U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Levels of Reading Comprehension in Higher Education: Systematic Review and Meta-Analysis

Cristina de-la-peña.

1 Departamento de Métodos de Investigación y Diagnóstico en Educación, Universidad Internacional de la Rioja, Logroño, Spain

María Jesús Luque-Rojas

2 Department of Theory and History of Education and Research Methods and Diagnosis in Education, University of Malaga, Málaga, Spain

Associated Data

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Higher education aims for university students to produce knowledge from the critical reflection of scientific texts. Therefore, it is necessary to develop a deep mental representation of written information. The objective of this research was to determine through a systematic review and meta-analysis the proportion of university students who have an optimal performance at each level of reading comprehension. Systematic review of empirical studies has been limited from 2010 to March 2021 using the Web of Science, Scopus, Medline, and PsycINFO databases. Two reviewers performed data extraction independently. A random-effects model of proportions was used for the meta-analysis and heterogeneity was assessed with I 2 . To analyze the influence of moderating variables, meta-regression was used and two ways were used to study publication bias. Seven articles were identified with a total sample of the seven of 1,044. The proportion of students at the literal level was 56% (95% CI = 39–72%, I 2 = 96.3%), inferential level 33% (95% CI = 19–46%, I 2 = 95.2%), critical level 22% (95% CI = 9–35%, I 2 = 99.04%), and organizational level 22% (95% CI = 6–37%, I 2 = 99.67%). Comparing reading comprehension levels, there is a significant higher proportion of university students who have an optimal level of literal compared to the rest of the reading comprehension levels. The results have to be interpreted with caution but are a guide for future research.

Introduction

Reading comprehension allows the integration of knowledge that facilitates training processes and successful coping with academic and personal situations. In higher education, this reading comprehension has to provide students with autonomy to self-direct their academic-professional learning and provide critical thinking in favor of community service ( UNESCO, 2009 ). However, research in recent years ( Bharuthram, 2012 ; Afflerbach et al., 2015 ) indicates that a part of university students are not prepared to successfully deal with academic texts or they have reading difficulties ( Smagorinsky, 2001 ; Cox et al., 2014 ), which may limit academic training focused on written texts. This work aims to review the level of reading comprehension provided by studies carried out in different countries, considering the heterogeneity of existing educational models.

The level of reading comprehension refers to the type of mental representation that is made of the written text. The reader builds a mental model in which he can integrate explicit and implicit data from the text, experiences, and previous knowledge ( Kucer, 2016 ; van den Broek et al., 2016 ). Within the framework of the construction-integration model ( Kintsch and van Dijk, 1978 ; Kintsch, 1998 ), the most accepted model of reading comprehension, processing levels are differentiated, specifically: A superficial level that identifies or memorizes data forming the basis of the text and a deep level in which the text situation model is elaborated integrating previous experiences and knowledge. At these levels of processing, the cognitive strategies used, are different according to the domain-learning model ( Alexander, 2004 ) from basic coding to a transformation of the text. In the scientific literature, there are investigations ( Yussof et al., 2013 ; Ulum, 2016 ) that also identify levels of reading comprehension ranging from a literal level of identification of ideas to an inferential and critical level that require the elaboration of inferences and the data transformation.

Studies focused on higher education ( Barletta et al., 2005 ; Yáñez Botello, 2013 ) show that university students are at a literal or basic level of understanding, they often have difficulties in making inferences and recognizing the macrostructure of the written text, so they would not develop a model of a situation of the text. These scientific results are in the same direction as the research on reading comprehension in the mother tongue in the university population. Bharuthram (2012) indicates that university students do not access or develop effective strategies for reading comprehension, such as the capacity for abstraction and synthesis-analysis. Later, Livingston et al. (2015) find that first-year education students present limited reading strategies and difficulties in understanding written texts. Ntereke and Ramoroka (2017) found that only 12.4% of students perform well in a reading comprehension task, 34.3% presenting a low level of execution in the task.

Factors related to the level of understanding of written information are the mode of presentation of the text (printed vs. digital), the type of metacognitive strategies used (planning, making inferences, inhibition, monitoring, etc.), the type of text and difficulties (novel vs. a science passage), the mode of writing (text vs. multimodal), the type of reading comprehension task, and the diversity of the student. For example, several studies ( Tuncer and Bahadir, 2014 ; Trakhman et al., 2019 ; Kazazoglu, 2020 ) indicate that reading is more efficient with better performance in reading comprehension tests in printed texts compared to the same text in digital and according to Spencer (2006) college students prefer to read in print vs. digital texts. In reading the written text, metacognitive strategies are involved ( Amril et al., 2019 ) but studies ( Channa et al., 2018 ) seem to indicate that students do not use them for reading comprehension, specifically; Korotaeva (2012) finds that only 7% of students use them. Concerning the type of text and difficulties, for Wolfe and Woodwyk (2010) , expository texts benefit more from the construction of a situational model of the text than narrative texts, although Feng (2011) finds that expository texts are more difficult to read than narrative texts. Regarding the modality of the text, Mayer (2009) and Guo et al. (2020) indicate that multimodal texts that incorporate images into the text positively improve reading comprehension. In a study of Kobayashi (2002) using open questions, close, and multiple-choice shows that the type and format of the reading comprehension assessment test significantly influence student performance and that more structured tests help to better differentiate the good ones and the poor ones in reading comprehension. Finally, about student diversity, studies link reading comprehension with the interest and intrinsic motivation of university students ( Cartwright et al., 2019 ; Dewi et al., 2020 ), with gender ( Saracaloglu and Karasakaloglu, 2011 ), finding that women present a better level of reading comprehension than men and with knowledge related to reading ( Perfetti et al., 1987 ). In this research, it was controlled that all were printed and unimodal texts, that is, only text. This is essential because the cognitive processes involved in reading comprehension can vary with these factors ( Butcher and Kintsch, 2003 ; Xu et al., 2020 ).

The Present Study

Regardless of the educational context, in any university discipline, preparing essays or developing arguments are formative tasks that require a deep level of reading comprehension (inferences and transformation of information) that allows the elaboration of a situation model, and not having this level can lead to limited formative learning. Therefore, the objective of this research was to know the state of reading comprehension levels in higher education; specifically, the proportion of university students who perform optimally at each level of reading comprehension. It is important to note that there is not much information about the different levels in university students and that it is the only meta-analytic review that explores different levels of reading comprehension in this educational stage. This is a relevant issue because the university system requires that students produce knowledge from the critical reflection of scientific texts, preparing them for innovation, employability, and coexistence in society.

Materials and Methods

Eligibility criteria: inclusion and exclusion.

Empirical studies written in Spanish or English are selected that analyze the reading comprehension level in university students.

The exclusion criteria are as follows: (a) book chapters or review books or publications; (b) articles in other languages; (c) studies of lower educational levels; (d) articles that do not identify the age of the sample; (e) second language studies; (f) students with learning difficulties or other disorders; (g) publications that do not indicate the level of reading comprehension; (h) studies that relate reading competence with other variables but do not report reading comprehension levels; (i) pre-post program application work; (j) studies with experimental and control groups; (k) articles comparing pre-university stages or adults; (l) publications that use multi-texts; (m) studies that use some type of technology (computer, hypertext, web, psychophysiological, online questionnaire, etc.); and (n) studies unrelated to the subject of interest.

Only those publications that meet the following criteria are included as: (a) be empirical research (article, thesis, final degree/master’s degree, or conference proceedings book); (b) university stage; (c) include data or some measure on the level of reading comprehension that allows calculating the effect size; (d) written in English or Spanish; (e) reading comprehension in the first language or mother tongue; and (f) the temporary period from January 2010 to March 2021.

Search Strategies

A three-step procedure is used to select the studies included in the meta-analysis. In the first step, a review of research and empirical articles in English and Spanish from January 2010 to March 2021. The search is carried out in online databases of languages in Spanish and English, such as Web of Science (WoS), Scopus, Medline, and PsycINFO, to review empirical productions that analyze the level of reading comprehension in university students. In the second step, the following terms (titles, abstracts, keywords, and full text) are used to select the articles: Reading comprehension and higher education, university students, in Spanish and English, combined with the Boolean operators AND and OR. In the last step, secondary sources, such as the Google search engine, Theseus, and references in publications, are explored.

The search reports 4,294 publications (articles, theses, and conference proceedings books) in the databases and eight records of secondary references, specifically, 1989 from WoS, 2001 from Scopus, 42 from Medline, and 262 of PsycINFO. Of the total (4,294), 1,568 are eliminated due to duplications, leaving 2,734 valid records. Next, titles and abstracts are reviewed and 2,659 are excluded because they do not meet the inclusion criteria. The sample of 75 publications is reduced to 40 articles, excluding 35 because the full text cannot be accessed (the authors were contacted but did not respond), the full text did not show specific statistical data, they used online questionnaires or computerized presentations of the text. Finally, seven articles in Spanish were selected for use in the meta-analysis of the reading comprehension level of university students. Data additional to those included in the articles were not requested from the selected authors.

The PRISMA-P guidelines ( Moher et al., 2015 ) are followed to perform the meta-analysis and the flow chart for the selection of publications relevant to the subject is exposed (Figure 1) .

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-712901-g001.jpg

Flow diagram for the selection of articles.

Encoding Procedure

This research complies with what is established in the manual of systematic reviews ( Higgins and Green, 2008 ) in which clear objectives, specific search terms, and eligibility criteria for previously defined works are established. Two independent coders, reaching a 100% agreement, carry out the study search process. Subsequently, the research is codified, for this, a coding protocol is used as a guide to help resolve the ambiguities between the coders; the proposals are reflected and discussed and discrepancies are resolved, reaching a degree of agreement between the two coders of 97%.

For all studies, the reference, country, research objective, sample size, age and gender, reading comprehension test, other tests, and reading comprehension results were coded in percentages. All this information was later systematized in Table 1 .

Results of the empirical studies included in the meta-analysis.

In relation to the type of reading comprehension level, it was coded based on the levels of the scientific literature as follows: 1 = literal; 2 = inferential; 3 = critical; and 4 = organizational.

Regarding the possible moderating variables, it was coded if the investigations used a standardized reading comprehension measure (value = 1) or non-standardized (value = 0). This research considers the standardized measures of reading comprehension as the non-standardized measures created by the researchers themselves in their studies or questionnaires by other authors. By the type of evaluation test, we encode between multiple-choice (value = 0) or multiple-choices plus open question (value = 1). By type of text, we encode between argumentative (value = 1) or unknown (value = 0). By the type of career, we encode social sciences (value = 1) or other careers (health sciences; value = 0). Moreover, by the type of publication, we encode between article (value = 1) or doctoral thesis (value = 0).

Effect Size and Statistical Analysis

This descriptive study with a sample k = 7 and a population of 1,044 university students used a continuous variable and the proportions were used as the effect size to analyze the proportion of students who had an optimal performance at each level of reading comprehension. As for the percentages of each level of reading comprehension of the sample, they were transformed into absolute frequencies. A random-effects model ( Borenstein et al., 2009 ) was used as the effect size. These random-effects models have a greater capacity to generalize the conclusions and allow estimating the effects of different sources of variation (moderating variables). The DerSimonian and Laird method ( Egger et al., 2001 ) was used, calculating raw proportion and for each proportion its standard error, value of p and 95% confidence interval (CI).

To examine sampling variability, Cochran’s Q test (to test the null hypothesis of homogeneity between studies) and I 2 (proportion of variability) were used. According to Higgins et al. (2003) , if I 2 reaches 25%, it is considered low, if it reaches 50% and if it exceeds 75% it is considered high. A meta-regression analysis was used to investigate the effect of the moderator variables (type of measure, type of evaluation test, type of text, type of career, and type of publication) in each level of reading comprehension of the sample studies. For each moderating variable, all the necessary statistics were calculated (estimate, standard error, CI, Q , and I 2 ).

To compare the effect sizes of each level (literal, inferential, critical, and organizational) of reading comprehension, the chi-square test for the proportion recommended by Campbell (2007) was used.

Finally, to analyze publication bias, this study uses two ways: Rosenthal’s fail-safe number and regression test. Rosenthal’s fail-safe number shows the number of missing studies with null effects that would make the previous correlations insignificant ( Borenstein et al., 2009 ). When the values are large there is no bias. In the regression test, when the regression is not significant, there is no bias.

The software used to classify and encode data and produce descriptive statistics was with Microsoft Excel and the Jamovi version 1.6 free software was used to perform the meta-analysis.

The results of the meta-analysis are presented in three parts: the general descriptive analysis of the included studies; the meta-analytic analysis with the effect size, heterogeneity, moderating variables, and comparison of effect sizes; and the study of publication bias.

Overview of Included Studies

The search carried out of the scientific literature related to the subject published from 2010 to March 2021 generated a small number of publications, because it was limited to the higher education stage and required clear statistical data on reading comprehension.

Table 1 presents all the publications reviewed in this meta-analysis with a total of students evaluated in the reviewed works that amounts to 1,044, with the smallest sample size of 30 ( Del Pino-Yépez et al., 2019 ) and the largest with 570 ( Guevara Benítez et al., 2014 ). Regarding gender, 72% women and 28% men were included. Most of the sample comes from university degrees in social sciences, such as psychology and education (71.42%) followed by health sciences (14.28%) engineering and a publication (14.28%) that does not indicate origin. These publications selected according to the inclusion criteria for the meta-analysis come from more countries with a variety of educational systems, but all from South America. Specifically, the countries that have more studies are Mexico (28.57%) and Colombia, Chile, Bolivia, Peru, and Ecuador with 14.28% each, respectively. The years in which they were published are 2.57% in 2018 and 2016 and 14.28% in 2019, 2014, and 2013.

