International Soil and Water Conservation Research

international soil and water conservation research

Subject Area and Category

  • Agronomy and Crop Science
  • Soil Science
  • Nature and Landscape Conservation
  • Water Science and Technology

KeAi Communications Co.

Publication type

20956339, 2589059X

Information

How to publish in this journal

international soil and water conservation research

The set of journals have been ranked according to their SJR and divided into four equal groups, four quartiles. Q1 (green) comprises the quarter of the journals with the highest values, Q2 (yellow) the second highest values, Q3 (orange) the third highest values and Q4 (red) the lowest values.

The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scientific influence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from It measures the scientific influence of the average article in a journal, it expresses how central to the global scientific discussion an average article of the journal is.

Evolution of the number of published documents. All types of documents are considered, including citable and non citable documents.

This indicator counts the number of citations received by documents from a journal and divides them by the total number of documents published in that journal. The chart shows the evolution of the average number of times documents published in a journal in the past two, three and four years have been cited in the current year. The two years line is equivalent to journal impact factor ™ (Thomson Reuters) metric.

Evolution of the total number of citations and journal's self-citations received by a journal's published documents during the three previous years. Journal Self-citation is defined as the number of citation from a journal citing article to articles published by the same journal.

Evolution of the number of total citation per document and external citation per document (i.e. journal self-citations removed) received by a journal's published documents during the three previous years. External citations are calculated by subtracting the number of self-citations from the total number of citations received by the journal’s documents.

International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's documents signed by researchers from more than one country; that is including more than one country address.

Not every article in a journal is considered primary research and therefore "citable", this chart shows the ratio of a journal's articles including substantial research (research articles, conference papers and reviews) in three year windows vs. those documents other than research articles, reviews and conference papers.

Ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those not cited during the following year.

Scimago Journal & Country Rank

Leave a comment

Name * Required

Email (will not be published) * Required

* Required Cancel

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.

Scimago Lab

Follow us on @ScimagoJR Scimago Lab , Copyright 2007-2024. Data Source: Scopus®

international soil and water conservation research

Cookie settings

Cookie Policy

Legal Notice

Privacy Policy

  • Global Assessment Report (GAR)
  • PreventionWeb

Special Events

  • Global Platform
  • International Day for Disaster Reduction
  • World Tsunami Awareness Day
  • Sendai Framework Monitor
  • Voluntary Commitments
  • UNDRR Africa
  • organization

International Soil and Water Conservation Research (Elsevier)

Explore further.

International Soil and Water Conservation Research (ISWCR) , the official journal of the World Association of Soil and Water Conservation (WASWAC), is a multidisciplinary journal for soil and water conservation research, practice, policy, and perspectives. This journal aims to disseminate new knowledge and promote the practice of soil and water conservation.

The scope of this journal includes innovative ideas and approaches, results and new data in soil erosion research, preventive and restorative soil conservation strategies, and related soil and water resource conservation research. We particularly welcome interdisciplinary work focusing on monitoring methods, soil erosion models, development and application of soil and water conservation measures and evaluation of their effects, maintenance, and improvement of soil quality, and watershed management related to soil loss and/or water quality/quantity protection.

The Sendai Framework Voluntary Commitments (SFVC) online platform allows stakeholders to inform the public about their work on DRR. The SFVC online platform is a useful toolto know who is doing what and where for the implementation of the Sendai Framework, which could foster potential collaboration among stakeholders. All stakeholders (private sector, civil society organizations, academia, media, local governments, etc.) working on DRR can submit their commitments and report on their progress and deliverables.

Contact information

Is this page useful.

Thank you. If you have 2 minutes, we would benefit from additional feedback (link opens in a new window) .

international soil and water conservation research

International Soil and Water Conservation Research

  • Journal Search
  • Journal Details

Note: The following journal information is for reference only. Please check the journal website for updated information prior to submission.

INT SOIL WATER CONSE

SOIL SCIENCE

WATER RESOURCES

ENVIRONMENTAL SCIENCES

  • Popular journals in the same field
  • Recent articles

Verified Reviews

Discover peeref hubs.

Discuss science. Find collaborators. Network.

Add your recorded webinar

Do you already have a recorded webinar? Grow your audience and get more views by easily listing your recording on Peeref.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 15 March 2024

Metagenomic insights into the wastewater resistome before and after purification at large‑scale wastewater treatment plants in the Moscow city

  • Shahjahon Begmatov 1 ,
  • Alexey V. Beletsky 1 ,
  • Alexander G. Dorofeev 2 ,
  • Nikolai V. Pimenov 2 ,
  • Andrey V. Mardanov 1 &
  • Nikolai V. Ravin 1  

Scientific Reports volume  14 , Article number:  6349 ( 2024 ) Cite this article

788 Accesses

Metrics details

  • Antimicrobials
  • Microbial communities
  • Industrial microbiology

Wastewater treatment plants (WWTPs) are considered to be hotspots for the spread of antibiotic resistance genes (ARGs). We performed a metagenomic analysis of the raw wastewater, activated sludge and treated wastewater from two large WWTPs responsible for the treatment of urban wastewater in Moscow, Russia. In untreated wastewater, several hundred ARGs that could confer resistance to most commonly used classes of antibiotics were found. WWTPs employed a nitrification/denitrification or an anaerobic/anoxic/oxic process and enabled efficient removal of organic matter, nitrogen and phosphorus, as well as fecal microbiota. The resistome constituted about 0.05% of the whole metagenome, and after water treatment its share decreased by 3–4 times. The resistomes were dominated by ARGs encoding resistance to beta-lactams, macrolides, aminoglycosides, tetracyclines, quaternary ammonium compounds, and sulfonamides. ARGs for macrolides and tetracyclines were removed more efficiently than beta-lactamases, especially ampC , the most abundant ARG in the treated effluent. The removal efficiency of particular ARGs was impacted by the treatment technology. Metagenome-assembled genomes of multidrug-resistant strains were assembled both for the influent and the treated effluent. Ccomparison of resistomes from WWTPs in Moscow and around the world suggested that the abundance and content of ARGs depend on social, economic, medical, and environmental factors.

Similar content being viewed by others

international soil and water conservation research

Metagenomic analysis of an urban resistome before and after wastewater treatment

international soil and water conservation research

Mobile resistome of microbial communities and antimicrobial residues from drinking water supply systems in Rio de Janeiro, Brazil

international soil and water conservation research

Differential effects of wastewater treatment plant effluents on the antibiotic resistomes of diverse river habitats

Introduction.

The spread of antimicrobial resistance (AMR) in the environmental microbiome has become one of the frequently noted problems in recent years, along with global climate change, food security and other technological challenges. Numerous studies show that from year to year, in addition to increasing the cost of hospitalization and treatment of patients infected with multidrug-resistant bacteria, the number of deaths of such patients is growing 1 , 2 . Understanding the mechanisms underlying the emergence, selection and dissemination of AMR, and antibiotic resistance genes (ARGs), is required for the development of sustainable strategies to control and minimize this threat. The dissemination of antibiotic resistant bacteria (ARB) and ARGs occurs differently and this process is more active in urban territories rather than in rural ones. The rate of spread of ARGs and ARB in urban areas is obviously determined by the high population density and, as a rule, wastewater which flows from these areas contains both ARG and ARB. Most antibiotics used in medicine, agriculture and the food industry, as well as resistant bacteria, end up in wastewater. Wastewater treatment plants (WWTPs) therefore could provide a comprehensive overview of ARG abundance, diversity and genomic backgrounds in particular region 3 . Moreover, wastewater and WWTPs are places where ARGs and ARB are particularly abundant and are often considered “hotspots” for the formation of strains with multiple resistance and one of the main sources of the spread of AMR in the environment 4 .

Despite numerous studies on the role of WWTPs in resistome diversity and dissemination, each new study is, in terms of time and geography, unique, as many urban areas and countries have not yet been studied. In addition, some studies are dedicated to explore only one component of the wastewater treatment system, such as wastewater, activated sludge or treated effluent, and there is a lack of research that would give a comprehensive view of the diversity and change in the composition of the resistome at different stages of water cleaning, from wastewater to treated effluent, released into the environment.

Usually, wastewater treatment in large facilities takes place in three stages. The first stage includes physical methods of water cleaning, the second stage is microbiological treatment in bioreactors with activated sludge (AS), and the third stage is the final treatment of water and its disinfection. At the second stage, than could be performed using several technologies, microorganisms of AS are used to remove organic matter, ammonium, and (in more complex processes) phosphorus 5 . At this stage, the removal of microorganisms present in the wastewater, including ARB, occurs due to their adsorption on AS particles, which are removed along with excess AS. The efficiency of this process differs for various bacteria and depends on the purification technology used. Therefore, purification technologies directly affect the removal of particular ARGs and ARB, however, this issue was poorly studied 6 .

ARGs representing all known resistance mechanisms have been found in WWTP environments 7 . ARGs for beta-lactams, macrolides, quinolones, tetracyclines, sulfonamides, trimethoprim, and multidrug efflux pump genes have been found in the incoming wastewater, AS, and treated effluent in various countries 7 , 8 . Recently, Munk and coauthors (2022) using metagenomics methods characterized resistomes of 757 urban wastewater samples from 243 cities in 101 countries covering 7 major geographical regions. They reported regional patterns in wastewater resistomes that differed between subsets corresponding to drug classes and were partly driven by taxonomic variation 3 . Although this study did not analyzes the composition of the wastewater resistome after treatment, there are numerous evidences that the prevalence of ARB and ARG in rivers may increase downstream from the point of discharge of treated wastewater into them 9 , 10 . In a study of WWTPs in Germany, 123 types of clinically significant antibiotic resistance genes were found in treated wastewater discharged into water bodies 11 . An analysis of the presence of 30 ARGs at different stages of wastewater treatment at WWTPs in Northern China showed that the content of most ARGs in the treated effluent was lower compared to the influent entering the treatment, although an increase in the abundance of some ARGs and their release into the environment was also observed 12 . A metagenomic analysis of WWTP in Hong Kong revealed seasonal changes in the content of several types of ARG and its decrease in the treated effluent 13 , 14 . Most ARGs were reduced by more than 98% in the treated effluent compared to the wastewater entering the treatment 14 . Some other studies have also reported a decrease in ARGs after wastewater treatment 15 , 16 , 17 . However, in other studies, no changes in the ARG content or even an increase were observed 17 , 18 , 19 . Although there are numerous studies of resistomes in WWTP-related environments the distribution of samples was geographically biased and covered mostly North America, Western Europe, Eastern Asia (mostly China), Australasia, and few places in South America/Caribbean and Sub-Saharan Africa 3 .

