logo image missing

  • > Machine Learning
  • > Statistics

What is Hypothesis Testing? Types and Methods

  • Soumyaa Rawat
  • Jul 23, 2021

What is Hypothesis Testing? Types and Methods title banner

Hypothesis Testing  

Hypothesis testing is the act of testing a hypothesis or a supposition in relation to a statistical parameter. Analysts implement hypothesis testing in order to test if a hypothesis is plausible or not. 

In data science and statistics , hypothesis testing is an important step as it involves the verification of an assumption that could help develop a statistical parameter. For instance, a researcher establishes a hypothesis assuming that the average of all odd numbers is an even number. 

In order to find the plausibility of this hypothesis, the researcher will have to test the hypothesis using hypothesis testing methods. Unlike a hypothesis that is ‘supposed’ to stand true on the basis of little or no evidence, hypothesis testing is required to have plausible evidence in order to establish that a statistical hypothesis is true. 

Perhaps this is where statistics play an important role. A number of components are involved in this process. But before understanding the process involved in hypothesis testing in research methodology, we shall first understand the types of hypotheses that are involved in the process. Let us get started! 

Types of Hypotheses

In data sampling, different types of hypothesis are involved in finding whether the tested samples test positive for a hypothesis or not. In this segment, we shall discover the different types of hypotheses and understand the role they play in hypothesis testing.

Alternative Hypothesis

Alternative Hypothesis (H1) or the research hypothesis states that there is a relationship between two variables (where one variable affects the other). The alternative hypothesis is the main driving force for hypothesis testing. 

It implies that the two variables are related to each other and the relationship that exists between them is not due to chance or coincidence. 

When the process of hypothesis testing is carried out, the alternative hypothesis is the main subject of the testing process. The analyst intends to test the alternative hypothesis and verifies its plausibility.

Null Hypothesis

The Null Hypothesis (H0) aims to nullify the alternative hypothesis by implying that there exists no relation between two variables in statistics. It states that the effect of one variable on the other is solely due to chance and no empirical cause lies behind it. 

The null hypothesis is established alongside the alternative hypothesis and is recognized as important as the latter. In hypothesis testing, the null hypothesis has a major role to play as it influences the testing against the alternative hypothesis. 

(Must read: What is ANOVA test? )

Non-Directional Hypothesis

The Non-directional hypothesis states that the relation between two variables has no direction. 

Simply put, it asserts that there exists a relation between two variables, but does not recognize the direction of effect, whether variable A affects variable B or vice versa. 

Directional Hypothesis

The Directional hypothesis, on the other hand, asserts the direction of effect of the relationship that exists between two variables. 

Herein, the hypothesis clearly states that variable A affects variable B, or vice versa. 

Statistical Hypothesis

A statistical hypothesis is a hypothesis that can be verified to be plausible on the basis of statistics. 

By using data sampling and statistical knowledge, one can determine the plausibility of a statistical hypothesis and find out if it stands true or not. 

(Related blog: z-test vs t-test )

Performing Hypothesis Testing  

Now that we have understood the types of hypotheses and the role they play in hypothesis testing, let us now move on to understand the process in a better manner. 

In hypothesis testing, a researcher is first required to establish two hypotheses - alternative hypothesis and null hypothesis in order to begin with the procedure. 

To establish these two hypotheses, one is required to study data samples, find a plausible pattern among the samples, and pen down a statistical hypothesis that they wish to test. 

A random population of samples can be drawn, to begin with hypothesis testing. Among the two hypotheses, alternative and null, only one can be verified to be true. Perhaps the presence of both hypotheses is required to make the process successful. 

At the end of the hypothesis testing procedure, either of the hypotheses will be rejected and the other one will be supported. Even though one of the two hypotheses turns out to be true, no hypothesis can ever be verified 100%. 

(Read also: Types of data sampling techniques )

Therefore, a hypothesis can only be supported based on the statistical samples and verified data. Here is a step-by-step guide for hypothesis testing.

Establish the hypotheses

First things first, one is required to establish two hypotheses - alternative and null, that will set the foundation for hypothesis testing. 

These hypotheses initiate the testing process that involves the researcher working on data samples in order to either support the alternative hypothesis or the null hypothesis. 

Generate a testing plan

Once the hypotheses have been formulated, it is now time to generate a testing plan. A testing plan or an analysis plan involves the accumulation of data samples, determining which statistic is to be considered and laying out the sample size. 

All these factors are very important while one is working on hypothesis testing.

Analyze data samples

As soon as a testing plan is ready, it is time to move on to the analysis part. Analysis of data samples involves configuring statistical values of samples, drawing them together, and deriving a pattern out of these samples. 

While analyzing the data samples, a researcher needs to determine a set of things -

Significance Level - The level of significance in hypothesis testing indicates if a statistical result could have significance if the null hypothesis stands to be true.

Testing Method - The testing method involves a type of sampling-distribution and a test statistic that leads to hypothesis testing. There are a number of testing methods that can assist in the analysis of data samples. 

Test statistic - Test statistic is a numerical summary of a data set that can be used to perform hypothesis testing.

P-value - The P-value interpretation is the probability of finding a sample statistic to be as extreme as the test statistic, indicating the plausibility of the null hypothesis. 

Infer the results

The analysis of data samples leads to the inference of results that establishes whether the alternative hypothesis stands true or not. When the P-value is less than the significance level, the null hypothesis is rejected and the alternative hypothesis turns out to be plausible. 

Methods of Hypothesis Testing

As we have already looked into different aspects of hypothesis testing, we shall now look into the different methods of hypothesis testing. All in all, there are 2 most common types of hypothesis testing methods. They are as follows -

Frequentist Hypothesis Testing

The frequentist hypothesis or the traditional approach to hypothesis testing is a hypothesis testing method that aims on making assumptions by considering current data. 

The supposed truths and assumptions are based on the current data and a set of 2 hypotheses are formulated. A very popular subtype of the frequentist approach is the Null Hypothesis Significance Testing (NHST). 

The NHST approach (involving the null and alternative hypothesis) has been one of the most sought-after methods of hypothesis testing in the field of statistics ever since its inception in the mid-1950s. 

Bayesian Hypothesis Testing

A much unconventional and modern method of hypothesis testing, the Bayesian Hypothesis Testing claims to test a particular hypothesis in accordance with the past data samples, known as prior probability, and current data that lead to the plausibility of a hypothesis. 

The result obtained indicates the posterior probability of the hypothesis. In this method, the researcher relies on ‘prior probability and posterior probability’ to conduct hypothesis testing on hand. 

On the basis of this prior probability, the Bayesian approach tests a hypothesis to be true or false. The Bayes factor, a major component of this method, indicates the likelihood ratio among the null hypothesis and the alternative hypothesis. 

The Bayes factor is the indicator of the plausibility of either of the two hypotheses that are established for hypothesis testing.  

(Also read - Introduction to Bayesian Statistics ) 

To conclude, hypothesis testing, a way to verify the plausibility of a supposed assumption can be done through different methods - the Bayesian approach or the Frequentist approach. 

Although the Bayesian approach relies on the prior probability of data samples, the frequentist approach assumes without a probability. A number of elements involved in hypothesis testing are - significance level, p-level, test statistic, and method of hypothesis testing. 

(Also read: Introduction to probability distributions )

A significant way to determine whether a hypothesis stands true or not is to verify the data samples and identify the plausible hypothesis among the null hypothesis and alternative hypothesis. 

Share Blog :

hypothesis testing in business research methods

Be a part of our Instagram community

Trending blogs

5 Factors Influencing Consumer Behavior

Elasticity of Demand and its Types

What is PESTLE Analysis? Everything you need to know about it

An Overview of Descriptive Analysis

What is Managerial Economics? Definition, Types, Nature, Principles, and Scope

5 Factors Affecting the Price Elasticity of Demand (PED)

6 Major Branches of Artificial Intelligence (AI)

Dijkstra’s Algorithm: The Shortest Path Algorithm

Scope of Managerial Economics

Different Types of Research Methods

Latest Comments

hypothesis testing in business research methods

  • Hypothesis Testing: Definition, Uses, Limitations + Examples

busayo.longe

Hypothesis testing is as old as the scientific method and is at the heart of the research process. 

Research exists to validate or disprove assumptions about various phenomena. The process of validation involves testing and it is in this context that we will explore hypothesis testing. 

What is a Hypothesis? 

A hypothesis is a calculated prediction or assumption about a population parameter based on limited evidence. The whole idea behind hypothesis formulation is testing—this means the researcher subjects his or her calculated assumption to a series of evaluations to know whether they are true or false. 

Typically, every research starts with a hypothesis—the investigator makes a claim and experiments to prove that this claim is true or false . For instance, if you predict that students who drink milk before class perform better than those who don’t, then this becomes a hypothesis that can be confirmed or refuted using an experiment.  

Read: What is Empirical Research Study? [Examples & Method]

What are the Types of Hypotheses? 

1. simple hypothesis.

Also known as a basic hypothesis, a simple hypothesis suggests that an independent variable is responsible for a corresponding dependent variable. In other words, an occurrence of the independent variable inevitably leads to an occurrence of the dependent variable. 

Typically, simple hypotheses are considered as generally true, and they establish a causal relationship between two variables. 

Examples of Simple Hypothesis  

  • Drinking soda and other sugary drinks can cause obesity. 
  • Smoking cigarettes daily leads to lung cancer.

2. Complex Hypothesis

A complex hypothesis is also known as a modal. It accounts for the causal relationship between two independent variables and the resulting dependent variables. This means that the combination of the independent variables leads to the occurrence of the dependent variables . 

Examples of Complex Hypotheses  

  • Adults who do not smoke and drink are less likely to develop liver-related conditions.
  • Global warming causes icebergs to melt which in turn causes major changes in weather patterns.

3. Null Hypothesis

As the name suggests, a null hypothesis is formed when a researcher suspects that there’s no relationship between the variables in an observation. In this case, the purpose of the research is to approve or disapprove this assumption. 

Examples of Null Hypothesis

  • This is no significant change in a student’s performance if they drink coffee or tea before classes. 
  • There’s no significant change in the growth of a plant if one uses distilled water only or vitamin-rich water. 
Read: Research Report: Definition, Types + [Writing Guide]

4. Alternative Hypothesis 

To disapprove a null hypothesis, the researcher has to come up with an opposite assumption—this assumption is known as the alternative hypothesis. This means if the null hypothesis says that A is false, the alternative hypothesis assumes that A is true. 

An alternative hypothesis can be directional or non-directional depending on the direction of the difference. A directional alternative hypothesis specifies the direction of the tested relationship, stating that one variable is predicted to be larger or smaller than the null value while a non-directional hypothesis only validates the existence of a difference without stating its direction. 

