,  ÷. But in algebra, the numbers are often represented by the symbols and are called variables such as x, a, n, y. It also allows the common formulation of the laws of arithmetic such as, a + b = b + a and it is the first step that shows the systematic exploration of all the properties of a system of real numbers.

The concepts coming under elementary algebra include variables, evaluating expressions and equations, properties of equalities and inequalities, solving the algebraic equations and linear equations having one or two variables, etc .

Algebra 2 or Advanced Algebra

This is the intermediate level of Algebra. This algebra has a high level of equations to solve as compared to pre-algebra. Advanced algebra will help you to go through the other parts of algebra such as:

  • Equations with inequalities
  • Solving system of linear equations
  • Graphing of functions and linear equations
  • Conic sections
  • Polynomial Equation
  • Quadratic Functions with inequalities
  • Polynomials and expressions with radicals
  • Sequences and series
  • Rational expressions
  • Trigonometry
  • Discrete mathematics and probability

Abstract Algebra

Abstract algebra is one of the divisions in algebra which discovers the truths relating to algebraic systems independent of the specific nature of some operations. These operations, in specific cases, have certain properties. Thus we can conclude some consequences of such properties. Hence this branch of mathematics called abstract algebra.

Abstract algebra deals with algebraic structures like the fields, groups, modules, rings, lattices, vector spaces, etc.

The concepts of the abstract algebra are below-

  • Sets – Sets is defined as the collection of the objects that are determined by some specific property for a set. For example – A set of all the 2×2 matrices, the set of two-dimensional vectors present in the plane and different forms of finite groups.
  • Binary Operations – When the concept of addition is conceptualized, it gives the binary operations. The concept of all the binary operations will be meaningless without a set.
  • Identity Element – The numbers 0 and 1 are conceptualized to give the idea of an identity element for a specific operation. Here, 0 is called the identity element for the addition operation, whereas 1 is called the identity element for the multiplication operation.
  • Inverse Elements – The idea of Inverse elements comes up with a negative number. For addition, we write “ -a” as the inverse of “a” and for the multiplication, the inverse form is written as “a -1″ .
  • Associativity – When integers are added, there is a property known as associativity in which the grouping up of numbers added does not affect the sum. Consider an example, (3 + 2) + 4 = 3 + (2 + 4)

Linear Algebra

Linear algebra is a branch of algebra that applies to both applied as well as pure mathematics. It deals with the linear mappings between the vector spaces. It also deals with the study of planes and lines. It is the study of linear sets of equations with transformation properties. It is almost used in all areas of Mathematics. It concerns the linear equations for the linear functions with their representation in vector spaces and matrices. The important topics covered in linear algebra are as follows:

  • Linear equations
  • Vector Spaces
  • Matrices and matrix decomposition
  • Relations and Computations

Commutative algebra

Commutative algebra is one of the branches of algebra that studies the commutative rings and their ideals. The algebraic number theory, as well as the algebraic geometry, depends on commutative algebra. It includes rings of algebraic integers, polynomial rings, and so on. Many other mathematics areas draw upon commutative algebra in different ways, such as differential topology, invariant theory, order theory, and general topology. It has occupied a remarkable role in modern pure mathematics.

Video Lessons

Watch the below videos to understand more about algebraic expansion and identities, algebraic expansion.

essay on types of maths

Algebraic Identities

essay on types of maths

Parts of Algebra

Introduction to algebra.

  • Algebra Basics
  • Addition And Subtraction Of Algebraic Expressions
  • Multiplication Of Algebraic Expressions
  • BODMAS And Simplification Of Brackets
  • Substitution Method
  • Solving Inequalities
  • Introduction to Exponents
  • Square Roots and Cube Roots
  • Simplifying Square Roots
  • Laws of Exponents
  • Exponents in Algebra


  • Associative Property , Commutative Property ,  Distributive Laws
  • Cross Multiply
  • Fractions in Algebra


  • What is a Polynomial?
  • Adding And Subtracting Polynomials
  • Multiplying Polynomials
  • Rational Expressions
  • Dividing Polynomials
  • Polynomial Long Division
  • Rationalizing The Denominator

Quadratic Equations

  • Solving Quadratic Equations
  • Completing the Square

Solved Examples on Algebra

Example 1: Solve the equation 5x – 6 = 3x – 8.

5x – 6 = 3x – 8

Adding 6 on both sides,

5x – 6 + 6 = 3x – 8 + 6

5x = 3x – 2

Subtract 3x from both sides,

5x – 3x = 3x – 2 – 3x

Dividing both sides of the equation by 2,

2x/2 = -2/2

\(\begin{array}{l}Simplify:\ \frac{7x+5}{x-4}-\frac{6x-1}{x-3}-\frac{1}{x^2-7x+12}=1\end{array} \)

Consider, x 2 – 7x + 12

= x 2 – 3x – 4x + 12

= x(x – 3) – 4(x – 3)

= (x – 4)(x – 3)

Now, from the given,

Here, LCM of denominators = (x – 4)(x – 3)

[(7x + 5)(x – 3) – (6x – 1)(x – 4) – 1]/ (x – 4)(x – 3) = 1

7x 2 – 21x + 5x – 15 – (6x 2 – 24x – x + 4) – 1 = (x – 4)(x – 3)

x 2 + 9x – 20 = x 2 – 7x + 12

9x + 7x = 12 + 20

On removing the square roots of the LHS, we get;

x 2 – 5 = 2401 – 1666x + 289x 2

2401 – 1666x + 289x 2 = x 2 – 5

Adding 5 on both sides,

2401 – 1666x + 289x 2 + 5 = x 2 – 5 + 5

289x 2 – 1666x + 2406 = x 2

Subtracting x 2 from sides,

289x 2 – 1666x + 2406 – x 2 = x 2 – x 2

288x 2 – 1666x + 2406 = 0

Using quadratic formula,

Therefore, x = 3, 401/144

We know that, log2 base 2 = 1

Now, by cancelling the log on both sides, we get;

(x 2 – 6x) = 8(1 – x)

x 2 – 6x = 8 – 8x

x 2 – 6x + 8x – 8 = 0

x 2 + 2x – 8 = 0

x 2 + 4x – 2x – 8 = 0

x(x + 4) – 2(x + 4) = 0

(x – 2)(x + 4) = 0

Therefore, x = 2, -4

Example 5: Solve 2e x + 5 = 115

2e x + 5 = 115

2e x = 115 – 5

e x = 110/2

Algebra Related Articles

Frequently asked questions on algebra, what is algebra.

Algebra is a branch of mathematics that deals with solving equations and finding the values of variables. It can be used in different fields such as physics, chemistry, and economics to solve problems. Algebra is not just solving equations but also understanding the relationship between numbers, operations, and variables.

Why should students learn algebra?

Algebra is a powerful and useful tool for problem-solving, research, and everyday life. It’s important for students to learn algebra to increase their problem-solving skills, range of understanding, and success in both maths and other subjects.

Is algebra hard to learn?