In order to expand the geographical coverage and our knowledge about global resistome abundance and diversity, we analyzed resistomes of wastewater before and after treatment at large-scale WWTPs in the city of Moscow (Russia). Although Moscow WWTPs are among the largest in the world and may play an important role in the spread of antibiotic resistance, the resistomes of municipal wastewaters in Moscow have not previously been studied by modern molecular genetic methods. Previously we performed 16S rRNA gene profiling of AS microbial communities at large-scale WWTPs responsible for the treatment of municipal wastewater ion Moscow 5 . Comparison of microbial communities of AS samples from WWTPs in Moscow and worldwide revealed that Moscow samples clustered together indicating the importance of influent characteristics, related to local social and environmental factors, for wastewater microbiomes 5 . For example, due to the relatively low cost of water for household consumption, wastewater in Moscow has a relatively low content of organic matter. Apparently the presence of ARB and ARGs in communal wastewater depends on the frequency of antibiotic use and the range of drugs used. These factors differ in different countries and cities. Therefore, the characterization of the resistome and the role of Moscow WWTPs in the dispersion of ARGs is an important goal. Of particular interest is also the assessment of the impact of wastewater treatment technology on the composition of the resistome and the degree of ARG removal.

Here we present the first metagenomic overview of the composition of resistome of influent wastewater, AS and treated effluent released into the environment at two Moscow WWTPs employing different treatment technologies.

Characteristics of WWTPs and water chemistry

The Lyuberetskiy WWTP complex of JSC “Mosvodokanal” carry out the treatment of wastewater in the city of Moscow with a capacity of about 2 million m 3 per day. This complex consists of several wastewater treatment units (hereafter referred to as WWTPs). They purify the same inflow wastewater but otherwise are independent installations between which there is no transfer and mixing of AS. Two WWTPs implementing different technologies for wastewater treatment were chosen as the objects of study. The first one (LOS) is operated using anaerobic/anoxic/oxic process, also known as the University of Cape Town (UCT) technology. There the sludge mixture first enters the anaerobic zone, where phosphate-accumulating microorganisms (PAO) consume easily degradable organics, then to the anoxic zone, where denitrification and accumulation of phosphates by denitrifying PAO occur, and finally to the aerobic zone, where organic matter and ammonium are oxidized while PAO accumulate large quantities of polyphosphate. The second WWTP (NLOS2) uses a simpler nitrification–denitrification technology (N-DN). In the aerobic zones organics and ammonium are oxidized, while in the anoxic zone nitrate is reduced to gaseous nitrogen. This treatment technology removes organic matter and nitrogen, but was not specially aimed to remove phosphates. The production capacity of LOS is approximately 2 times more than that of NLOS2; there are no other important differences between these WWTPs besides treatment technology.

Sampling and chemical analysis

Wastewater and AS samples were collected in September 2022 and kindly provided by “Mosvodokanal” JSC. The temperature of water samples was about 24 °C. Samples of AS from bioreactors of two WWTPs were taken in 50 ml Falcon tubes (BD Biosciences). Wastewater samples (influent and effluents from two WWTPs) were taken in 5 L plastic bottles. The cells were collected by centrifugation at 3000 g for 20 min at 4 °C.

Wastewater quality values, namely, biochemical oxygen demand (five days incubation) (BOD 5 ), chemical oxygen demand (COD), total suspended solids (TSS), sludge volume index (SVI), ammonium nitrogen (N-NH 4 ), nitrate nitrogen (N-NO 3 ), nitrite nitrogen (N-NO 2 ) and phosphorus (P-PO 4 ) in the influent and effluents of two WWTPs were measured by the specialized laboratory “MSULab” according to the Federal inspection of environmental management’s protocols for chemical analyses of water.

DNA isolation, 16S rRNA gene sequencing and analysis

Total genomic DNA was isolated using a Power Soil DNA isolation kit (Qiagen, Germany). DNA for each sample was isolated in four parallel replicates, which were then pooled. PCR amplification of 16S rRNA gene fragments comprising the V3–V4 variable regions was performed using the universal primers 341F (5′-CCTAYG GGDBGCWSCAG) and 806R (5′-GGA CTA CNVGGG THTCTAAT) 20 . The obtained PCR fragments were bar-coded and sequenced on Illumina MiSeq (2 × 300 nt reads). Pairwise overlapping reads were merged using FLASH v.1.2.11 21 . All sequences were clustered into operational taxonomic units (OTUs) at 97% identity using the USEARCH v.11 program 22 . Low quality reads were removed prior to clustering, chimeric sequences and singletons were removed during clustering by the USEARCH algorithms. To calculate OTU abundances, all reads obtained for a given sample were mapped to OTU sequences at a 97% global identity threshold by USEARCH. The taxonomic assignment of OTUs was performed by searching against the SILVA v.138 rRNA sequence database using the VSEARCH v. 2.14.1 algorithm 23 .

The diversity indices at a 97% OTU cut-off level were calculated using USEARCH v.11 22 . To avoid sequencing depth bias, the numbers of reads for each sample were randomly sub-sampled to the size of the smallest set.

Sequencing of metagenomic DNA, contigs assembly and binning of MAGs

Metagenomic DNA was sequenced using the Illumina HiSeq2500 platform according to the manufacturer’s instructions (Illumina Inc., San Diego, CA, USA). The sequencing of a paired-end (2 × 150 bp) NEBNext Ultra II DNA Library prep kit (NEB) generated from 145 to 257 million read pairs per sample. Adapter removal and trimming of low-quality sequences (Q < 30) were performed using Cutadapt v.3.4 24 and Sickle v.1.33 ( https://github.com/najoshi/sickle ), respectively. The resulting Illumina reads were de novo assembled into contigs using SPAdes v.3.15.4 in metagenomic mode 25 .

The obtained contigs were binned into metagenome-assembled genomes (MAGs) using 3 different programs: MetaBAT v.2.2.15 26 , MaxBin v.2.2.7 27 and CONCOCT v.1.1.0 28 . The results of the three binning programs were merged into an optimized set of MAGs using DAS Tool v.1.1.4 29 . The completeness of the MAGs and their possible contamination (redundancy) were estimated using CheckM v.1.1.3 30 with lineage-specific marker genes. The assembled MAGs were taxonomically classified using the Genome Taxonomy Database Toolkit (GTDB-Tk) v.2.0.0 31 and Genome Taxonomy database (GTDB) 32 .

ARG identification

Open reading frames (ORFs) were predicted in assembled contigs using Prodigal v.2.6.3 33 . ARGs were predicted using the NCBI AMRFinderPlus v.3.11.4 ( https://github.com/ncbi/amr/wiki ) command line tool and its associated database 34 . The predicted protein sequences of all ORFs were analyzed in this tool with parameter “-p”.

Efficiency of wastewater treatment

Two wastewater treatment technologies were used in the investigated WWTPs,—nitrification/denitrification at NLOS2 and more advanced anaerobic/anoxic/oxic UCT process at LOS. LOS removed more than 99.5% of organic matter (according to the BOD5 data) and more than 99.9% of ammonium while the performance of NLOS2 was poorer (Table 1 ). Particularly noticeable differences were observed in nitrate and nitrite concentrations in the effluents suggesting the lower efficiency of denitrification in the NLOS2. Interestingly, although the NLOS2 unit was not designed to remove phosphorus, the concentration of phosphates in the treated effluent at this WWTP is only slightly higher than at LOS. The treated influent at LOS contains fewer solids consistently with lower SVI. Overall, the technology used at LOS plant is more efficient.

Microbiomes of the influent wastewater, activated sludge and treated effluent

The 16S rRNA gene profiling of microbial communities revealed 1013 species-level OTUs (97% identity) in the influent and 1.2–1.7 times more OTUs in the AS and treated effluent samples (Supplemental Table S1 ). The Shannon diversity indices correlated with the number of detected OTUs and increased in the series “influent” – “activated sludge” – “effluent” at each WWTP (Supplemental Table S2 ).

Analysis of the microbiome of wastewater supplied for biological treatment showed that that the most numerous phyla in the microbial community were Firmicutes (28.4% of all 16S rRNA gene sequences), Campylobacterota (28.0%), Proteobacteria (20.9%), and Bacteroidota (10.5%) (Fig.  1 ). These were mainly representatives of the fecal microbiota, which are often found in wastewater. The phylum Firmicutes was dominated by Streptococcaceae (9.7%, mostly S treptococcus sp.), Lachnospiraceae (5.9%), Ruminococcaceae (3.0%), Carnobacteriaceae (1.7%), Peptostreptococcaceae (1.6%) and Veillonellaceae (1.4%). Most of Campylobacterota belonged to the family Arcobacteraceae (26.8%) of the genera Arcobacter (19.9%), Pseudarcobacter (2.5%) and uncultured lineage (4.3%), as well as by sulfur-oxidizing Sulfurospirillum (1.0%). Among the Proteobacteria the most abundant genera were Acinetobacter (7.8%) , Aeromonas (1.8%) and Pseudomonas (1.1%). Most of the identified Bacteroidota were typical fecal contaminants such as members of the genera Bacteroides (2.6%), Macellibacteroides (1.5%), Prevotella (1.4%), and Cloacibacterium (1.2%).

figure 1

Microbial community composition in the influent, AS and treated effluent samples according to 16S rRNA gene profiling. The composition is displayed at the phylum level. INFL, influent wastewater; AS-LOS, AS at LOS plant; CW-LOS, treated effluent at LOS plant; AS-NLOS2, AS at NLOS2 plant; CW-NLOS2, treated effluent at NLOS2 plant.

Activated sludge of WWTP bioreactors is a complex microbial community consisting of physiologically and phylogenetically heterogeneous groups of microorganisms involved in the removal of major contaminants from wastewater. The composition of AS microbiomes was very different from the microbiome of incoming wastewater (Fig.  1 ). The phyla Campylobacterota (less than 0.5%) and Firmicutes (2–4%) were much less abundant in AS microbiomes. Proteobacteria was the dominant group in the microbiomes of AS (23–40%), but its composition differed from the microbiome of influent wastewater: instead of the fecal microflora (Enterobacterales and others) the AS community harbored lineages involved in the purification processes ( Competibacteraceae , Rhodocyclaceae , Nitrosomonadaceae , etc.). Likewise, Bacteroidota were among the most numerous phyla in AS microbiomes at both LOS (6.5%) and NLOS2 (14.1%), but instead of Bacteroidales mostly comprised Chitinophagales and Sphingobacteriales typical for AS communities. The numerous groups of AS community also included Chloroflexi (22% and 10% in LOS and NLOS2, respectively), Patescibacteria (1.8% and 9.9%), Nanoarchaeota (4.3% and 9.1%), Nitrospirota (3.9% and 7.3%), Verrucomicrobiota and Myxococcota (about 4% in both WWTPs). Bacteria that play an important role in the removal of nitrogen ( Nitrospira and Nitrosomonas ) and phosphorus ( Dechloromonas ), as well as glycogen-accumulating Ca . Competibacter, have been found in large numbers. The abundance of these functional groups is consistent with the high efficiency of nitrogen and phosphorus removal.

