Home Blog Design Understanding Data Presentations (Guide + Examples)

Understanding Data Presentations (Guide + Examples)

Cover for guide on data presentation by SlideModel

In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey. Different types of visualizations serve distinct purposes. Whether you’re dealing with how to develop a report or simply trying to communicate complex information, how you present data influences how well your audience understands and engages with it. This extensive guide leads you through the different ways of data presentation.

Table of Contents

What is a Data Presentation?

What should a data presentation include, line graphs, treemap chart, scatter plot, how to choose a data presentation type, recommended data presentation templates, common mistakes done in data presentation.

A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on, supported by concise textual explanations to improve understanding and boost retention rate.

Data presentations require us to cull data in a format that allows the presenter to highlight trends, patterns, and insights so that the audience can act upon the shared information. In a few words, the goal of data presentations is to enable viewers to grasp complicated concepts or trends quickly, facilitating informed decision-making or deeper analysis.

Data presentations go beyond the mere usage of graphical elements. Seasoned presenters encompass visuals with the art of storytelling with data, so the speech skillfully connects the points through a narrative that resonates with the audience. Depending on the purpose – inspire, persuade, inform, support decision-making processes, etc. – is the data presentation format that is better suited to help us in this journey.

To nail your upcoming data presentation, ensure to count with the following elements:

  • Clear Objectives: Understand the intent of your presentation before selecting the graphical layout and metaphors to make content easier to grasp.
  • Engaging introduction: Use a powerful hook from the get-go. For instance, you can ask a big question or present a problem that your data will answer. Take a look at our guide on how to start a presentation for tips & insights.
  • Structured Narrative: Your data presentation must tell a coherent story. This means a beginning where you present the context, a middle section in which you present the data, and an ending that uses a call-to-action. Check our guide on presentation structure for further information.
  • Visual Elements: These are the charts, graphs, and other elements of visual communication we ought to use to present data. This article will cover one by one the different types of data representation methods we can use, and provide further guidance on choosing between them.
  • Insights and Analysis: This is not just showcasing a graph and letting people get an idea about it. A proper data presentation includes the interpretation of that data, the reason why it’s included, and why it matters to your research.
  • Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose of your presentation, there must be a stage in which you convey all that you shared and show the path to staying in touch. Plan ahead whether you want to use a thank-you slide, a video presentation, or which method is apt and tailored to the kind of presentation you deliver.
  • Q&A Session: After your speech is concluded, allocate 3-5 minutes for the audience to raise any questions about the information you disclosed. This is an extra chance to establish your authority on the topic. Check our guide on questions and answer sessions in presentations here.

Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies in an established category. They make it easy for readers to spot patterns or trends. Bar charts can be horizontal or vertical, although the vertical format is commonly known as a column chart. They display categorical, discrete, or continuous variables grouped in class intervals [1] . They include an axis and a set of labeled bars horizontally or vertically. These bars represent the frequencies of variable values or the values themselves. Numbers on the y-axis of a vertical bar chart or the x-axis of a horizontal bar chart are called the scale.

Presentation of the data through bar charts

Real-Life Application of Bar Charts

Let’s say a sales manager is presenting sales to their audience. Using a bar chart, he follows these steps.

Step 1: Selecting Data

The first step is to identify the specific data you will present to your audience.

The sales manager has highlighted these products for the presentation.

  • Product A: Men’s Shoes
  • Product B: Women’s Apparel
  • Product C: Electronics
  • Product D: Home Decor

Step 2: Choosing Orientation

Opt for a vertical layout for simplicity. Vertical bar charts help compare different categories in case there are not too many categories [1] . They can also help show different trends. A vertical bar chart is used where each bar represents one of the four chosen products. After plotting the data, it is seen that the height of each bar directly represents the sales performance of the respective product.

It is visible that the tallest bar (Electronics – Product C) is showing the highest sales. However, the shorter bars (Women’s Apparel – Product B and Home Decor – Product D) need attention. It indicates areas that require further analysis or strategies for improvement.

Step 3: Colorful Insights

Different colors are used to differentiate each product. It is essential to show a color-coded chart where the audience can distinguish between products.

  • Men’s Shoes (Product A): Yellow
  • Women’s Apparel (Product B): Orange
  • Electronics (Product C): Violet
  • Home Decor (Product D): Blue

Accurate bar chart representation of data with a color coded legend

Bar charts are straightforward and easily understandable for presenting data. They are versatile when comparing products or any categorical data [2] . Bar charts adapt seamlessly to retail scenarios. Despite that, bar charts have a few shortcomings. They cannot illustrate data trends over time. Besides, overloading the chart with numerous products can lead to visual clutter, diminishing its effectiveness.

For more information, check our collection of bar chart templates for PowerPoint .

Line graphs help illustrate data trends, progressions, or fluctuations by connecting a series of data points called ‘markers’ with straight line segments. This provides a straightforward representation of how values change [5] . Their versatility makes them invaluable for scenarios requiring a visual understanding of continuous data. In addition, line graphs are also useful for comparing multiple datasets over the same timeline. Using multiple line graphs allows us to compare more than one data set. They simplify complex information so the audience can quickly grasp the ups and downs of values. From tracking stock prices to analyzing experimental results, you can use line graphs to show how data changes over a continuous timeline. They show trends with simplicity and clarity.