Examples of Alternative Hypotheses  

  • Starting your day with a cup of tea instead of a cup of coffee can make you more alert in the morning. 
  • The growth of a plant improves significantly when it receives distilled water instead of vitamin-rich water. 

5. Logical Hypothesis

Logical hypotheses are some of the most common types of calculated assumptions in systematic investigations. It is an attempt to use your reasoning to connect different pieces in research and build a theory using little evidence. In this case, the researcher uses any data available to him, to form a plausible assumption that can be tested. 

Examples of Logical Hypothesis

  • Waking up early helps you to have a more productive day. 
  • Beings from Mars would not be able to breathe the air in the atmosphere of the Earth. 

6. Empirical Hypothesis  

After forming a logical hypothesis, the next step is to create an empirical or working hypothesis. At this stage, your logical hypothesis undergoes systematic testing to prove or disprove the assumption. An empirical hypothesis is subject to several variables that can trigger changes and lead to specific outcomes. 

Examples of Empirical Testing 

  • People who eat more fish run faster than people who eat meat.
  • Women taking vitamin E grow hair faster than those taking vitamin K.

7. Statistical Hypothesis

When forming a statistical hypothesis, the researcher examines the portion of a population of interest and makes a calculated assumption based on the data from this sample. A statistical hypothesis is most common with systematic investigations involving a large target audience. Here, it’s impossible to collect responses from every member of the population so you have to depend on data from your sample and extrapolate the results to the wider population. 

Examples of Statistical Hypothesis  

  • 45% of students in Louisiana have middle-income parents. 
  • 80% of the UK’s population gets a divorce because of irreconcilable differences.

What is Hypothesis Testing? 

Hypothesis testing is an assessment method that allows researchers to determine the plausibility of a hypothesis. It involves testing an assumption about a specific population parameter to know whether it’s true or false. These population parameters include variance, standard deviation, and median. 

Typically, hypothesis testing starts with developing a null hypothesis and then performing several tests that support or reject the null hypothesis. The researcher uses test statistics to compare the association or relationship between two or more variables. 

Explore: Research Bias: Definition, Types + Examples

Researchers also use hypothesis testing to calculate the coefficient of variation and determine if the regression relationship and the correlation coefficient are statistically significant.

How Hypothesis Testing Works

The basis of hypothesis testing is to examine and analyze the null hypothesis and alternative hypothesis to know which one is the most plausible assumption. Since both assumptions are mutually exclusive, only one can be true. In other words, the occurrence of a null hypothesis destroys the chances of the alternative coming to life, and vice-versa. 

Interesting: 21 Chrome Extensions for Academic Researchers in 2021

What Are The Stages of Hypothesis Testing?  

To successfully confirm or refute an assumption, the researcher goes through five (5) stages of hypothesis testing; 

  • Determine the null hypothesis
  • Specify the alternative hypothesis
  • Set the significance level
  • Calculate the test statistics and corresponding P-value
  • Draw your conclusion
  • Determine the Null Hypothesis

Like we mentioned earlier, hypothesis testing starts with creating a null hypothesis which stands as an assumption that a certain statement is false or implausible. For example, the null hypothesis (H0) could suggest that different subgroups in the research population react to a variable in the same way. 

  • Specify the Alternative Hypothesis

Once you know the variables for the null hypothesis, the next step is to determine the alternative hypothesis. The alternative hypothesis counters the null assumption by suggesting the statement or assertion is true. Depending on the purpose of your research, the alternative hypothesis can be one-sided or two-sided. 

Using the example we established earlier, the alternative hypothesis may argue that the different sub-groups react differently to the same variable based on several internal and external factors. 

  • Set the Significance Level

Many researchers create a 5% allowance for accepting the value of an alternative hypothesis, even if the value is untrue. This means that there is a 0.05 chance that one would go with the value of the alternative hypothesis, despite the truth of the null hypothesis. 

Something to note here is that the smaller the significance level, the greater the burden of proof needed to reject the null hypothesis and support the alternative hypothesis.

Explore: What is Data Interpretation? + [Types, Method & Tools]
  • Calculate the Test Statistics and Corresponding P-Value 

Test statistics in hypothesis testing allow you to compare different groups between variables while the p-value accounts for the probability of obtaining sample statistics if your null hypothesis is true. In this case, your test statistics can be the mean, median and similar parameters. 

If your p-value is 0.65, for example, then it means that the variable in your hypothesis will happen 65 in100 times by pure chance. Use this formula to determine the p-value for your data: 

hypothesis testing in business research methods

  • Draw Your Conclusions

After conducting a series of tests, you should be able to agree or refute the hypothesis based on feedback and insights from your sample data.  

Applications of Hypothesis Testing in Research

Hypothesis testing isn’t only confined to numbers and calculations; it also has several real-life applications in business, manufacturing, advertising, and medicine. 

In a factory or other manufacturing plants, hypothesis testing is an important part of quality and production control before the final products are approved and sent out to the consumer. 

During ideation and strategy development, C-level executives use hypothesis testing to evaluate their theories and assumptions before any form of implementation. For example, they could leverage hypothesis testing to determine whether or not some new advertising campaign, marketing technique, etc. causes increased sales. 

In addition, hypothesis testing is used during clinical trials to prove the efficacy of a drug or new medical method before its approval for widespread human usage. 

What is an Example of Hypothesis Testing?

An employer claims that her workers are of above-average intelligence. She takes a random sample of 20 of them and gets the following results: 

Mean IQ Scores: 110

Standard Deviation: 15 

Mean Population IQ: 100

Step 1: Using the value of the mean population IQ, we establish the null hypothesis as 100.

Step 2: State that the alternative hypothesis is greater than 100.

Step 3: State the alpha level as 0.05 or 5% 

Step 4: Find the rejection region area (given by your alpha level above) from the z-table. An area of .05 is equal to a z-score of 1.645.

Step 5: Calculate the test statistics using this formula

hypothesis testing in business research methods

Z = (110–100) ÷ (15÷√20) 

10 ÷ 3.35 = 2.99 

If the value of the test statistics is higher than the value of the rejection region, then you should reject the null hypothesis. If it is less, then you cannot reject the null. 

In this case, 2.99 > 1.645 so we reject the null. 

Importance/Benefits of Hypothesis Testing 

The most significant benefit of hypothesis testing is it allows you to evaluate the strength of your claim or assumption before implementing it in your data set. Also, hypothesis testing is the only valid method to prove that something “is or is not”. Other benefits include: 

  • Hypothesis testing provides a reliable framework for making any data decisions for your population of interest. 
  • It helps the researcher to successfully extrapolate data from the sample to the larger population. 
  • Hypothesis testing allows the researcher to determine whether the data from the sample is statistically significant. 
  • Hypothesis testing is one of the most important processes for measuring the validity and reliability of outcomes in any systematic investigation. 
  • It helps to provide links to the underlying theory and specific research questions.

Criticism and Limitations of Hypothesis Testing

Several limitations of hypothesis testing can affect the quality of data you get from this process. Some of these limitations include: 

  • The interpretation of a p-value for observation depends on the stopping rule and definition of multiple comparisons. This makes it difficult to calculate since the stopping rule is subject to numerous interpretations, plus “multiple comparisons” are unavoidably ambiguous. 
  • Conceptual issues often arise in hypothesis testing, especially if the researcher merges Fisher and Neyman-Pearson’s methods which are conceptually distinct. 
  • In an attempt to focus on the statistical significance of the data, the researcher might ignore the estimation and confirmation by repeated experiments.
  • Hypothesis testing can trigger publication bias, especially when it requires statistical significance as a criterion for publication.
  • When used to detect whether a difference exists between groups, hypothesis testing can trigger absurd assumptions that affect the reliability of your observation.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • alternative hypothesis
  • alternative vs null hypothesis
  • complex hypothesis
  • empirical hypothesis
  • hypothesis testing
  • logical hypothesis
  • simple hypothesis
  • statistical hypothesis
  • busayo.longe

Formplus

You may also like:

Alternative vs Null Hypothesis: Pros, Cons, Uses & Examples

We are going to discuss alternative hypotheses and null hypotheses in this post and how they work in research.

hypothesis testing in business research methods

Type I vs Type II Errors: Causes, Examples & Prevention

This article will discuss the two different types of errors in hypothesis testing and how you can prevent them from occurring in your research

What is Pure or Basic Research? + [Examples & Method]

Simple guide on pure or basic research, its methods, characteristics, advantages, and examples in science, medicine, education and psychology

Internal Validity in Research: Definition, Threats, Examples

In this article, we will discuss the concept of internal validity, some clear examples, its importance, and how to test it.

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • *New* Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

hypothesis testing in business research methods

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

3 Statistical Analysis Methods You Can Use to Make Business Decisions

Business professionals using statistical analysis methods

  • 15 Dec 2021

Data is a driving force in business. More information is being collected than ever before, which professionals continually seek to leverage for success. Across all business functions, it’s essential to have analytical skills to interpret data and put it to use.

Statistical analysis is the basis for many business analytics approaches. Gaining a firm understanding of different statistical analysis methods is one of the first steps to unlocking the power of business analytics. With this knowledge, you can make sense of data, project future outcomes, and make more informed decisions.

Related: Examples of Business Analytics in Action

Below are three helpful statistical analysis methods that lead to better business decisions.

Access your free e-book today.

Statistical Analysis Methods for Business

1. hypothesis testing.

Hypothesis testing is a statistical method used to substantiate a claim about a population. This is done by formulating and testing two hypotheses: the null hypothesis and the alternative hypothesis.

Related: A Beginner’s Guide to Hypothesis Testing in Business

The null hypothesis (denoted by H₀) is a statement about the issue at hand, generally based on historical data and conventional wisdom. A hypothesis test always starts by assuming the null hypothesis is true and then testing to see if it can be nullified.

The alternative hypothesis (denoted by H₁) represents the theory or assumption being tested and is the opposite of the null hypothesis. If the data effectively nullifies the null hypothesis, then the alternative hypothesis can be substantiated.

In business, hypothesis testing is an effective means of assessing theories and assumptions before acting on them. For managers, leaders, and those looking to become more data-driven, this method of statistical analysis is a helpful decision-making tool. Putting this practice into action can lead to better foresight and positive outcomes when planning a business’s future.

For example, you might conduct a hypothesis test to substantiate that if your company launches a new product line, sales and revenue will increase as a result. Since this initiative would be expensive, your company might launch the product in a small test market and use the data it collects to justify rolling it out on a larger scale.