A total of 57% of the studies analyze four levels of reading comprehension (literal, inferential, critical, and organizational) and 43% investigate three levels of reading comprehension (literal, inferential, and critical). Based on the moderating variables, 57% of the studies use standardized reading comprehension measures and 43% non-standardized measures. According to the evaluation test used, 29% use multiple-choice questions and 71% combine multiple-choice questions plus open questions. 43% use an argumentative text and 57% other types of texts (not indicated in studies). By type of career, 71% are students of social sciences and 29% of other different careers, such as engineering or health sciences. In addition, 71% are articles and 29% with research works (thesis and degree works).

Table 2 shows the reading comprehension assessment instruments used by the authors of the empirical research integrated into the meta-analysis.

Reading comprehension assessment tests used in higher education.

Meta-Analytic Analysis of the Level of Reading Comprehension

The literal level presents a mean proportion effect size of 56% (95% CI = 39–72%; Figure 2 ). The variability between the different samples of the literal level of reading comprehension was significant ( Q = 162.066, p < 0.001; I 2 = 96.3%). No moderating variable used in this research had a significant contribution to heterogeneity: type of measurement ( p = 0.520), type of test ( p = 0.114), type of text ( p = 0.520), type of career ( p = 0.235), and type of publication ( p = 0.585). The high variability is explained by other factors not considered in this work, such as the characteristics of the students (cognitive abilities) or other issues.

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-712901-g002.jpg

Forest plot of literal level.

The inferential level presents a mean proportion effect size of 33% (95% CI = 19–46%; Figure 3 ). The variability between the different samples of the inferential level of reading comprehension was significant ( Q = 125.123, p < 0.001; I 2 = 95.2%). The type of measure ( p = 0.011) and the type of text ( p = 0.011) had a significant contribution to heterogeneity. The rest of the variables had no significance: type of test ( p = 0.214), type of career ( p = 0.449), and type of publication ( p = 0.218). According to the type of measure, the proportion of students who have an optimal level in inferential administering a standardized test is 28.7% less than when a non-standardized test is administered. The type of measure reduces variability by 2.57% and explains the differences between the results of the studies at the inferential level. According to the type of text, the proportion of students who have an optimal level in inferential using an argumentative text is 28.7% less than when using another type of text. The type of text reduces the variability by 2.57% and explains the differences between the results of the studies at the inferential level.

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-712901-g003.jpg

Forest plot of inferential level.

The critical level has a mean effect size of the proportion of 22% (95% CI = 9–35%; Figure 4 ). The variability between the different samples of the critical level of reading comprehension was significant ( Q = 627.044, p < 0.001; I 2 = 99.04%). No moderating variable used in this research had a significant contribution to heterogeneity: type of measurement ( p = 0.575), type of test ( p = 0.691), type of text ( p = 0.575), type of career ( p = 0.699), and type of publication ( p = 0.293). The high variability is explained by other factors not considered in this work, such as the characteristics of the students (cognitive abilities).

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-712901-g004.jpg

Forest plot of critical level.

The organizational level presents a mean effect size of the proportion of 22% (95% CI = 6–37%; Figure 5 ). The variability between the different samples of the organizational level of reading comprehension was significant ( Q = 1799.366, p < 0.001; I 2 = 99.67%). The type of test made a significant contribution to heterogeneity ( p = 0.289). The other moderating variables were not significant in this research: type of measurement ( p = 0.289), type of text ( p = 0.289), type of career ( p = 0.361), and type of publication ( p = 0.371). Depending on the type of test, the proportion of students who have an optimal level in organizational with multiple-choices tests plus open questions is 37% higher than while using only multiple-choice tests. The type of text reduces the variability by 0.27% and explains the differences between the results of the studies at the organizational level.

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-712901-g005.jpg

Forest plot of organizational level.

Table 3 shows the difference between the estimated effect sizes and the significance. There is a larger proportion of students having an optimal level of reading comprehension at the literal level compared to the inferential, critical, and organizational level; an optimal level of reading comprehension at the inferential level vs. the critical and organizational level.

Results of effect size comparison.

Analysis of Publication Bias

This research uses two ways to verify the existence of bias independently of the sample size. Table 4 shows the results and there is no publication bias at any level of reading comprehension.

Publication bias results.

This research used a systematic literature search and meta-analysis to provide estimates of the number of cases of university students who have an optimal level in the different levels of reading comprehension. All the information available on the subject at the international level was analyzed using international databases in English and Spanish, but the potentially relevant publications were limited. Only seven Spanish language studies were identified internationally. In these seven studies, the optimal performance at each level of reading comprehension varied, finding heterogeneity associated with the very high estimates, which indicates that the summary estimates have to be interpreted with caution and in the context of the sample and the variables used in this meta-analysis.

In this research, the effects of the type of measure, type of test, type of text, type of career, and type of publication have been analyzed. Due to the limited information in the publications, it was not possible to assess the effect of any more moderating variables.

We found that some factors significantly influence heterogeneity according to the level of reading comprehension considered. The type of measure influenced the optimal performance of students in the inferential level of reading comprehension; specifically, the proportion of students who have an optimal level in inferential worsens if the test is standardized. Several studies ( Pike, 1996 ; Koretz, 2002 ) identify differences between standardized and non-standardized measures in reading comprehension and a favor of non-standardized measures developed by the researchers ( Pyle et al., 2017 ). The ability to generate inferences of each individual may difficult to standardize because each person differently identifies the relationship between the parts of the text and integrates it with their previous knowledge ( Oakhill, 1982 ; Cain et al., 2004 ). This mental representation of the meaning of the text is necessary to create a model of the situation and a deep understanding ( McNamara and Magliano, 2009 ; van den Broek and Espin, 2012 ).

The type of test was significant for the organizational level of reading comprehension. The proportion of students who have an optimal level in organizational improves if the reading comprehension assessment test is multiple-choice plus open questions. The organizational level requires the reordering of written information through analysis and synthesis processes ( Guevara Benítez et al., 2014 ); therefore, it constitutes a production task that is better reflected in open questions than in reproduction questions as multiple choice ( Dinsmore and Alexander, 2015 ). McNamara and Kintsch (1996) identify that open tasks require an effort to make inferences related to previous knowledge and multidisciplinary knowledge. Important is to indicate that different evaluation test formats can measure different aspects of reading comprehension ( Zheng et al., 2007 ).

The type of text significantly influenced the inferential level of reading comprehension. The proportion of students who have an optimal level in inferential decreases with an argumentative text. The expectations created before an argumentative text made it difficult to generate inferences and, therefore, the construction of the meaning of the text. This result is in the opposite direction to the study by Diakidoy et al. (2011) who find that the refutation text, such as the argumentative one, facilitates the elaboration of inferences compared to other types of texts. It is possible that the argumentative text, given its dialogical nature of arguments and counterarguments, with a subject unknown by the students, has determined the decrease of inferences based on their scarce previous knowledge of the subject, needing help to elaborate the structure of the text read ( Reznitskaya et al., 2007 ). It should be pointed out that in meta-analysis studies, 43% use argumentative texts. Knowing the type of the text is relevant for generating inferences, for instance, according to Baretta et al. (2009) the different types of text are processed differently in the brain generating more or fewer inferences; specifically, using the N400 component, they find that expository texts generate more inferences from the text read.

For the type of career and the type of publication, no significance was found at any level of reading comprehension in this sample. This seems to indicate that university students have the same level of performance in tasks of literal, critical inferential, and organizational understanding regardless of whether they are studying social sciences, health sciences, or engineering. Nor does the type of publication affect the state of the different levels of reading comprehension in higher education.

The remaining high heterogeneity at all levels of reading comprehension was not captured in this review, indicating that there are other factors, such as student characteristics, gender, or other issues, that are moderating and explaining the variability at the literal, inferential, critical, and organizational reading comprehension in university students.

To the comparison between the different levels of reading comprehension, the literal level has a significantly higher proportion of students with an optimal level than the inferential, critical, and organizational levels. The inferential level has a significantly higher proportion of students with an optimal level than the critical and organizational levels. This corresponds with data from other investigations ( Márquez et al., 2016 ; Del Pino-Yépez et al., 2019 ) that indicate that the literal level is where university students execute with more successes, being more difficult and with less success at the inferential, organizational, and critical levels. This indicates that university students of this sample do not generate a coherent situation model that provides them with a global mental representation of the read text according to the model of Kintsch (1998) , but rather they make a literal analysis of the explicit content of the read text. This level of understanding can lead to less desirable results in educational terms ( Dinsmore and Alexander, 2015 ).

The educational implications of this meta-analysis in this sample are aimed at making universities aware of the state of reading comprehension levels possessed by university students and designing strategies (courses and workshops) to optimize it by improving the training and employability of students. Some proposals can be directed to the use of reflection tasks, integration of information, graphic organizers, evaluation, interpretation, nor the use of paraphrasing ( Rahmani, 2011 ). Some studies ( Hong-Nam and Leavell, 2011 ; Parr and Woloshyn, 2013 ) demonstrate the effectiveness of instructional courses in improving performance in reading comprehension and metacognitive strategies. In addition, it is necessary to design reading comprehension assessment tests in higher education that are balanced, validated, and reliable, allowing to have data for the different levels of reading comprehension.

Limitations and Conclusion

This meta-analysis can be used as a starting point to report on reading comprehension levels in higher education, but the results should be interpreted with caution and in the context of the study sample and variables. Publications without sufficient data and inaccessible articles, with a sample of seven studies, may have limited the international perspective. The interest in studying reading comprehension in the mother tongue, using only unimodal texts, without the influence of technology and with English and Spanish has also limited the review. The limited amount of data in the studies has limited meta-regression.

This review is a guide to direct future research, broadening the study focus on the level of reading comprehension using digital technology, experimental designs, second languages, and investigations that relate reading comprehension with other factors (gender, cognitive abilities, etc.) that can explain the heterogeneity in the different levels of reading comprehension. The possibility of developing a comprehensive reading comprehension assessment test in higher education could also be explored.

This review contributes to the scientific literature in several ways. In the first place, this meta-analytic review is the only one that analyzes the proportion of university students who have an optimal performance in the different levels of reading comprehension. This review is made with international publications and this topic is mostly investigated in Latin America. Second, optimal performance can be improved at all levels of reading comprehension, fundamentally inferential, critical, and organizational. The literal level is significantly the level of reading comprehension with the highest proportion of optimal performance in university students. Third, the students in this sample have optimal performance at the inferential level when they are non-argumentative texts and non-standardized measures, and, in the analyzed works, there is optimal performance at the organizational level when multiple-choice questions plus open questions are used.

The current research is linked to the research project “Study of reading comprehension in higher education” of Asociación Educar para el Desarrollo Humano from Argentina.

Data Availability Statement

Author contributions.

Cd-l-P had the idea for the article and analyzed the data. ML-R searched the data. Cd-l-P and ML-R selected the data and contributed to the valuable comments and manuscript writing. All authors contributed to the article and approved the submitted version.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor declared a shared affiliation though no other collaboration with one of the authors ML-R at the time of the review.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Funding. This paper was funded by the Universidad Internacional de la Rioja and Universidad de Málaga.