The main source of microorganisms in treated effluent is the AS, from which they are washed out; bacteria from the influent water may also be present in minor amounts. Therefore, as expected, the microbiome composition of treated wastewater was similar to that of activated sludge. Consistently, compositions of microbiomes of treated effluent were similar to that of AS samples. However, some differences were observed, in particular, the microbiomes of the treated effluent contained many Cyanobacteria (7.74% and 3.49% for LOS and NLOS2, respectively) which were found in minor amounts both in the influent water and in the ASs (< 0.5%). Probably, these light-dependent bacteria proliferate in the final clarifier and then can be easily washed out with the effluent.

Diversity of resistomes

The results of metagenomic analysis of incoming wastewater revealed 544 ARGs in the assembled contigs, classified into 33 AMR gene families (Table 2 and Supplemental Table S3 ). Among the most numerous were classes A, C, D and metallo- beta-lactamases, rifampin ADP-ribosyltransferase, Erm 23S ribosomal RNA methyltransferase, aminoglycoside nucleotidyl-, acetyl- and phospho-transferases, the ABC-F type ribosomal protection proteins, chloramphenicol acetyltransferase, trimethoprim-resistant dihydrofolate reductase, quaternary ammonium compound efflux SMR transporters, lincosamide nucleotidyltransferases, tetracycline efflux MFS transporters and tetracycline resistance ribosomal protection proteins (Table 2 ). These genes may enable antibiotic inactivation (373 genes), target protection (85 genes), efflux (44 genes) and target replacement (25 genes).

The abovementioned genes confer resistance to most of commonly used drugs: beta-lactams (198 genes), macrolides (74 genes), rifamycin (60 genes), aminoglycosides (51 genes), tetracycline (27 genes), phenicols (27 genes), diaminopyrimidines (19 genes), quaternary ammonium compounds (16 genes), glycopeptides (15 genes), lincosamide (13 genes), fosfomycine (12 genes) and drugs of 11 others classes (Fig.  2 ).

figure 2

ARGs identified in wastewater and AS samples categorized by drug classes.

About twice less ARGs were identified in AS samples from both WWTPs. Like in the influent, beta-lactamases of classes A, D, and metallo-beta-lactamases were the most numerous, while only a few genes for class C enzymes were found (Table 2 ). Other families of ARGs, numerous in the influent, were also numerous in AS microbiomes. A notable difference between the resistomes of the AS samples is the greater number of rifampin-ADP-ribosyltransferase genes ( arr ) in NLOS2 compared to LOS (63 vs 33). The largest number of arr genes was assigned to Bacteroidota, and the lower relative abundance of this phylum in AS at LOS likely explains these differences. Like in the wastewater, resistance to beta-lactams, macrolides, rifamycin, aminoglycosides, and tetracyclines was the most common (Fig.  2 ). On the contrary, genes for some drug classes were underrepresented in AS resistomes, especially for diaminopyrimidines (3 and 2 genes for LOS and NLOS2, respectively) and glycopeptide antibiotics (2 and 0 genes).

The results of metagenomic analysis of treated effluent showed that the diversity of these resistomes was only slightly higher than that of the corresponding AS samples. This result was expected since the main source of microorganisms in the effluent is activated sludge, from which they are partially washed. However, resistomes of treated effluent at both WWTPs contains about twice more class A beta-lactamase genes than AS samples suggesting less efficient absorption of their host bacteria at AS particles (Table 2 ).

Quantitative analysis of antibiotic resistance genes of WWTP

The results described above provide information on the diversity of resistance genes, but not on their abundance in the metagenomes, which depends on the abundance of corresponding bacterial hosts. To quantify the shares of individual ARGs in the metagenome and resistome, the amounts of metagenomic reads mapped to the corresponding ARGs in contigs were determined. In total, the resistome accounted for about 0.05% of the metagenome of wastewater supplied for treatment, while the shares of resistomes in the metagenomes of AS and treated effluent samples were 0.02% and 0.014% at the LOS and NLOS2 WWTPs, respectively.

Quantitative analysis of the content of individual ARGs in metagenomes showed that the structure of the influent resistome was very different from that of AS and treated effluent. The relative content of ARGs accounting for more than 1% in at least one analyzed resistome is shown in Fig.  3 . The LOS and NLOS2 WWTPs differed significantly from each other, and the differences between the AS and effluent resistomes at each WWTP were much less pronounced.

figure 3

The relative abundancies of particular ARGs in the resistomes. Only ARGs with shares greater than 1% in at least one sample are shown, all other ARGs are shown as “others”.

The resistome of the influent was not only the most diverse, but also the most even in composition. The shares of none of the ARGs exceeded 5% of the resistome, and the 23 most common ARGs accounted for a half of the resistome. The most abundant ten ARGs were qacE, sul1, ampC, blaOXA, msr(E), erm(B), mph(E), tet(C), aph(3'')-Ib and aph(6)-Id, conferring resistance to antiseptics, sulfonamides, beta-lactams, macrolides, aminoglycosides (streptomycin), and tetracyclines.

AS and treated effluent at LOS plant was strongly dominated by a single AGR type, class C beta-lactamase ampC , accounting for about 45% of their resistomes. This gene was also the most abundant one in the resistomes of AS and effluent at NLOS2 (14.8% and 18.2%, respectively). Apparently it originates from the influent wastewater supplied for treatment where its share in the resistome was 3.2%. AmpC β-lactamases are considered clinically important cephalosporinases encoded on the chromosomes and plasmids of various bacteria (especially Enterobacteriaceae ), where they mediate resistance to cephalothin, cefazolin, cefoxitin and most penicillins 35 . Close homologues of this gene, with a nucleotide sequence identity of 99.8–100%, have been found in plasmids and chromosomes of various Proteobacteria ( Thauera, Sphingobium, Aeromonas etc.). Since in all samples ampC was found in short contigs with very high coverage, it is likely widespread in the genomes of various bacteria in different genetic contexts.

The second most abundant ARG in the resistomes of AS samples was sulfonamide-resistant dihydropteroate synthase ( sul1 ). It accounted for 4–5% of AS and treated effluent resistomes in LOS and for about 11% in NLOS2, while its share in the influent water resistome was about 5%. The sul1 gene is usually found in class 1 integrons being linked to other resistance genes, including qacE 36 . Consistently, sul1 and qacE were found in one contig assembled for the influent water samples and assigned to Gammaproteobacteria. Another sulfonamide-resistance gene, sul2 , was also numerous, accounting for about 2% of the resistomes in the influent and LOS samples, and for about 4% in the AS and water treated at NLOS2.

Since ARGs entering the activated sludge and then into the treated effluent originate mostly from wastewater supplied for treatment, the absolute majority of ARGs present in the influent in significant amounts (more than 0.2% resistome) in were also found in AS and effluent samples. The only exception macrolide 2′-phosphotransferase gene mph(B) accounting for 0.51% in the influent resistome. Likewise, all ARGs accounting for more than 0.2% of resistomes in the treated effluent were present also in the influent.

Potential multidrug resistant strains

One of the most important public health problems is the spread of multidrug resistant pathogens (MDR), which refers to resistance to at least one agent in three or more chemical classes of antibiotic (e.g. a beta-lactam, an aminoglycoside, a macrolide) 37 . Such strains can arrive with wastewater entering the treatment, and also form in AS communities. AS are dense and highly competitive microbial communities, which, along with the presence of sublethal concentrations of antibiotics and other toxicants in wastewater, creates ideal conditions not only for the selection of resistant strains, but also for the formation of multiple resistance through horizontal gene transfer 4 . To identify MDR bacteria, we binned metagenomic contigs into metagenome-assembled genomes (MAGs) and looked for MAGs comprising several ARGs. Only MAGs with more than 70% completeness and less than 15% contamination were selected for analysis: 117, 56, 72, 94 and 121 for influent, AS of LOS, effluent of LOS, AS of NLOS2 and effluent of NLOS2, respectively. Five MAGs of MDR bacteria were identified in the metagenome of the influent, one—in AS of LOS, two—in the LOS effluent and one in the NLOS2 effluent (Table 3 ). These MAGs were assigned to unclassified genus-level lineages of Ruminococcaceae and Cyclobacteriaceae, Phocaeicola vulgatus, Streptococcus parasuis, Ancrocorticia sp., Enterococcus sp., Bacillus cereus and Undibacterium sp.

Disscussion

We characterized the composition of microbial communities and the resistomes of influent wastewater, activated sludge and treated effluent from two WWTPs in city of Moscow, where various biological water treatment technologies are used. Among the predominant bacteria in the influent wastewater we found mainly fecal contaminants of the genera Collinsella , Bacteroides , Prevotella , Arcobacter , Arcobacteraceae , Blautia , Faecalibacterium, Streptococcus , Acinetobacter , Aeromonas and Veillonella 38 , 39 , 40 , 41 , 42 , 43 . Previously, we performed 16S rRNA gene profiling of wastewater before and after treatment at one WWTP (LOS) and revealed that all abovementioned potential pathogens were efficiently removed and their relative abundance in the water microbiome decreased by 50‒100 times 44 . Similar pattern of removal of potential pathogenic bacteria was observed here for NLOS2 where another water treatment technology is used.

An important indicator of the dissemination of ARG is the proportion of the resistome in the entire metagenome before and after wastewater treatment. In the influent, the resistome accounted for about 0.05% of the metagenome, which corresponds to approximately two ARGs per bacterial genome. Approximately the same values are typical for most countries 3 . After treatment, the fraction of the resistome in the wastewater metagenomes decreases, but, surprisingly, only by 2–4 times. However, since the total concentration of microorganisms in treated effluent is approximately two orders of magnitude lower than in raw wastewater, it is likely that the total abundance of ARGs in the treated effluent is significantly reduced.

Apparently, fecal contaminants effectively removed during treatment are not the only carriers of ARG in wastewater, which are also found in bacteria characteristic of activated sludge and thus appearing in the effluents. Unfortunately, due to the high diversity of microbiomes and the tendency of ARG to be present in multiple copies in different genomic environments, most of the contigs containing ARG turned out to be short, which did not allow to define their taxonomic affiliation.