Algebra is not that hard to learn, in fact, it can be simple and sometimes even fun. Some people say that algebra is a hard subject to learn, while others confidently say it is easy. If you think you are struggling with algebra, don’t be discouraged by what other people have told you about it; work through the problems in your textbook until you master the concepts without difficulty.

What are the basics of algebra?

The basics of algebra are: Addition and subtraction of algebraic expressions Multiplications and division of algebraic expression Solving equations Literal equations and formulas Applied verbal problems

Mention the types of algebraic equations

The five main types of algebraic equations are: Monomial or polynomial equations Exponential equations Trigonometric equations Logarithmic equations Rational equations

What are the branches of algebra?

The branches of algebra are: Pre-algebra Elementary algebra Abstract algebra Linear algebra Universal algebra

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Maths related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

essay on types of maths

I was doing a math example in Cube and Cuboid – Shape, Properties, Surface Area and Volume Formulas. The Example 3: Find the surface area of a cube having its sides equal to 8 cm in length. Solution: Given length, ‘a’= 8 cm Surface area = 6a2 = 6× 82 = 6 ×64 = 438 cm2 I have been doing this above example and I keep getting the answer of = 384 cm2 What am I doing wrong? 6X82 = 384 6X64 = 384

Surface area of cube = 6a^2 = 6 x 8^2 = 6 x 8 x 8 = 384

Thanks for making this app I am so happy to learn on this app. This app makes my studies more intresting. And wonderful.

I really had a great time here. I can personally say this arrangement is good

essay on types of maths

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.


You are using an outdated browser. Upgrade your browser today or install Google Chrome Frame to better experience this site.

  • Professional learning

Teach. Learn. Grow.

Teach. learn. grow. the education blog.

Mary Resanovich

Mapping math: 5 ways to use concept maps in the math classroom

essay on types of maths

I am a notetaker, and an analog one at that. I always have a notebook at my desk to jot down to-dos, project notes, and other things I need to remember. In an effort to be more eco-conscious, my supply of notebooks is my girls’ old school composition books, which are rarely fully used.

Recently, I grabbed a “new” notebook from the pile next to my desk. Of course, before using it, I had to flip through my daughter’s notes. I had grabbed a science notebook that I’m guessing was from middle school. The large number of graphic organizers, particularly concept maps, jumped out at me. There were concept maps of parts of an ecosystem, a food web, the states of matter, and several other topics.

Noticing that the next book in the pile was a math notebook, I flipped through that, wondering if I would see a similar array of concept maps in there. While the notebook was packed with notes, exercises, and things like place value and conversion tables, there was nothing like what I saw in the science notebook. This got me wondering about the idea of using concept maps in math.

What are concept maps?

The term “concept map” is not new and it’s likely to be, if you’ll pardon the pun, a concept with which you are familiar.

At the simplest level, a concept map is a way to organize information and show relationships visually. While some definitions of concept maps include a wide array of graphic organizers, like Venn diagrams, T charts, and tables, I’d like to focus on a more specific type: those consisting of nodes and connectors. Nodes are where you record concepts or ideas, and connectors (lines, arrows, and/or phrases) show how the nodes and concepts relate.

Concept maps can have either a hierarchical structure or be based around a central organizing theme. Concept maps organized around a central theme are sometimes referred to as mind maps or spider maps. As an example, I’ve reproduced the states of matter concept map from my daughter’s notebook below.

A concept map visually explains the states of matter.

You can also find examples of concept and mind maps at this University of Wollongong website and in this research paper on concept mapping in math . Achieve the Core’s coherence map as well as their graph of the content standards are examples of complex concept maps that you might already be engaging with in your teaching practice.

Concept maps accelerate student learning

You may be familiar with John Hattie’s visible learning project . His original book harnessed over 800 meta-analyses to help determine what factors and strategies research has found to have positively impacted student learning. Over the years, Hattie has continued to add to this body of work, and numerous sites, including Visible Learning and Corwin’s Visible Learning Meta x research database , have been created to make this information available to educators.

Searching the Meta x database for concept mapping shows that based on 12 meta-analyses of over 1,200 studies involving 26,000 students, concept mapping has the “potential to considerably accelerate” student learning with an effect size of 0.62. For reference, Hattie has defined anything with an effect size of more than 0.4 as having a greater than typical positive impact on student learning .

So what exactly makes concept maps effective? One of the key components of a concept map—the element of connection—taps into a highly effective learning strategy: in “Maximum impact: 3 ways to make the most of supplemental content,” I talked about the importance of creating connections between ideas, particularly new ideas and previously learned ones. Embedding new knowledge into a web of previously learned content frees up working memory , which, in turn, supports deeper learning than rote memorization of facts.

Connecting content, specifically conceptual understanding, is particularly important in math, where conceptual connections help give meaning to processes. The authors of the National Research Council’s book Adding It Up: Helping Children Learn in Mathematics explain that students with conceptual understanding “have organized their knowledge into a coherent whole, which enables them to learn new ideas by connecting those ideas to what they already know.” Creating concept maps in math helps avoid the type of instrumental learning of isolated skills that many of us experienced in our own education, and which my colleague Ted Coe talks about in “We all need mathematical ways of thinking: An ‘out of proportion’ example.”

Connecting content, specifically conceptual understanding, is particularly important in math, where conceptual connections help give meaning to processes.

In his seminal paper on concept maps , researcher Joseph Novak references the distinction between meaningful learning and rote learning . Rote learning is associated with passive acquisition, recognition, and recall of factual content. Meaningful learning is associated with learner-constructed understanding in which new knowledge is integrated into the existing schema of knowledge, resulting in an improved ability to both retain and transfer learning to new settings. A meta-analysis of concept map research showed that the construction of concept maps was associated with increased retention and transfer when compared to reading content, attending lectures, or engaging in class discussions. This effect held true across achievement levels, subjects, and settings and may be attributed to the active engagement required to organize one’s knowledge into a concept map.

Concept maps also pair well with retrieval exercises, which can help students cement their learning. In a previous post about our High Growth for All research project , which recommends ten specific instructional strategies proven to help advance learning , I talked about the idea of retrieval practice. This highly effective practice involves literally retrieving information from memory.

While there are different ways to have students create concept maps, combining concept mapping with retrieval practice, or asking students to create maps based on recalled information rather than information in front of them, can increase the impact of concept mapping . Using concept maps and retrieval practice together is a powerful combination that improves retention of new materials when compared to more traditional ways of studying, like reviewing or rereading the material repeatedly.

Teachers as mapmakers

How can you get started with concept maps in your classroom? A great first step can be doing it yourself.

Concept mapping can help teachers develop a deeper understanding of math and their standards. In her book Knowing and Teaching Elementary Mathematics , Liping Ma examines variations in Chinese and American teachers’ understandings of and approaches to fundamental math topics. In discussing subtraction with regrouping with teachers from both countries, she noticed that the Chinese teachers frequently referred to connections within math topics. These “knowledge packages,” as one teacher called them, represent the teachers’ understanding of math topics not as individual units of knowledge or even as a single progression, but as an interconnected web of concepts. The teacher explained that as you teach a piece of knowledge, “you should know the role of the present knowledge in that package. You have to know that the knowledge you are teaching is supported by which ideas or procedures, so your teaching is going to rely on, reinforce, and elaborate the learning of these ideas.”