Hypothesis testing is a complex yet highly valuable statistical method for business. If you want to learn about hypothesis testing in more detail, taking an online statistics or business analytics course can be worthwhile.

2. Single Variable Linear Regression

Linear regression analysis is used for two main purposes: to identify and evaluate the relationship between two variables and forecast a variable based on its relationship to another one.

In single variable linear regression analysis, the relationship between a dependent variable and an independent variable is evaluated by identifying the line of best fit.

To find the line of best fit, use the following equation:

Single Variable Linear Regression Formula

Here, ŷ represents the expected value of the dependent variable for a given value of X, which represents the independent variable. α is equal to the Y-intercept, or the point at which the regression line crosses the Y-axis, when X is equal to zero. β is the slope that equals the average change of the dependent variable (Y) as the independent variable (X) increases by one. Finally, ε is the error term that equals Y – ŷ, or the difference between the actual value of the dependent variable and its expected value.

Using this method, you can forecast a defined variable based on known data.

Consider the relationship between advertising spend and revenue, for example. A business can use historical data relating the advertising dollars spent to the amount of revenue generated for various campaigns or time periods. Using a single variable linear regression analysis, it can use that information to find the line of best fit and subsequently use the slope to forecast revenue for future campaigns.

Business Analytics | Become a data-driven leader | Learn More

3. Multiple Regression

Whereas single variable linear regression analysis studies the relationship between two variables—a dependent variable and an independent variable— multiple regression analysis investigates the relationship between a dependent variable and multiple independent variables.

Forecasting with multiple regression analysis is similar to using single variable linear regression. However, instead of entering only one value for an independent variable, a value is input for each independent variable. Using the same notation as the single variable linear regression equation, the following equation applies to multiple regression:

Multiple Regression Formula

In business, multiple regression analysis is helpful for predicting the outcomes of complicated scenarios. For example, think back to the relationship between advertising spend and revenue. Instead of looking at total advertising expenditures, you can use multiple regression analysis to evaluate how different types of campaigns, such as television, radio, and social media ads, impact revenue.

Credential of Readiness | Master the fundamentals of business | Learn More

Developing Your Analytical Skills

An analytical mindset is essential to business success. After all, data is one of the most valuable resources in today’s world, and knowing how to leverage it can lead to better decision-making and outcomes.

Related: How to Improve Your Analytical Skills

Depending on your current knowledge of statistics and business analytics and long-term goals, there are many options you can pursue to develop your skills. Taking an online course dedicated to honing and applying analytical skills in a professional setting is a great way to get started.

Do you want to leverage the power of data within your organization? Explore our eight-week online course Business Analytics —one of three courses comprising our Credential of Readiness (CORe) program —to learn how to use data analysis to solve business problems.

hypothesis testing in business research methods

About the Author

  • Search Search Please fill out this field.
  • Fundamental Analysis

Hypothesis to Be Tested: Definition and 4 Steps for Testing with Example

hypothesis testing in business research methods

What Is Hypothesis Testing?

Hypothesis testing, sometimes called significance testing, is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used and the reason for the analysis.

Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data. Such data may come from a larger population, or from a data-generating process. The word "population" will be used for both of these cases in the following descriptions.

Key Takeaways

  • Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data.
  • The test provides evidence concerning the plausibility of the hypothesis, given the data.
  • Statistical analysts test a hypothesis by measuring and examining a random sample of the population being analyzed.
  • The four steps of hypothesis testing include stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result.

How Hypothesis Testing Works

In hypothesis testing, an  analyst  tests a statistical sample, with the goal of providing evidence on the plausibility of the null hypothesis.

Statistical analysts test a hypothesis by measuring and examining a random sample of the population being analyzed. All analysts use a random population sample to test two different hypotheses: the null hypothesis and the alternative hypothesis.

The null hypothesis is usually a hypothesis of equality between population parameters; e.g., a null hypothesis may state that the population mean return is equal to zero. The alternative hypothesis is effectively the opposite of a null hypothesis (e.g., the population mean return is not equal to zero). Thus, they are mutually exclusive , and only one can be true. However, one of the two hypotheses will always be true.

The null hypothesis is a statement about a population parameter, such as the population mean, that is assumed to be true.

4 Steps of Hypothesis Testing

All hypotheses are tested using a four-step process:

  • The first step is for the analyst to state the hypotheses.
  • The second step is to formulate an analysis plan, which outlines how the data will be evaluated.
  • The third step is to carry out the plan and analyze the sample data.
  • The final step is to analyze the results and either reject the null hypothesis, or state that the null hypothesis is plausible, given the data.

Real-World Example of Hypothesis Testing

If, for example, a person wants to test that a penny has exactly a 50% chance of landing on heads, the null hypothesis would be that 50% is correct, and the alternative hypothesis would be that 50% is not correct.

Mathematically, the null hypothesis would be represented as Ho: P = 0.5. The alternative hypothesis would be denoted as "Ha" and be identical to the null hypothesis, except with the equal sign struck-through, meaning that it does not equal 50%.

A random sample of 100 coin flips is taken, and the null hypothesis is then tested. If it is found that the 100 coin flips were distributed as 40 heads and 60 tails, the analyst would assume that a penny does not have a 50% chance of landing on heads and would reject the null hypothesis and accept the alternative hypothesis.

If, on the other hand, there were 48 heads and 52 tails, then it is plausible that the coin could be fair and still produce such a result. In cases such as this where the null hypothesis is "accepted," the analyst states that the difference between the expected results (50 heads and 50 tails) and the observed results (48 heads and 52 tails) is "explainable by chance alone."

Some staticians attribute the first hypothesis tests to satirical writer John Arbuthnot in 1710, who studied male and female births in England after observing that in nearly every year, male births exceeded female births by a slight proportion. Arbuthnot calculated that the probability of this happening by chance was small, and therefore it was due to “divine providence.”

What is Hypothesis Testing?

Hypothesis testing refers to a process used by analysts to assess the plausibility of a hypothesis by using sample data. In hypothesis testing, statisticians formulate two hypotheses: the null hypothesis and the alternative hypothesis. A null hypothesis determines there is no difference between two groups or conditions, while the alternative hypothesis determines that there is a difference. Researchers evaluate the statistical significance of the test based on the probability that the null hypothesis is true.

What are the Four Key Steps Involved in Hypothesis Testing?

Hypothesis testing begins with an analyst stating two hypotheses, with only one that can be right. The analyst then formulates an analysis plan, which outlines how the data will be evaluated. Next, they move to the testing phase and analyze the sample data. Finally, the analyst analyzes the results and either rejects the null hypothesis or states that the null hypothesis is plausible, given the data.

What are the Benefits of Hypothesis Testing?

Hypothesis testing helps assess the accuracy of new ideas or theories by testing them against data. This allows researchers to determine whether the evidence supports their hypothesis, helping to avoid false claims and conclusions. Hypothesis testing also provides a framework for decision-making based on data rather than personal opinions or biases. By relying on statistical analysis, hypothesis testing helps to reduce the effects of chance and confounding variables, providing a robust framework for making informed conclusions.

What are the Limitations of Hypothesis Testing?

Hypothesis testing relies exclusively on data and doesn’t provide a comprehensive understanding of the subject being studied. Additionally, the accuracy of the results depends on the quality of the available data and the statistical methods used. Inaccurate data or inappropriate hypothesis formulation may lead to incorrect conclusions or failed tests. Hypothesis testing can also lead to errors, such as analysts either accepting or rejecting a null hypothesis when they shouldn’t have. These errors may result in false conclusions or missed opportunities to identify significant patterns or relationships in the data.

The Bottom Line

Hypothesis testing refers to a statistical process that helps researchers and/or analysts determine the reliability of a study. By using a well-formulated hypothesis and set of statistical tests, individuals or businesses can make inferences about the population that they are studying and draw conclusions based on the data presented. There are different types of hypothesis testing, each with their own set of rules and procedures. However, all hypothesis testing methods have the same four step process, which includes stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result. Hypothesis testing plays a vital part of the scientific process, helping to test assumptions and make better data-based decisions.

Sage. " Introduction to Hypothesis Testing. " Page 4.

Elder Research. " Who Invented the Null Hypothesis? "

Formplus. " Hypothesis Testing: Definition, Uses, Limitations and Examples. "

hypothesis testing in business research methods

  • Terms of Service
  • Editorial Policy
  • Privacy Policy
  • Your Privacy Choices

KnowledgeHound

What Is Level of Significance in Hypothesis Testing and How Can Businesses Use It?

There are so many strategies and methods for collecting data from a target market or group of users. Some methods are passive, interpreting data collected by website cookies and tracking pixels to build an understanding of user behavior. Other methods are more proactive, taking the form of thoughtful marketing surveys to get behavior and attitude insights directly from consumers.

Whatever the data collection method, it is then up to researchers and insights teams to study that data, which leads us to hypothesis testing. Hypothesis testing is a way of life for many researchers when it comes to quantitative and qualitative research studies. Although learning about the level of significance is important, the overall question of what is the purpose of survey research and why researchers, especially in business situations, perform it, are a point to focus on as well.

What Are Some of the Benefits of Survey Research?

While it’s important to understand hypothesis testing in the context of business research, it’s also important to understand this statistical research method in the context of survey data and the important role surveys play in making transformative marketing decisions that impact a target market.

In most cases, the purpose of survey research is to gather information from a large collection of individuals to glean information about prospective customers, current users, and competitors or the competitive landscape. And while surveys are an extremely useful tool for conducting research, they come with a lot of benefits outside of simply gathering data.

For one, because surveys have morphed from in-person settings with pens and paper into digital venues with online forums and discussions, the cost of survey research has drastically diminished. If a business is looking for a cost-effective way to gain data about future client prospects, possible consumers, or brand loyal customers, survey research is a great way to find that information and to then make data-driven business strategy decisions.

Another perk is that survey research is extremely accessible and dependable. Because surveys are often used to directly collect information from a large number of individuals, they must be a highly versatile medium, able to be conducted on desktop and laptop computers, as well as smartphone and tablets when respondents are on the go. The dependability and accessibility of this research medium, in turn, makes survey data a dependable source for researchers to pull their insight.

Not only do some benefits of survey research include cost, accessibility, and dependability, survey research is also valuable in terms of unearthing business solutions through decisive customer data points . With KnowledgeHound’s survey data analysis experience , researchers can get to these important data cuts while eliminating information silos. Find and access key data points with a simple search through KnowledgeHound’s easy-to-use interface and share valuable insight with other members of your team.  

An Intro to Hypothesis Testing: What Is P-Value in Research?