The resistome of influent water includes 26 ARGs, the share of which is more than 1%. Among of them the prevalence of ampC, aadA, qacE, bla, qacF and qacL is specific for Moscow WWTPs, since these genes were not among the 50 most common ARGs according to the results of a worldwide analysis of wastewater resistomes in large cities 3 . Different ARGs were most “evenly” represented in the influent wastewater while in the AS and treated effluent, a clear selection of particular types of ARGs was observed, which obviously reflects a change in the composition of microbiomes. A vivid example is the increase in the proportion of ampC in the resistomes, especially at LOS.

The discovered ARGs can confer resistance to most classes of antibiotics and among the resistomes of the studied WWTPs in the city of Moscow, genes conferring resistance to beta-lactam antibiotics were the most common, they accounted for about 26% of the resistome in the water supplied for treatment (Fig.  4 ). Similar values have been observed for wastewater in some other countries, particularly in Eastern Europe and Brazil, where 20 to 25% of reads were assigned to ARGs conferring resistance to beta-lactams 3 . According to data for 2021, beta lactams accounted for about 40% of the total antibiotic consumption in Russia in the medical sector 45 .

figure 4

The relative abundancies of ARGs in the resistomes categorized by drug classes.

Like in most wastewater resistomes in different countries, ARGs conferring resistance to macrolides, aminoglycosides and tetracycline were also among the most abundant in wastewater from Moscow (Fig.  4 ). Resistance to macrolides, rather than beta-lactams, was most common in wastewater from most countries in Europe and North America, while in Moscow ARGs to macrolide were the second most common. Macrolides and tetracyclines are also widely used in medicine in Russia (20% and 5% of total antibiotic consumption in 2021, respectively). On the contrary, medical consumption of aminoglycosides in Russia is rather low (< 1% of the total), therefore, the high abundance of relevant ARGs was unexpected. The opposite pattern was observed for quinolones, which make up about 22% of the antibiotics used in medicine, but their ARGs accounted for only about 1% of the resistome. However the main mechanisms of resistance to quinolones, mutations in the target enzymes, DNA gyrase and DNA topoisomerase IV, and increased drug efflux 46 , were not addressed in our study.

A peculiar feature of Moscow wastewater resistome was the high content of resistance genes to sulfonamides (about 9%), which were not among the major genes in wastewater resistomes worldwide 3 . Sulfonamides are synthetic antimicrobial agents that currently have limited use in the human medicine, alone or mainly in combination with trimethoprim (a dihydrofolate reductase inhibitor), in the treatment of uncomplicated respiratory, urinary tract and chlamydia infections 7 , 47 . Different sulfonamide ARGs ( sul1, sul2 and sul3 ) were detected in the wastewater in the some countries, including Denmark, Canada, Spain and China, applying culture dependent, independent and qPCR methods 7 . The opposite picture was observed for streptogramin resistance genes, which were among the ARGs in the majority of resistomes worldwide, but in Moscow wastewater they accounted for less than 1%. This is probably due to the limited use of this drug in Russia.

Another distinguishing feature of the resistome of wastewater in Moscow is the high content of ARGs conferring resistance to quaternary ammonium compounds (QAC), about 9%. It can be explained by the frequent use of these antiseptics in medicine. QACs are active ingredients in more than 200 disinfectants currently recommended for inactivation the SARS-CoV-2 (COVID-19) virus 48 . A recent study showed that the number of QACs used to inactivate the virus in public facilities, hospitals and households increased during the COVID-19 pandemic 49 . Indeed, the results of a study dedicated to the study of wastewater resistome worldwide 3 did not reveal the presence of QAC ARGs in the wastewater, since the samples for this study were collected before the pandemic.

An important issue is the extent to which different water treatment technologies remove ARGs. The effective removal of ARG was primary due to a decrease in the concentration of microorganisms in treated effluent, since the share of resistome in the metagenome after treatment decreased by only 2.6 –3.7 times and the NLOS2 plant appeared to be more effective in this respect. However, compared to LOS, treated effluent at NLOS2 contains approximately twice as much suspended solids, probably due to poorer settling characteristics of the sludge indicated by the higher SVI. Therefore, the overall efficiency of removing ARGs from wastewater at two WWTPs may be similar.

Considering the relative abundances of ARGs in the resistomes, genes conferring resistance to macrolides and tetracyclines were removed more efficiently than beta lactamases, especially ampC , and rifampin ADP-ribosyltransferase genes. The low efficiency of removal of the ampC gene and the increase in its abundance in the resistome after wastewater treatment were previously reported for WWTPs in Germany 50 . Efficient removal of ARGs to macrolides ( ermB, ermF, mph(A), mef(A) ) and tetracyclines ( tet(A), tet(C), tet(Q), tet(W) ) has been reported in a number of studies worldwide 51 . ARGs enabling resistance to sulfonamides, tetracyclines and chloramphenicol were more efficiently removed at LOS than at NLOS2, while the opposite was observed for beta lactamases (Fig.  4 ). The later became the most abundant class of ARGs in the treated effluent.

Metagenomic analysis not only identified resistance genes, but also revealed probable MDR strains based on the analysis of assembled MAGs. We identified 9 such strains in both influent, AS and treated effluent. The real number of MDR strains is probably higher, since only a small fraction of all metagenomic contigs was included in the assembled high quality MAGs.

Phocaeicola vulgatus , (formerly Bacteroides vulgatus ), is a mutualistic anaerobic bacteria commonly found in the human gut microbiome and frequently involved in human infections. The results of whole genome analysis showed presence of blaTEM-1 and blaCMY-2 ARGs, which confers resistant to beta-lactams 52 , 53 . P. vulgatus was also identified as potential host for the transmission of tetracycline ARGs 54 . Streptococcus parasuis is an important zoonotic pathogen that causes primarily meningitis, sepsis, endocarditis, arthritis, and pneumonia in both pigs and humans 55 . A variety of MDR strains of this bacterium have been described. For instance, S. parasuis strain H35 was isolated from a lung sample of a pig in China; several ARGs, including optrA , catQ , erm(B), lsa(E), msr(D), mef(A), mdt(A), tet(M), lnu(B), aadE and two copies of aacA-aphD , were found in the chromosome and cfr(D) was detected on plasmid pH35-cfrD 56 . MDR strain of Bacillus cereus was identified in the effluent water microbiome. This bacterium is known as human pathogen and a common cause of food poisoning with toxin-producing property 57 . Bacillus cereus was isolated from drinking water treatment plant in China and antimicrobial susceptibility testing revealed that it was resistant to cefoxitin, penicillin tetracycline 58 , macrolide-lincosamide-streptogramin (MLSB), aminoglycoside and tetracycline antibiotics 59 . Assembled MAG B.cereus from effluent water contained ARGs conferring to macrolides, beta-lactams, fosfomycin and streptogramin and may be considered as MDR strain. Genomes of members of the genera Streptococcus (AS of LOS) and Enterococcus (influent), not identified at the species level, were found to contain multiple ARGs. Most of species of these genera are opportunistic and true pathogens known for their drug resistance 60 , 61 . One MAG from the influent water metagenome was assigned to uncultured lineage of the family Ruminococcaceae. Members of this family are typical non-pathogenic gut inhabitants, although genomes of some strains could harbor ARGs 62 .

Three MAGs retrieved from influent wastewater microbiome ( Ancrocorticia ) and treated effluent water ( Cyclobacteriaceae and Undibacterium ) were found to contain several ARGs. However, we found no evidences about pathogenic and MDR strains in these taxa. It is possible that these environmental bacteria acquired ARGs via horizontal gene from outside their lineages. WWTPs are an ideal environment for horizontal gene transfer (HGT), since when bacteria are exposed to strong selective pressures, such as the presence of antimicrobials, the horizontal acquisition of ARGs enables genetic diversification and create the potential for rapid gains in fitness 63 .

Conclusions

Metagenome sequencing of the raw wastewater, activated sludge and treated wastewater at two large WWTPs of the Moscow city revealed several hundreds of ARGs that could confer resistance to most commonly used classes of antibiotics.

Resistome accounted for about 0.05% of the wastewater metagenome and after wastewater treatment its share decreased by 3–4 times.

The resistomes were dominated by ARGs encoding resistance to beta-lactams, macrolides, aminoglycosides, tetracycline, QAC, and sulfonamides. A peculiar feature of Moscow wastewater resistome was the high content of ARGs to sulfonamides and limited occurrence of resistance to streptogramins.

ARGs for macrolides and tetracyclines were removed more efficiently than ARGs for beta-lactamases.

A comparison of wastewater resistomes from Moscow and around the world suggested that the abundance and content of ARG in wastewater depend on social, medical, and environmental factors.

Data availability

The raw data generated from 16S rRNA gene sequencing and metagenome sequencing have been deposited in the NCBI Sequence Read Archive (SRA) and are available via the BioProject PRJNA945245.

Cassini, A. et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 19 , 56–66 (2019).

Article   PubMed   PubMed Central   Google Scholar  

Thorpe, K. E., Joski, P. & Johnston, K. J. Antibiotic-resistant infection treatment costs. antibiotic-resistant infection treatment costs have doubled since 2002, now exceeding $2 billion annually. Health Aff. 37 , 662–669 (2018).

Article   Google Scholar  

Munk, P. et al. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat. Commun. 13 , 7251 (2022).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Rizzo, L. et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci. Total Environ. 447 , 345–360 (2013).

Article   ADS   CAS   PubMed   Google Scholar  

Begmatov, S. et al. The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow. Sci. Rep. 12 , 3458 (2022).

Mosaka, T. B. M., Unuofin, J. O., Daramola, M. O., Tizaoui, C. & Iwarere, S. A. Inactivation of antibiotic-resistant bacteria and antibiotic-resistance genes in wastewater streams: Current challenges and future perspectives. Front. Microbiol. 13 , 1100102 (2022).

Article   PubMed   Google Scholar  

Pazda, M., Kumirska, J., Stepnowski, P. & Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems—A review. Sci. Total Environ. 697 , 134023 (2019).

Karkman, A., Do, T. T., Walsh, F. & Virta, M. P. J. Antibiotic-resistance genes in waste water. Trends Microbiol. 26 , 220–228 (2018).

Article   CAS   PubMed   Google Scholar  

Amos, G. C., Hawkey, P. M., Gaze, W. H. & Wellington, E. M. Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. J. Antimicrob Chemother. 69 , 1785–1791 (2014).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Marti, E., Jofre, J. & Balcazar, J. L. Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE 8 , e78906 (2013).

Szczepanowski, R. et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 155 , 2306–2319 (2009).

Mao, D. et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 85 , 458–466 (2015).