  • Afflerbach P., Cho B.-Y., Kim J.-Y. (2015). Conceptualizing and assessing higher-order thinking in reading . Theory Pract. 54 , 203–212. 10.1080/00405841.2015.1044367 [ CrossRef ] [ Google Scholar ]
  • Alexander P. A. (2004). “ A model of domain learning: reinterpreting expertise as a multidimensional, multistage process ,” in Motivation, Emotion, and Cognition: Integrative Perspectives on Intellectual Functioning and Development. eds. Dai D. Y., Sternberg R. J. (Mahwah, NJ: Erlbaum; ), 273–298. [ Google Scholar ]
  • Amril A., Hasanuddin W. S., Atmazaki (2019). The contributions of reading strategies and reading frequencies toward students’ reading comprehension skill in higher education . Int. J. Eng. Adv. Technol. (IJEAT) 8 , 593–595. 10.35940/ijeat.F1105.0986S319 [ CrossRef ] [ Google Scholar ]
  • Baretta L., Braga Tomitch L. M., MacNair N., Kwan Lim V., Waldie K. E. (2009). Inference making while reading narrative and expository texts: an ERP study . Psychol. Neurosci. 2 , 137–145. 10.3922/j.psns.2009.2.005 [ CrossRef ] [ Google Scholar ]
  • Barletta M., Bovea V., Delgado P., Del Villar L., Lozano A., May O., et al.. (2005). Comprensión y Competencias Lectoras en Estudiantes Universitarios. Barranquilla: Uninorte. [ Google Scholar ]
  • Bharuthram S. (2012). Making a case for the teaching of reading across the curriculum in higher education . S. Afr. J. Educ. 32 , 205–214. 10.15700/saje.v32n2a557 [ CrossRef ] [ Google Scholar ]
  • Borenstein M., Hedges L. V., Higgins J. P. T., Rothstein H. R. (2009). Introduction to Meta-Analysis. United Kingdom: John Wiley and Sons, Ltd, 45–49. [ Google Scholar ]
  • Butcher K. R., Kintsch W. (2003). “ Text comprehension and discourse processing ,” in Handbook of Psychology: Experimental Psychology. 2nd Edn . Vol . 4 . eds. Healy A. F., Proctor R. W., Weiner I. B. (New Jersey: John Wiley and Sons, Inc.), 575–595. [ Google Scholar ]
  • Cain K., Oakhill J., Bryant P. (2004). Children’s reading comprehension ability: concurrent prediction by working memory, verbal ability, and component skills . J. Educ. Psychol. 96 , 31–42. 10.1037/0022-0663.96.1.31 [ CrossRef ] [ Google Scholar ]
  • Campbell I. (2007). Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations . Stat. Med. 26 , 3661–3675. 10.1002/sim.2832, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cartwright K. B., Lee S. A., Barber A. T., DeWyngaert L. U., Lane A. B., Singleton T. (2019). Contributions of executive function and cognitive intrinsic motivation to university students’ reading comprehension . Read. Res. Q. 55 , 345–369. 10.1002/rrq.273 [ CrossRef ] [ Google Scholar ]
  • Channa M. A., Abassi A. M., John S., Sahito J. K. M. (2018). Reading comprehension and metacognitive strategies in first-year engineering university students in Pakistan . Int. J. Engl. Ling. 8 , 78–87. 10.5539/ijel.v8n6p78 [ CrossRef ] [ Google Scholar ]
  • Cox S. R., Friesner D. L., Khayum M. (2014). Do Reading skills courses help underprepared readers achieve academic success in college? J. College Reading and Learn. 33 , 170–196. 10.1080/10790195.2003.10850147 [ CrossRef ] [ Google Scholar ]
  • Del Pino-Yépez G. M., Saltos-Rodríguez L. J., Moreira-Aguayo P. Y. (2019). Estrategias didácticas para el afianzamiento de la comprensión lectora en estudiantes universitarios . Revista científica Dominio de las Ciencias 5 , 171–187. 10.23857/dc.v5i1.1038 [ CrossRef ] [ Google Scholar ]
  • Dewi R. S., Fahrurrozi, Hasanah U., Wahyudi A. (2020). Reading interest and Reading comprehension: a correlational study in Syarif Hidayatullah State Islamic University, Jakarta . Talent Dev. Excell. 12 , 241–250. [ Google Scholar ]
  • Diakidoy I. N., Mouskounti T., Ioannides C. (2011). Comprehension and learning from refutation and expository texts . Read. Res. Q. 46 , 22–38. 10.1598/RRQ.46.1.2 [ CrossRef ] [ Google Scholar ]
  • Dinsmore D. J., Alexander P. A. (2015). A multidimensional investigation of deep-level and surface-level processing . J. Exp. Educ. 84 , 213–244. 10.1080/00220973.2014.979126 [ CrossRef ] [ Google Scholar ]
  • Egger M., Smith D., Altmand D. G. (2001). Systematic Reviews in Health Care: Meta-Analysis in Context. London: BMJ Publishing Group. [ Google Scholar ]
  • Feng L. (2011). A short analysis of the text variables affecting reading and testing reading . Stud. Lit. Lang. 2 , 44–49. [ Google Scholar ]
  • Figueroa Romero R. L., Castañeda Sánchez W., Tamay Carranza I. A. (2016). Nivel de comprensión lectora en los estudiantes del primer ciclo de la Universidad San Pedro, filial Caraz, 2016. (Trabajo de investigación, Universidad San Pedro). Repositorio Institucional USP. Available at: http://repositorio.usanpedro.edu.pe/bitstream/handle/USANPEDRO/305/PI1640418.pdf?sequence=1andisAllowed=y (Accessed February 15, 2021).
  • Guevara Benítez Y., Guerra García J., Delgado Sánchez U., Flores Rubí C. (2014). Evaluación de distintos niveles de comprensión lectora en estudiantes mexicanos de Psicología . Acta Colombiana de Psicología 17 , 113–121. 10.14718/ACP.2014.17.2.12 [ CrossRef ] [ Google Scholar ]
  • Guo D., Zhang S., Wright K. L., McTigue E. M. (2020). Do you get the picture? A meta-analysis of the effect of graphics on reading comprehension . AERA Open 6 , 1–20. 10.1177/2332858420901696 [ CrossRef ] [ Google Scholar ]
  • Higgins J. P., Green S. (2008). Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration. [ Google Scholar ]
  • Higgins J. P., Thompson S. G., Deeks J. J., Altman D. G. (2003). Measuring inconsistency in meta-analyses . BMJ 327 , 327–557. 10.1136/bmj.327.7414.557, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hong-Nam K., Leavell A. G. (2011). Reading strategy instruction, metacognitive awareness, and self-perception of striving college developmental readers . J. College Literacy Learn. 37 , 3–17. [ Google Scholar ]
  • Kazazoglu S. (2020). Is printed text the best choice? A mixed-method case study on reading comprehension . J. Lang. Linguistic Stud. 16 , 458–473. 10.17263/jlls.712879 [ CrossRef ] [ Google Scholar ]
  • Kintsch W. (1998). Comprehension: A Paradigm for Cognition. New York: Cambridge University Press. [ Google Scholar ]
  • Kintsch W., van Dijk T. A. (1978). Toward a model of text comprehension and production . Psychol. Rev. 85 , 363–394. 10.1037/0033-295X.85.5.363 [ CrossRef ] [ Google Scholar ]
  • Kobayashi M. (2002). Method effects on reading comprehension test performance: test organization and response format . Lang. Test. 19 , 193–220. 10.1191/0265532202lt227oa [ CrossRef ] [ Google Scholar ]
  • Koretz D. (2002). Limitations in the use of achievement tests as measures of educators’ productivity . J. Hum. Resour. 37 , 752–777. 10.2307/3069616 [ CrossRef ] [ Google Scholar ]
  • Korotaeva I. V. (2012). Metacognitive strategies in reading comprehension of education majors . Procedural-Social and Behav. Sci. 69 , 1895–1900. 10.1016/j.sbspro.2012.12.143 [ CrossRef ] [ Google Scholar ]
  • Kucer S. B. (2016). Accuracy, miscues, and the comprehension of complex literary and scientific texts . Read. Psychol. 37 , 1076–1095. 10.1080/02702711.2016.1159632 [ CrossRef ] [ Google Scholar ]
  • Livingston C., Klopper B., Cox S., Uys C. (2015). The impact of an academic reading program in the bachelor of education (intermediate and senior phase) degree . Read. Writ. 6 , 1–11. 10.4102/rw.v6i1.66 [ CrossRef ] [ Google Scholar ]
  • Márquez H., Díaz C., Muñoz R., Fuentes R. (2016). Evaluación de los niveles de comprensión lectora en estudiantes universitarios pertenecientes a las carreras de Kinesiología y Nutrición y Dietética de la Universidad Andrés Bello, Concepción . Revista de Educación en Ciencias de la Salud 13 , 154–160. [ Google Scholar ]
  • Mayer R. E. (ed.) (2009). “ Modality principle ,” in Multimedia Learning. United States: Cambridge University Press, 200–2020. [ Google Scholar ]
  • McNamara D. S., Kintsch W. (1996). Learning from texts: effects of prior knowledge and text coherence . Discourse Process 22 , 247–288. 10.1080/01638539609544975 [ CrossRef ] [ Google Scholar ]
  • McNamara D. S., Magliano J. (2009). “ Toward a comprehensive model of comprehension ,” in The psychology of learning and motivation. ed. Ross E. B. (New York: Elsevier; ), 297–384. [ Google Scholar ]
  • Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., et al.. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement . Syst. Rev. 4 :1. 10.1186/2046-4053-4-1, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ntereke B. B., Ramoroka B. T. (2017). Reading competency of first-year undergraduate students at the University of Botswana: a case study . Read. Writ. 8 :a123. 10.4102/rw.v8i1.123 [ CrossRef ] [ Google Scholar ]
  • Oakhill J. (1982). Constructive processes in skilled and less skilled comprehenders’ memory for sentences . Br. J. Psychol. 73 , 13–20. 10.1111/j.2044-8295.1982.tb01785.x, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parr C., Woloshyn V. (2013). Reading comprehension strategy instruction in a first-year course: an instructor’s self-study . Can. J. Scholarship Teach. Learn. 4 :3. 10.5206/cjsotl-rcacea.2013.2.3 [ CrossRef ] [ Google Scholar ]
  • Perfetti C. A., Beck I., Bell L. C., Hughes C. (1987). Phonemic knowledge and learning to read are reciprocal: a longitudinal study of first-grade children . Merrill-Palmer Q. 33 , 283–319. [ Google Scholar ]
  • Pike G. R. (1996). Limitations of using students’ self-reports of academic development as proxies for traditional achievement measures . Res. High. Educ. 37 , 89–114. 10.1007/BF01680043 [ CrossRef ] [ Google Scholar ]
  • Pyle N., Vasquez A. C., Lignugaris B., Gillam S. L., Reutzel D. R., Olszewski A., et al.. (2017). Effects of expository text structure interventions on comprehension: a meta-analysis . Read. Res. Q. 52 , 469–501. 10.1002/rrq.179 [ CrossRef ] [ Google Scholar ]
  • Rahmani M. (2011). Effects of note-taking training on reading comprehension and recall . Reading Matrix: An Int. Online J. 11 , 116–126. [ Google Scholar ]
  • Reznitskaya A., Anderson R., Kuo L. J. (2007). Teaching and learning argumentation . Elem. Sch. J. 107 , 449–472. 10.1086/518623 [ CrossRef ] [ Google Scholar ]
  • Sáez Sánchez B. K. (2018). La comprensión lectora en jóvenes universitarios de una escuela formadora de docentes . Revista Electrónica Científica de Investigación Educativa 4 , 609–618. [ Google Scholar ]
  • Sanabria Mantilla T. R. (2018). Relación entre comprensión lectora y rendimiento académico en estudiantes de primer año de Psicología de la Universidad Pontificia Bolivariana. (Trabajo de grado, Universidad Pontificia Bolivariana). Repositorio Institucional UPB. Available at: https://repository.upb.edu.co/bitstream/handle/20.500.11912/5443/digital_36863.pdf?sequence=1andisAllowed=y (Accessed February 15, 2021).
  • Saracaloglu A. S., Karasakaloglu N. (2011). An investigation of prospective teachers’ reading comprehension levels and study and learning strategies related to some variables . Egit. ve Bilim 36 , 98–115. [ Google Scholar ]
  • Smagorinsky P. (2001). If meaning is constructed, what is it made from? Toward a cultural theory of reading . Rev. Educ. Res. 71 , 133–169. 10.3102/00346543071001133 [ CrossRef ] [ Google Scholar ]
  • Spencer C. (2006). Research on learners’ preferences for reading from a printed text or a computer screen . J. Dist. Educ. 21 , 33–50. [ Google Scholar ]
  • Trakhman L. M. S., Alexander P., Berkowitz L. E. (2019). Effects of processing time on comprehension and calibration in print and digital mediums . J. Exp. Educ. 87 , 101–115. 10.1080/00220973.2017.1411877 [ CrossRef ] [ Google Scholar ]
  • Tuncer M., Bhadir F. (2014). Effect of screen reading and reading from printed out material on student success and permanency in introduction to computer lesson . Turk. Online J. Educ. Technol. 13 , 41–49. [ Google Scholar ]
  • Ulum O. G. (2016). A descriptive content analysis of the extent of Bloom’s taxonomy in the reading comprehension questions of the course book Q: skills for success 4 reading and writing . Qual. Rep. 21 , 1674–1683. [ Google Scholar ]
  • UNESCO (2009). “Conferencia mundial sobre la Educación Superior – 2009.” La nueva dinámica de la educación superior y la investigación para el cambio social y el desarrollo; July 5-8, 2009; Paris.
  • van den Broek P., Espin C. A. (2012). Connecting cognitive theory and assessment: measuring individual differences in reading comprehension . Sch. Psychol. Rev. 43 , 315–325. 10.1080/02796015.2012.12087512 [ CrossRef ] [ Google Scholar ]
  • van den Broek P., Mouw J. M., Kraal A. (2016). “ Individual differences in reading comprehension ,” in Handbook of Individual Differences in Reading: Reader, Text, and Context. ed. Afflerbach E. P. (New York: Routledge; ), 138–150. [ Google Scholar ]
  • Wolfe M. B. W., Woodwyk J. M. (2010). Processing and memory of information presented in narrative or expository texts . Br. J. Educ. Psychol. 80 , 341–362. 10.1348/000709910X485700, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Xu Y., Wong R., He S., Veldre A., Andrews S. (2020). Is it smart to read on your phone? The impact of reading format and culture on the continued influence of misinformation . Mem. Cogn. 48 , 1112–1127. 10.3758/s13421-020-01046-0, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yáñez Botello C. R. (2013). Caracterización de los procesos cognoscitivos y competencias involucrados en los niveles de comprensión lectora en Estudiantes Universitarios . Cuadernos Hispanoamericanos de Psicología 13 , 75–90. 10.18270/chps.v13i2.1350 [ CrossRef ] [ Google Scholar ]
  • Yussof Y. M., Jamian A. R., Hamzah Z. A. Z., Roslan A. (2013). Students’ reading comprehension performance with emotional . Int. J. Edu. Literacy Stud. 1 , 82–88. 10.7575/aiac.ijels.v.1n.1p.82 [ CrossRef ] [ Google Scholar ]
  • Zheng Y., Cheng L., Klinger D. A. (2007). Do test format in reading comprehension affect second-language students’ test performance differently? TESL Can. J. 25 , 65–78. 10.18806/tesl.v25i1.108 [ CrossRef ] [ Google Scholar ]
  • Bibliography
  • More Referencing guides Blog Automated transliteration Relevant bibliographies by topics
  • Automated transliteration
  • Relevant bibliographies by topics
  • Referencing guides

Dissertations / Theses on the topic 'Reading comprehension processes'

Create a spot-on reference in apa, mla, chicago, harvard, and other styles.