There are a lot of letters thrown about in research and hypothesis testing including something called the P-Value. If you’re someone with a curious mind or have upcoming research to take part in and need to know things, like what the p-value in research is, we’re here to break it down for you. Understanding the purpose and benefits of survey research are one thing, taking part in the analysis of the data from the research is another. 

Prior to and when survey research is being conducted are when you’ll be paying attention to the P-Value. Simply put, the P-Value is the value of calculated probability. When looking to find out that a survey research’s data is statistically significant or if the data is not statistically significant, a researcher will go straight to the P-Value to gauge whether the value found is less than 0.05 or greater than 0.05.

The P-Value is calculated when a researcher is taking part in hypothesis testing that includes a null hypothesis, or rather, if the hypothesis test understands there to be no difference between two groups that are partaking in the testing.

So what is level of significance in hypothesis testing, then? It’s simply the singular value that researchers discover through data analysis to be either statistically significant (where p is <0.05) or insignificant (where p is >0.05). Most researchers will look to have a significance level of 95% (also known as statistically significant) in hypothesis testing and research. 

With a significance level of 95% or greater, a researcher or non researcher will understand that the insights gathered from the data are not readily interpreted by happenstance. Put another way: the insights found and taken through the data are not mere coincidences. In addition, if the data is statistically significant, a researcher can dismiss the null hypothesis.

Hypothesis Testing in Business Research

Data-driven analytics and insights are increasingly important in business decisions for an organizational framework and future strategy development. You don’t have to work in science or in a scientific field of inquiry to use hypothesis testing. Not only is hypothesis testing in business research an important part of building out a strategy, it is also vital to use the data from the testing to verify that the strategy is working and then make adjustments, where needed, to improve results. 

Even with that information, you might be thinking, “How should I practically use hypothesis testing in business research?” Well unfortunately, there’s no simple answer because hypothesis testing can be used in any variety of situations from managing sensitive financial information of a client to determining the effectiveness of a company’s social media strategy.

Even though both scenarios are distinctly different, hypothesis testing can help determine what an end-product would be with regard to an unproven question. What’s more, hypothesis testing in business research, especially when it comes to finances and a company’s internal and external (think clients) fiscal responsibility, is a proven method to guide next steps and decision-making within whole corporations, specific offices of an organization, or even one team of 10 at a large company.

Whether a researcher or non-researcher partakes in hypothesis testing in business through survey research, what’s critical to remember is that the data is what’s most important. However, because the raw numbers hold no meaning until they’re put into context, having a platform where data visualization takes place alongside data discovery including categorization and organization in an easily-digestible and user-friendly platform is essential. Learn how KnowledgeHound helps brands and businesses capitalize on data to further not just business objectives but also relationships with consumers.

Related Posts

kh blog digital transformation success with knowledgehound feature

Better and Quicker Data Analysis with Rapid Reports

Joe Razza

Data Analysis Tools Review: Functionality within Rapid Reports

hypothesis testing in business research methods

Quick Links

  • Partnerships & Integrations
  • Terms of Service
  • Services Agreement
  • Privacy Policy

SOC Certified

© 2024 KnowledgeHound, now a part of Crunch, a YouGov company. All Rights Reserved

© 2024 KnowledgeHound. All Rights Reserved

  • Partners & Integrations
  • Request a Trial
  • Data Approachability
  • Data Discovery
  • Data Visualization
  • Data Democratization

Book cover

Business Research Methodology

Research Process and Methods

  • © 2022
  • Sergey K. Aityan 0

Lincoln University - California, Oakland, USA

You can also search for this author in PubMed   Google Scholar

  • Presents the major research processes and methods used in business research
  • Features multiple and exhaustive examples illustrating the material and helping in the learning process
  • Features questions and problems at the end of each chapter for self-testing
  • Provides lecture slides for better course preparation
  • Applicable for single semester coursework

Part of the book series: Classroom Companion: Business (CCB)

73k Accesses

5 Citations

1 Altmetric

  • Table of contents

About this book

Authors and affiliations, about the author, bibliographic information.

  • Publish with us

This is a preview of subscription content, log in via an institution to check access.

Access this book

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents(23 chapters)

Front matter, the journey to the land of unknown, the nature of research.

Sergey K. Aityan

Scientific Method

The research process, preparation for research, formulating a research problem, review of literature, research design, research proposal, foundations of probability, distribution, expectation, and risk, bayesian probability, major distributions, introduction to statistics, confidence intervals, statistical hypothesis testing, sampling experiments, survey method.

  • Business research design
  • Legal aspects of business research
  • Ethical Aspects of Business Research
  • Cyber Intelligence in Business Research
  • Statistical Hypotheses Testing in business
  • Bayesian Probability in business research
  • t-Distribution Tables

This book introduces students to major research processes and methods used in business research. The research process includes all steps in the research project beginning from the problem formulation, through research design, proposal, conducting the research, deriving conclusions, writing research report, and preparing and making presentation. The major research methods include risk assessment, statistics, sampling, hypothesis testing, surveys, and comparative analysis. It helps students develop solid knowledge and practical skills sufficient for conducting a research project from its initiation, through completion, and delivery. The author provides multiple examples as well as the questions and problems for self-testing and self-evaluation in each chapter. The book is structured to provide a smooth flow of understanding and learning the material along the learning curve and is concise enough to fit a one-semester course.

Book Title : Business Research Methodology

Book Subtitle : Research Process and Methods

Authors : Sergey K. Aityan

Series Title : Classroom Companion: Business

DOI : https://doi.org/10.1007/978-3-030-76857-7

Publisher : Springer Cham

eBook Packages : Business and Management , Business and Management (R0)

Copyright Information : The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Hardcover ISBN : 978-3-030-76856-0 Published: 20 December 2021

eBook ISBN : 978-3-030-76857-7 Published: 01 January 2022

Series ISSN : 2662-2866

Series E-ISSN : 2662-2874

Edition Number : 1

Number of Pages : XVIII, 518

Number of Illustrations : 84 b/w illustrations, 50 illustrations in colour

Topics : Management Education , Computer Science, general , Business Strategy/Leadership , Research Skills

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Crit Care Med
  • v.23(Suppl 3); 2019 Sep

An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors

Priya ranganathan.

1 Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Mumbai, Maharashtra, India

2 Department of Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India

The second article in this series on biostatistics covers the concepts of sample, population, research hypotheses and statistical errors.

How to cite this article

Ranganathan P, Pramesh CS. An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors. Indian J Crit Care Med 2019;23(Suppl 3):S230–S231.

Two papers quoted in this issue of the Indian Journal of Critical Care Medicine report. The results of studies aim to prove that a new intervention is better than (superior to) an existing treatment. In the ABLE study, the investigators wanted to show that transfusion of fresh red blood cells would be superior to standard-issue red cells in reducing 90-day mortality in ICU patients. 1 The PROPPR study was designed to prove that transfusion of a lower ratio of plasma and platelets to red cells would be superior to a higher ratio in decreasing 24-hour and 30-day mortality in critically ill patients. 2 These studies are known as superiority studies (as opposed to noninferiority or equivalence studies which will be discussed in a subsequent article).

SAMPLE VERSUS POPULATION

A sample represents a group of participants selected from the entire population. Since studies cannot be carried out on entire populations, researchers choose samples, which are representative of the population. This is similar to walking into a grocery store and examining a few grains of rice or wheat before purchasing an entire bag; we assume that the few grains that we select (the sample) are representative of the entire sack of grains (the population).

The results of the study are then extrapolated to generate inferences about the population. We do this using a process known as hypothesis testing. This means that the results of the study may not always be identical to the results we would expect to find in the population; i.e., there is the possibility that the study results may be erroneous.

HYPOTHESIS TESTING

A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the “alternate” hypothesis, and the opposite is called the “null” hypothesis; every study has a null hypothesis and an alternate hypothesis. For superiority studies, the alternate hypothesis states that one treatment (usually the new or experimental treatment) is superior to the other; the null hypothesis states that there is no difference between the treatments (the treatments are equal). For example, in the ABLE study, we start by stating the null hypothesis—there is no difference in mortality between groups receiving fresh RBCs and standard-issue RBCs. We then state the alternate hypothesis—There is a difference between groups receiving fresh RBCs and standard-issue RBCs. It is important to note that we have stated that the groups are different, without specifying which group will be better than the other. This is known as a two-tailed hypothesis and it allows us to test for superiority on either side (using a two-sided test). This is because, when we start a study, we are not 100% certain that the new treatment can only be better than the standard treatment—it could be worse, and if it is so, the study should pick it up as well. One tailed hypothesis and one-sided statistical testing is done for non-inferiority studies, which will be discussed in a subsequent paper in this series.

STATISTICAL ERRORS

There are two possibilities to consider when interpreting the results of a superiority study. The first possibility is that there is truly no difference between the treatments but the study finds that they are different. This is called a Type-1 error or false-positive error or alpha error. This means falsely rejecting the null hypothesis.

The second possibility is that there is a difference between the treatments and the study does not pick up this difference. This is called a Type 2 error or false-negative error or beta error. This means falsely accepting the null hypothesis.

The power of the study is the ability to detect a difference between groups and is the converse of the beta error; i.e., power = 1-beta error. Alpha and beta errors are finalized when the protocol is written and form the basis for sample size calculation for the study. In an ideal world, we would not like any error in the results of our study; however, we would need to do the study in the entire population (infinite sample size) to be able to get a 0% alpha and beta error. These two errors enable us to do studies with realistic sample sizes, with the compromise that there is a small possibility that the results may not always reflect the truth. The basis for this will be discussed in a subsequent paper in this series dealing with sample size calculation.

Conventionally, type 1 or alpha error is set at 5%. This means, that at the end of the study, if there is a difference between groups, we want to be 95% certain that this is a true difference and allow only a 5% probability that this difference has occurred by chance (false positive). Type 2 or beta error is usually set between 10% and 20%; therefore, the power of the study is 90% or 80%. This means that if there is a difference between groups, we want to be 80% (or 90%) certain that the study will detect that difference. For example, in the ABLE study, sample size was calculated with a type 1 error of 5% (two-sided) and power of 90% (type 2 error of 10%) (1).

Table 1 gives a summary of the two types of statistical errors with an example

Statistical errors

In the next article in this series, we will look at the meaning and interpretation of ‘ p ’ value and confidence intervals for hypothesis testing.

Source of support: Nil

Conflict of interest: None

How Is a Hypothesis Important in Business?