Yang, Y., Li, B., Ju, F. & Zhang, T. Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. Environ. Sci. Technol. 47 , 10197–10205 (2013).

Yang, Y., Li, B., Zou, S., Fang, H. H. & Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62 , 97–106 (2014).

Bengtsson-Palme, J. et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 572 , 697–712 (2016).

Karkman, A. et al. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol Ecol. 92 , fiw014 (2016).

Laht, M. et al. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. PLoS ONE 9 , e103705. https://doi.org/10.1371/journal.pone.0103705 (2014).

Auerbach, E. A., Seyfried, E. E. & McMahon, K. D. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res. 41 , 1143–1151 (2007).

Harris, S. J., Cormican, M. & Cummins, E. Antimicrobial residues and antimicrobial-resistant bacteria: Impact on the microbial environment and risk to human health—a review. Human Ecol. Risk Assess. Int. J. 18 , 767–809 (2012).

Article   CAS   Google Scholar  

Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 3 , fiw018 (2016).

Magoc, T. & Salzberg, S. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27 , 2957–2963 (2011).

Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 , 2460–2461 (2010).

Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4 , e2584 (2016).

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17 , 10–12 (2011).

Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27 , 824–834 (2017).

Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 7 , e7359 (2019).

Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 32 , 605–607 (2016).

Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11 , 1144–1146 (2014).

Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3 , 836–843 (2018).

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2 , 1043–1055 (2015).

Chaumeil, P. A., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38 , 5315–5316 (2022).

Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36 , 996–1004 (2018).

Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11 , 119 (2010).

Feldgarden, M. et al. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 11 , 12728 (2021).

Jacoby, G. A. AmpC beta-lactamases. Clin. Microbiol. Rev. 22 , 161–182 (2009).

Antunes, P., Machado, J., Sousa, J. C. & Peixe, L. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob. Agents Chemother. 49 , 836–839 (2005).

Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18 , 268–281 (2012).

Azcarate-Peril, M. A. et al. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc. Natl. Acad. Sci. USA 114 , E367–E375 (2017).

Koskey, A. M. et al. Blautia and Prevotella sequences distinguish human and animal fecal pollution in Brazil surface waters. Environ. Microbiol. Rep. 6 , 696–704 (2014).

Altwegg, M. & Geiss, H. K. Aeromonas as a human pathogen. Crit. Rev. Microbiol. 16 , 253–286 (1989).

Wexler, A. G. & Goodman, A. L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol. 2 , 17026 (2017).

Collado, L. & Figueras, M. J. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter . Clin. Microbiol. Rev. 24 , 174–192 (2011).

Antunes, L. C., Visca, P. & Towner, K. J. Acinetobacter baumannii : evolution of a global pathogen. Pathog. Dis. 71 , 292–301 (2014).

Begmatov, S. A., Dorofeev, A. G., Pimenov, N. V., Mardanov, A. V. & Ravin, N. V. High efficiency of removal of pathogenic microorganisms at wastewater treatment plants in the city of Moscow. Microbiology 92 , 734–738. https://doi.org/10.1134/S0026261723601124 (2023).

Zakharenkov, I. A., Rachina, S. A., Kozlov, R. S. & Belkova, Yu. A. Consumption of systemic antibiotics in the Russian Federation in 2017–2021. Clin. Microbiol. Antimicrob. Chemother. 24 , 220–225. https://doi.org/10.36488/cmac.2022.3.220-225 (2022).

Hooper, D. C. & Jacoby, G. A. Mechanisms of drug resistance: quinolone resistance. Ann. N.Y. Acad. Sci. 1354 , 12–31 (2015).

Littlefield, B. A., Gurpide, E., Markiewicz, L., McKinley, B. & Hochberg, R. B. A simple and sensitive microtiter plate estrogen bioassay based on stimulation of alkaline phosphatase in Ishikawa cells: estrogenic action of Δ5 adrenal steroids. Endocrinology 127 , 2757–2762 (1990).

Hora, P. I., Pati, S. G., McNamara, P. J. & Arnold, W. A. Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: consideration of environmental implications. Environ. Sci. Technol. Lett. 7 , 622–631 (2020).

Liu, C. et al. Low concentration quaternary ammonium compounds promoted antibiotic resistance gene transfer via plasmid conjugation. Sci. Total. Environ. 887 , 163781 (2023).

Alexander, J., Bollmann, A., Seitz, W. & Schwartz, T. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Sci. Total. Environ. 512–513 , 316–325 (2015).

Article   ADS   PubMed   Google Scholar  

Uluseker, C. et al. A Review on Occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: mechanisms and perspectives. Front. Microbiol. 12 , 717809 (2021).

Vázquez-López, R. et al. The beta-lactam resistome expressed by aerobic and anaerobic bacteria isolated from human feces of healthy donors. Pharmaceuticals 14 , 533 (2021).

Vishwanath, S., Shenoy, P. A. & Chawla, K. Antimicrobial resistance profile and nim gene detection among Bacteroides fragilis group isolates in a university hospital in South India. J. Glob. Infect. Dis. 11 , 59–62 (2019).

Qin, R., Yu, Q. G., Liu, Z. Y. & Wang, H. Co-occurrence of tetracycline antibiotic resistance genes and microbial communities in plateau wetlands under the influence of human activities. Huan Jing Ke Xue 44 , 169–179 (2023).

PubMed   Google Scholar  

Wang, J. et al. Investigation of the genomic and pathogenic features of the potentially zoonotic Streptococcus parasuis . Pathogens 10 , 834 (2021).

Zhu, Y. et al. Identification of a Streptococcus parasuis isolate co-harbouring the oxazolidinone resistance genes cfr(D) and optrA . J. Antimicrob. Chemother. 76 , 3059–3061 (2021).

Enosi, T. D., Mathur, A., Ngo, C. & Man, S. M. Bacillus cereus : Epidemiology, virulence factors, and host-pathogen interactions. Trends Microbiol. 29 , 458–471 (2021).

Gu, Q. et al. Characteristics of antibiotic resistance genes and antibiotic-resistant bacteria in full-scale drinking water treatment system using metagenomics and culturing. Front. Microbiol. 12 , 798442 (2022).

Han, Z. et al. Antibiotic resistomes in drinking water sources across a large geographical scale: Multiple drivers and co-occurrence with opportunistic bacterial pathogens. Water Res. 183 , 116088 (2020).

Fiore, E., Van, T. D. & Gilmore, M. S. Pathogenicity of Enterococci . Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.GPP3-0053-2018 (2019).

Patterson, M. J. Streptococcus. In Medical Microbiology 4th edn (ed. Baron, S.) (University of Texas Medical Branch at Galveston, 1996).

Google Scholar  

Abdugheni, R. et al. Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus . Microb. Genom. 9 , mgen001071 (2023).

PubMed   PubMed Central   Google Scholar  

Lerminiaux, N. A. & Cameron, A. D. S. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 65 , 34–44 (2019).

Download references

Acknowledgements

This work was partly supported by the Russian Science Foundation (Project 22-74-00022 to S.B.).

Author information

Authors and affiliations.

Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071

Shahjahon Begmatov, Alexey V. Beletsky, Andrey V. Mardanov & Nikolai V. Ravin

Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071

Alexander G. Dorofeev & Nikolai V. Pimenov

You can also search for this author in PubMed   Google Scholar

Contributions

S.B. and N.V.R. designed and supervised the research project; A.G.D. collected the samples and analysed chemical composition of wastewater; A.V.M. performed 16S rRNA gene profiling and metagenome sequencing; S.B., A.V.B., N.V.P., and N.V.R. analysed the sequencing data; S.B. and N.V.R. wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Shahjahon Begmatov or Nikolai V. Ravin .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary tables., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Begmatov, S., Beletsky, A.V., Dorofeev, A.G. et al. Metagenomic insights into the wastewater resistome before and after purification at large‑scale wastewater treatment plants in the Moscow city. Sci Rep 14 , 6349 (2024). https://doi.org/10.1038/s41598-024-56870-0

Download citation

Received : 26 October 2023

Accepted : 12 March 2024

Published : 15 March 2024

DOI : https://doi.org/10.1038/s41598-024-56870-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

international soil and water conservation research

Guide for Authors

Introduction, types of paper.

Contributions falling into the following categories will be considered for publication: Original research papers, reviews, letter to the editor. Please ensure that you select the appropriate article type from the list of options when making your submission. Authors contributing to special issues should ensure that they select the special issue article type from this list.

BEFORE YOU BEGIN

Ethics in publishing.

Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication . Submissions to KeAi journals are automatically screened using iThenticate's CrossCheck within the editorial system to detect plagiarism issues including instances of overlapping and similar text in submitted manuscripts. Details can be found here . High similarity papers will be desk rejected.

Declaration of interest

All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential competing interests include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. Authors must disclose any interests in two places: 1. A summary declaration of interest statement in the title page file (if double anonymized) or the manuscript file (if single anonymized). If there are no interests to declare then please state this: 'Declarations of interest: none'. 2. Detailed disclosures as part of a separate Declaration of Interest form, which forms part of the journal's official records. It is important for potential interests to be declared in both places and that the information matches. More information .

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract, a published lecture or academic thesis, see 'Multiple, redundant or concurrent publication' for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify compliance, your article may be checked by Crossref Similarity Check and other originality or duplicate checking software.

Use of inclusive language

Inclusive language acknowledges diversity, conveys respect to all people, is sensitive to differences, and promotes equal opportunities. Content should make no assumptions about the beliefs or commitments of any reader; contain nothing which might imply that one individual is superior to another on the grounds of age, gender, race, ethnicity, culture, sexual orientation, disability or health condition; and use inclusive language throughout. Authors should ensure that writing is free from bias, stereotypes, slang, reference to dominant culture and/or cultural assumptions. We advise to seek gender neutrality by using plural nouns ("clinicians, patients/clients") as default/wherever possible to avoid using "he, she," or "he/she." We recommend avoiding the use of descriptors that refer to personal attributes such as age, gender, race, ethnicity, culture, sexual orientation, disability or health condition unless they are relevant and valid. When coding terminology is used, we recommend to avoid offensive or exclusionary terms such as "master", "slave", "blacklist" and "whitelist". We suggest using alternatives that are more appropriate and (self-) explanatory such as "primary", "secondary", "blocklist" and "allowlist". These guidelines are meant as a point of reference to help identify appropriate language but are by no means exhaustive or definitive.

Author contributions

For transparency, we require corresponding authors to provide co-author contributions to the manuscript using the relevant CRediT roles. The CRediT taxonomy includes 14 different roles describing each contributor’s specific contribution to the scholarly output. The roles are: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; and Writing - review & editing. Note that not all roles may apply to every manuscript, and authors may have contributed through multiple roles. More details and an example .