Consult the top 49 dissertations / theses for your research on the topic 'Reading comprehension processes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

Cromley, Jennifer. "Reading comprehension component processes in early adolescence." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2380.

Beers, Scott F. "Reading fluency and adolescent students' reading processes during writing /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/7700.

Renaud, André. "On-line study of component processes in reading comprehension." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61795.

Haenen, Jonathan William. "The interactions between decoding and comprehension in reading processes and the implications for reading comprehension disorders." Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558732.

Greer, Deirdre C. Silvern Steven B. "Logic-mathematical processes in beginning reading." Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Summer/doctoral/GREER_DEIRDRE_28.pdf.

Mazabel, Ortega Silvia. "Language minority students with poor and good reading comprehension : reading-related processes and use of reading strategies." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42576.

Erlandsson, Tina, and Gutierrez Sara Wallgren. "Incidental Vocabulary Acquisition through Reading : A Literature Review Examining Vocabulary Acquisition, Reading Comprehension and their Connection." Thesis, Linköpings universitet, Institutionen för kultur och kommunikation, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139095.

Sheikh-Ahmad, Ismail. "Reading comprehension processes and strategies in L1 and L2 in Malaysian primary and secondary schools." Thesis, University of Nottingham, 1997. http://eprints.nottingham.ac.uk/11227/.

Hussein, Ali A. "The impact of visual-verbal relationships on native-nonnative english speakers' reading processes and comprehension." Thesis, Aston University, 1989. http://publications.aston.ac.uk/14826/.

Hannon, Brenda A. "A new tool for measuring and understanding individual differences in the component processes of reading comprehension." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63776.pdf.

Jooste, Nikki. "Learning through a second language : a comparative study of the performance in reading comprehension and the cognitive-linguistic processes involved in reading comprehension between first-language English learners and second-language English, first-l." Master's thesis, University of Cape Town, 2003. http://hdl.handle.net/11427/2921.

Pinkerd, Tuenjai. "Oral and Silent Reading Strategies and Comprehension Processes Using Expository and Narrative Texts: Case Studies of Six Thai Native Speakers." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392740857.

Hellerstein-Yehezkel, Devora. "Celebrating diversity : the significance of cultural differences on reading comprehension processes of the young adult EFL learner in a matriculation preparation programme in Israel." Thesis, University of Sussex, 2013. http://sro.sussex.ac.uk/id/eprint/44403/.

Overstreet, Christina. "Reading authentic text in the hypermedia environment the effects of question glosses on comprehension processes of intermediate learners of German as a foreign language /." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013088.

Berkowitz, Megan. "Understanding the Relevance of Cognitive Psychology to Composition: Taking a Closer Look at How Cognitive Psychology has Influenced Ideas about Reading, Writing, and the Teaching Process." Oxford, Ohio : Miami University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1208900950.

Leek, Emma. "Att läsa på, mellan och bortom raderna : En studie om pedagogers attityd till läsförståelseundervisning i grundskolans tidigare år." Thesis, Linnéuniversitetet, Institutionen för svenska språket (SV), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-53478.

Botelho, Lilian Pinho. "A leitura significativa pela transformação da forma vocabular em palavra." Pontifícia Universidade Católica de São Paulo, 2012. https://tede2.pucsp.br/handle/handle/14238.

Dahlman, Yessica. "Läsförståelse på högstadiet : Vägar till god läsförståelse." Thesis, Karlstads universitet, Fakulteten för humaniora och samhällsvetenskap (from 2013), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-28019.

Ramos, Jerónima Isidora Rosado Alexandrino. "Compreender para ler. Ler para compreender: contributo de estratégias metacognitivas monitorizadas de forma directa e explicita no ensino da compreensão leitora." Master's thesis, Universidade de Évora, 2004. http://hdl.handle.net/10174/15047.

Kim, Jeung Deok. "The Influence of Reading-Writing Connections on Korean EFL College Students’ Reading Process and Reading Comprehension during a Summarization Task." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469775445.

Rasmusson, Maria. "Det digitala läsandet : Begrepp, processer och resultat." Doctoral thesis, Mittuniversitetet, Avdelningen för utbildningsvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-23667.

Åza, Lundgren, and Marie Svennberg. "Läsförståelse är nyckeln till framgång : En kvalitativ undersökning om för- och nackdelar med ett pedagogiskt analysverktyg." Thesis, Linköping University, Department of Thematic Studies, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-3663.

Syftet med denna uppsats är att undersöka analysverktyg med fokus på LUS (LäsUtvecklingsSchema) samt att söka kunskap om pedagogers nytta med användandet. Vi vill även ta reda på vilken hänsyn man som pedagog tar i användandet av analysverktyget, med tanke på elevers modersmål, tidigare erfarenheter och förståelse av skriftspråket. Genom att använda oss av relevant litteratur och enkäter med öppna frågor, vill vi ge ett kvalitativt resultat av problemområdet. De pedagoger som deltagit i studien har olika erfarenheter av LUS och kan därför ge en nyanserad bild av LUS i praktiken. Uppsatsen börjar med en bakgrund bestående av vilken betydelse läsning har i samhället, vad styrdokumenten säger samt beskrivning av analysverktyg. Med de ämnen vi behandlar i teoridelen ger vi en bild av läsinlärning, tidigare forskning och Nya LUS-boken. Resultatet och analysen visar att LUS-användningen är utbredd i skolor och att LUS är ett bra bedömningsinstrument om man tar i beaktande dess begränsningar, såsom att LUS inte tar hänsyn till att alla elever har olika bakgrund.

The purpose of this investigation is to look into analytical tools biased towards reading development. Our aim is also to seek knowledge about how teachers actually use the analytical tools. We also want to find out what considerations are made in the usage of the tools, regarding children’s native language, earlier experience and understanding written language. We will, with relevant literature and an opinion poll which contains questions without given answers, create a quality based study that answers the investigations question at issue. The teachers who has participated in this essay, can with their different experience in using analytical tools, bring light to different perspectives and therefore give a good picture of analytical tools in use. Our investigation begins with a background which contains the significance in reading, curriculums and a escription of analytical tools. In the following part you can read about learning how to read, former research and a description of the book named, “Nya LUSboken”, which is about one sort of analytical tools focusing reading. The results show that almost every school use LUS and that it’s a good tool if you consider it’s limits regarding different pupils backgrounds.

Andrée, Victoria. "Intensivläsning som metod för elevers läsutveckling : En interventionsstudie om elevers läsutveckling med intensivläsning som grund." Thesis, Luleå tekniska universitet, Institutionen för konst, kommunikation och lärande, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79597.

Appelgren, Linnéa, and Elina Oldhammer. "Barnbok om AST – Autismspektrumtillstånd : Processen bakom skapandet av en informativ barnbok." Thesis, Högskolan Dalarna, Grafisk teknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:du-22681.

Andrén, Kim. "Media form and ESL students’ comprehension : A comparative study between audiobooks and printed text." Thesis, Högskolan i Halmstad, Akademin för lärande, humaniora och samhälle, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-41971.

Alves, Janete Fassini. "Implicações do processo de alfabetização na formação do leitor competente." reponame:Repositório Institucional da UCS, 2006. https://repositorio.ucs.br/handle/11338/176.

Boganika, Luciane. "Le défi de l'éducation au Brésil et en France : Le processus de lecture des jeunes et des adultes en situation de réinsertion scolaire dans la perspective d'une reprise d'études." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAL023/document.

Helsing, Emma. "Läsning i PISA, nationella prov och Lgr11:s kursplan i svenska : Läsprocesskategorier i PISA-undersökningen 2009, nationella provet 2012/2013 samt kursplanen för årskurs 7-9." Thesis, Södertörns högskola, Lärarutbildningen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-34245.

Santos, Filho José Raimundo dos. "Proposta de leitura interacionial do gênero conto a partir de um objeto de aprendizagem - quiz." Universidade Federal de Sergipe, 2016. http://ri.ufs.br:8080/xmlui/handle/123456789/6427.

Yu, Yung-Chia, and 俞永嘉. "The Effects of Integrated Online Specific-task Reading Strategies on Reading Processes and Comprehension." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/19982400069761973015.

Bresnahan, Bryson. "Component processes in the predictors of reading achievement direct and indirect effects /." 2006. http://etd1.library.duq.edu/theses/available/etd-11152006-211910/.

Hayden, Jeffrey J. "Why Johnny can read Chinese working memory, cognitive processes, and reading comprehension /." Thesis, 2004. http://proquest.umi.com/pqdweb?index=0&did=813773021&SrchMode=1&sid=2&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1234488914&clientId=23440.

"Reading processes and implications for the design of a reading comprehension programme for Hong Kong primary students." Chinese University of Hong Kong, 1993. http://library.cuhk.edu.hk/record=b5887708.

Potylycki, Lisa J. "The reader's mind's eye : the relationship between visual imagery processes and the reading comprehension and listening comprehension of fifth grade students /." Diss., 1997. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9732873.

Liang, Chih-Wei, and 梁志偉. "The Distinguishment of Reading Comprehension Processes between Students with Learning Disabilities and with Mental Retardation." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/29446627631909664150.

Johnston, Amber M. "Reading Comprehension, Bridging Inferences, and their Relation to Working Memory Processes in Children in Grades Three through Eight." Thesis, 2012. http://hdl.handle.net/10214/5242.

Kuo, Chiao-ning, and 郭巧寧. "The Relationship between Learning Processes and Reading Comprehension regarding Science of Fifth-grade Students in Elementary School." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/19370514499191384639.

Liu, Chin-Chih, and 劉晉治. "Good TVES Readers' Comprehension Monitoring Strategies and the Functions of the Researcher's Intervention in Their Reading Processes." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/27195393760273746192.

Oliveira, Carla Susana Matos. "Compreensão Leitora e (In)sucesso Escolar." Master's thesis, 2014. http://hdl.handle.net/10400.26/24838.

LaBelle, Melissa Tobey. "Breaking it down: a study of morphological awareness in the English reading processes of linguistically diverse middle school students." Thesis, 2019. https://hdl.handle.net/2144/38240.

Brandão, Teresa Maria da Silva. "O contributo do manual escolar para a clarificação dos processos de leitura do texto literário." Master's thesis, 2012. http://hdl.handle.net/1822/23925.

Pereira, Ana Filipa Gomes. "Iniciação das crianças em processos colaborativos da leitura de narrativas com recursos digitais." Master's thesis, 2016. http://hdl.handle.net/1822/43269.

Martin, Andrea. "Collaborating for Convergence: Instructional Interventions for Children's Reading of Expository Text." Thesis, 2010. http://hdl.handle.net/1974/5404.

Jesus, Mariana Matos Cunha Conde de. "Resolução de problemas e histórias infantis." Master's thesis, 2016. http://hdl.handle.net/10400.26/16581.

Costa, Carla Manuela Duarte da Silva. "Iniciando a construção do processo de aprender a aprender : aprender a compreender textos não literários." Master's thesis, 2012. http://hdl.handle.net/1822/21080.

Kwon, Hyun Joo. "The nature of metacognitive knowledge for reading comprehension strategy and language use by highly proficient learners of English." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-05-857.

Schöffelová, Miroslava. "Porozumění syntaktickým strukturám u dětí mladšího školního věku." Doctoral thesis, 2013. http://www.nusl.cz/ntk/nusl-322596.

Lategan, Irene Anne Stewart. "Guidelines for the teaching of reading in the intermediate phase within the context of inclusion." Thesis, 1999. http://hdl.handle.net/10500/17172.

Bacharel, Margarida Guedes de Andrade. "Identidade e representação em textos literários: recursos para a aula de língua estrangeira inglês e de espanhol do 3º ciclo e ensino secundário." Master's thesis, 2016. http://hdl.handle.net/10362/20392.

ORIGINAL RESEARCH article

Impact of background music on reading comprehension: influence of lyrics language and study habits.

Yanping Sun

  • 1 Department of Applied Psychology, College of Sports and Health, Shandong Sport University, Jinan, China
  • 2 School of Physical Education, Shandong University, Jinan, China
  • 3 Department of Insurance, Shandong University of Finance and Economics, Jinan, China
  • 4 School of Psychology, Qufu Normal University, Qufu, China
  • 5 Zizhong Middle School, Linqing, China
  • 6 College of Physical Education and Health, Guangxi Normal University, Guilin, China

Numerous studies have explored the effects of background music on reading comprehension, however, little is known about how native language (L1) lyrics and second language (L2) lyrics in background music influence reading comprehension performance for college students. The present study used a mixed experimental design to examine the effects of listening habits (between-participants variable: non-listeners or listeners), music type (between-participants variable: L1 (Mandarin) pop music, L2 (English) pop music or no music) and text language (within-participants variable: L1 or L2) on reading comprehension of college students in East China. A total of 90 participants (50 females) were screened into non- listeners ( n  = 45) and listeners ( n  = 45), and then were randomly assigned to one of three groups: Mandarin pop music group ( n = 30), English pop music group ( n  = 30) and no music group ( n  = 30). The results showed that reading comprehension performance was negatively affected by music with lyrics compared to the no music condition. Furthermore, Chinese/English reading comprehension was reduced more by pop music in the same language as the written texts. As expected, non-listeners were more negatively affected by music with lyrics than listeners. For both listeners and non-listeners, average reading comprehension accuracy rates were the lowest in the condition of music with native language lyrics. Overall, our research findings indicate that listening to pop music with lyrics reduces reading comprehension performance. However, listening to background music cause much less distraction if the students commonly listen to music while reading. The current study supports the duplex-mechanism account of auditory distraction.