There is no one right way to determine the related knowledge for a given topic. Creating even a simple concept map similar to the one shown on page 16 of the book can anchor the current learning in related content, which can help you determine appropriate scaffolds, supports, and enrichment content for your students. It can also give you an idea of what to look for in any student-created concept maps.

Before starting a new unit, consider mapping the unit content beforehand, being sure to include both previously learned content that the new topic connects to as well as where the knowledge is heading, at least at a high level. This can be a great activity for grade-level teams or even cross-grade teams to do together.

Getting started with students

When first introducing concept maps to students, you may wish to build some maps either in small groups or as a whole class so that you can model the process and guide student’s understanding of the mapping. And there is no right or wrong age to get started. Research has indicated that concept maps are a useful tool even with the youngest of students .

While there are plenty of concept map templates available online, I prefer to build a map from scratch to not constrain students. Whiteboards are a great tool for modeling mapping together, and Common Sense Media has compiled a list of concept mapping tools and apps for educators . The Florida Institute for Human and Machine Cognition’s concept mapping tool is free to download, and the “Learn about concept maps” section of their website contains links to documents and videos to help get you started. When working with small groups, the low-tech solution of Post-it notes and chart paper is conducive to rethinking connections and rearranging ideas.

The key to a good concept map is framing the guiding question. You can certainly just ask students to make a map of a particular topic, for example, measurement. However, it can be more effective to provide a question that encourages deeper consideration of the topic, for example, “How can we measure the length of an object?” Simply providing a topic tends to result in a more description-focused map, whereas a well-crafted question promotes more analysis.

Once you have created your question or determined your topic, prompt students to create a list of ideas and concepts related to the question. Novak refers to this as the parking lot. You may want to pre-create a list of concepts. Once students generate their parking lot list, you can either suggest any key terms that they missed or ask prompting questions to elicit them.

The next stage—connecting the ideas from the parking lot and building the maps—can be the most challenging. You want students to develop the ability to make meaningful connections and not just create a linear connection or “string map” like the one Novak shows on page 13 of “The theory underlying concept maps and how to construct and use them.” As students begin arranging concepts, you may need to prompt them to create more specific linking phrases to better articulate what truly connects the various ideas.

In introducing concept maps, aim to emphasize that they are never truly “done.” Students are always gaining new knowledge and understandings of the connections between that knowledge. As such, their concept maps will change and grow, and students should be encouraged to revisit and alter concept maps frequently.

5 times to try concept maps

When you think about using concept maps in math, there are probably a few obvious topics that come to mind, like mapping the types of real numbers and types of quadrilaterals. Those are certainly viable topics. However, concept maps can be used to develop both a deeper and wider interconnection of topics. Like I mentioned earlier, more abstract questions can result in rich maps that connect to multiple concepts.

Let’s look at five specific times to use concept mapping in your math class:

  • Unit opener. If you’ve done your own concept mapping for a unit, you know what precursor concepts underlie the upcoming unit. Having students create a concept map related to key foundational skills can help activate their prior learning and provide you with formative assessment data. So, before starting a fourth-grade unit about multiplicative comparison, for example, you might ask students to create a concept map around the question “How do addition and multiplication compare?” You can refer to students’ maps during the unit to help students distinguish between additive and multiplicative thinking.
  • Making connections during the unit. As you progress through a unit of study, have students create their own concept maps of what they are learning. At the end of each lesson or lesson series, students can revisit their maps to add new information or new connections. This is also a great way to help students connect what they learn in supplemental time to the whole-class core content. For example, you may have a group of students who are using their supplemental time to review measurement conversion in support of understanding the whole class unit on ratios. At the end of each week, ask these students to consider how they might add what they practiced with unit conversion to their concept map of ratios. Taking beginning and end-of-unit pictures of students’ concept maps can help them see how much their learning has grown.
  • Paired activity. Having students work in pairs to create concept maps together can lead to a rich dialogue. As students decide which concepts to add to the parking lot and share their understanding of how the concepts connect, they must both articulate their own thinking and seek to understand their classmates’ ideas.
  • Assessing conceptual understanding. Most math assessments focus on checking students’ procedural skill and fluency and their ability to apply these skills to real-world problems. Concept maps can give students a way to demonstrate their understanding of foundational concepts and how they interrelate. In addition to having students create maps from scratch, you can also ask them to fill in partially completed maps or have them correct maps with errors as quick formative checks. Using conceptual maps as assessments moves away from the idea of assessment that represents “closure of a topic, representing to students the closing of a door on a set of skills.” The expansive nature of concept maps gives you a sense of students’ in-the-moment conceptual understanding but reminds both you and them that their knowledge is always growing.
  • Year-long map. A wonderful way to close out a unit might be to add to a cumulative, year-long concept map. Ask students to think of the big ideas from the most recent unit. Creating a map that shows connections between big concepts learned across the year can really reinforce the idea of math as a cohesive subject. You can do this either via a map saved on the computer and shared on the white board or on a large piece of craft paper. Students can even add concepts learned in previous years to create a full picture of their math understanding.

Let’s get mapping!

Concept maps are a simple but effective tool for helping students actively organize and consolidate their knowledge. They can be particularly effective in helping them literally see the cohesiveness of math. If you need more help to get started, check out the resources below:

  • “Concept mapping” This five-minute BrainPOP video gives a great overview of concept maps and how to create them. It’s perfect for elementary students.
  • “Mind mapping and brainstorming apps and websites” This Common Sense Education page includes reviews of 12 mapping apps and websites with information about whether the resource is free and for what grade levels it is appropriate.
  • “Learn about concept maps” The Florida Institute for Human and Machine Cognition’s Cmap site contains links to articles about a variety of topics, including focus questions, the importance of linking words, how young children can engage with concept maps, and how to introduce concept maps to students.
  • “Mathematics concept maps: Assessing connections” This article from NCTM’s Teaching Children Mathematics journal models how small groups of fourth- and fifth-graders worked through a concept mapping activity.
  • “Promoting mathematics connections with concept mapping” This article from NCTM’s Mathematics Teaching in the Middle School journal includes an example rubric for using concept maps for assessment.
  • “Using concept maps to link mathematical ideas” This article from NCTM’s Mathematics Teaching in the Middle School journal discusses different ways to use concept maps in middle school.

Recommended for you

essay on types of maths

3 non-negotiables for differentiation in the math classroom

essay on types of maths

4 ways to engage students with writing in math class

essay on types of maths

That’s not how I learned it! 4 ways to help your child with “new math”

essay on types of maths

Helping students grow

Students continue to rebound from pandemic school closures. NWEA® and Learning Heroes experts talk about how best to support them here on our blog, Teach. Learn. Grow.

See the post

essay on types of maths

Put the science of reading into action

The science of reading is not a buzzword. It’s the converging evidence of what matters and what works in literacy instruction. We can help you make it part of your practice.

Get the guide

essay on types of maths

Support teachers with PL

High-quality professional learning can help teachers feel invested—and supported—in their work.