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author : (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement'. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article.

Elsevier supports responsible sharing

Find out how you can share your research published in Elsevier journals.

Role of the funding source

You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement, it is recommended to state this.

Open access

This is an open access journal: all articles will be immediately and permanently free for everyone to read and download. To provide open access, this journal has an open access fee (also known as an article publishing charge APC) which needs to be paid by the authors or on their behalf e.g. by their research funder or institution.The Article Processing Charge (APC) for this journal is USD 1200, excluding taxes. Peer review under responsibility of International Research and Training Center on Erosion and Sedimentation, the China Water and Power Press, and China Institute of Water Resources and Hydropower Research. (see https://www.elsevier.com/openaccesslicenses ). All articles will be published under the following license:

Elsevier Researcher Academy

Researcher Academy is a free e-learning platform designed to support early and mid-career researchers throughout their research journey. The "Learn" environment at Researcher Academy offers several interactive modules, webinars, downloadable guides and resources to guide you through the process of writing for research and going through peer review. Feel free to use these free resources to improve your submission and navigate the publication process with ease.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the Language Editing service available from Elsevier's Language Services.

Submission to this journal proceeds totally online. Use the following guidelines to prepare your article. Via the homepage of this journal ( https://www.evise.com/profile/api/navigate/ISWCR ) you will be guided stepwise through the creation and uploading of the various files. The system automatically converts source files to a single Adobe Acrobat PDF version of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor's decision and requests for revision, takes place by e-mail and via the author's homepage, removing the need for a hard-copy paper trail. If you are unable to provide an electronic version, please contact the editorial office prior to submission [[email protected]; telephone: +86 10 68785906; or fax: 86 10 68411174

Additional Information

Tables and figures may be presented with captions within the main body of the manuscript; if so, figures should additionally be uploaded as high resolution files.

PREPARATION

Editorial policies.

For information on Editorial Policies for journal publication refer to http://www.keaipublishing.com/en/authors-and-editors/editorial-policies/

Peer review

This journal operates a double anonymized review process. All contributions are typically sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor's decision is final. Editors are not involved in decisions about papers which they have written themselves or have been written by family members or colleagues or which relate to products or services in which the editor has an interest. Any such submission is subject to all of the journal's usual procedures, with peer review handled independently of the relevant editor and their research groups. More information on types of peer review .

Use of word processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier ). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork. To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

You are recommended to use the Elsevier article class elsarticle.cls to prepare your manuscript and BibTeX to generate your bibliography. Our LaTeX site has detailed submission instructions, templates and other information.

Article structure

Essential formatting guidelines to remember

1. The manuscript must have line numbers that run consecutively from the beginning to the end of the manuscript. 2. Abstract must not have more than 250 words. 3. DO NOT use self-defined acronyms. Spell out the words. Commonly used and understood acronyms, such as GIS or DEM are acceptable. 4. Do not report the precision of numbers that exceed the certainty, or reasonable certainty, of the number. For example, do not report a value as 5.34865 if the precision with uncertainty is 5.3. 5. You MUST have a clear and concise, testable, hypothesis or objective statement at the end of the Introduction, immediately before the Methods section. 6. Your article must clearly and concisely explain what this work contributes that is NEW to science or the field of soil and water conservation.

Subdivision - numbered sections

Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction

The purpose of the Introduction is threefold: 1) to provide (briefly, no more than a paragraph) the rationale for the study, 2) sufficient background information to allow the reader to understand and evaluate the study without need to read previously published literature, and 3) to state clearly, in a separate paragraph at the end of the Introduction, the objective of the study (and if appropriate, this should be stated as a scientific hypothesis). Avoid a detailed literature survey or a summary of the results.

Material and methods

Provide sufficient details to allow the work to be reproduced by an independent researcher. Methods that are already published should be summarized, and indicated by a reference. If quoting directly from a previously published method, use quotation marks and also cite the source. Any modifications to existing methods should also be described.

Theory/calculation

A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

Results should be clear and concise. Do not include methods in the Results section.

This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. If separate Results and Discussion sections are presented, do not present results in the Discussion section, nor discussion in the results section. Avoid extensive citations and discussion of published literature. Avoid repeating numbers in the text that are listed in the tables of results. The discussion should not propose new concepts or interpretations that are not supported by the results and data presented by the study.

The main conclusions of the study should be presented in a short Conclusions section. The conclusions section should not introduce new material not specifically supported by the results of the study.

If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information

• Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. • Author names and affiliations. Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. You can add your name between parentheses in your own script behind the English transliteration. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author. • Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. This responsibility includes answering any future queries about Methodology and Materials. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author. • Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

A concise and factual abstract is required. The abstract will be seen and read by many more people than will read the paper, hence everything that is important in the paper must be reflected in the abstract and it must be able to stand alone. The abstract presents the paper in miniature, complete within itself. The abstract will consist of: 1) Rationale for the study (typically one sentence); 2) Statement of objective, if appropriate in the form of a hypothesis (typically one sentence); 3) Methods (no more than two sentences); 4) Results, typically two to three sentences, and quantified; 5) Conclusions, typically one to two sentences of the primary conclusion; and 6) (optional) Implications, typically one sentence. Write the abstract as a single paragraph, with no subheadings, and with a limit of 250 words. The word limit will be strictly enforced. Your paper may be returned if the abstract exceeds the word limit or does not follow the format. Some abstracting services truncate text beyond a certain length, and what is lost is often the conclusions. References and abbreviations should be avoided. Non-standard or uncommon abbreviations should be avoided.

Authors are invited to submit keywords associated with their paper.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources

List funding sources in this standard way to facilitate compliance to funder's requirements: Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa]. It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding. If no funding has been provided for the research, it is recommended to include the following sentence: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Nomenclature and units

Follow internationally accepted rules and conventions: use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI. Authors wishing to present a table of nomenclature should do so on the second page of their manuscript.

Math formulae

Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Electronic artwork

General points • Make sure you use uniform lettering and sizing of your original artwork. • Embed the used fonts if the application provides that option. • Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar. • Number the illustrations according to their sequence in the text. • Use a logical naming convention for your artwork files. • Provide captions to illustrations separately. • Size the illustrations close to the desired dimensions of the published version. • Submit each illustration as a separate file. • Ensure that color images are accessible to all, including those with impaired color vision. A detailed guide on electronic artwork is available. You are urged to visit this site; some excerpts from the detailed information are given here. Formats If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format. Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below): EPS (or PDF): Vector drawings, embed all used fonts. TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi. TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi. TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi. Please do not: • Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors; • Supply files that are too low in resolution; • Submit graphics that are disproportionately large for the content.

Color Artwork

Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version.

Figure captions

Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title ( not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

Citation in text

Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Web references

As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Preprint references

Where a preprint has subsequently become available as a peer-reviewed publication, the formal publication should be used as the reference. If there are preprints that are central to your work or that cover crucial developments in the topic, but are not yet formally published, these may be referenced. Preprints should be clearly marked as such, for example by including the word preprint, or the name of the preprint server, as part of the reference. The preprint DOI should also be provided.

References in a special issue

Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software

Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles , such as Mendeley . Using citation plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal's style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide. If you use reference management software, please ensure that you remove all field codes before submitting the electronic manuscript. More information on how to remove field codes from different reference management software .

Reference Style

The author are referred to the Publication Manual of the American Psychological Association, Fifth Edition, ISBN 1-55798-790-4, copies of which may be ordered from http://www.apa.org/books/4200061.html or APA Order Dept., P.O.B. 2710, Hyattsville, MD 20784, USA. or APA, 3 Henrietta Street, London, WC3E 8LU, UK. Details concerning this referencing style can also be found at http://humanities.byu.edu/linguistics/Henrichsen/APA/APA01.html . Examples: Text: All citations in the text should refer to: One author –Smith (2002) found… –(Smith, 2002). Two Authors: –Smith and Jones (2003) found… –(Smith & Jones, 2003). Three or More Authors –Smith et al. (2001) found… - (Phelps et al., 2004) –Smith et al. (2002) found… Groups as Authors: –1 st Citation:  (American Psychological Association [APA], 2000). –Subsequent Citations: (APA, 2000). Anonymous or No Author –Use first few words of reference list entry (usually title): (?Study Finds,? 1995) (TEA, 2007) Authors with Same Surname –Include initials: S. T. Smith (2000) and J. D. Smith (1999) Two of more works within the same parentheses –In order alphabetically, as they would appear in references, separated by semi-colons (Jones, 2003; Thomas, 2010) –If by same author, then by date (Jones, 2003, 2007) References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters “a”, “b”, “c”, etc., placed after the year of publication Reference to a journal publication Carlson, L. A. (2003). Existential theory: Helping school counselors attend to youth at risk for violence. Professional School Counseling, 6 (5), 10-15. Sagarin, B. J., & Lawler-Sagarin, K. A. (2005). Critically evaluating competing theories: An exercise based on the Kitty Genovese murder.  Teaching of Psychology, 32 (3), 167–169.  Hughes, J. C., Brestan, E. V., & Valle, L. A. (2004). Problem-solving interactions between mothers and children.  Child and Family Behavior Therapy, 26 (1), 1-16. Journal with more than seven authors Gilbert, D. OLE_LINK2 G., McCleron, J. F., Rabinovich, N. E., Sugai, C., Plath, L. C., Asgaard, G., … Botros, N. (2004). Effects of quitting smoking on EEG activation and attendtionlast for more than 31 days and are more severe with stress. Nicotine and Tobacco Research, 6, 249-267. Herbst-Damm, K.L., & Kulik, J.A. (2005). Volunteer support, marital status, and the survival times of terminally ill patients. Health Psychology, 24 , 225-229. https://doi.org/10.1037/0278-6133.24.2.225 Silick, T.J., & Schutte, N.S. (2006). Emotional intelligence and self-esteem mediate between perceived early parental love and adult happiness. E-Journal of Applied Psychology, 2(2 ), 38-48. Retrieved from http://ojs.lib.swin.edu.au/index.php/ejap . Reference to a book Beck, C. A. J., & Sales, B. D. (2001). Family mediation: Facts, myths, and future prospects. Washington, DC: American Psychological Association.