1 Introduction

Listening to music while studying is a common and popular trend for college students. Calderwood et al. (2014) found that 59% of the college students chose to listen to music during a 3-h study session, with 21% listening for more than 90% of the time. Although several studies have demonstrated positive effects of background instrumental music on reading comprehension ( Carlson et al., 2004 ; Khaghaninejad et al., 2016 ) and second language learning ( Kang and Williamson, 2012 ), irrelevant sound from vocal music may cause auditory distraction from the task at hand ( Martin et al., 1988 ; Furnham and Strbac, 2002 ; Perham and Currie, 2014 ; Zhang et al., 2018 ; Du et al., 2020 ). Efficient learning is extremely important for college students. However, high levels of auditory distraction will not only affect efficient learning, but also impair mental and physical function and cause irritation and headaches in schools ( Astolfi et al., 2019 ). Thus, it is important to explore the mechanisms that produce auditory distraction. According to the duplex-mechanism account of auditory distraction, the disruptive effect can be induced by interference-by-process or attentional capture ( Marsh et al., 2008 , 2009 ). To date, previous studies investigating the impact of music on reading comprehension have primarily focused on differences between instrumental and lyrical music (e.g., Erten et al., 2015 ), as well as the influence of differences in musical volume and speed (e.g., Thompson et al., 2012 ). Notably, these studies have not taken into consideration differences in participant preferences for listening to music while reading. In contrast, the present study investigated how differences in the lyrical language of the same song differentially influence reading comprehension based on reported music-listening habits. With the aim of testing the duplex-mechanism account of auditory distraction, our study explored the interactive effects of native language (L1) lyrics and second language (L2) lyrics in music on reading comprehension performance in L1 and L2 for listeners and non-listeners by using a 3-factor mixed experimental design.

1.1 A duplex-mechanism account of auditory distraction

According to the duplex-mechanism account of auditory distraction, there are two functionally different types of auditory distraction. Interference-by-process occurs when a similar process used consciously to complete a focal task competes with the involuntary processing of sound. On the other hand, regardless of the task processes involved, attentional capture occurs when the sound triggers a disengagement of attention from the dominant task ( Hughes, 2014 ). For example, semantic speech (e.g., “orange, banana, strawberry”) can cause distraction effects on semantic-based cognitive tasks (e.g., free recall of visually presented words “apple, mango, pear”) ( Marsh et al., 2008 ). According to the interference-by-process theory, semantically similar speech automatically spreads activation through a long-term semantic network, interfering with the similar process of navigating such networks to retrieve information for the focal task ( Marsh and Jones, 2010 ; Hughes, 2014 ). Interference-by-process explains the semantic distraction effects. Attentional capture falls into two categories: When a sound’s unique content (such as one’s name or one’s native language) gives it the ability to deflect attention, a specific attentional capture takes place. In contrast, when an occurrence draws attention despite having nothing inherently attention-grabbing about it, but rather because of the context in which it takes place, nonspecific attentional capture is created ( Eimer et al., 1996 ). For example, a sound “B” in “CCCCCBCC” or a sound “C” in “BBBBBCBB.” Our study focused on interference-by-process and a specific attentional capture.

1.2 The impact of background music on reading comprehension

Reading comprehension, an important and necessary skill for effective academic learning in college, refers to the active process by which individuals understand and construct the meaning of texts based on prior knowledge and experience ( Perfetti et al., 2005 ). Kämpfe et al. (2010) claimed that reading might be more disturbed by vocal music than by instrumental music ( Kämpfe et al., 2010 ). The duplex-mechanism account of auditory distraction has been supported by research evidence demonstrating the disruptive effects of background speech on various memory tasks such as serial short-term memory tasks. However, little is known about supporting evidence from the distraction effects of L1/L2 lyrics on L1/L2 reading comprehension among listeners and non-listeners. According to the simple view of reading model, reading comprehension consists of only two parts, word recognition and language comprehension, and both parts are necessary for reading success ( Hoover and Gough, 1990 ). For college students, mature readers whose word recognition has attained to a level of automation, language comprehension plays the more important role in reading comprehension. Lyrics in music contain semantic information, which will interfere with language comprehension ( Martin et al., 1988 ; Oswald et al., 2000 ). Thus, we expect that lyrics will induce semantic distraction effects on reading comprehension performance. Our first hypothesis was that the accuracy rates in music conditions would be significantly lower than the accuracy rates with no music for college students (H1).

The impact of background music on reading comprehension is generally contingent on multiple factors such as music types (instrumental or lyric music with various tempos, intensity, familiarity) ( Banbury et al., 2001 ; Hallam and Mac Donald, 2009 ). In addition to music types, previous studies have confirmed that the effects of music on reading comprehension can be significantly different in various levels of individual diversity (e.g., personality and music preferences) or difficulty of the reading comprehension task ( Kiger, 1989 ; Kallinen, 2002 ; Anderson and Fuller, 2010 ). For example, Anderson and Fuller (2010) suggested that disruptive effects of background lyrical music on reading comprehension was more pronounced for 7th- and 8th-grade students exhibiting a stronger preference for the lyrical music, compared with their performance in a quiet environment. Our experimental work focused on identifying interactive effects of music (pop music with L1/L2 lyrics), individual habits (e.g., listening to music in daily study) and tasks (L1/L2 written texts), which helps test whether interference-by-process and a specific attentional capture occurs.

First, pop music is the preferred music genre for most college students ( Etaugh and Michals, 1975 ; Wang and Wang, 2015 ). For example, Wang and Wang (2015) surveyed 3,688 Chinese college students in Beijing, Inner Mongolia, Shanghai, Henan and Jiangxi regions of Mainland China, and found that: (1) the proportion of college students who liked pop music was as high as 65.05%; (2) 35.23% college students chose “love” as their favorite pop music theme comparing with themes “nostalgic” 33.21%, “witty/humorous” 14.27%, “alternative” 9.49%,“other” 15.73%; (3) 47.85% college student’ favorite singers are from “Hong Kong and Taiwan.” Thus, we choose a masterpiece of classic Mandarin pop music “The Goodbye Kiss” (sung by Jacky Cheung) as the music. Although the song was released in 1993, from its release to 2020, there have been covers of the song by well-known singers almost every year. Specially, this song was covered by Michael Learns to Rock (MLTR) in 2004, and the English version of this song “Take me to your heart” became a classic of international music. Comparing the lyrics of the two songs, the Mandarin lyrics of “The Goodbye Kiss” have a total of 52 sentences, and the whole song is divided into two subsections. The shortest sentence in Mandarin lyrics has a total of five Chinese words, and the longest sentence has 19 words; the English lyrics reproduce the characteristics of the original Chinese sentence well in terms of sentence length and neatness, the shortest sentence consists of four words, and the longest is only 10 words ( Wei, 2012 ). Thus, we chose the pop music with lyrics “The Goodbye Kiss” as our vocal music.

Second, Mandarin Chinese (L1) and English (L2) are the top 2 most spoken languages in the world, and belong to two different language families ( Ethnologue, n.d. ). Additionally, all Chinese students begin their English study in their third year of primary school or even earlier, and studying English is a key subject for the Chinese college entrance examination required for admission to the university. They will continue to study English to pass College English Test Band 4/6 (CET- 4/6, essential English exams for Chinese college students) in college, and have considerable exposure to English music. English is the most important and widely studied second language for most Chinese college students. Hence, we chose Chinse college students from Mainland China who learn English as a second language for the experiment. Based on the duplex-mechanism account of auditory distraction, when a similar process is used purposefully to accomplish a focal cognitive task and the involuntary processing of sound competes with it, interference-by-process occurs ( Hughes, 2014 ). In our experiment, interference-by-process is produced when lyrics are presented to college students who are deliberately completing a focal reading comprehension task, especially when the lyrics language is the same as the text language in the reading comprehension tasks. That is, the semantic activation of lyrics competes with the semantic access of reading comprehension tasks with the same language as lyrics. Thus, our hypothesis is that Chinese/English reading comprehension accuracy rates when listening to music in the same language would be significantly lower than that in different languages or no music (H2). To be specific, we hypothesized that Chinese reading comprehension accuracy rates when listening to music with Mandarin lyrics would be significantly lower than when listening to music with English lyrics, and English reading comprehension accuracy rates when listening to English music would be significantly lower than when listening to Mandarin music.

Third, students frequently report that listening to music while studying is useful ( Etaugh and Ptasnik, 1982 ), and these students are more likely to form the habit of listening to music in daily study. However, students without the habit instinctively think that music listening can provide a distraction that might affect reading comprehension. Individual differences in inhibitory control may exist between two groups. Inhibitory control refers to the ability to suppress an inappropriate reaction or disregard distracting or irrelevant information, and increased inhibitory control in students probably makes it easier for them to ignore distractions in their surroundings and concentrate on tasks inside and outside of the classroom ( Privitera et al., 2022b ). However, non-listeners do not develop the habit of listening to music while studying, probably because they have a low level of inhibitory control to concentrate on the focal tasks. Thus, we hypothesized that college students who typically did not report listening to music during study (non-listeners) would have lower reading comprehension accuracy rates than listeners when music was present (H3).

Based on the duplex-mechanism account of auditory distraction, regardless of the quality of target tasks (e.g., Chinese/English comprehension), auditory attentional capture happens whenever a sound produces a disengagement from tasks. Numerous sound varieties (e.g., one’s own name, or her own infant’s screams for a mother) have abilities to specifically captivate attention ( Hughes, 2014 ). Native language (Mandarin Chinese) is familiar and highly dominant, and may cause a specific attentional capture. We expect that both non-listeners and listeners may be more susceptible to auditory distraction when Mandarin music is present rather than English music. That is, in general, people’s ability to understand what they read was worse when they listened to music with native language compared to music in a second language or no music at all. Thus, for both non-listeners and listeners, we hypothesized that average reading comprehension accuracy rates (without distinction between Chinese and English) would be the lowest in the condition of Mandarin music compared with the English/no music condition (H4).

1.3 Research questions

In sum, it is worth examining the effects of different habits of listening to music on reading comprehension performance, which can help clarify whether cultivating habits of listening to music while studying is valuable or not. In addition, few studies used both lyrics languages and music-listening habits while study to explore distractive effects of music on reading comprehension. To solve this problem, in this paper, we designed an experiment to explore the effects of music type, written text language and listening habits on reading comprehension among Chinese college students. Our research questions are: (1) would the accuracy rates in music conditions be significantly lower than the accuracy rates with no music for college students? (2) would Chinese/English reading comprehension accuracy rates when listening to music in the same language be significantly lower than that in different languages or no music? (3) would non-listeners have lower L1 and L2 reading comprehension accuracy rates than listeners when music was present? (4) would average reading comprehension accuracy rates (without distinction between Chinese and English) be the lowest in the condition of Mandarin music compared with the English/no music condition?

2.1 Participants

Before the experiment, we calculated the minimum sample size of each group of participants using G*Power 3.1.9.7 software ( Faul et al., 2007 ) to reach the statistical power. For observing a similar effect to relevant studies ( Peng et al., 2017 ), we use Effect size f  = 0.22, ɑ = 0.05, 1-β = 0.8 as parameters, number of groups = 6, number of measurements = 2, non-sphericity correction = 1; under the F test of ANOVA: repeated measures, within-between interaction ( Faul et al., 2021 ). Hence the total minimum number of participants should be 72, and the minimum number of participants in each large group should be 36.

The participants were screened by filling out a researcher-designed questionnaire of background music listening habits. All participants were recruited randomly from Shandong Sport University in Shandong Province of Mainland China. A total of 90 participants (50 females) between 18 to 21 years of age (Mean = 19.14, SD = 0.92) were selected. Our experiment divided the participants into 2 large groups first: listeners (45 participants) and non-listeners (45 participants). Participants in each large group were randomly assigned to one of three groups: 15 Mandarin pop music group, 15 English pop music group and 15 no music group. All six groups of participants were assigned Chinese and English texts.

Participants were native Mandarin Chinese speakers who started learning English in the third grade of primary school. None of the participants were music majors and English majors, and none of the participants had any formal musical training. They were all right-handed with normal or corrected-to-normal vision. The experimental protocol was approved by the Research Ethics Committee of Shandong Sport University in China, and conducted in compliance with institutional guidelines and regulations. All participants signed an informed consent form prior to the experiment.

2.2 Experimental design

This study used a mixed factorial experimental design. There were two between-participants independent variables and a within-participants independent variable. The between-participants variables were listening habits (with two levels: listeners or non-listeners) and music type (with three levels: Mandarin pop music, English pop music or no music). The within-participants variable was text language (with two levels: Chinese or English). The dependent variable was accuracy rates for the reading comprehension tasks. Accuracy rates were defined as the mean percentage of the number of Chinese (English) reading comprehension items answered correctly in the total number of Chinese (English) reading comprehension items.

2.3 Materials and apparatus

Materials consisted of a questionnaire, pop music stimuli and written texts. The questionnaire was Researcher-designed Background Music Listening Habits Questionnaire, a self-report survey that was developed to assess participants’ habits of listening to music during study. This scale contained 15 items, each item rated on a Likert 5-point scale ranging from 1 to 5 (1 = Do not agree at all, 2 = Hardly agree, 3 = not sure, 4 = Mostly agree, 5 = Completely agree), and was scored as a continuous variable from 15 (minimum score) to 75 (maximum score). The Cronbach’s ɑ of the scale was 0.87. We used the questionnaire to screen listeners (a total score higher than 60, 60 is the average score of selecting option 4) and non-listeners (a total score lower than 30, 30 is the average score of selecting option 2) to examine distinct effects of listening habits on reading comprehension performance in the formal experiment.