Read the article

STAY CURRENT by subscribing to our newsletter

You are now signed up to receive our newsletter containing the latest news, blogs, and resources from nwea..

The Pioneering Legacy of Katherine Johnson: a Trailblazer in Mathematics and Space Exploration

This essay about Katherine Johnson highlights her groundbreaking contributions to mathematics and space exploration despite facing racial and gender barriers. Born in 1918, Johnson’s remarkable talent in mathematics led her to work at NASA’s Flight Research Division, where she played a crucial role in missions like Alan Shepard’s first spaceflight and John Glenn’s orbit around the Earth. Her meticulous calculations were integral to the success of the Apollo program, including the historic Apollo 11 moon landing. Despite facing discrimination, Johnson’s resilience and determination paved the way for future generations of women and minorities in STEM fields. Her legacy continues to inspire and empower individuals worldwide.

How it works

In the annals of scientific history, certain names shine brightly, their contributions casting long shadows that shape the future of their fields. Among these luminaries stands Katherine Johnson, a figure whose brilliance and determination propelled her to the forefront of mathematics and space exploration in the 20th century. Born in 1918 in White Sulphur Springs, West Virginia, Johnson overcame racial and gender barriers to become one of the most celebrated mathematicians of her time.

Johnson’s journey into the world of mathematics began at a young age, displaying an exceptional aptitude for numbers and problem-solving.

Despite limited opportunities for African American women in STEM fields, she pursued her passion for mathematics, graduating summa cum laude from West Virginia State College at the age of just 18. Her talent did not go unnoticed, and she soon caught the attention of the National Advisory Committee for Aeronautics (NACA), the precursor to NASA.

At NACA, Johnson’s mathematical prowess found its perfect match in the burgeoning field of aerospace engineering. She joined the agency’s Flight Research Division, where her calculations played a crucial role in the success of numerous pioneering missions. Johnson’s calculations were instrumental in Alan Shepard’s historic journey as the first American in space and John Glenn’s groundbreaking orbit around the Earth. Her precise trajectory calculations ensured the safety and success of these missions, earning her the respect and admiration of her colleagues.

However, Johnson’s most enduring legacy lies in her work on the Apollo program, NASA’s ambitious initiative to land a man on the moon. As the space race reached its zenith, Johnson’s calculations were integral to the success of the Apollo 11 mission, which culminated in Neil Armstrong’s historic moonwalk. Her meticulous computations helped navigate the spacecraft through the complexities of space travel, overcoming countless challenges along the way.

Beyond her technical contributions, Johnson’s legacy is also a testament to her resilience in the face of adversity. As an African American woman working in a predominantly white and male industry, she confronted discrimination and prejudice on a daily basis. Yet, she refused to be deterred, breaking down barriers and paving the way for future generations of women and minorities in STEM.

In recognition of her trailblazing achievements, Johnson received numerous accolades throughout her lifetime, including the Presidential Medal of Freedom, the highest civilian honor in the United States. Her story has been immortalized in books, documentaries, and films, ensuring that her legacy will continue to inspire and empower future generations.

In conclusion, Katherine Johnson’s accomplishments stand as a testament to the power of intellect, determination, and perseverance. Through her groundbreaking work in mathematics and space exploration, she not only transformed our understanding of the cosmos but also challenged societal norms and paved the way for a more inclusive and equitable future. Her legacy will continue to inspire generations to come, reminding us that with passion and dedication, anything is possible.


Cite this page

The Pioneering Legacy of Katherine Johnson: A Trailblazer in Mathematics and Space Exploration. (2024, May 12). Retrieved from

"The Pioneering Legacy of Katherine Johnson: A Trailblazer in Mathematics and Space Exploration." , 12 May 2024, (2024). The Pioneering Legacy of Katherine Johnson: A Trailblazer in Mathematics and Space Exploration . [Online]. Available at: [Accessed: 13 May. 2024]

"The Pioneering Legacy of Katherine Johnson: A Trailblazer in Mathematics and Space Exploration.", May 12, 2024. Accessed May 13, 2024.

"The Pioneering Legacy of Katherine Johnson: A Trailblazer in Mathematics and Space Exploration," , 12-May-2024. [Online]. Available: [Accessed: 13-May-2024] (2024). The Pioneering Legacy of Katherine Johnson: A Trailblazer in Mathematics and Space Exploration . [Online]. Available at: [Accessed: 13-May-2024]

Don't let plagiarism ruin your grade

Hire a writer to get a unique paper crafted to your needs.


Our writers will help you fix any mistakes and get an A+!

Please check your inbox.

You can order an original essay written according to your instructions.

Trusted by over 1 million students worldwide

1. Tell Us Your Requirements

2. Pick your perfect writer

3. Get Your Paper and Pay

Hi! I'm Amy, your personal assistant!

Don't know where to start? Give me your paper requirements and I connect you to an academic expert.

short deadlines

100% Plagiarism-Free

Certified writers

essay on types of maths

30,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay on types of maths

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay on types of maths

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Different Maths Shapes for Students and Kids

essay on types of maths

  • Updated on  
  • May 11, 2024

essay on types of maths

In our daily life, we observe a wide range of shapes. From our favourite bottle that matches the aesthetic of our desk to the sandwiches we eat or the traffic cones we see on roads, shapes are all around us. In Mathematics, geometric shapes are figures that occupy space. Every shape has certain properties, like size, dimension, and angle, which help us classify them into two-dimensional (2D) and three-dimensional (3D). In this blog, we will learn more about the different maths shape and their properties. Let’s begin.   

Examples of 2D Shapes in Math

Two-dimensional shapes are flat shapes and closed figures. These figures lie only on the x-axis and y-axis. Here are some 2-dimensional shapes in maths for kids with their properties. 

1. Triangle 

  • A triangle is a polygon made of three sides.
  • It consists of three edges and three vertices. 
  • The sum of its internal angles is 180 degrees. 

2. Circle 

  • A circle is a round-shaped figure with no corners. 
  • It has 1 side. 
  • There are no vertices. 

3. Square 

  • A square is a quadrilateral shape made of four sides.
  • It has four vertices. 
  • All the four sides and angles of a square are equal.
  • The angles at all the vertices are equal to 90 degrees each.

4. Rectangle 

  • A rectangle is a quadrilateral.
  • It has four sides and four vertices. 
  • It has two pairs of opposite sides equal in length. 
  • The interior angles are at the right angles. 

5. Parallelogram

  • A parallelogram is a quadrilateral.
  • It has two pairs of parallel sides.
  • The opposite angles are equal in measure. 

6. Polygons

  • Polygons are made of line segments.
  • They do not have curves. 
  • They are enclosed structures based on different lengths of sides and different angles. 

Also Read: Cross-Sectional Area of Different Shapes with Formula

Examples of 3D Shapes in Maths

Three-dimensional shapes in geometry lie on the x-axis, y-axis, and z-axis. The z-axis shows the height of an object. 