  • Small Business
  • Business Communications & Etiquette
  • Importance of Business Communication
  • ')" data-event="social share" data-info="Pinterest" aria-label="Share on Pinterest">
  • ')" data-event="social share" data-info="Reddit" aria-label="Share on Reddit">
  • ')" data-event="social share" data-info="Flipboard" aria-label="Share on Flipboard">

How to Calculate Start-Up Costs for a Catering Business

What is the difference between primary & secondary data when it comes to market research, challenges in marketing products.

  • How to Use Conjoint Analysis in Pricing Studies
  • How to Write a Marketing Distribution Channel Strategy

Much of running a small business is a gamble, buoyed by boldness, intuition and guts. But wise business leaders also conduct formal and informal research to inform their business decisions. Good research starts with a good hypothesis, which is simply a statement making a prediction based on a set of observations. For example, if you’re considering offering flexible work hours to your employees, you might hypothesize that this policy change will positively affect their productivity and contribute to your bottom line. The ultimate job of the hypothesis in business is to serve as a guidepost to your testing and research methods.

Importance of Hypothesis Testing in Business

Essentially good hypotheses lead decision-makers like you to new and better ways to achieve your business goals. When you need to make decisions such as how much you should spend on advertising or what effect a price increase will have your customer base, it’s easy to make wild assumptions or get lost in analysis paralysis. A business hypothesis solves this problem, because, at the start, it’s based on some foundational information. In all of science, hypotheses are grounded in theory. Theory tells you what you can generally expect from a certain line of inquiry.

A hypothesis based on years of business research in a particular area, then, helps you focus, define and appropriately direct your research. You won’t go on a wild goose chase to prove or disprove it. A hypothesis predicts the relationship between two variables. If you want to study pricing and customer loyalty, you won’t waste your time and resources studying tangential areas.

Marketing Support

One of the most important hypotheses you’ll make in growing your small business is the cost of acquiring a customer. Your viability as a business is founded on ensuring that your customers bring you more money than it costs you to get them in the door. Hypothesizing this number informs not only your pricing strategy but also your marketing efforts and the rest of your overhead expenses. You can also make predictions about the lifetime value of each customer to determine how much marketing you need to do. Businesses frequently attempt to guesstimate how long a customer will stick around and how much sales to each one will contribute to your profit.

In real life, hypotheses are honed and perfected over time through refining of your basic questions, assumptions and research methods, suggests Quickbooks. In addition, you may have more than one hypothesis to explain your observations, such as why your product failed or why morale is sinking in the office.

Forming a Hypothesis

To form a good hypothesis, you should ensure certain criteria are met when making your prediction statements. The hypothesis must be testable as a start, reports Corporate Finance Institute . Don’t make the mistake of trying to prove a tautology, or a hypothesis that is always true. For example, “Our social media strategy will succeed if it’s social or it will fail.” In addition, your hypothesis should be based on the most up-to-date research and knowledge on the subject matter.

Don't Forget to Test It

The most important part of having a hypothesis is determining whether it’s supported by the facts. The scope and formality of your research depend on your research and may simply involve examining the literature, polling your stakeholders or researching other areas. For example, in determining whether to locate your business in a pricey downtown or an exurb with no public transportation, you may look at commuting statistics of your general metropolitan area, the prevalence of carpooling, the socioeconomic status of most of your employees, as well as where your competitors are located.

  • Corporate Finance Institute: Hypothesis Testing

Related Articles

How to know what a customer needs & wants, relationship between research and business decisions, purpose of marketing research, cross-section design of a business research method, marketing strategy for beginners, how to measure concepts in business research for a conceptual model, how to decrease product costs, how to identify the appropriate price strategy, what factors increase the breakeven point, most popular.

  • 1 How to Know What a Customer Needs & Wants
  • 2 Relationship Between Research and Business Decisions
  • 3 Purpose of Marketing Research
  • 4 Cross-Section Design of a Business Research Method
  • Guide: Hypothesis Testing

Daniel Croft

Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.

  • Last Updated: September 8, 2023
  • Learn Lean Sigma

In the world of data-driven decision-making, Hypothesis Testing stands as a cornerstone methodology. It serves as the statistical backbone for a multitude of sectors, from manufacturing and logistics to healthcare and finance. But what exactly is Hypothesis Testing, and why is it so indispensable? Simply put, it’s a technique that allows you to validate or invalidate claims about a population based on sample data. Whether you’re looking to streamline a manufacturing process, optimize logistics, or improve customer satisfaction, Hypothesis Testing offers a structured approach to reach conclusive, data-supported decisions.

The graphical example above provides a simplified snapshot of a hypothesis test. The bell curve represents a normal distribution, the green area is where you’d accept the null hypothesis ( H 0​), and the red area is the “rejection zone,” where you’d favor the alternative hypothesis ( Ha ​). The vertical blue line represents the threshold value or “critical value,” beyond which you’d reject H 0​.

Here’s a graphical example of a hypothesis test, which you can include in the introduction section of your guide. In this graph:

  • The curve represents a standard normal distribution, often encountered in hypothesis tests.
  • The green-shaded area signifies the “Acceptance Region,” where you would fail to reject the null hypothesis ( H 0​).
  • The red-shaded areas are the “Rejection Regions,” where you would reject H 0​ in favor of the alternative hypothesis ( Ha ​).
  • The blue dashed lines indicate the “Critical Values” (±1.96), which are the thresholds for rejecting H 0​.

This graphical representation serves as a conceptual foundation for understanding the mechanics of hypothesis testing. It visually illustrates what it means to accept or reject a hypothesis based on a predefined level of significance.

Table of Contents

What is hypothesis testing.

Hypothesis testing is a structured procedure in statistics used for drawing conclusions about a larger population based on a subset of that population, known as a sample. The method is widely used across different industries and sectors for a variety of purposes. Below, we’ll dissect the key components of hypothesis testing to provide a more in-depth understanding.

The Hypotheses: H 0 and Ha

In every hypothesis test, there are two competing statements:

  • Null Hypothesis ( H 0) : This is the “status quo” hypothesis that you are trying to test against. It is a statement that asserts that there is no effect or difference. For example, in a manufacturing setting, the null hypothesis might state that a new production process does not improve the average output quality.
  • Alternative Hypothesis ( Ha or H 1) : This is what you aim to prove by conducting the hypothesis test. It is the statement that there is an effect or difference. Using the same manufacturing example, the alternative hypothesis might state that the new process does improve the average output quality.

Significance Level ( α )

Before conducting the test, you decide on a “Significance Level” ( α ), typically set at 0.05 or 5%. This level represents the probability of rejecting the null hypothesis when it is actually true. Lower α values make the test more stringent, reducing the chances of a ‘false positive’.

Data Collection

You then proceed to gather data, which is usually a sample from a larger population. The quality of your test heavily relies on how well this sample represents the population. The data can be collected through various means such as surveys, observations, or experiments.

Statistical Test

Depending on the nature of the data and what you’re trying to prove, different statistical tests can be applied (e.g., t-test, chi-square test , ANOVA , etc.). These tests will compute a test statistic (e.g., t , 2 χ 2, F , etc.) based on your sample data.

Here are graphical examples of the distributions commonly used in three different types of statistical tests: t-test, Chi-square test, and ANOVA (Analysis of Variance), displayed side by side for comparison.

  • Graph 1 (Leftmost): This graph represents a t-distribution, often used in t-tests. The t-distribution is similar to the normal distribution but tends to have heavier tails. It is commonly used when the sample size is small or the population variance is unknown.

Chi-square Test

  • Graph 2 (Middle): The Chi-square distribution is used in Chi-square tests, often for testing independence or goodness-of-fit. Unlike the t-distribution, the Chi-square distribution is not symmetrical and only takes on positive values.

ANOVA (F-distribution)

  • Graph 3 (Rightmost): The F-distribution is used in Analysis of Variance (ANOVA), a statistical test used to analyze the differences between group means. Like the Chi-square distribution, the F-distribution is also not symmetrical and takes only positive values.

These visual representations provide an intuitive understanding of the different statistical tests and their underlying distributions. Knowing which test to use and when is crucial for conducting accurate and meaningful hypothesis tests.

Decision Making

The test statistic is then compared to a critical value determined by the significance level ( α ) and the sample size. This comparison will give you a p-value. If the p-value is less than α , you reject the null hypothesis in favor of the alternative hypothesis. Otherwise, you fail to reject the null hypothesis.

Interpretation

Finally, you interpret the results in the context of what you were investigating. Rejecting the null hypothesis might mean implementing a new process or strategy, while failing to reject it might lead to a continuation of current practices.

To sum it up, hypothesis testing is not just a set of formulas but a methodical approach to problem-solving and decision-making based on data. It’s a crucial tool for anyone interested in deriving meaningful insights from data to make informed decisions.

Why is Hypothesis Testing Important?

Hypothesis testing is a cornerstone of statistical and empirical research, serving multiple functions in various fields. Let’s delve into each of the key areas where hypothesis testing holds significant importance:

Data-Driven Decisions

In today’s complex business environment, making decisions based on gut feeling or intuition is not enough; you need data to back up your choices. Hypothesis testing serves as a rigorous methodology for making decisions based on data. By setting up a null hypothesis and an alternative hypothesis, you can use statistical methods to determine which is more likely to be true given a data sample. This structured approach eliminates guesswork and adds empirical weight to your decisions, thereby increasing their credibility and effectiveness.

Risk Management

Hypothesis testing allows you to assign a ‘p-value’ to your findings, which is essentially the probability of observing the given sample data if the null hypothesis is true. This p-value can be directly used to quantify risk. For instance, a p-value of 0.05 implies there’s a 5% risk of rejecting the null hypothesis when it’s actually true. This is invaluable in scenarios like product launches or changes in operational processes, where understanding the risk involved can be as crucial as the decision itself.

Here’s an example to help you understand the concept better.

The graph above serves as a graphical representation to help explain the concept of a ‘p-value’ and its role in quantifying risk in hypothesis testing. Here’s how to interpret the graph:

Elements of the Graph

  • The curve represents a Standard Normal Distribution , which is often used to represent z-scores in hypothesis testing.
  • The red-shaded area on the right represents the Rejection Region . It corresponds to a 5% risk ( α =0.05) of rejecting the null hypothesis when it is actually true. This is the area where, if your test statistic falls, you would reject the null hypothesis.
  • The green-shaded area represents the Acceptance Region , with a 95% level of confidence. If your test statistic falls in this region, you would fail to reject the null hypothesis.
  • The blue dashed line is the Critical Value (approximately 1.645 in this example). If your standardized test statistic (z-value) exceeds this point, you enter the rejection region, and your p-value becomes less than 0.05, leading you to reject the null hypothesis.