Mandarin song “The Goodbye Kiss” (Mandarin name “Wen3 Bie2,” sung by Jacky Cheung) and English song “Take Me to Your Heart” (sung by Michael Learns to Rock) were used as background music stimuli, as these two songs have the same rhythm and tempo. The two songs were once popular music that are familiar to most Chinese college students. We used a music editor software Adobe Audition CS6 (Adobe Systems Inc., San Jose, CA, United States) to delete the blank space of “The Goodbye Kiss,” and the part with lyrics was kept to ensure that the participants could always be in a music environment with lyrics while carrying out reading comprehension tasks.

Chinese texts (300 character for each text) were selected from simulated tests of the College Entrance Examination; these texts are all about science and technology. English texts (150 words for each text) about education were selected from Public English Test System 3 (PET-3) tests. Preliminary tests were conducted on 120 college students, and finally 7 Chinese texts (coefficient of difficulty between 0.81 and 0.87) and 7 English texts (coefficient of difficulty between 0.85 and 0.90) were selected. There are no significant differences in difficulty coefficient of the 14 written texts. The difficulty coefficient of each text was estimated by the mean number of correct answers/4 (total number of questions). The coefficient of difficulty 0.81 indicates that, on average, three questions were correctly answered by college students. Participants read passages that were two paragraphs long, and then answered four true or false items following each passage. The items include both literal and inferential comprehension questions. Answers to literal questions involve facts such as who, when, where and what, and they can always be found in the texts. For example, “As early as 1909, Max Mow confirmed that there are some cells in the blood that can make blood, True or False.” For inferential questions, participants are required to determine a text’s meaning indirectly by using the information provided in the text. For example, “By the time most students graduate from high school, they spend less time watching TV than they do in class, True or False.” 3 Chinese texts and 3 English texts were used for assessing the levels of reading comprehension of all three groups (L1 pop music, L2 pop music and no music) of participants before the formal experiments. This was done to make sure that there were no significant differences of Chinese and English reading comprehension levels among the three groups. A different set of 3 Chinese texts and 3 English texts were used for the formal experiments. A Chinese text (difficulty coefficient 0.84) and an English text (difficulty coefficient 0.90) were selected for use in the practice phase.

The apparatus consisted of Lenovo laptops (Yoga 14 s, Lenovo Group Ltd., Beijing, China), noise-canceling headphones (SONY WH-1000XM3, Sony Corp., Tokyo, Japan) and E-prime 2.0. The music stimuli, instructions, texts and questions were all presented on Lenovo laptops using programs written in E-prime 2.0 (Psychology Software Tools, Pittsburgh, PA, United States) ( Schneider et al., 2012a , b ).

2.4 Procedure

Participants filled out the informed consent for participating in the study, then were screened by filling out the Questionnaire of Background Music Listening Habits online. Based on the questionnaire total score, the participants were divided into two large group: listeners and non-listeners. Participants in each large group were randomly assigned to one of three groups (Mandarin music, English music and no music). All three groups of participants completed Chinese and English reading comprehension tasks without music before formal experiments, and no significant differences of Chinese and English reading comprehension performance were observed among the three groups.

In the formal experiment phase, all participants were asked to complete experiment tasks in a quiet lab, with 10 participants in each group seated at individual tables with Lenovo laptops and headphones. First, participants were told to put on headphones and conduct the experiment on Lenovo laptops individually. All music was played between 60 dB ~ 65 dB(A), each participant first put on the headphones and checked to see whether the playback function of the headphones was normal. Then, Participants completed Chinese and English reading comprehension test items under each condition of music type. For each condition, half of the participants read the Chinese text first and the other half read the English text first. The 3 Chinese texts and 3 English texts were presented to participants randomly. After reading each passage, participants pressed the spacebar to end the reading (The maximum reading time for each text is 5 min), and proceeded to answer comprehension questions by pressing “T” (indicating truth) or “F” (indicating false) on keyboards. The flow chart of the experimental procedure presented using E-prime 2.0 was shown in Figure 1 .

www.frontiersin.org

Figure 1 . The flow chart of the experimental procedure presented using E-prime 2.0.

Participants were asked to answer questions as accurately as possible after reading the passages and to ignore the music. The accuracy rate of each participant was calculated by the total number of Chinese/English items answered correctly/12 (the total number of Chinese/English reading comprehension items). Every participant completed both Chinese texts and English texts in one of three conditions (Mandarin Chinese pop music, English pop music and no music). We tested the effects of listening to music in the same language conditions (L1 music + L1 texts, L2 music + L2 texts) or different language conditions (L1 music + L2 texts, L2 music + L1 texts). For example, participants listening to L1 (Mandarin Chinese) pop music completed L1 (Chinese) texts (the same as lyrics language) and L2 (English) texts (different from lyrics language). Music was played until all participants finished reading comprehension test items.

2.5 Statistical analyses

The Statistical Package for the Social Sciences (IBM SPSS, version 23.0; IBM SPSS, Armonk, NY, United States) was used for analysis of the data. The assumptions of ANOVA (homogeneity of variances and normal distribution) were tested. Then the reading comprehension accuracy rates were analyzed using a three-way mixed ANOVA with a within-participants factor (two types of written text language) and two between-participant variables (listening habits and music type). The alpha criterion was set to 0.05. Bonferroni correction was carried out for all post hoc analyses.

One-way ANOVA revealed that baseline reading comprehension performances of three groups (Mandarin music group, English music group and no music group) have no significant difference [Chinese: F (2, 87) = 0.226, p  = 0.718; English: F (2, 87) = 0.217, p  = 0.806].

3.1 Descriptive statistics

Means and standard deviations of the reading comprehension accuracy rates are shown in Table 1 . A three-way mixed ANOVA for reading comprehension accuracy rates, including two between-participants factors (2 listening habit, 3 music type) and one within-participants factor (2 written text language) was performed ( Table 2 ).

www.frontiersin.org

Table 1 . Reading comprehension accuracy rates [mean (standard deviations)] by group and condition.

www.frontiersin.org

Table 2 . A three-way analysis of variance (ANOVA) of reading comprehension accuracy rates.

3.2 Main effect analysis and interactive effect analyses

3.2.1 main effects of music type.

We tested our hypothesis (H1) that the accuracy rates in music conditions would be significantly lower than the accuracy rates with no music for college students. We performed a three-way mixed ANOVA for reading comprehension accuracy rates to obtain the main effects and interactive effects. Significant main effects of music type [ F (2, 87) = 232.791, p < 0.001, η 2 p = 0.847] were observed as shown in Table 2 . Post hoc analyses revealed the accuracy rates in Mandarin and English music conditions are significantly lower than the accuracy rates with no music ( ps < 0.01). A mean difference of accuracy rates was −0.081 between Mandarin music and English music condition (95% CI: [−0.110, −0.051]), and was −0.175 between English music and no music condition (95% CI: [−0.205, −0.145]). Thus, the results confirmed our hypothesis H1. The result reveals that music with lyrics decreased reading comprehension performance as compared to no music.

3.2.2 Interactive effects of music type and text language

Our second hypothesis (H2) was confirmed by using a three-way mixed ANOVA. H2 was that Chinese/English reading comprehension accuracy rates when listening to music in the same language would be significantly lower than those with different languages. We observed a significant interaction between music type and text language [ F (2, 87) = 113.829, p < 0.001, η 2 p = 0.730] as shown in Table 2 . For Chinese reading comprehension, as shown in Figure 2 , post hoc analyses showed that the accuracy rates in Mandarin music group were significantly lower than English music group [ t (58) = −5.526, p < 0.001] and no music group [ t (58) = −8.420, p < 0.001]. A mean difference of Chinese reading accuracy rates was −0.286 between Mandarin music and English music condition (95% CI: [−0.392, −0.180]), and was −0.378 between Mandarin music and no music condition (95% CI: [−0.484, −0.272]). For English reading comprehension, the accuracy rates in the English music group were significantly lower than the Mandarin music group [ t (58) = −2.385, p = 0.023 < 0.05; Figure 2 ] and the no music group [ t (58) = −7.041, p < 0.001; Figure 2 ]. A mean difference of English reading accuracy rates was −0.125 between English music and Mandarin music condition (95% CI: [−0.234, −0.016]), and was −0.258 between English music and no music condition (95% CI: [−0.367, −0.150]). These results confirmed our hypothesis H2, and suggested that college students were more distracted by music in the same language as the written texts.

www.frontiersin.org

Figure 2 . Accuracy rates of Chinese reading comprehension and English reading comprehension for different music types. ** p  < 0.01; *** p  < 0.001.

3.2.3 Main effects of listening habits and interactive effects of listening habits and music type

Three-way mixed ANOVA was also used to test our third hypothesis (H3) that non-listeners would have lower reading comprehension accuracy rates than listeners when music was present. The results in Table 2 showed that a significant main effect of listening habits [ F (1, 88) = 634.331, p < 0.001, η 2 p = 0.883]. Post hoc analyses revealed that reading comprehension accuracy rates were lower in non-listeners than listeners ( p < 0.001). The Table 2 also showed that the interactive effects of listening habits and music type were significant [ F (2, 87) = 160.672, p < 0.001, η 2 p = 0.793]. Post hoc analyses showed significantly lower reading comprehension accuracy rates in the non-listeners compared to listeners, in conditions of music as shown in Figure 3 [Mandarin music: t (58) = −138.782, p < 0.001; English music: t (58) = −99.729, p < 0.001]. A mean difference of accuracy rates between non-listeners and listeners was −0.430 in the Mandarin music condition (95% CI: [−0.464, −0.396]), and was −0.309 in the English music condition (95% CI: [−0.343, −0.274]). These results suggest that reading comprehension performance was more negatively affected by music in the non-listeners than in the listeners, confirming our third hypothesis (H3).

www.frontiersin.org

Figure 3 . Reading comprehension accuracy rates in different music type groups for different listening habits. *** p  < 0.001.

Significant interaction effects between listening habits and music type [ F (2, 87) = 160.672, p < 0.001, η 2 p = 0.793] were observed as shown in Table 2 . For the non-listeners, as shown in Figure 4 , post hoc analyses revealed the accuracy rates while listening to Mandarin music are significantly lower than with English music [ t (58) = −45.508, p  < 0.001] and significantly lower than accuracy rates with no music [ t (58) = −150.401, p < 0.001]. A mean difference of reading accuracy rates was −0.142 between Mandarin music and English music condition (95% CI: [−0.183, −0.100]), and was −0.467 between Mandarin music and no music condition (95% CI: [−0.508, −0.425]); For the listener, post hoc analyses revealed the accuracy rates while listening to Mandarin music are significantly lower than accuracy rates with no music [ t (58) = −14.524, p < 0.001]. A mean difference of reading accuracy rates was −0.045 between Mandarin music and no music condition (95% CI: [−0.086, −0.003]). Thus, the results also supported our hypothesis H4 that average reading comprehension accuracy rates (without distinction between Chinese and English) would be the lowest in the condition of Mandarin music compared with the English/no music condition for both non-listeners and listeners. These results suggested that music with native language lyrics negatively affected the reading comprehension performance of college students.

www.frontiersin.org

Figure 4 . Reading comprehension accuracy rates in different listening habits groups for different music types. * p  < 0.05; *** p  < 0.001.

4 Discussion

The main purpose of this study was to explore the disruptive effects of background music lyrics on first language (L1) and second language (L2) reading comprehension performance among Chinese college students. We also included the influence of music-listening habits by using a 3-factor mixed factorial experimental design. First, our results showed that reading comprehension accuracy rates in music conditions are significantly lower than the accuracy rates with no music. Second, L1/L2 reading comprehension accuracy rates when listening to music in the same language are significantly lower than when listening to a different language. Third, the results showed that significantly lower accuracy rates in non-listeners than listeners when music was played. Finally, for both the non-listeners and listeners, average reading comprehension accuracy rates are the lowest in the condition of Mandarin music compared with English/no music condition. Our results provide experimental evidence in support of distraction effects of L1 or L2 music on L1 and L2 reading comprehension performance among Chinese college students. In addition, our findings also offer additional evidence in favor of the duplex-mechanism account of auditory distraction. Overall, the results support our hypotheses.

4.1 The effect of music type

Compared to the no music condition, reading comprehension performance were reduced by music with lyrics. This result is consistent with previous studies which found disruptive effects of vocal music on reading comprehension ( Anderson and Fuller, 2010 ; Perham and Currie, 2014 ; Ren and Xu, 2019 ; Dong et al., 2022 ). Thompson et al. (2012) showed that fast and loud instrumental music disrupts reading comprehension more than slow-tempo music ( Thompson et al., 2012 ). However, though the music in our study is slow-tempo, disruptive effects on reading comprehension were still observed. Lyrics had a significantly detrimental effect on reading comprehension. The finding of the current study supports the interference-by-process in the duplex-mechanism account of auditory distraction. According to the interference-by-process, music with lyrics in both L1 and L2 detracted from the performance because semantically processing of the lyrics in these two languages conflicts with semantic processing and access that reading demands ( Quan and Kuo, 2023 ). For comparison, some researchers used musical excerpts in combination with meaningless words as music stimuli. The musical excerpts with meaningless lyrics were unknown to the participants to avoid any associations between the music and semantic or episodic memory. Their results showed neither an enhancing nor a detrimental effect on verbal learning when different styles of background music were played ( Jäncke and Sandmann, 2010 ). However, the present study indicated that music with meaningful lyrics interferes with reading comprehension performance. Language comprehension plays an important role in reading comprehension performance ( Hoover and Gough, 1990 ), and both lyrics and written texts contained semantic information. According to the duplex-mechanism account, from the perspective of the interference-by-process, the semantic interference effects can be explained by assuming that semantic speech triggers automatic spreading of semantic activation over a long-term semantic network that interferes with the analogous process of steering such networks for the purpose of retrieval in the reading comprehension tasks ( Marsh and Jones, 2010 ; Hughes, 2014 ). Therefore, the lyrics act as competing stimuli with written texts and impair their access to word meaning.