  • A cube is a three-dimensional shape.
  • It has 6 faces, 8 vertices, and 12 edges. 
  • The faces of the cubes are square in shape. 
  • Example- A Rubik’s cube
  • A cuboid has 6 faces.
  • It has 8 vertices and 12 edges. 
  • The faces of a cuboid are in rectangular shape. 
  • Example- Matchbox 
  • A cone is a solid shape. 
  • It has a circular base.
  • It narrows from the surface to the top at a point called the apex or vertex.
  • Example- An ice cream cone

4. Cylinder

  • A cylinder is a solid shape.
  • It has two parallel circular bases connected by a curved surface. 
  • It has no vertex. 
  • Example- Gas cylinder
  • A sphere is a round shape in a 3D plane.
  • Its radius is extended to three dimensions (x-axis, y-axis, and z-axis). 
  • Example- Ball

 Related Blogs 

Keep reading our blogs to learn more about the Basic Concepts of Maths !

' src=

Parul Sharma

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

essay on types of maths

Connect With Us

essay on types of maths

30,000+ students realised their study abroad dream with us. Take the first step today.

essay on types of maths

Resend OTP in

essay on types of maths

Need help with?

Study abroad.

UK, Canada, US & More


Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

essay on types of maths

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

essay on types of maths

Make your study abroad dream a reality in January 2022 with

essay on types of maths

India's Biggest Virtual University Fair

essay on types of maths

Essex Direct Admission Day

Why attend .

essay on types of maths

Don't Miss Out

Watch CBS News

Teens come up with trigonometry proof for Pythagorean Theorem, a problem that stumped math world for centuries

By Bill Whitaker

May 5, 2024 / 7:00 PM EDT / CBS News

As the school year ends, many students will be only too happy to see math classes in their rearview mirrors. It may seem to some of us non-mathematicians that geometry and trigonometry were created by the Greeks as a form of torture, so imagine our amazement when we heard two high school seniors had proved a mathematical puzzle that was thought to be impossible for 2,000 years. 

We met Calcea Johnson and Ne'Kiya Jackson at their all-girls Catholic high school in New Orleans. We expected to find two mathematical prodigies.

Instead, we found at St. Mary's Academy , all students are told their possibilities are boundless.

Come Mardi Gras season, New Orleans is alive with colorful parades, replete with floats, and beads, and high school marching bands.

In a city where uniqueness is celebrated, St. Mary's stands out – with young African American women playing trombones and tubas, twirling batons and dancing - doing it all, which defines St. Mary's, students told us.

Junior Christina Blazio says the school instills in them they have the ability to accomplish anything. 

Christina Blazio: That is kinda a standard here. So we aim very high - like, our aim is excellence for all students. 

The private Catholic elementary and high school sits behind the Sisters of the Holy Family Convent in New Orleans East. The academy was started by an African American nun for young Black women just after the Civil War. The church still supports the school with the help of alumni.

In December 2022, seniors Ne'Kiya Jackson and Calcea Johnson were working on a school-wide math contest that came with a cash prize.

Ne'Kiya Jackson and Calcea Johnson

Ne'Kiya Jackson: I was motivated because there was a monetary incentive.

Calcea Johnson: 'Cause I was like, "$500 is a lot of money. So I-- I would like to at least try."

Both were staring down the thorny bonus question.

Bill Whitaker: So tell me, what was this bonus question?

Calcea Johnson: It was to create a new proof of the Pythagorean Theorem. And it kind of gave you a few guidelines on how would you start a proof.

The seniors were familiar with the Pythagorean Theorem, a fundamental principle of geometry. You may remember it from high school: a² + b² = c². In plain English, when you know the length of two sides of a right triangle, you can figure out the length of the third.

Both had studied geometry and some trigonometry, and both told us math was not easy. What no one told  them  was there had been more than 300 documented proofs of the Pythagorean Theorem using algebra and geometry, but for 2,000 years a proof using trigonometry was thought to be impossible, … and that was the bonus question facing them.

Bill Whitaker: When you looked at the question did you think, "Boy, this is hard"?

Ne'Kiya Jackson: Yeah. 

Bill Whitaker: What motivated you to say, "Well, I'm going to try this"?

Calcea Johnson: I think I was like, "I started something. I need to finish it." 

Bill Whitaker: So you just kept on going.

Calcea Johnson: Yeah.

For two months that winter, they spent almost all their free time working on the proof.

CeCe Johnson: She was like, "Mom, this is a little bit too much."

CeCe and Cal Johnson are Calcea's parents.

CeCe Johnson:   So then I started looking at what she really was doing. And it was pages and pages and pages of, like, over 20 or 30 pages for this one problem.

Cal Johnson: Yeah, the garbage can was full of papers, which she would, you know, work out the problems and-- if that didn't work she would ball it up, throw it in the trash. 

Bill Whitaker: Did you look at the problem? 

Neliska Jackson is Ne'Kiya's mother.

Neliska Jackson: Personally I did not. 'Cause most of the time I don't understand what she's doing (laughter).

Michelle Blouin Williams: What if we did this, what if I write this? Does this help? ax² plus ….

Their math teacher, Michelle Blouin Williams, initiated the math contest.

Michelle Blouin Williams

Bill Whitaker: And did you think anyone would solve it?

Michelle Blouin Williams: Well, I wasn't necessarily looking for a solve. So, no, I didn't—

Bill Whitaker: What were you looking for?

Michelle Blouin Williams: I was just looking for some ingenuity, you know—

Calcea and Ne'Kiya delivered on that! They tried to explain their groundbreaking work to 60 Minutes. Calcea's proof is appropriately titled the Waffle Cone.

Calcea Johnson: So to start the proof, we start with just a regular right triangle where the angle in the corner is 90°. And the two angles are alpha and beta.

Bill Whitaker: Uh-huh

Calcea Johnson: So then what we do next is we draw a second congruent, which means they're equal in size. But then we start creating similar but smaller right triangles going in a pattern like this. And then it continues for infinity. And eventually it creates this larger waffle cone shape.

Calcea Johnson: Am I going a little too—

Bill Whitaker: You've been beyond me since the beginning. (laughter) 

Bill Whitaker: So how did you figure out the proof?

Ne'Kiya Jackson: Okay. So you have a right triangle, 90° angle, alpha and beta.

Bill Whitaker: Then what did you do?

Bill Whitaker with Calcea Johnson and Ne'Kiya Jackson

Ne'Kiya Jackson: Okay, I have a right triangle inside of the circle. And I have a perpendicular bisector at OP to divide the triangle to make that small right triangle. And that's basically what I used for the proof. That's the proof.

Bill Whitaker: That's what I call amazing.

Ne'Kiya Jackson: Well, thank you.

There had been one other documented proof of the theorem using trigonometry by mathematician Jason Zimba in 2009 – one in 2,000 years. Now it seems Ne'Kiya and Calcea have joined perhaps the most exclusive club in mathematics. 

Bill Whitaker: So you both independently came up with proof that only used trigonometry.

Ne'Kiya Jackson: Yes.

Bill Whitaker: So are you math geniuses?

Calcea Johnson: I think that's a stretch. 

Bill Whitaker: If not genius, you're really smart at math.

Ne'Kiya Jackson: Not at all. (laugh) 

To document Calcea and Ne'Kiya's work, math teachers at St. Mary's submitted their proofs to an American Mathematical Society conference in Atlanta in March 2023.