Johnson, R. A. (1989). Retrieval inhibition as an adaptive mechanism in human memory. In H. L. RoedigerIII & F. I. M. Craik(Eds.), Varieties of memory & consciousness (pp. 309-330). Hillsdale, NJ: Erlbaum. English translation of a book: Lang, P. S. (1951). A philosophical essay on probabilities (F. W. Truscott & F. L. Emory, Trans.). New York, NY: Dover. (Original work published 1814) *In text, cite original date and translation date: (Lang, 1814/1951). Dissertations and Theses Caprette, C. L. (2005).  Conquering the cold shudder: The origin and evolution of snake eyes  (Doctoral dissertation). Ohio State University, Columbus, OH. Pecore, J. T. (2004).  Sounding the spirit of Cambodia: The living tradition of Khmer music and dance-drama in a Washington, DC community  (Doctoral dissertation). Retrieved from Dissertations and Theses database. (UMI No. 3114720) Caprette, C. L. (2005).  Conquering the cold shudder: The origin and evolution of snake eyes  (Doctoral dissertation). Retrieved from http://www.ohiolink.edu/etd/send-pdf.cgi?acc_num=osu1111184984 Online resource from group/government U.S. Department of Health and Human Services. (2003). Managing asthma: A guide for schools . Retrieved from http://www.nhibi.nih.gov/health/prof/lung/asthma/asth_sch.pdf Reference in other Language Hughes, J. C., Brestan, E. V., & Valle, L. A. (2004). Problem-solving interactions between mothers and children.  Child and Family Behavior Therapy, 26 (1), 1-16. ( In Chinese ) 

Journal abbreviations source

Journal names should be abbreviated according to Index Medicus journal abbreviations: http://www.nlm.nih.gov/tsd/serials/lji.html ; List of title word abbreviations: http://www.issn.org/2-22661-LTWA-online.php ; CAS (Chemical Abstracts Service): http://www.cas.org/sent.html .

AFTER ACCEPTANCE

One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 7 (or higher) available free from http://get.adobe.com/reader . Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/tech-specs.html . If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately – please let us have all your corrections within 72 hours. It is important to ensure that all corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received.

The corresponding author will be notified and receive a link to the published version of the open access article on ScienceDirect . This link is in the form of an article DOI link which can be shared via email and social networks. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication.

AUTHOR INQUIRIES

For inquiries relating to the submission of articles (including electronic submission) please visit this journal's homepage. Contact details for questions arising after acceptance of an article, especially those relating to proofs, will be provided by the publisher. You can track accepted articles at https://www.elsevier.com/trackarticle . You can also check our Author FAQs ( https://www.elsevier.com/authorFAQ ) and/or contact Customer Support via https://service.elsevier.com .

Frequently Asked Questions

  • What are the reasons for desk rejections? The most common reasons for desk rejections include but are not limited to our scope, ethics issues (high similarity with other already published literature, for example), modeling study without adequate calibration or validation, low writing quality, or poor English language usage.
  • Can I resubmit the rejected paper to the journal? The ISWCR usually does not consider papers that had been rejected unless a re-submission invitation was indicated in the decision letter for the previous submission.
  • Does ISWCR accept co-first authors and co-corresponding authors? Based on the nature of the study in soil and water conservation and discussions by the editorial board, co-first authors (also known as Joint first authorship, shared first authorship) are not encouraged. For papers with intensive collaboration involved, and the authors believe that the first two authors contributed equally and they insist on having the first authors, please contact the editorial office before submission. The request will be approved only upon review and discussion, and co-corresponding authors are not permitted. Joint first authorship, if permitted, will be indicated using a footnote on the title page with the phrase "These authors contributed equally". The corresponding author is the author who will handle correspondence at all stages of refereeing and publication, also post-publication. There is no reason to indicate two corresponding authors which in no way benefits the processing of the manuscript.
  • What level of similarity rate is acceptable for ISWCR? All ISWCR submissions are automatically screened for originality by CrossCheck powered by iThenticate. iThenticate is a plagiarism detection software that compares the submitted work against 14 billion web pages and 110 million content items from leading academic publications. There are no strict requirements for the similarity rates. The report from the iThenticate is an important reference to editors, and the judgment is mainly based on the editors' evaluation. Usually, a manuscript with an overall similarity rate greater than 30% or a similarity rate to an individual paper greater than 5% will raise the editor's special attention.
  • What is the policy for articles that have been published as a pre-print before submitting to ISWCR? These are generally accepted, but the authors and affiliations in the submitted manuscript must be the same group as in the pre-printed version.

Stay Informed

Register your interest and receive email alerts tailored to your needs. Sign up below.

  • Stay up to date KeAi About us

Cookie notice

We use cookies to analyse and improve our service, to improve and personalise content, advertising and your digital experience. We also share information about your use of our site with our social media, advertising and analytics partners.

Your cookie preferences

We use cookies and similar technologies on our website. Cookies are text files containing small amounts of information, which your computer or mobile device downloads when you visit a website. When you return to websites, or visit websites that use the same cookies, they recognise these cookies and therefore your browsing device.

We use different types of cookies for different things, such as:

  • Analysing how you use our website
  • Giving you a better, more personalised experience
  • Recognising when you’ve sign in

We split our cookies into three distinct categories. You can turn Functional and Performance cookies on and off right here. Strictly necessary cookies can’t be turned off.

Strictly necessary cookies

These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.

Performance cookies

These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site.

Functional cookies

These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.

Targeting cookies

These cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

Reimagining Design with Nature: ecological urbanism in Moscow

  • Reflective Essay
  • Published: 10 September 2019
  • Volume 1 , pages 233–247, ( 2019 )

Cite this article

international soil and water conservation research

  • Brian Mark Evans   ORCID: orcid.org/0000-0003-1420-1682 1  

978 Accesses

2 Citations

Explore all metrics

The twenty-first century is the era when populations of cities will exceed rural communities for the first time in human history. The population growth of cities in many countries, including those in transition from planned to market economies, is putting considerable strain on ecological and natural resources. This paper examines four central issues: (a) the challenges and opportunities presented through working in jurisdictions where there are no official or established methods in place to guide regional, ecological and landscape planning and design; (b) the experience of the author’s practice—Gillespies LLP—in addressing these challenges using techniques and methods inspired by McHarg in Design with Nature in the Russian Federation in the first decade of the twenty-first century; (c) the augmentation of methods derived from Design with Nature in reference to innovations in technology since its publication and the contribution that the art of landscape painters can make to landscape analysis and interpretation; and (d) the application of this experience to the international competition and colloquium for the expansion of Moscow. The text concludes with a comment on how the application of this learning and methodological development to landscape and ecological planning and design was judged to be a central tenant of the winning design. Finally, a concluding section reflects on lessons learned and conclusions drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

international soil and water conservation research

Similar content being viewed by others

international soil and water conservation research

The politics of designing with nature: reflections from New Orleans and Dhaka

international soil and water conservation research

Acknowledgements

The landscape team from Gillespies Glasgow Studio (Steve Nelson, Graeme Pert, Joanne Walker, Rory Wilson and Chris Swan) led by the author and all our collaborators in the Capital Cities Planning Group.

Author information

Authors and affiliations.

Mackintosh School of Architecture, The Glasgow School of Art, 167 Renfrew Street, Glasgow, G3 6BY, UK

Brian Mark Evans

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Brian Mark Evans .

Rights and permissions

Reprints and permissions

About this article

Evans, B.M. Reimagining Design with Nature: ecological urbanism in Moscow. Socio Ecol Pract Res 1 , 233–247 (2019). https://doi.org/10.1007/s42532-019-00031-5

Download citation

Received : 17 March 2019

Accepted : 13 August 2019

Published : 10 September 2019

Issue Date : October 2019

DOI : https://doi.org/10.1007/s42532-019-00031-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Design With Nature
  • Find a journal
  • Publish with us
  • Track your research
  • Show search

United States

Close-up of a bison standing in the rain.

Make a Difference in Iowa

Since 1963, The Nature Conservancy in Iowa has worked to preserve our state’s natural landscapes through the advancement of land and water conservation. Project managers across the state work within their own communities to protect and conserve private lands and work with agricultural producers and companies on best practices. The Nature Conservancy has worked to protect more than 20,000 acres of land in Iowa.

Folsom Point Volunteer Day

Join us at Folsom Point Prairie for a rewarding volunteer day amidst stunning landscapes and vital conservation efforts. Help the preserve by removing invasive trees and shrubs.

Field trip of restored (re-planted) prairie on private land in Iowa. North American Prairie Conference 2023

Read about last year's conservation gains in Iowa.

Stories in Iowa

A small group of bison graze in a grassland with foothills and mountains in the distance.

American Buffalo Return Home to Tribal Lands

Through our partnership with the InterTribal Bison Council (ITBC), we've transferred over 1,000 bison to Native Nations to restore their ancestral grazing lands.

A group of more than a dozen adults stand in front of solar panels, while a person in the front center uses a giant pair of scissors to cut a purple ribbon that extends across the group.

Accelerating Iowa’s Clean and Green Future

The Nature Conservancy in Iowa is tackling climate change by looking across all economic sectors and encouraging smart approaches to siting renewable energy, including solar.

A whooping crane in the wetlands of Iowa.

Power of Wetlands

Wetlands are nature’s solution to flooding and water quality challenges in Iowa. Find out how we’re conserving and protecting them.

Aerial view of a comma-shaped oxbow next to the main channel of a river.

What Is an Oxbow?

Learn how TNC is restoring oxbow wetlands to help wildlife, reduce flooding and improve water quality in Iowa.

Conservation Across Iowa

Learn about our landscape-based conservation efforts in Iowa.

international soil and water conservation research

See the Places We Protect in Your Community

Our vision for Iowa is healthy lands and water, plus sustainable agriculture that supports biodiversity and provides for the needs of Iowa and the world.

The Nature Conservancy’s History in Iowa

Early Nature Conservancy members in Iowa encourage the organization to begin protecting natural areas in the Hawkeye State.

Former trustees Ed Croker and Sylvan Runkel are awarded with an Oak Leaf Award at the National Nature Conservancy meeting in July 1978.

TNC is established in the state and begins to permanently protect land with the acquisition of Berry Woods, a 42-acre high-quality forest south of Des Moines.

Properties are added with high value for public use.

A long line of people walk across a grassy landscape within the Loess Hills.

110 acres are purchased in the Little Sioux Valley—a unique geological formation and remnant prairie with wildlife. It is currently the most visited preserve in the state.

A decade of growth. More nature preserves are acquired, the first state director is appointed and TNC starts the Anna Beal internship program.

View of a marsh with grasses and marsh plants growing in it at Cone Marsh Wildlife Area; the marsh is bordered by a forest in the distance.

After years of leadership from volunteers and trustees, TNC announces Lawrence Cantera, Jr., as the first state director in Iowa.

Closeup of Pleistocene snails moving across a fallen log covered in moss.

TNC acquires the Charles and Anna Roggman Boreal Slopes, a 20-acre property of rare habitat in the Driftless Area found in Northeast Iowa.