4.2 The interaction between music type and text language

Regardless of whether the music and texts were in their L1 or L2 language, Chinese college students were more distracted by music in the same language as the texts. This result indicates that a more detrimental effect on reading comprehension occurred when the auditory input (music lyrics) is the same as the written text language. Based on interference-by-process, the irrelevant semantic information from the speech creates competition for the primary tasks’ dynamic semantic encoding and retrieval processes. As they both vie for semantic access, impairment can therefore be explained in terms of a relative difficulty in choosing the appropriate source of semantic information ( Marsh et al., 2009 ). When lyrics language is the same as the text, the competition process becomes stronger and thus the selection process is more difficult, which causes a more disruptive effect on reading performance. We used music lyrics with L1/L2 as different potential sources of auditory distraction, and the finding provides a further strand of support for interference-by-process.

4.3 The effect of listening habits

Our results revealed that reading comprehension performance by the non-listeners were more negatively affected by music than the listeners. These findings are in line with the results of previous studies which showed that people who seldom studied in the presence of background music performed better on reading comprehension tasks in silence ( Etaugh and Michals, 1975 ; Etaugh and Ptasnik, 1982 ). These results indicate that background music caused detrimental effects for individuals who normally study without music. In contrast, college students who regularly listen to music while studying have much experience of listening to music, and the top-down features (e.g., high working memory and high inhibitory control) can lessen the interference to cognitive activities caused by shared processing of irrelevant information ( Quan and Kuo, 2023 ; Privitera et al., 2023b ). Specifically, differences in working memory/inhibitory control between non-listeners and listeners may lead the differential effects of music on reading comprehension, because working memory may generally have an impact on individual ability to carry out cognitive tasks while listening to music ( König et al., 2005 ; Christopher and Shelton, 2017 ), and it is generally observed that those with high working memory capacity are less easily distracted by irrelevant stimuli ( Hughes, 2014 ). Recent studies also revealed that differences in inhibitory and/or attentional control could predict academic performance including reading (e.g., Privitera et al., 2023b ), thus, the relatively low working memory/inhibitory control may make non-listeners were more disrupted by music compared with listeners. In other words, though listeners are negatively affected by music, they are accustomed to reading in the presence of music, thus background music sounds are less distracting for them.

4.4 The interaction between listening habits and music type

Our results indicated that for both non-listeners and listeners, music with native language lyrics negatively affected the average reading comprehension performance. The results provide support for the duplex-mechanism account of auditory distraction: in addition to interference-by-process, sound can also produce unnecessary distraction by attentional capture. Music lyrics with the same language as the written texts distract college students by interfering specifically with the similar semantic access processes involved in the reading comprehension task. In contrast, music with native language lyrics disengages students from reading comprehension tasks. Compared to L2 lyrics, native language lyrics are high dominant and more familiar, which may make students rely too much on music rather than keeping them from reading due to music. Thus, a specific attentional capture also caused the auditory distraction. This finding of auditory distraction in different lyrics language conditions provides additional evidence in favor of the duplex-mechanism account.

4.5 Limitations and further research

Several limitations should be noted. First, the participants’ English language proficiency, cognitive control and working memory were not assessed. In future study the L2 proficiency can be balanced to explore unique music lyrics effects on reading comprehension, because recent studies have shown that L2 proficiency are correlated to inhibition and attentional control ( Privitera et al., 2022a , 2023a ), and cognitive control has been found to have a significant impact on academic performance including reading ( Privitera et al., 2023b ). Working memory/cognitive control can be included as a key variable to explore its effect on reading comprehension while listening to music among non-listeners/listeners. Second, sound without lyrics (e.g., pop music without lyrics or white noise) was not included as one level of music type. Future study can compare reading comprehension performance differences between sound without lyrics group and music with lyrics/no music group to explore the various effects of sound. Third, questions about what music genres participants listen to and their relative frequencies were not included in the researcher-designed questionnaire of background music listening habits. The questionnaire needs to be modified, and should include questions on music genres in future study. Fourth, music type should be manipulated as a within-subject factor instead of a between-subject factor in future study. Finally, this is a behavioral experiment examining music lyrics effects on reading comprehension. With the aim of obtaining the brain and neuroscience evidence to support the duplex-mechanism account of auditory distraction, future studies could explore differences in brain and neural activities when students complete reading comprehension while listening to L1/L2 music, and identify the precise locus of the interference-by-process and attentional capture. These differences may indicate that interference-by-process and attentional capture obtain the functional support of different brain regions which further supports duplex-mechanism account of auditory distraction.

4.6 Implications

The current study benefits from several strengths. It is the first study to explore effects of L1 or L2 music lyrics on L1/L2 reading comprehension performance among Chinese college students with different listening habits. For reading comprehension with L1/L2, L1/L2 reading comprehension performance reduced more when the music lyrics language was the same as the written texts. For example, L2 reading performance decreased more when both lyrics and written texts language is L2. In general, for average reading comprehension performance, music with native language lyrics affected it negatively more than L2 music/no music. The current study provided experimental evidence to support the duplex-mechanism account of auditory distraction, and revealed that the duplex-mechanism account can also be applied to auditory distraction of reading comprehension tasks other than serial short-term tasks. The novelty of our study is to distinguish effects of lyrics with native language/s language on L1/L2 reading comprehension. Reading performance difference in lyrics with L1/L2 conditions suggests that auditory distraction has two functionally distinct forms: interference-by-process and attentional capture. The contribution of our research is that choosing music and written texts with L1/L2 helps methodically separate the potential individual contributions of interference-by-process and attentional capture to the overall disruption of task performance.

Our other findings were that reading comprehension performance was reduced by pop music lyrics. In addition, non-listeners were more distracted by lyrics than listeners. These findings have practical implications. Though most college students love pop music, and they usually report that listening to music while studying is beneficial, for college students and educators, it is better not to play pop music with lyrics while students, especially students without music-listening habits, are reading articles whether in their native languages or a second language.

5 Conclusion

The present study is an important first step in examining the effects of music with L1 or L2 lyrics on L1/L2 reading comprehension performance among Chinese college students with different listening habits. By using a 3-factor mixed factorial experimental design, we showed that the results verified our hypotheses. Specifically, the key findings are: (1) reading comprehension performance was negatively affected by music with lyrics compared to the no music condition; (2) L1/L2 reading comprehension was more affected by music in the same language as the texts; (3) Non-listeners were more negatively affected by music with lyrics than listeners; (4) For both non-listener and listeners, average reading comprehension accuracy rates are the lowest in the condition of music with native language lyrics. These findings support the claim that college students’ reading performance suffers when they listen to pop music with lyrics compared to no music, and provide experimental evidence support for the duplex-mechanism account of auditory distraction.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Research Ethics Committee of Shandong Sport University. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.

Author contributions

YS: Conceptualization, Data curation, Methodology, Supervision, Writing – original draft, Writing – review & editing. CS: Funding acquisition, Writing – original draft, Writing – review & editing. CL: Methodology, Writing – review & editing. XS: Investigation, Writing – review & editing. QL: Investigation, Writing – review & editing. HL: Methodology, Writing – review & editing.

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by Shandong University undergraduate teaching reform (grant numbers: 2023Y251; 2023YJJGND07) and undergraduate teaching reform in Shandong province (grant number: Z2022096).

Acknowledgments

We would like to thank Pamela Holt for useful discussions and critically reading the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Anderson, S. A., and Fuller, G. B. (2010). Effect of music on reading comprehension of junior high school students. Sch. Psychol. 25, 178–187. doi: 10.1037/a0021213

Crossref Full Text | Google Scholar

Astolfi, A., Puglisi, G. E., Murgia, S., Minelli, G., Pellerey, F., Prato, A., et al. (2019). Influence of classroom acoustics on noise disturbance and well-being for first graders. Front. Psychol. 10:2736. doi: 10.3389/fpsyg.2019.02736

PubMed Abstract | Crossref Full Text | Google Scholar

Banbury, S. P., Macken, W. J., Tremblay, S., and Jones, D. M. (2001). Auditory distraction and short-term memory: phenomena and practical implications. Hum. Factors 43, 12–29. doi: 10.1518/001872001775992462

Calderwood, C., Ackerman, P. L., and Conklin, E. M. (2014). What else do college students “do” while studying? An investigation of multitasking. Comput. Educ. 75, 19–29. doi: 10.1016/j.compedu.2014.02.004

Carlson, J. K., Hoffman, J., Gray, D., and Thompson, A. (2004). A musical interlude: using music and relaxation to improve reading performance. Interv. Sch. Clin. 39, 246–250. doi: 10.1177/10534512040390040801

Christopher, E. A., and Shelton, J. T. (2017). Individual differences in working memory predict the effect of music on student performance. J. Appl. Res. Mem. Cogn. 6, 167–173. doi: 10.1016/j.jarmac.2017.01.012

Dong, Y., Zheng, H. Y., Wu, S. X. Y., Huang, F. Y., Peng, S. N., Sun, S. Y. K., et al. (2022). The effect of Chinese pop background music on Chinese poetry reading comprehension. Psychol. Music 50, 1544–1565. doi: 10.1177/03057356211062940

Du, M., Jiang, J., Li, Z. M., Man, D. R., and Jiang, C. M. (2020). The effects of background music on neural responses during reading comprehension. Sci. Rep. 10:18651. doi: 10.1038/s41598-020-75623-3

Eimer, M., Nattkemper, D., Schröger, E., and Prinz, W. (1996). “Involuntary attention” in Handbook of perception and action . eds. O. Neumann and A. F. Sanders, vol. 3 (London: Academic Press), 389–446.

Google Scholar

Erten, O., Ece, A. S., and Eren, A. (2015). The effects of reading with music on reading comprehension. Glob. J. Hum. Soc. Sci. 1, 619–627.

Etaugh, C., and Michals, D. (1975). Effects on reading comprehension of preferred music and frequency of studying to music. Percept. Mot. Skills 41, 553–554. doi: 10.2466/pms.1975.41.2.553

Etaugh, C., and Ptasnik, P. (1982). Effects of studying to music and post-study relaxation on reading comprehension. Percept. Mot. Skills 55, 141–142. doi: 10.2466/pms.1982.55.1.141

Ethnologue . (n.d.). Languages of the World . SIL International. Available at: https://www.ethnologue.com/ (Accessed February 27, 2024).

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2021). F test: Fixed effects ANOVA–- special, main effects and interactions. G * Power 3.1 manual. 28–29. Available at: https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower .

Furnham, A., and Strbac, L. (2002). Music is as distracting as noise: the differential distraction of background music and noise on the cognitive test performance of introverts and extraverts. Ergonomics 45, 203–217. doi: 10.1080/00140130210121932

Hallam, S., and Mac Donald, R. A. R. (2009). “The effects of music in community and educational settings” in The Oxford handbook of music psychology (New York: Oxford University Press), 471–480.

Hoover, W. A., and Gough, P. B. (1990). The simple view of reading. Read. Writ. 2, 127–160. doi: 10.1007/BF00401799

Hughes, R. W. (2014). Auditory distraction: a duplex-mechanism account. PsyCh 3, 30–41. doi: 10.1002/pchj.44

Jäncke, L., and Sandmann, P. (2010). Music listening while you learn: no influence of background music on verbal learning. Behav. Brain Funct. 6:3. doi: 10.1186/1744-9081-6-3

Kallinen, K. (2002). Reading news from a pocket computer in a distracting environment: effects of the tempo of background music. Comput. Hum. Behav. 18, 537–551. doi: 10.1016/S0747-5632(02)00005-5

Kämpfe, J., Sedlmeier, P., and Renkewitz, F. (2010). The impact of background music on adult listeners: a meta-analysis. Psychol. Music 39, 424–448. doi: 10.1177/0305735610376261

Kang, H. J., and Williamson, V. J. (2012). The effect of background music on second language learning. In Proceedings of the 12th International Conference on Music Perception and Cognition and the 8th Triennial Conference of the European Society for the Cognitive Sciences of Music, pp. 516–518.

Khaghaninejad, M. S., Motlagh, H. S., and Chamacham, R. (2016). How does Mozart’s music affect the reading comprehension of Iranian EFL learners of both genders? Int. J. Human. Cult. Stud. 489–499.