Ne'Kiya Jackson: Well, our teacher approached us and was like, "Hey, you might be able to actually present this," I was like, "Are you joking?" But she wasn't. So we went. I got up there. We presented and it went well, and it blew up.

Bill Whitaker: It blew up.

Calcea Johnson: Yeah. 

Ne'Kiya Jackson: It blew up.

Bill Whitaker: Yeah. What was the blowup like?

Calcea Johnson: Insane, unexpected, crazy, honestly.

It took millenia to prove, but just a minute for word of their accomplishment to go around the world. They got a write-up in South Korea and a shout-out from former first lady Michelle Obama, a commendation from the governor and keys to the city of New Orleans. 

Bill Whitaker: Why do you think so many people found what you did to be so impressive?

Ne'Kiya Jackson: Probably because we're African American, one. And we're also women. So I think-- oh, and our age. Of course our ages probably played a big part.

Bill Whitaker: So you think people were surprised that young African American women, could do such a thing?

Calcea Johnson: Yeah, definitely.

Ne'Kiya Jackson: I'd like to actually be celebrated for what it is. Like, it's a great mathematical achievement.

Achievement, that's a word you hear often around St. Mary's academy. Calcea and Ne'Kiya follow a long line of barrier-breaking graduates. 

The late queen of Creole cooking, Leah Chase , was an alum. so was the first African-American female New Orleans police chief, Michelle Woodfork …

And judge for the Fifth Circuit Court of Appeals, Dana Douglas. Math teacher Michelle Blouin Williams told us Calcea and Ne'Kiya are typical St. Mary's students.  

Bill Whitaker: They're not unicorns.

Michelle Blouin Williams: Oh, no no. If they are unicorns, then every single lady that has matriculated through this school is a beautiful, Black unicorn.

Pamela Rogers: You're good?

Pamela Rogers, St. Mary's president and interim principal, told us the students hear that message from the moment they walk in the door.

St. Mary's Academy president and interim principal Pamela Rogers

Pamela Rogers: We believe all students can succeed, all students can learn. It does not matter the environment that you live in. 

Bill Whitaker: So when word went out that two of your students had solved this almost impossible math problem, were they universally applauded?

Pamela Rogers: In this community, they were greatly applauded. Across the country, there were many naysayers.

Bill Whitaker: What were they saying?

Pamela Rogers: They were saying, "Oh, they could not have done it. African Americans don't have the brains to do it." Of course, we sheltered our girls from that. But we absolutely did not expect it to come in the volume that it came.  

Bill Whitaker: And after such a wonderful achievement.

Pamela Rogers: People-- have a vision of who can be successful. And-- to some people, it is not always an African American female. And to us, it's always an African American female.

Gloria Ladson-Billings: What we know is when teachers lay out some expectations that say, "You can do this," kids will work as hard as they can to do it.

Gloria Ladson-Billings, professor emeritus at the University of Wisconsin, has studied how best to teach African American students. She told us an encouraging teacher can change a life.

Bill Whitaker: And what's the difference, say, between having a teacher like that and a whole school dedicated to the excellence of these students?

Gloria Ladson-Billings: So a whole school is almost like being in Heaven. 

Bill Whitaker: What do you mean by that?

Bill Whitaker and Gloria Ladson-Billings

Gloria Ladson-Billings: Many of our young people have their ceilings lowered, that somewhere around fourth or fifth grade, their thoughts are, "I'm not going to be anything special." What I think is probably happening at St. Mary's is young women come in as, perhaps, ninth graders and are told, "Here's what we expect to happen. And here's how we're going to help you get there."

At St. Mary's, half the students get scholarships, subsidized by fundraising to defray the $8,000 a year tuition. Here, there's no test to get in, but expectations are high and rules are strict: no cellphones, modest skirts, hair must be its natural color.

Students Rayah Siddiq, Summer Forde, Carissa Washington, Tatum Williams and Christina Blazio told us they appreciate the rules and rigor.

Rayah Siddiq: Especially the standards that they set for us. They're very high. And I don't think that's ever going to change.

Bill Whitaker: So is there a heart, a philosophy, an essence to St. Mary's?

Summer Forde: The sisterhood—

Carissa Washington: Sisterhood.

Tatum Williams: Sisterhood.

Bill Whitaker: The sisterhood?

Voices: Yes.

Bill Whitaker: And you don't mean the nuns. You mean-- (laughter)

Christina Blazio: I mean, yeah. The community—

Bill Whitaker: So when you're here, there's just no question that you're going to go on to college.

Rayah Siddiq: College is all they talk about. (laughter) 

Pamela Rogers: … and Arizona State University (Cheering)

Principal Rogers announces to her 615 students the colleges where every senior has been accepted.

Bill Whitaker: So for 17 years, you've had a 100% graduation rate—

Pamela Rogers: Yes.

Bill Whitaker: --and a 100% college acceptance rate?

Pamela Rogers: That's correct.

Last year when Ne'Kiya and Calcea graduated, all their classmates went to college and got scholarships. Ne'Kiya got a full ride to the pharmacy school at Xavier University in New Orleans. Calcea, the class valedictorian, is studying environmental engineering at Louisiana State University.

Bill Whitaker: So wait a minute. Neither one of you is going to pursue a career in math?

Both: No. (laugh)

Calcea Johnson: I may take up a minor in math. But I don't want that to be my job job.

Ne'Kiya Jackson: Yeah. People might expect too much out of me if (laugh) I become a mathematician. (laugh)

But math is not completely in their rear-view mirrors. This spring they submitted their high school proofs for final peer review and publication … and are still working on further proofs of the Pythagorean Theorem. Since their first two …

Calcea Johnson: We found five. And then we found a general format that could potentially produce at least five additional proofs.

Bill Whitaker: And you're not math geniuses?

Bill Whitaker: I'm not buying it. (laughs)

Produced by Sara Kuzmarov. Associate producer, Mariah B. Campbell. Edited by Daniel J. Glucksman.

Bill Whitaker

Bill Whitaker is an award-winning journalist and 60 Minutes correspondent who has covered major news stories, domestically and across the globe, for more than four decades with CBS News.

More from CBS News

Israel preparing for Rafah invasion in Gaza amid increasing tension with U.S.

60 Minutes Archive: Coverage of North Korea

Reporting on the battle with Hezbollah in Metula, Israel

U.S., Israel "drifting apart," former head of Israeli army intelligence says

Help | Advanced Search

Mathematics > Quantum Algebra

Title: rll-realization of two-parameter quantum affine algebra of type $b_n^{(1)}$.

Abstract: In this paper, we firstly provide the correspondence between the FRT formalism and the Drindeld-Jimbo presentation for $U_{r, s}(\mathfrak{so}_{2n+1})$, using the theory of finite dimensional weight modules. In the affine case $U_{r, s}(\widehat{\mathfrak{so}_{2n+1}}),$ we give its RLL realization via the Gauss decomposition. Thus we establish the correspondence between this realization and the Drinfeld realization.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

Trees flower outside Widener Library.

Roger Ware Brockett, 84

Liz Breadon (pictured) speaking during the event.