Aerial image of vibrant green grasses and trees of the 150-acre open prairie in Loess Hills.

Sioux City Prairie is acquired in the scenic Loess Hills. The 150 acres of prairie are open to the public for hiking and wildlife watching.

Geese fly over a frozen forested river.

The Savannah Project begins in eastern Iowa with the first land acquisition in the Lower Cedar Valley.

The five first-year Anna Beal Scholarship interns pose for a picture.

The Anna Beal Internship Trust Program begins. Scholarships are awarded to resident college undergraduates for a hands-on stewardship-focused summer internship on TNC properties throughout the state.

The ’90s ushered in big conservation projects and the protection of Iowa’s largest native prairie.

Closeup of an eastern prairie fringed orchid blooming in wetland habitat.

TNC begins protecting Iowa’s largest native prairie, Broken Kettle Grasslands, in the Loess Hills. Without this acquisition, the land would have been converted to cropland and subject to invasive species.

Barry and Carolyn Knapp stand with their family and smile for the camera on their family farm in Westfield, Iowa.

TNC completes the first conservation easement with a private landowner, demonstrating that landowners could protect the Loess Hills while still living and working on the land.

Freshwater conservation efforts begin to take shape and expand in watersheds throughout the state. The reintroduction of bison begins at the largest TNC preserve.

The placid waters of the Boone River are bordered by dense forests.

TNC identifies 47 acres of biological importance in the Mississippi River Basin; this leads to the selection of the Boone River Watershed and the Cedar River for conservation work.

Closeup of the head of a male greater prairie chicken with bright orange cheeks and eyebrows.

TNC acquires the first land portion in Iowa of the Grand River Grasslands, an open grassland home to many species, including prairie chickens.

An agriculture corn field with cover crops and short post-harvest cornstalks.

The land along the Boone River is established as an agricultural watershed project.

Hikers stop along a forest trail to listen to a hike leader learning about native forest habitats.

TNC joins a committee to help establish a Natural Resource & Outdoor Recreation Trust Fund for Iowa.

A herd of bison graze on a hilltop at Broken Kettle Grasslands Preserve.

American bison are reintroduced in the Loess Hills at Broken Kettle Grasslands. The long-term goal is a herd of 250 bison and 2,500 acres of grasslands.

A meandering forested headwater stream covered with lush understory and flowing water within an Iowa river watershed.

The Lower Cedar Valley project is expanded to include the entire Cedar River Watershed.

Marching forward. Successful capital campaigns and significant milestones allow TNC to continue to protect critical habitats throughout the state.

Volunteers with butterfly nets at Sioux City Prairie during a monarch tagging event.

TNC joins Iowa’s Water and Land Legacy (IWiLL) to help establish funding for the Natural Resources & Outdoor Recreation Trust Fund.

A TNC Iowa preserve sign is nearly underwater as floodwaters rise on the landscape.

In response to recent flooding, TNC converts flood-damaged farmland along the Missouri River into wetlands, which helps cleanse drinking water, expand outdoor recreation and improve habitat for flora and fauna.

Cover of a This is Iowa newsletter highlighting various habitats found in Iowa.

At the end of the 6-year-long This Is Iowa Capital Campaign, TNC raised $33,319,622.

A deep pink-and-orange prairie sunset at Broken Kettle Grasslands Preserve.

The Iowa Chapter hit a milestone of 20,000 acres protected in the Land of the Swamp White Oak.

Overlooking rolling green hills of the Hummel Property located in Loess Hills.

834 acres are protected in the Loess Hills through the acquisition of the Hummel property. The property connects two state parks, creating 3,000 contiguous protected acres for the region's wildlife.

What’s Next for Iowa?

It is not enough to just maintain the same pace of conservation. With your support, we can build on our history of success in Iowa and increase our impact in the upcoming years.

Flowering downy hawthorn at Land of the Swamp White Oak.

TNC acquires 356 acres of unique Loess Hills habitat and forms an important partnership with the Girl Scouts of Greater Iowa.

TNC in Iowa 60th anniversary logo.

Let's inspire more land conservation. Improve the health of our water resources. Promote clean energy and conserve the wild places and animals of Iowa for future generations.

We Can’t Save Nature Without You

Sign up to receive monthly conservation news and updates from Iowa. Get a preview of Iowa’s Nature News email.

Please provide a valid email address

You’ve already signed up with this email address. To review your email preferences, please visit nature.org/emailpreferences

We may have detected a typo. Please enter a valid email address (formatted as [email protected]). Did you mean to type ?

We are sorry, but there was a problem processing the reCAPTCHA response. Please contact us at [email protected] or try again later.

Panorama of rolling green farmland with windmills in distance.

IMAGES

  1. (PDF) Lessons from research on soil and water conservation

    international soil and water conservation research

  2. (PDF) Soil and Water Conservation Structures for Smallholder

    international soil and water conservation research

  3. (PDF) Fundamental of Soil and Water Conservation Engineering

    international soil and water conservation research

  4. Soil & Water Conservation

    international soil and water conservation research

  5. International Soil and Water Conservation Research...

    international soil and water conservation research

  6. International Soil and Water Conservation Research Referencing Guide

    international soil and water conservation research

VIDEO

  1. SOIL WATER CONSERVATION PART 1 VID

  2. Soil and water conservation structures . ( SOL123)

  3. Webinar: Soil & Water Conservation Strategies for Sustainable Agriculture: A Future Need#agriculture

  4. Soil & Water Conservation Works

  5. soil water conservative (objective type question)

  6. soil water conservation B Sc Ag 2nd Sem

COMMENTS

  1. International Soil and Water Conservation Research

    International Soil and Water Conservation Research (ISWCR), the official journal of the World Association of Soil and Water Conservation (WASWAC), , is a multidisciplinary journal for soil and water conservation research, practice, policy, and perspectives. This journal aims to disseminate new knowledge and promote the practice of soil and ...

  2. International Soil and Water Conservation Research

    The journal International Soil and Water Conservation Research (ISWCR) is co-owned by three organizations:The International Research and Training Center on Erosion and Sedimentation (IRTCES)China Water & Power Press (CWPP)China Institute of Water Resources and Hydropower Research (IWHR)IRTCES was jointly set up by the Government of China and UN ...

  3. Recent International Soil and Water Conservation Research Articles

    Soil type and wetting intensity control the enhancement extent of N2O efflux in soil with drought and rewetting cycles. March 2024. Panpan Jiao | Lei Yang | Zhongwu Li | Peng Zheng | Xiaodong Nie. Climate change alters the intensity and frequency of drought and rewetting (D/W) events; however, the influence patterns of D/W on soil N2O efflux in ...

  4. International Soil and Water Conservation Research

    International Soil and Water Conservation Research 2095-6339 (Print) / 2589-059X (Online) Website ISSN Portal ... Content on this site is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

  5. International Soil and Water Conservation Research

    This journal aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of this journal includes innovative ideas and approaches, results and new data in soil erosion research, preventive and restorative soil conservation strategies, and related soil and water resource conservation research.

  6. International Soil and Water Conservation Research

    Practicing long-term dry-farming led to 60% soil losses with a mean rate of 2 mm per year. The net erosion rate of croplands on loess deposits in the study area was 32.27 t ha⁻¹ yr⁻¹ ...

  7. International Soil and Water Conservation Research

    A multidisciplinary journal for soil and water conservation research, practice, policy, and perspectives. Find its scope, coverage, ranking, and similar journals in this web page.

  8. Open Access Journal

    Peer review under responsibility of International Research and Training Center on Erosion and Sedimentation, the China Water and Power Press, and China Institute of Water Resources and Hydropower Research. Access Rights All articles published open access will be immediately and permanently free for everyone to read, download, copy and distribute.

  9. International Soil and Water Conservation Research

    A peer-reviewed journal that publishes original research on soil and water conservation topics. Browse the latest articles on erosion, runoff, soil properties, management, and more.

  10. International Soil and Water Conservation Research (Elsevier)

    A journal for soil and water conservation research, practice, policy, and perspectives, published by Elsevier and affiliated with WASWAC. The journal covers topics such as soil erosion, soil conservation, watershed management, and related DRR issues.

  11. International Soil and Water Conservation Research

    This journal aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of this journal includes innovative ideas and approaches, results and new data in soil erosion research, preventive and restorative soil conservation strategies, and related soil and water resource conservation research.

  12. PDF International Soil and Water Conservation Research

    because several improved soil and water conservation and land management practices were introduced in the early 1980s through the then Soil Conservation Research Programme (SCRP) in seven watersheds across the country. Many impact studies on land management practices then began from this period onwards. 2.2. Analysis of soil loss and crop yield ...

  13. International Soil and Water Conservation Research

    The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation ...

  14. Metagenomic insights into the wastewater resistome before and ...

    Wastewater treatment plants (WWTPs) are considered to be hotspots for the spread of antibiotic resistance genes (ARGs). We performed a metagenomic analysis of the raw wastewater, activated sludge ...

  15. Main features and contamination of sealed soils in the east ...

    The aim of this paper is to characterize the main properties and level of pollution of sealed soils in different land use zones of the Eastern administrative district (EAD) of Moscow. In 2016-2017 overall, 47 samples were taken from 35 soil pits. The list of soil properties analyzed included actual acidity, organic carbon content, particle-size distribution, and degree of salinity. Pollution ...

  16. Guide for Authors

    5. You MUST have a clear and concise, testable, hypothesis or objective statement at the end of the Introduction, immediately before the Methods section. 6. Your article must clearly and concisely explain what this work contributes that is NEW to science or the field of soil and water conservation.

  17. Reimagining Design with Nature: ecological urbanism in Moscow

    The twenty-first century is the era when populations of cities will exceed rural communities for the first time in human history. The population growth of cities in many countries, including those in transition from planned to market economies, is putting considerable strain on ecological and natural resources. This paper examines four central issues: (a) the challenges and opportunities ...

  18. The Nature Conservancy in Iowa

    Make a Difference in Iowa. Since 1963, The Nature Conservancy in Iowa has worked to preserve our state's natural landscapes through the advancement of land and water conservation. Project managers across the state work within their own communities to protect and conserve private lands and work with agricultural producers and companies on best ...

  19. International Soil and Water Conservation Research

    A peer-reviewed journal that publishes original research and reviews on soil and water conservation topics. Browse the latest articles on soil erosion, water erosion, terracing, ecological restoration, and more.

  20. Science proves conservation works!

    A new study co-authored by BirdLife International scientists and published in the journal Science definitively shows that conservation actions are effective at halting and reversing biodiversity loss. ... went beyond just focusing on the impact of individual conservation projects. The research was compiled into a meta-analysis of 186 studies ...