Kiger, D. M. (1989). Effects of music information load on a reading comprehension task. Percept. Mot. Skills 69, 531–534. doi: 10.2466/pms.1989.69.2.531

König, C. J., Bühner, M., and Mürling, G. (2005). Working memory, fluid intelligence, and attention are predictors of multitasking performance, but polychronicity and extraversion are not. Hum. Perform. 18, 243–266. doi: 10.1207/s15327043hup1803_3

Marsh, J. E., Hughes, R. W., and Jones, D. M. (2008). Auditory distraction in semantic memory: a process-based approach. J. Mem. Lang. 58, 682–700. doi: 10.1016/j.jml.2007.05.002

Marsh, J. E., Hughes, R. W., and Jones, D. M. (2009). Interference by process, not content, determines semantic auditory distraction. Cognition 110, 23–38. doi: 10.1016/j.cognition.2008.08.003

Marsh, J. E., and Jones, D. M. (2010). Cross-modal distraction by background speech: what role for meaning? Noise Health 12, 210–216. doi: 10.4103/1463-1741.70499

Martin, R. C., Wogalter, M. S., and Forlano, J. G. (1988). Reading comprehension in the presence of unattended speech and music. J. Mem. Lang. 27, 382–398. doi: 10.1016/0749-596X(88)90063-0

Oswald, C. J. P., Tremblay, S., and Jones, D. M. (2000). Disruption of comprehension by the meaning of irrelevant sound. Memory 8, 345–350. doi: 10.1080/09658210050117762

Peng, S. N., Chen, M. J., and Wang, J. D. (2017). Background music promotes reading comprehension: experimental results with different preferences. J. Jiaying Univ. 10, 96–100.

Perfetti, C. A., Landi, N., and Oakhill, J. (2005) in The acquisition of Reading comprehension skill, the science of Reading: A handbook . eds. M. J. Snowling and C. Hulme (Oxford: Blackwell Publishing), 227–247.

Perham, N., and Currie, H. (2014). Does listening to preferred music improve reading comprehension performance? Appl. Cogn. Psychol. 28, 279–284. doi: 10.1002/acp.2994

Privitera, A. J., Momenian, M., and Weekes, B. S. (2022a). Task-specific bilingual effects in mandarin-English speaking high school students in China. Curr. Res. Behav. Sci. 3:100066. doi: 10.1016/j.crbeha.2022.100066

Privitera, A. J., Momenian, M., and Weekes, B. S. (2023a). Graded bilingual effects on attentional network function in Chinese high school students. Biling. Lang. Congn. 26, 527–537. doi: 10.1017/S1366728922000803

Privitera, A. J., Zhou, Y., and Xie, X. (2023b). Inhibitory control as a significant predictor of academic performance in Chinese high schoolers. Child Neuropsychol. 29, 457–473. doi: 10.1080/09297049.2022.2098941

Privitera, A. J., Zhou, Y., Xie, X., and Huang, D. (2022b). Inhibitory control predicts academic performance beyond fluid intelligence and processing speed in English-immersed Chinese high schoolers. Proceedings of the Annual Meeting of the Cognitive Science Society, 44. Available at: https://escholarship.org/uc/item/77r925hr .

Quan, Y., and Kuo, Y. L. (2023). The effects of Chinese and English background music on Chinese reading comprehension. Psychol. Music 51, 655–663. doi: 10.1177/03057356221101647

Ren, Y. N., and Xu, W. X. (2019). Effect of Chinese and English background music on efficiency on Chinese and English reading comprehension. Adv. Psychol. 9, 978–984. doi: 10.12677/AP.2019.96120

Schneider, W., Eschman, A., and Zuccolotto, A. (2012a). E-prime User’s guide . Pittsburgh: Psychology Software Tools, Inc.

Schneider, W., Eschman, A., and Zuccolotto, A. (2012b). E-Prime Reference Guide . Pittsburgh: Psychology Software Tools, Inc.

Thompson, W. F., Schellenberg, E. G., and Letnic, A. K. (2012). Fast and loud background music disrupts reading comprehension. Psychol. Music 40, 700–708. doi: 10.1177/0305735611400173

Wang, L. P., and Wang, F. (2015). An empirical study on popular songs and the cultivation of college students’ core values. J. Inner Mongolia Norm. Univ. Edu. Sci. 33–37.

Wei, S. H. (2012). Lyrics Translation under the Guidance of Xu Yuanchong’s Poetry Translation Theory: A Case Study of the English Translation of the Internet Pop Song “The Goodbye Kiss”. Campus English :113+115.

Zhang, H., Miller, K., Cleveland, R., and Cortina, K. (2018). How listening to music affects reading: evidence from eye tracking. J. Exp. Psychol. Learn. Mem. Cogn. 44, 1778–1791. doi: 10.1037/xlm0000544

Keywords: reading comprehension, study habits, pop music with lyrics, native language lyrics, second language lyrics, written text language, Chinese college students

Citation: Sun Y, Sun C, Li C, Shao X, Liu Q and Liu H (2024) Impact of background music on reading comprehension: influence of lyrics language and study habits. Front. Psychol . 15:1363562. doi: 10.3389/fpsyg.2024.1363562

Received: 13 January 2024; Accepted: 25 March 2024; Published: 05 April 2024.

Reviewed by:

Copyright © 2024 Sun, Sun, Li, Shao, Liu and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Chuanning Sun, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

IMAGES

  1. (PDF) ABSTRACT TEACHING NARRATIVE TEXT IN READING COMPREHENSION BY

    thesis abstract about reading comprehension

  2. (PDF) AN ANALYSIS OF THE STUDENTS’ READING COMPREHENSION IN

    thesis abstract about reading comprehension

  3. (PDF) On the Factor Structure of a Reading Comprehension Test

    thesis abstract about reading comprehension

  4. (PDF) Levels of Reading Comprehension in Higher Education: Systematic

    thesis abstract about reading comprehension

  5. (PDF) Reading Comprehension, Academic Optimism and Motivational

    thesis abstract about reading comprehension

  6. (PDF) A Correlational Study on Students’ Reading Interest and Their

    thesis abstract about reading comprehension

VIDEO

  1. Abstract

  2. Reading Comprehension

  3. Congrats

  4. Thesis Statement and Outline Reading Text|GROUP 4

  5. how to say thesis, abstract, theory, hypothesis in Swahili #swahili #learnswahili

  6. Reading Comprehension S1 Parapheasing S1 English Studies| BA degree University Online

COMMENTS

  1. Reading Comprehension Research: Implications for Practice and Policy

    Reading comprehension is one of the most complex behaviors in which humans engage. Reading theorists have grappled with how to comprehensively and meaningfully portray reading comprehension and many different theoretical models have been proposed in recent decades (McNamara & Magliano, 2009; Perfetti & Stafura, 2014).These models range from broad theoretical models depicting the relationships ...

  2. PDF The Effect of Three Reading Comprehension Strategies on Reading

    READING COMPREHENSION STRATEGIES 3 Abstract This study explored the effects of three reading comprehension strategies: Cloze Reading Comprehension Activity, Reading Road Map (RRM), and Survey-Question- ... Paul's Lutheran Church for providing financial support towards my master thesis. Finally, I would like to thank my family who have ...

  3. The Effectiveness of Reading Strategies on Reading Comprehension

    Abstract —This research aimed to investigate the effectiveness. of reading strategies on reading comprehension of the second. year English major students who enrolled to study English. Reading ...

  4. PDF Improving Reading Comprehension

    The teacher researchers intended to improve reading comprehension by using higher-order thinking skills such as predicting, making connections, visualizing, inferring, questioning, and summarizing. In their classrooms the teacher researchers modeled these strategies through the think-aloud process and graphic organizers.

  5. PDF Thesis Improving Reading Comprehension Through Directed Reading ...

    THESIS IMPROVING READING COMPREHENSION THROUGH DIRECTED READING THINKING ACTIVITY (DRTA) STRATEGY FOR THE EIGHT GRADE STUDENTS OF SMP NEGERI 17 MEDAN IN THE ACADEMIC YEAR OF 2016-2017 ... ABSTRACT Name : LELI SARI NIM : 34.13.3.186 Department : English Education Faculty :Faculty of Tarbiyah and Teachers' Training ...

  6. PDF Thesis Evidence-based practices: Reading comprehension instruction and

    Huiling Diona Zheng (DEdPsy Thesis) 4 Abstract Despite growing evidence informing educators for effective reading comprehension (RC) teaching, it is unclear how extensively this evidence base is implemented in ... Reading comprehension is generally the main goal of reading and it is critical for both academic and lifelong learning. It can be ...

  7. PDF Exploring the Use of Metacognitive Strategies to Enhance Reading

    Abstract The thesis presents a compilation of research work on the use of metacognitive strategies to enhance reading comprehension in young learners. The introduction contextualises the thesis, discussing the notions of reading comprehension and of metacognition as a process that may enhance reading comprehension skills.

  8. The Science of Reading Comprehension Instruction

    Abstract. Decades of research offer important understandings about the nature of comprehension and its development. Drawing on both classic and contemporary research, in this article, we identify some key understandings about reading comprehension processes and instruction, including these: Comprehension instruction should begin early, teaching ...

  9. PDF ABSTRACT Title of dissertation: READING COMPREHENSION COMPONENT

    Dissertation directed by: Assistant Professor Roger Azevedo Department of Human Development A significant proportion of American high school students struggle with reading comprehension. Several different models might help identify the components that have the largest effect on comprehension. The current dissertation study replicates a

  10. PDF The Development of Core Academic Language and Reading Comprehension in

    thesis examines the concurrent development of academic language skills and reading comprehension for English Learners and their English proficient peers attending urban middle schools and followed over two academic years, from grade 6 to 7 (n=833). Parallel process latent growth modeling results suggest that academic language and reading ...

  11. Impact of Reading Ability on Academic Performance at the Primary Level

    Since several studies have already shown that reading impacts academic performance in math and science at the secondary level, data was collected and analyzed from the entire second through fifth grade student population at. the school site. This focused the study on the primary grade levels that the assessments were.

  12. The Effectiveness of Reading Interventions for Middle School Students

    The National Reading Panel (2017) has recommended effective instruction in phonics, phonemic awareness, fluency building, vocabulary, and text comprehension for students who are struggling readers. Explicit instruction is recommended for improving word recognition, spelling skills, and the reading comprehension skills of struggling

  13. Using Phonics to Increase Reading Comprehension in English Language

    PHONICS INCREASE READING COMPREHENSION IN ELLs 3 . Abstract This paper discusses the implications phonics has on reading comprehension in the older English Language Learner. The subjects for this study were in the same Language Arts class in the Sheltered-Instruction Observation Protocol classroom, and they ranged from 15-20 years old.

  14. The Effects of a Reading Comprehension Intervention Package on

    Reading comprehension is the process of forming and understanding the meaning from written text. Sencibaugh (2007) indicated that reading comprehension requires individuals to associate meaning with words, recognize and recall specific details, make inferences, and draw and predict outcomes. These skills are typically underdeveloped in

  15. The Effect of Students Reading Digital Text Versus Print Text on

    the early grades, 70% of American secondary students need some sort of reading remediation. (Lupo, Jang, & Mckenna, 2017, p. 265). The purpose of this study is to determine if using digital. text or print text has a more significant effect on a student's reading comprehension.

  16. THE IMPACT OF READING DIGITAL TEXT ON COMPREHENSION SCORES A Thesis

    understanding what is being read, one is not really reading (Bulut, 2015). Although reading seems simple in terms, it is not easy to teach, learn, or practice. The foundation of reading comprehension should be introduced in primary grades (Literacy Information and Communication System, n.d.). Comprehension should be

  17. PDF Connection of Reading Motivation and Comprehension

    Purpose: The purpose of the proposed study is to collect the perceptions and beliefs elementary teachers have on the connection between increased reading motivation and the growth of reading comprehension. 2. Procedure: All participants will receive a documentation of the guidelines of the research study.

  18. Exploring the effects of online instruction on reading comprehension

    traditional face-to-face settings to increase the oral reading and comprehension of students with reading deficits. Due to the possibilities of the Internet, online education has become a strong alternative option for traditional face-to-face instruction. The purpose of this multiple-probe design study was to investigate the effect of teaching

  19. PDF Reading, Comprehension, and Memory Processes: Abstracts of Doctoral

    TITLE Reading, Comprehension, and Memory Processes: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," July through. December 1985 (Vol. 46 Nc's. 1 through 6). INSTITUTION. ERIC Clearinghouse on Reading and Communication. Skills, Urbana, ill. PUB DATE. 85. NOTE. 13p.; Pages may be marginally legible. PUB TYPE

  20. Levels of Reading Comprehension in Higher Education: Systematic Review

    The Present Study. Regardless of the educational context, in any university discipline, preparing essays or developing arguments are formative tasks that require a deep level of reading comprehension (inferences and transformation of information) that allows the elaboration of a situation model, and not having this level can lead to limited formative learning.

  21. PDF English Teachers' Experiences on Teaching Reading Comprehension: a

    AN ABSTRACT This dissertation of Khem Raj Bhatt entitled English Teachers' Experiences in Teaching Reading Comprehension: ... Assoc.Prof. Hem Raj Kafle, PhD Dissertation Supervisor Teaching reading comprehension involves more than simply explaining the reading passages using grammar-translation or lecture methods. In the changing scenario,

  22. PDF Reading, Comprehension, and Memory Processes: Abstracts of ...

    TITLE Reading, Comprehension, and Memory Processes: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," January through June 1979 (Vol. 39 Nos. 7 through 12). INSTITUTION ERIC Clearinghouse on Reading and Communication Skills, Urbana, Ill. PUB .DATE 79 NOTE 16p. EDES PRICE MR01/PCO1 Plus 'Postage.

  23. Dissertations / Theses: 'Reading comprehension processes'

    Video (online) Consult the top 49 dissertations / theses for your research on the topic 'Reading comprehension processes.'. Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA ...

  24. Frontiers

    1 Introduction. Listening to music while studying is a common and popular trend for college students. Calderwood et al. (2014) found that 59% of the college students chose to listen to music during a 3-h study session, with 21% listening for more than 90% of the time. Although several studies have demonstrated positive effects of background instrumental music on reading comprehension (Carlson ...