Providing community support

LyLena Estabine standing at the entrance to her church.

A change of mind, heart, and soul

So how do you track spread of disease by the numbers.

Headshot of Ivan Specht.

Kris Snibbe/Harvard Staff Photographer

Anne J. Manning

Harvard Staff Writer

Ivan Specht decided to employ his love of math during pandemic, which led to contact-tracing app, papers, future path

Part of the commencement 2024 series.

A collection of stories covering Harvard University’s 373rd Commencement.

Ivan Specht started at Harvard on track to study pure mathematics. But when COVID-19 sent everyone home, he began wishing the math he was doing had more relevance to what was happening in the world.

Specht, a New York City native, expanded his coursework, arming himself with statistical modeling classes, and began to “fiddle around” with simulating ways diseases spread through populations. He got hooked. During the pandemic, he became one of only two undergraduates to serve on Harvard’s testing and tracing committee, eventually developing a prototype contact-tracing app called CrimsonShield.

Specht took his curiosity for understanding disease propagation to the lab of computational geneticist Pardis Sabeti , professor in Organismic and Evolutionary Biology at Harvard and member of the Broad Institute, known for her work sequencing the Ebola virus in 2014 . Specht, now a senior, has since co-authored several studies around new statistical methods for analyzing the spread of infectious diseases, with plans to continue that work in graduate school.

“Ivan is absolutely brilliant and a joy to work with, and his research accomplishments already as an undergraduate are simply astounding,” Sabeti said. “He is operating at the level of a seasoned postdoc.”

His senior thesis, “Reconstructing Viral Epidemics: A Random Tree Approach,” described a statistical model aimed at tackling one of the most intractable problems that plague infectious disease researchers: determining who transmitted a given pathogen to whom during a viral outbreak. Specht was co-advised by computer science Professor Michael Mitzenmacher, who guided the statistical and computational sections of his thesis, particularly in deriving genomic frequencies within a host using probabilistic methods.

Specht said the pandemic made clear that testing technology could provide valuable information about who got sick, and even what genetic variant of a pathogen made them sick. But mapping paths of transmission was much more challenging because that process was completely invisible. Such information, however, could provide crucial new details into how and where transmission occurred and be used to test things such as vaccine efficacy or the effects of closing schools. 

Specht’s work exploited the fact that viruses leave clues about their transmission path in their phylogenetic trees, or lines of evolutionary descent from a common ancestor. “It turns out that genome sequences of viruses provide key insight into that underlying network,” said the joint mathematics and statistics concentrator.

Uncovering this transmission network goes to the heart of how single-stranded RNA pathogens survive: Once they infect their host, they mutate, producing variants that are marked by slightly different genetic barcodes. Specht’s statistical model determines how the virus spreads by tracking the frequencies of different viral variants observed within a host.  

As the centerpiece of his thesis, he reconstructed a dataset of about 45,000 SARS-CoV-2 genomes across Massachusetts, providing insights into how outbreaks unfolded across the state.

Specht will take his passion for epidemiological modeling to graduate school at Stanford University, with an eye toward helping both researchers and communities understand and respond to public health crises.

A graphic designer with experience in scientific data visualization, Specht is focused not only on understanding outbreaks, but also creating clear illustrations of them. For example, his thesis contains a creative visual representation of those 45,000 Massachusetts genomes, with colored dots representing cases, positioned nearby other “dots” they are likely to have infected.

Specht’s interest in graphics began in middle school when, as an enthusiast of trains and mass transit, he started designing imagined subway maps for cities that lack actual subways, like Austin, Texas . At Harvard, he designed an interactive “subway map” depicting a viral outbreak.

As a member of the Sabeti lab, Specht taught an infectious disease modeling course to master’s and Ph.D. students at University of Sierra Leone last summer. His outbreak analysis tool is also now being used in an ongoing study of Lassa fever in that region. And he co-authored two chapters of a textbook on outbreak science in collaboration with the Moore Foundation.

Over the past three years, Specht has been lead author of a paper in Scientific Reports and another in Cell Patterns , and co-author on two others, including a cover story in Cell . His first lead-author paper, “The case for altruism in institutional diagnostic testing,” showed that organizations like Harvard should allocate COVID-19 testing capacity to their surrounding communities, rather than monopolize it for themselves. That work was featured in The New York Times .

During his time at Harvard, Specht lived in Quincy House and was design editor of the Harvard Advocate, the University’s undergraduate literary magazine. In his free time he also composes music, and he still considers himself a mass transit enthusiast.

In the acknowledgements section of his thesis, he credited Sabeti with opening his eyes to the “many fascinating problems at the intersection of math, statistics, and computational biology.”

“I could fill this entire thesis with reasons I am grateful for Professor Sabeti, but I think they can be summarized by the sense of wonder and inspiration I feel every time I set foot in her lab.”

Share this article

You might like.

Memorial Minute — Faculty of Arts and Sciences

Liz Breadon (pictured) speaking during the event.

Harvard Allston Partnership Fund awards grants to 26 Allston-Brighton nonprofits

LyLena Estabine standing at the entrance to her church.

Choosing Harvard took LyLena Estabine down an uncertain path. The former student co-president has no regrets.

Epic science inside a cubic millimeter of brain

Researchers publish largest-ever dataset of neural connections

Excited about new diet drug? This procedure seems better choice.

Study finds minimally invasive treatment more cost-effective over time, brings greater weight loss

How far has COVID set back students?

An economist, a policy expert, and a teacher explain why learning losses are worse than many parents realize


  1. PDF A Guide to Writing Mathematics

    many of the same guidelines in a mathematics paper as you would in a paper written about these other subjects. Basics: Combining Words and Equations Following the rules of grammar. Good writing observes the rules of grammar. This applies to writing in mathematics papers as well! When you write in a math class, you are expected to use correct ...

  2. Math Essay

    Long Essay on Math 500 Words in English. Long Essay on Math is usually given to classes 7, 8, 9, and 10. Mathematics is one of the common subjects that we study since our childhood. It is generally used in our daily life. Every person needs to learn some basics of it. Even counting money also includes math.

  3. Essays About Math: Top 10 Examples and Writing Prompts

    Math may seem "useless" and "annoying" to many, but the essay gives readers a clear message: we need math to succeed. 3. Short essay on the importance of Mathematics by Jay Prakash. "In this modern age of Science and Technology, emphasis is given on Science such as Physics, Chemistry, Biology, Medicine and Engineering.

  4. Math Essay Ideas for Students: Exploring Mathematical Concepts

    Discuss in your essay classic games like The Prisoner's Dilemma and examine how mathematical models can shed light on complex social interactions. Explore the cutting-edge applications of game theory in diverse fields, such as cybersecurity and evolutionary biology. If you still have difficulties choosing an idea for a math essay, find a ...

  5. PDF How to Write Mathematics

    level a lot of mathematics involves writing down a sequence of equations, a number or function appears at the bottom of the page and you get a tick or a cross depending on whether you are right or wrong. This is not the way mathematics is written at university. Writing mathematics involves putting together a coherent argument.