Relating to Risk Management

The p-value can be directly related to risk management. For example, if you’re considering implementing a new manufacturing process, the p-value quantifies the risk of that decision. A low p-value (less than α ) would mean that the risk of rejecting the null hypothesis (i.e., going ahead with the new process) when it’s actually true is low, thus indicating a lower risk in implementing the change.

Quality Control

In sectors like manufacturing, automotive, and logistics, maintaining a high level of quality is not just an option but a necessity. Hypothesis testing is often employed in quality assurance and control processes to test whether a certain process or product conforms to standards. For example, if a car manufacturing line claims its error rate is below 5%, hypothesis testing can confirm or disprove this claim based on a sample of products. This ensures that quality is not compromised and that stakeholders can trust the end product.

Resource Optimization

Resource allocation is a significant challenge for any organization. Hypothesis testing can be a valuable tool in determining where resources will be most effectively utilized. For instance, in a manufacturing setting, you might want to test whether a new piece of machinery significantly increases production speed. A hypothesis test could provide the statistical evidence needed to decide whether investing in more of such machinery would be a wise use of resources.

In the realm of research and development, hypothesis testing can be a game-changer. When developing a new product or process, you’ll likely have various theories or hypotheses. Hypothesis testing allows you to systematically test these, filtering out the less likely options and focusing on the most promising ones. This not only speeds up the innovation process but also makes it more cost-effective by reducing the likelihood of investing in ideas that are statistically unlikely to be successful.

In summary, hypothesis testing is a versatile tool that adds rigor, reduces risk, and enhances the decision-making and innovation processes across various sectors and functions.

This graphical representation makes it easier to grasp how the p-value is used to quantify the risk involved in making a decision based on a hypothesis test.

Step-by-Step Guide to Hypothesis Testing

To make this guide practical and helpful if you are new learning about the concept we will explain each step of the process and follow it up with an example of the method being applied to a manufacturing line, and you want to test if a new process reduces the average time it takes to assemble a product.

Step 1: State the Hypotheses

The first and foremost step in hypothesis testing is to clearly define your hypotheses. This sets the stage for your entire test and guides the subsequent steps, from data collection to decision-making. At this stage, you formulate two competing hypotheses:

Null Hypothesis ( H 0)

The null hypothesis is a statement that there is no effect or no difference, and it serves as the hypothesis that you are trying to test against. It’s the default assumption that any kind of effect or difference you suspect is not real, and is due to chance. Formulating a clear null hypothesis is crucial, as your statistical tests will be aimed at challenging this hypothesis.

In a manufacturing context, if you’re testing whether a new assembly line process has reduced the time it takes to produce an item, your null hypothesis ( H 0) could be:

H 0:”The new process does not reduce the average assembly time.”

Alternative Hypothesis ( Ha or H 1)

The alternative hypothesis is what you want to prove. It is a statement that there is an effect or difference. This hypothesis is considered only after you find enough evidence against the null hypothesis.

Continuing with the manufacturing example, the alternative hypothesis ( Ha ) could be:

Ha :”The new process reduces the average assembly time.”

Types of Alternative Hypothesis

Depending on what exactly you are trying to prove, the alternative hypothesis can be:

  • Two-Sided : You’re interested in deviations in either direction (greater or smaller).
  • One-Sided : You’re interested in deviations only in one direction (either greater or smaller).

Scenario: Reducing Assembly Time in a Car Manufacturing Plant

You are a continuous improvement manager at a car manufacturing plant. One of the assembly lines has been struggling with longer assembly times, affecting the overall production schedule. A new assembly process has been proposed, promising to reduce the assembly time per car. Before rolling it out on the entire line, you decide to conduct a hypothesis test to see if the new process actually makes a difference. Null Hypothesis ( H 0​) In this context, the null hypothesis would be the status quo, asserting that the new assembly process doesn’t reduce the assembly time per car. Mathematically, you could state it as: H 0:The average assembly time per car with the new process ≥ The average assembly time per car with the old process. Or simply: H 0​:”The new process does not reduce the average assembly time per car.” Alternative Hypothesis ( Ha ​ or H 1​) The alternative hypothesis is what you aim to prove — that the new process is more efficient. Mathematically, it could be stated as: Ha :The average assembly time per car with the new process < The average assembly time per car with the old process Or simply: Ha ​:”The new process reduces the average assembly time per car.” Types of Alternative Hypothesis In this example, you’re only interested in knowing if the new process reduces the time, making it a One-Sided Alternative Hypothesis .

Step 2: Determine the Significance Level ( α )

Once you’ve clearly stated your null and alternative hypotheses, the next step is to decide on the significance level, often denoted by α . The significance level is a threshold below which the null hypothesis will be rejected. It quantifies the level of risk you’re willing to accept when making a decision based on the hypothesis test.

What is a Significance Level?

The significance level, usually expressed as a percentage, represents the probability of rejecting the null hypothesis when it is actually true. Common choices for α are 0.05, 0.01, and 0.10, representing 5%, 1%, and 10% levels of significance, respectively.

  • 5% Significance Level ( α =0.05) : This is the most commonly used level and implies that you are willing to accept a 5% chance of rejecting the null hypothesis when it is true.
  • 1% Significance Level ( α =0.01) : This is a more stringent level, used when you want to be more sure of your decision. The risk of falsely rejecting the null hypothesis is reduced to 1%.
  • 10% Significance Level ( α =0.10) : This is a more lenient level, used when you are willing to take a higher risk. Here, the chance of falsely rejecting the null hypothesis is 10%.

Continuing with the manufacturing example, let’s say you decide to set α =0.05, meaning you’re willing to take a 5% risk of concluding that the new process is effective when it might not be.

How to Choose the Right Significance Level?

Choosing the right significance level depends on the context and the consequences of making a wrong decision. Here are some factors to consider:

  • Criticality of Decision : For highly critical decisions with severe consequences if wrong, a lower α like 0.01 may be appropriate.
  • Resource Constraints : If the cost of collecting more data is high, you may choose a higher α to make a decision based on a smaller sample size.
  • Industry Standards : Sometimes, the choice of α may be dictated by industry norms or regulatory guidelines.

By the end of Step 2, you should have a well-defined significance level that will guide the rest of your hypothesis testing process. This level serves as the cut-off for determining whether the observed effect or difference in your sample is statistically significant or not.

Continuing the Scenario: Reducing Assembly Time in a Car Manufacturing Plant

After formulating the hypotheses, the next step is to set the significance level ( α ) that will be used to interpret the results of the hypothesis test. This is a critical decision as it quantifies the level of risk you’re willing to accept when making a conclusion based on the test. Setting the Significance Level Given that assembly time is a critical factor affecting the production schedule, and ultimately, the company’s bottom line, you decide to be fairly stringent in your test. You opt for a commonly used significance level: α = 0.05 This means you are willing to accept a 5% chance of rejecting the null hypothesis when it is actually true. In practical terms, if you find that the p-value of the test is less than 0.05, you will conclude that the new process significantly reduces assembly time and consider implementing it across the entire line. Why α = 0.05 ? Industry Standard : A 5% significance level is widely accepted in many industries, including manufacturing, for hypothesis testing. Risk Management : By setting  α = 0.05 , you’re limiting the risk of concluding that the new process is effective when it may not be to just 5%. Balanced Approach : This level offers a balance between being too lenient (e.g., α=0.10) and too stringent (e.g., α=0.01), making it a reasonable choice for this scenario.

Step 3: Collect and Prepare the Data

After stating your hypotheses and setting the significance level, the next vital step is data collection. The data you collect serves as the basis for your hypothesis test, so it’s essential to gather accurate and relevant data.

Types of Data

Depending on your hypothesis, you’ll need to collect either:

  • Quantitative Data : Numerical data that can be measured. Examples include height, weight, and temperature.
  • Qualitative Data : Categorical data that represent characteristics. Examples include colors, gender, and material types.

Data Collection Methods

Various methods can be used to collect data, such as:

  • Surveys and Questionnaires : Useful for collecting qualitative data and opinions.
  • Observation : Collecting data through direct or participant observation.
  • Experiments : Especially useful in scientific research where control over variables is possible.
  • Existing Data : Utilizing databases, records, or any other data previously collected.

Sample Size

The sample size ( n ) is another crucial factor. A larger sample size generally gives more accurate results, but it’s often constrained by resources like time and money. The choice of sample size might also depend on the statistical test you plan to use.

Continuing with the manufacturing example, suppose you decide to collect data on the assembly time of 30 randomly chosen products, 15 made using the old process and 15 made using the new process. Here, your sample size n =30.

Data Preparation

Once data is collected, it often needs to be cleaned and prepared for analysis. This could involve:

  • Removing Outliers : Outliers can skew the results and provide an inaccurate picture.
  • Data Transformation : Converting data into a format suitable for statistical analysis.
  • Data Coding : Categorizing or labeling data, necessary for qualitative data.

By the end of Step 3, you should have a dataset that is ready for statistical analysis. This dataset should be representative of the population you’re interested in and prepared in a way that makes it suitable for hypothesis testing.

With the hypotheses stated and the significance level set, you’re now ready to collect the data that will serve as the foundation for your hypothesis test. Given that you’re testing a change in a manufacturing process, the data will most likely be quantitative, representing the assembly time of cars produced on the line. Data Collection Plan You decide to use a Random Sampling Method for your data collection. For two weeks, assembly times for randomly selected cars will be recorded: one week using the old process and another week using the new process. Your aim is to collect data for 40 cars from each process, giving you a sample size ( n ) of 80 cars in total. Types of Data Quantitative Data : In this case, you’re collecting numerical data representing the assembly time in minutes for each car. Data Preparation Data Cleaning : Once the data is collected, you’ll need to inspect it for any anomalies or outliers that could skew your results. For example, if a significant machine breakdown happened during one of the weeks, you may need to adjust your data or collect more. Data Transformation : Given that you’re dealing with time, you may not need to transform your data, but it’s something to consider, depending on the statistical test you plan to use. Data Coding : Since you’re dealing with quantitative data in this scenario, coding is likely unnecessary unless you’re planning to categorize assembly times into bins (e.g., ‘fast’, ‘medium’, ‘slow’) for some reason. Example Data Points: Car_ID Process_Type Assembly_Time_Minutes 1 Old 38.53 2 Old 35.80 3 Old 36.96 4 Old 39.48 5 Old 38.74 6 Old 33.05 7 Old 36.90 8 Old 34.70 9 Old 34.79 … … … The complete dataset would contain 80 rows: 40 for the old process and 40 for the new process.

Step 4: Conduct the Statistical Test

After you have your hypotheses, significance level, and collected data, the next step is to actually perform the statistical test. This step involves calculations that will lead to a test statistic, which you’ll then use to make your decision regarding the null hypothesis.