  6. What Students Are Saying About the Value of Math

    Nov. 10, 2022. "Mathematics, I now see, is important because it expands the world," Alec Wilkinson writes in a recent guest essay. "It is a point of entry into larger concerns. It teaches ...

  7. Group 5: Mathematics

    Overview. An extended essay (EE) in mathematics is intended for students who are writing on any topic that has a mathematical focus and it need not be confined to the theory of mathematics itself. Essays in this group are divided into six categories: the applicability of mathematics to solve both real and abstract problems.

  8. Guide for Writing in Mathematics

    Using "I" in a reflective paper is generally appropriate, and for other types of writing, "we" may be used occasionally. • Writing in mathematics should be careful of tense. When describing facts, use present tense (facts aretrue). When describing experiments or methods, use past tense (experiments wereconducted).

  9. Math Essay Writing Guide

    Actually, the tasks of math essay writing want to make students demonstrate their knowledge and understanding of mathematical concepts and ideas. This kind of essay is what students of both college and high school students can be asked to create. Yes, this type of writing is quite special, and having its own tricks and demands.

  10. PDF Style Guide For Writing Mathematical Proofs

    A solution to a math problem is an argument. Therefore, it should be phrased and structured in the same way as an argument, with the intent to convince the reader of a certain idea. This is similar to writing an essay, where both the essay and the mathematical solution may be viewed in terms of content and style.

  11. Mathematics

    Mathematics, the science of structure, order, and relation that has evolved from counting, measuring, and describing the shapes of objects. Mathematics has been an indispensable adjunct to the physical sciences and technology and has assumed a similar role in the life sciences.

  12. The Guide on How to Write a Mathematics Essay

    There are two types of mathematics essays: History of math essays, Problem-solving mathematics essays. The writer should anticipate the type of the paper before choosing the topic to decrease the range of possible options. Mathematics writing that does not solve a certain problem have a different structure and do not need the implications and ...

  13. Writing in Mathematics

    Writing provides students with opportunities to communicate their mathematical thinking in an organized and coherent way. Students need to consider what mathematical terminology to use in their communication, what expressions or equations might be helpful as they lay out their solutions to problems they are solving, and what models or representations might provide additional insights into ...

  14. Mathematics

    Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a ...

  15. Read "High School Mathematics at Work: Essays and Examples for the

    After gaining some experience with these types of problems, students can be encouraged to pay close attention to the units and to be ready to make and support claims about the accuracy of their estimates. Paying attention to units and including units as algebraic quantities in calculations is a common technique in engineering and the sciences ...

  16. "What is Mathematics?" and why we should ask, where one should

    Mathematics is the abstract study of topics such as quantity (numbers), [2] structure, [3] space, [2] and change. [4][5][6] There is a range of views among mathematicians and philosophers as to the exact scope and definition of mathematics. [7][8] Mathematicians seek out patterns (Highland & Highland, 1961, 1963) and use them to formulate new conjectures.. Mathematicians resolve the truth or ...

  17. Mathematics and its branches

    mathematics, Science of structure, order, and relation that has evolved from counting, measuring, and describing the shapes of objects.. Mathematics deals with logical reasoning and quantitative calculation. Since the 17th century it has been an indispensable adjunct to the physical sciences and technology, to the extent that it is considered the underlying language of science.

  18. Lists of mathematics topics

    Information theory is a branch of applied mathematics and Social science involving the quantification of information. Historically, information theory was developed to find fundamental limits on compressing and reliably communicating data. Signal processing is the analysis, interpretation, and manipulation of signals.

  19. The Four Main Types of Essay

    An essay is a focused piece of writing designed to inform or persuade. There are many different types of essay, but they are often defined in four categories: argumentative, expository, narrative, and descriptive essays. Argumentative and expository essays are focused on conveying information and making clear points, while narrative and ...

  20. Essay on Importance of Mathematics in our Daily Life in 100, 200, and

    Essay on Importance of Mathematics in our Daily life in 100 words . Mathematics is a powerful aspect even in our day-to-day life. If you are a cook, the measurements of spices have mathematics in them. If you are a doctor, the composition of medicines that make you provide prescription is made by mathematics. Even if you are going out for just ...

  21. PDF Effective pedagogy in mathematics

    Research findings. Effective teachers draw on a range of representations and tools to support their students' mathematical development. These include the number system itself, algebraic symbolism, graphs, diagrams, models, equations, notations, images, analogies, metaphors, stories, textbooks, and technology.

  22. Types of Exams

    Each type of exam has different considerations and preparation, in addition to knowing the course material. This chapter extends the discussion from the previous chapter and examines different types of exams, including multiple choice, essay, and maths exams, and some strategies specific for those exam types.

  23. Algebra (Definition, Basics, Branches, Facts, Examples)

    Algebra is one of the oldest branches in the history of mathematics that deals with number theory, geometry, and analysis. The definition of algebra sometimes states that the study of the mathematical symbols and the rules involves manipulating these mathematical symbols. Algebra includes almost everything right from solving elementary equations to the study of abstractions.

  24. Mapping math: 5 ways to use concept maps in the math classroom

    When you think about using concept maps in math, there are probably a few obvious topics that come to mind, like mapping the types of real numbers and types of quadrilaterals. Those are certainly viable topics. However, concept maps can be used to develop both a deeper and wider interconnection of topics.

  25. The Pioneering Legacy of Katherine Johnson: A Trailblazer in

    This essay about Katherine Johnson highlights her groundbreaking contributions to mathematics and space exploration despite facing racial and gender barriers. Born in 1918, Johnson's remarkable talent in mathematics led her to work at NASA's Flight Research Division, where she played a crucial role in missions like Alan Shepard's first ...

  26. Different Maths Shapes for Students and Kids

    In Mathematics, geometric shapes are figures that occupy space. Every shape has certain properties, like size, dimension, and angle, which help us classify them into two-dimensional (2D) and three-dimensional (3D). In this blog, we will learn more about the different maths shape and their properties. Let's begin. Examples of 2D Shapes in Math

  27. CUET Mathematics Question Paper 2024: Download Previous Years' Maths

    CUET Previous Years' Mathematics Question Papers with Solutions CUET Maths Question Paper 2023. Exam Date and Slot Question Paper Answer Key; CUET Maths Question Paper 2023 July 2 Shift 3: Download PDF: ... Question Type: MCQs: Mode of Examination: Offline: Medium of Examination:

  28. Teens come up with trigonometry proof for Pythagorean Theorem, a

    Teens surprise math world with Pythagorean Theorem trigonometry proof | 60 Minutes 13:19. As the school year ends, many students will be only too happy to see math classes in their rearview mirrors.

  29. Title: RLL-realization of two-parameter quantum affine algebra of type

    View a PDF of the paper titled RLL-realization of two-parameter quantum affine algebra of type $B_n^{(1)}$, by Naihong Hu and 2 other authors

  30. So how do you track spread of disease? By the numbers

    Specht's work exploited the fact that viruses leave clues about their transmission path in their phylogenetic trees, or lines of evolutionary descent from a common ancestor. "It turns out that genome sequences of viruses provide key insight into that underlying network," said the joint mathematics and statistics concentrator.