Choose the Right Test

The first task is to decide which statistical test to use. The choice depends on several factors:

  • Type of Data : Quantitative or Qualitative
  • Sample Size : Large or Small
  • Number of Groups or Categories : One-sample, Two-sample, or Multiple groups

For instance, you might choose a t-test for comparing means of two groups when you have a small sample size. Chi-square tests are often used for categorical data, and ANOVA is used for comparing means across more than two groups.

Calculation of Test Statistic

Once you’ve chosen the appropriate statistical test, the next step is to calculate the test statistic. This involves using the sample data in a specific formula for the chosen test.

Obtain the p-value

After calculating the test statistic, the next step is to find the p-value associated with it. The p-value represents the probability of observing the given test statistic if the null hypothesis is true.

  • A small p-value (< α ) indicates strong evidence against the null hypothesis, so you reject the null hypothesis.
  • A large p-value (> α ) indicates weak evidence against the null hypothesis, so you fail to reject the null hypothesis.

Make the Decision

You now compare the p-value to the predetermined significance level ( α ):

  • If p < α , you reject the null hypothesis in favor of the alternative hypothesis.
  • If p > α , you fail to reject the null hypothesis.

In the manufacturing case, if your calculated p-value is 0.03 and your α is 0.05, you would reject the null hypothesis, concluding that the new process effectively reduces the average assembly time.

By the end of Step 4, you will have either rejected or failed to reject the null hypothesis, providing a statistical basis for your decision-making process.

Now that you have collected and prepared your data, the next step is to conduct the actual statistical test to evaluate the null and alternative hypotheses. In this case, you’ll be comparing the mean assembly times between cars produced using the old and new processes to determine if the new process is statistically significantly faster. Choosing the Right Test Given that you have two sets of independent samples (old process and new process), a Two-sample t-test for Equality of Means seems appropriate for comparing the average assembly times. Preparing Data for Minitab Firstly, you would prepare your data in an Excel sheet or CSV file with one column for the assembly times using the old process and another column for the assembly times using the new process. Import this file into Minitab. Steps to Perform the Two-sample t-test in Minitab Open Minitab : Launch the Minitab software on your computer. Import Data : Navigate to File > Open and import your data file. Navigate to the t-test Menu : Go to Stat > Basic Statistics > 2-Sample t... . Select Columns : In the dialog box, specify the columns corresponding to the old and new process assembly times under “Sample 1” and “Sample 2.” Options : Click on Options and make sure that you set the confidence level to 95% (which corresponds to α = 0.05 ). Run the Test : Click OK to run the test. In this example output, the p-value is 0.0012, which is less than the significance level α = 0.05 . Hence, you would reject the null hypothesis. The t-statistic is -3.45, indicating that the mean of the new process is statistically significantly less than the mean of the old process, which aligns with your alternative hypothesis. Showing the data displayed as a Box plot in the below graphic it is easy to see the new process is statistically significantly better.

Why do a Hypothesis test?

You might ask, after all this why do a hypothesis test and not just look at the averages, which is a good question. While looking at average times might give you a general idea of which process is faster, hypothesis testing provides several advantages that a simple comparison of averages doesn’t offer:

Statistical Significance

Account for Random Variability : Hypothesis testing considers not just the averages, but also the variability within each group. This allows you to make more robust conclusions that account for random chance.

Quantify the Evidence : With hypothesis testing, you obtain a p-value that quantifies the strength of the evidence against the null hypothesis. A simple comparison of averages doesn’t provide this level of detail.

Control Type I Error : Hypothesis testing allows you to control the probability of making a Type I error (i.e., rejecting a true null hypothesis). This is particularly useful in settings where the consequences of such an error could be costly or risky.

Quantify Risk : Hypothesis testing provides a structured way to make decisions based on a predefined level of risk (the significance level, α ).

Decision-making Confidence

Objective Decision Making : The formal structure of hypothesis testing provides an objective framework for decision-making. This is especially useful in a business setting where decisions often have to be justified to stakeholders.

Replicability : The statistical rigor ensures that the results are replicable. Another team could perform the same test and expect to get similar results, which is not necessarily the case when comparing only averages.

Additional Insights

Understanding of Variability : Hypothesis testing often involves looking at measures of spread and distribution, not just the mean. This can offer additional insights into the processes you’re comparing.

Basis for Further Analysis : Once you’ve performed a hypothesis test, you can often follow it up with other analyses (like confidence intervals for the difference in means, or effect size calculations) that offer more detailed information.

In summary, while comparing averages is quicker and simpler, hypothesis testing provides a more reliable, nuanced, and objective basis for making data-driven decisions.

Step 5: Interpret the Results and Make Conclusions

Having conducted the statistical test and obtained the p-value, you’re now at a stage where you can interpret these results in the context of the problem you’re investigating. This step is crucial for transforming the statistical findings into actionable insights.

Interpret the p-value

The p-value you obtained tells you the significance of your results:

  • Low p-value ( p < α ) : Indicates that the results are statistically significant, and it’s unlikely that the observed effects are due to random chance. In this case, you generally reject the null hypothesis.
  • High p-value ( p > α ) : Indicates that the results are not statistically significant, and the observed effects could well be due to random chance. Here, you generally fail to reject the null hypothesis.

Relate to Real-world Context

You should then relate these statistical conclusions to the real-world context of your problem. This is where your expertise in your specific field comes into play.

In our manufacturing example, if you’ve found a statistically significant reduction in assembly time with a p-value of 0.03 (which is less than the α level of 0.05), you can confidently conclude that the new manufacturing process is more efficient. You might then consider implementing this new process across the entire assembly line.

Make Recommendations

Based on your conclusions, you can make recommendations for action or further study. For example:

  • Implement Changes : If the test results are significant, consider making the changes on a larger scale.
  • Further Research : If the test results are not clear or not significant, you may recommend further studies or data collection.
  • Review Methodology : If you find that the results are not as expected, it might be useful to review the methodology and see if the test was conducted under the right conditions and with the right test parameters.

Document the Findings

Lastly, it’s essential to document all the steps taken, the methodology used, the data collected, and the conclusions drawn. This documentation is not only useful for any further studies but also for auditing purposes or for stakeholders who may need to understand the process and the findings.

By the end of Step 5, you’ll have turned the raw statistical findings into meaningful conclusions and actionable insights. This is the final step in the hypothesis testing process, making it a complete, robust method for informed decision-making.

You’ve successfully conducted the hypothesis test and found strong evidence to reject the null hypothesis in favor of the alternative: The new assembly process is statistically significantly faster than the old one. It’s now time to interpret these results in the context of your business operations and make actionable recommendations. Interpretation of Results Statistical Significance : The p-value of 0.0012 is well below the significance level of = 0.05   α = 0.05 , indicating that the results are statistically significant. Practical Significance : The boxplot and t-statistic (-3.45) suggest not just statistical, but also practical significance. The new process appears to be both consistently and substantially faster. Risk Assessment : The low p-value allows you to reject the null hypothesis with a high degree of confidence, meaning the risk of making a Type I error is minimal. Business Implications Increased Productivity : Implementing the new process could lead to an increase in the number of cars produced, thereby enhancing productivity. Cost Savings : Faster assembly time likely translates to lower labor costs. Quality Control : Consider monitoring the quality of cars produced under the new process closely to ensure that the speedier assembly does not compromise quality. Recommendations Implement New Process : Given the statistical and practical significance of the findings, recommend implementing the new process across the entire assembly line. Monitor and Adjust : Implement a control phase where the new process is monitored for both speed and quality. This could involve additional hypothesis tests or control charts. Communicate Findings : Share the results and recommendations with stakeholders through a formal presentation or report, emphasizing both the statistical rigor and the potential business benefits. Review Resource Allocation : Given the likely increase in productivity, assess if resources like labor and parts need to be reallocated to optimize the workflow further.

By following this step-by-step guide, you’ve journeyed through the rigorous yet enlightening process of hypothesis testing. From stating clear hypotheses to interpreting the results, each step has paved the way for making informed, data-driven decisions that can significantly impact your projects, business, or research.

Hypothesis testing is more than just a set of formulas or calculations; it’s a holistic approach to problem-solving that incorporates context, statistics, and strategic decision-making. While the process may seem daunting at first, each step serves a crucial role in ensuring that your conclusions are both statistically sound and practically relevant.

  • McKenzie, C.R., 2004. Hypothesis testing and evaluation .  Blackwell handbook of judgment and decision making , pp.200-219.
  • Park, H.M., 2015. Hypothesis testing and statistical power of a test.
  • Eberhardt, L.L., 2003. What should we do about hypothesis testing? .  The Journal of wildlife management , pp.241-247.

Q: What is hypothesis testing in the context of Lean Six Sigma?

A: Hypothesis testing is a statistical method used in Lean Six Sigma to determine whether there is enough evidence in a sample of data to infer that a certain condition holds true for the entire population. In the Lean Six Sigma process, it’s commonly used to validate the effectiveness of process improvements by comparing performance metrics before and after changes are implemented. A null hypothesis ( H 0 ​ ) usually represents no change or effect, while the alternative hypothesis ( H 1 ​ ) indicates a significant change or effect.

Q: How do I determine which statistical test to use for my hypothesis?

A: The choice of statistical test for hypothesis testing depends on several factors, including the type of data (nominal, ordinal, interval, or ratio), the sample size, the number of samples (one sample, two samples, paired), and whether the data distribution is normal. For example, a t-test is used for comparing the means of two groups when the data is normally distributed, while a Chi-square test is suitable for categorical data to test the relationship between two variables. It’s important to choose the right test to ensure the validity of your hypothesis testing results.

Q: What is a p-value, and how does it relate to hypothesis testing?

A: A p-value is a probability value that helps you determine the significance of your results in hypothesis testing. It represents the likelihood of obtaining a result at least as extreme as the one observed during the test, assuming that the null hypothesis is true. In hypothesis testing, if the p-value is lower than the predetermined significance level (commonly α = 0.05 ), you reject the null hypothesis, suggesting that the observed effect is statistically significant. If the p-value is higher, you fail to reject the null hypothesis, indicating that there is not enough evidence to support the alternative hypothesis.

Q: Can you explain Type I and Type II errors in hypothesis testing?

A: Type I and Type II errors are potential errors that can occur in hypothesis testing. A Type I error, also known as a “false positive,” occurs when the null hypothesis is true, but it is incorrectly rejected. It is equivalent to a false alarm. On the other hand, a Type II error, or a “false negative,” happens when the null hypothesis is false, but it is erroneously failed to be rejected. This means a real effect or difference was missed. The risk of a Type I error is represented by the significance level ( α ), while the risk of a Type II error is denoted by β . Minimizing these errors is crucial for the reliability of hypothesis tests in continuous improvement projects.

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

Free Lean Six Sigma Templates

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Other Guides

No internet connection.

All search filters on the page have been cleared., your search has been saved..

  • All content
  • Dictionaries
  • Encyclopedias
  • Expert Insights
  • Foundations
  • How-to Guides
  • Journal Articles
  • Little Blue Books
  • Little Green Books
  • Project Planner
  • Tools Directory
  • Sign in to my profile My Profile

Not Logged In

  • Sign in Signed in
  • My profile My Profile

Not Logged In

  • Offline Playback link

hypothesis testing in business research methods

Have you created a personal profile? sign in or create a profile so that you can create alerts, save clips, playlists and searches.

The Process of Hypothesis Testing - Part 2

  • Watching now: Chapter 1: Using Probability in Hypothesis Testing Start time: 00:00:00 End time: 00:05:48
  • Chapter 2: Simplified Scenario Illustrating Hypothesis Testing Start time: 00:05:49 End time: 00:09:54

Video Type: Tutorial

(2021). The process of hypothesis testing - part 2 [Video]. Sage Research Methods. https:// doi. org/10.4135/9781529630176

"The Process of Hypothesis Testing - Part 2." In Sage Video . : Starttech Educational Services LLP, 2021. Video, 00:09:54. https:// doi. org/10.4135/9781529630176.

, 2021. The Process of Hypothesis Testing - Part 2 , Sage Video. [Streaming Video] London: Sage Publications Ltd. Available at: <https:// doi. org/10.4135/9781529630176 & gt; [Accessed 1 Apr 2024].

The Process of Hypothesis Testing - Part 2 . Online video clip. SAGE Video. London: SAGE Publications, Ltd., 13 Dec 2022. doi: https:// doi. org/10.4135/9781529630176. 1 Apr 2024.

The Process of Hypothesis Testing - Part 2 [Streaming video]. 2021. doi:10.4135/9781529630176. Accessed 04/01/2024

Please log in from an authenticated institution or log into your member profile to access the email feature.

  • Sign in/register

Add this content to your learning management system or webpage by copying the code below into the HTML editor on the page. Look for the words HTML or </>. Learn More about Embedding Video   icon link (opens in new window)

Sample View:

This is an image of a Sage Research Methods video on a Learning Management System

  • Download PDF opens in new window
  • icon/tools/download-video icon/tools/video-downloaded Download video Downloading... Video downloaded

Part 2 of an example outlining the process of hypothesis testing in MS Excel for business statistic analytics, including probability or p-values, type 1 errors, significance levels, and a simplified scenario.

Chapter 1: Using Probability in Hypothesis Testing

  • Start time: 00:00:00
  • End time: 00:05:48

Chapter 2: Simplified Scenario Illustrating Hypothesis Testing

  • Start time: 00:05:49
  • End time: 00:09:54
  • Product: Sage Research Methods: Business
  • Type of Content: Tutorial
  • Title: The Process of Hypothesis Testing - Part 2
  • Publisher: Starttech Educational Services LLP
  • Series: Statistics for Business Analytics using MS Excel
  • Publication year: 2021
  • Online pub date: December 13, 2022
  • Discipline: Business and Management
  • Methods: Statistical inference , Statistical packages , Data analysis skills
  • Duration: 00:09:54
  • DOI: https:// doi. org/10.4135/9781529630176
  • Keywords: business skills , data analysis , hypothesis testing , p value , probability , Significance testing , Statistical packages , type I errors Show all Show less
  • Online ISBN: 9781529630176 Copyright: Copyright © 2021 Starttech Educational Services LLP More information Less information

Sign in to access this content

Get a 30 day free trial, more like this, sage recommends.

We found other relevant content for you on other Sage platforms.

Have you created a personal profile? Login or create a profile so that you can save clips, playlists and searches

Navigating away from this page will delete your results

Please save your results to "My Self-Assessments" in your profile before navigating away from this page.

Sign in to my profile

Sign up for a free trial and experience all Sage Learning Resources have to offer.

You must have a valid academic email address to sign up.

Get off-campus access

  • View or download all content my institution has access to.

Sign up for a free trial and experience all Sage Research Methods has to offer.

  • view my profile
  • view my lists
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

IMAGES

  1. Hypothesis Testing Solved Examples(Questions and Solutions)

    hypothesis testing in business research methods

  2. Hypothesis Testing Steps & Examples

    hypothesis testing in business research methods

  3. PPT

    hypothesis testing in business research methods

  4. Hypothesis to Be Tested: Definition and 4 Steps for Testing with Example

    hypothesis testing in business research methods

  5. PPT

    hypothesis testing in business research methods

  6. How to Optimize the Value of Hypothesis Testing

    hypothesis testing in business research methods

VIDEO

  1. Two-Sample Hypothesis Testing

  2. How to choose Confidence of Level?

  3. Hypothesis Testing

  4. Hypothesis Testing: How to Choose Confidence of Level?

  5. Week 10 Part 1 Hypothesis testing methods

  6. Research Methods

COMMENTS

  1. A Beginner's Guide to Hypothesis Testing in Business

    3. One-Sided vs. Two-Sided Testing. When it's time to test your hypothesis, it's important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests, or one-tailed and two-tailed tests, respectively. Typically, you'd leverage a one-sided test when you have a strong conviction ...

  2. What is Hypothesis Testing? Types and Methods

    Create synthetic test data based on actual test data to fulfill certain test requirements. Create new data variants using existing data to support a wider range of testing situations. Improve the accuracy of the data that is already available. Examine extensive code bases to better comprehend the situation. 3.

  3. Hypothesis Testing

    Present the findings in your results and discussion section. Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps. Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test.

  4. Hypothesis Testing in Business Analytics

    In simpler words, hypothesis testing in business analytics is a method that helps researchers, scientists, or anyone for that matter, test the legitimacy or the authenticity of their hypotheses or claims about real-life or real-world events. To understand the example of hypothesis testing in business analytics, consider a restaurant owner ...

  5. Hypothesis Testing: Definition, Uses, Limitations + Examples

    Hypothesis testing is an assessment method that allows researchers to determine the plausibility of a hypothesis. ... Applications of Hypothesis Testing in Research. Hypothesis testing isn't only confined to numbers and calculations; it also has several real-life applications in business, manufacturing, advertising, and medicine. ...

  6. Hypothesis Testing

    Hypothesis testing is a scientific method used for making a decision and drawing conclusions by using a statistical approach. It is used to suggest new ideas by testing theories to know whether or not the sample data supports research. A research hypothesis is a predictive statement that has to be tested using scientific methods that join an ...

  7. Hypothesis Testing in Business Administration

    Results based solely on some hypothesis-testing approach have clear implications about methods aimed at computing confidence intervals. Nonnormal distributions that tend to generate outliers are one source for concern. There are effective methods for dealing with outliers, but technically sound techniques are not obvious based on standard training.

  8. (PDF) Demystifying Hypothesis Testing in Business and ...

    Abstract. Hypothesis testing is probably one of the fundamental concepts in academic research especially where one wishes to proof a theory, logic or principle. Business and social research embeds ...

  9. Hypothesis Testing

    Jan 23, 2024. Hypothesis testing, a cornerstone in data-driven decision-making, exhibits distinct characteristics and serves different purposes in business and academic research contexts ...

  10. 3 Statistical Analysis Methods You Can Use to Make Business Decisions

    Statistical Analysis Methods for Business. 1. Hypothesis Testing. Hypothesis testing is a statistical method used to substantiate a claim about a population. This is done by formulating and testing two hypotheses: the null hypothesis and the alternative hypothesis. Related: A Beginner's Guide to Hypothesis Testing in Business.

  11. Sage Research Methods: Business

    Methods Map. This visualization demonstrates how methods are related and connects users to relevant content. Project Planner. Find step-by-step guidance to complete your research project. Which Stats Test. Answer a handful of multiple-choice questions to see which statistical method is best for your data. Reading Lists

  12. Hypothesis to Be Tested: Definition and 4 Steps for Testing with Example

    Hypothesis testing is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used ...

  13. How to Write a Strong Hypothesis

    6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.

  14. Hypothesis Testing in Business Research

    What's more, hypothesis testing in business research, especially when it comes to finances and a company's internal and external (think clients) fiscal responsibility, is a proven method to guide next steps and decision-making within whole corporations, specific offices of an organization, or even one team of 10 at a large company.

  15. Business Research Methodology: Research Process and Methods

    The research process includes all steps in the research project beginning from the problem formulation, through research design, proposal, conducting the research, deriving conclusions, writing research report, and preparing and making presentation. The major research methods include risk assessment, statistics, sampling, hypothesis testing ...

  16. Sage Research Methods: Business

    Part 1 of an example outlining the process of hypothesis testing in MS Excel for business statistic analytics, including the hypothesis statements, type of test, graphing the sample distribution, and assigning probability. ... Product: Sage Research Methods: Business Type of Content: Tutorial Title: The Process of Hypothesis Testing - Part 1 ...

  17. An Introduction to Statistics: Understanding Hypothesis Testing and

    HYPOTHESIS TESTING. A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the "alternate" hypothesis, and the opposite ...

  18. How Is a Hypothesis Important in Business?

    The importance of hypothesis testing in business is significant. A good hypothesis is the foundation of any research project, but you can only figure out if the hypothesis will lead to good ...

  19. Guide: Hypothesis Testing

    Further Research: If the test results are not clear or not significant, ... business, or research. Hypothesis testing is more than just a set of formulas or calculations; it's a holistic approach to problem-solving that incorporates context, statistics, and strategic decision-making. ... Hypothesis testing is a statistical method used in Lean ...

  20. Sage Research Methods: Business

    Explore hundreds of books and reference titles. sign up today! <p>Part 2 of an example outlining the process of hypothesis testing in MS Excel for business statistic analytics, including probability or p-values, type 1 erro.

  21. (PDF) FORMULATING AND TESTING HYPOTHESIS

    The researcher states a hypothesis to be tested, formulates an analysis plan, analyzes sample data. according to the plan, and accepts or rejects the null hypothesis, based on r esults of the ...

  22. What is a Hypothesis

    For example, a hypothesis might be formulated to test the effects of income inequality on crime rates. Business: In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a ...

  23. Hypothesis testing

    This is the Online Learning Centre for Business Research Methods, fourth edition, by Blumberg, Cooper & Schindler, ... Hypothesis testing. To learn more about the book this website supports, please visit its Information Center. 2014 McGraw-Hill Education Europe Any use is subject to the ...