Real-life Application of Line Graphs

To understand line graphs thoroughly, we will use a real case. Imagine you’re a financial analyst presenting a tech company’s monthly sales for a licensed product over the past year. Investors want insights into sales behavior by month, how market trends may have influenced sales performance and reception to the new pricing strategy. To present data via a line graph, you will complete these steps.

First, you need to gather the data. In this case, your data will be the sales numbers. For example:

  • January: $45,000
  • February: $55,000
  • March: $45,000
  • April: $60,000
  • May: $ 70,000
  • June: $65,000
  • July: $62,000
  • August: $68,000
  • September: $81,000
  • October: $76,000
  • November: $87,000
  • December: $91,000

After choosing the data, the next step is to select the orientation. Like bar charts, you can use vertical or horizontal line graphs. However, we want to keep this simple, so we will keep the timeline (x-axis) horizontal while the sales numbers (y-axis) vertical.

Step 3: Connecting Trends

After adding the data to your preferred software, you will plot a line graph. In the graph, each month’s sales are represented by data points connected by a line.

Line graph in data presentation

Step 4: Adding Clarity with Color

If there are multiple lines, you can also add colors to highlight each one, making it easier to follow.

Line graphs excel at visually presenting trends over time. These presentation aids identify patterns, like upward or downward trends. However, too many data points can clutter the graph, making it harder to interpret. Line graphs work best with continuous data but are not suitable for categories.

For more information, check our collection of line chart templates for PowerPoint .

A data dashboard is a visual tool for analyzing information. Different graphs, charts, and tables are consolidated in a layout to showcase the information required to achieve one or more objectives. Dashboards help quickly see Key Performance Indicators (KPIs). You don’t make new visuals in the dashboard; instead, you use it to display visuals you’ve already made in worksheets [3] .

Keeping the number of visuals on a dashboard to three or four is recommended. Adding too many can make it hard to see the main points [4]. Dashboards can be used for business analytics to analyze sales, revenue, and marketing metrics at a time. They are also used in the manufacturing industry, as they allow users to grasp the entire production scenario at the moment while tracking the core KPIs for each line.

Real-Life Application of a Dashboard

Consider a project manager presenting a software development project’s progress to a tech company’s leadership team. He follows the following steps.

Step 1: Defining Key Metrics

To effectively communicate the project’s status, identify key metrics such as completion status, budget, and bug resolution rates. Then, choose measurable metrics aligned with project objectives.

Step 2: Choosing Visualization Widgets

After finalizing the data, presentation aids that align with each metric are selected. For this project, the project manager chooses a progress bar for the completion status and uses bar charts for budget allocation. Likewise, he implements line charts for bug resolution rates.

Data analysis presentation example

Step 3: Dashboard Layout

Key metrics are prominently placed in the dashboard for easy visibility, and the manager ensures that it appears clean and organized.

Dashboards provide a comprehensive view of key project metrics. Users can interact with data, customize views, and drill down for detailed analysis. However, creating an effective dashboard requires careful planning to avoid clutter. Besides, dashboards rely on the availability and accuracy of underlying data sources.

For more information, check our article on how to design a dashboard presentation , and discover our collection of dashboard PowerPoint templates .

Treemap charts represent hierarchical data structured in a series of nested rectangles [6] . As each branch of the ‘tree’ is given a rectangle, smaller tiles can be seen representing sub-branches, meaning elements on a lower hierarchical level than the parent rectangle. Each one of those rectangular nodes is built by representing an area proportional to the specified data dimension.

Treemaps are useful for visualizing large datasets in compact space. It is easy to identify patterns, such as which categories are dominant. Common applications of the treemap chart are seen in the IT industry, such as resource allocation, disk space management, website analytics, etc. Also, they can be used in multiple industries like healthcare data analysis, market share across different product categories, or even in finance to visualize portfolios.

Real-Life Application of a Treemap Chart

Let’s consider a financial scenario where a financial team wants to represent the budget allocation of a company. There is a hierarchy in the process, so it is helpful to use a treemap chart. In the chart, the top-level rectangle could represent the total budget, and it would be subdivided into smaller rectangles, each denoting a specific department. Further subdivisions within these smaller rectangles might represent individual projects or cost categories.

Step 1: Define Your Data Hierarchy

While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project.

  • Top-level rectangle: Total Budget
  • Second-level rectangles: Departments (Engineering, Marketing, Sales)
  • Third-level rectangles: Projects within each department
  • Fourth-level rectangles: Cost categories for each project (Personnel, Marketing Expenses, Equipment)

Step 2: Choose a Suitable Tool

It’s time to select a data visualization tool supporting Treemaps. Popular choices include Tableau, Microsoft Power BI, PowerPoint, or even coding with libraries like D3.js. It is vital to ensure that the chosen tool provides customization options for colors, labels, and hierarchical structures.

Here, the team uses PowerPoint for this guide because of its user-friendly interface and robust Treemap capabilities.

Step 3: Make a Treemap Chart with PowerPoint

After opening the PowerPoint presentation, they chose “SmartArt” to form the chart. The SmartArt Graphic window has a “Hierarchy” category on the left.  Here, you will see multiple options. You can choose any layout that resembles a Treemap. The “Table Hierarchy” or “Organization Chart” options can be adapted. The team selects the Table Hierarchy as it looks close to a Treemap.

Step 5: Input Your Data

After that, a new window will open with a basic structure. They add the data one by one by clicking on the text boxes. They start with the top-level rectangle, representing the total budget.  

Treemap used for presenting data

Step 6: Customize the Treemap

By clicking on each shape, they customize its color, size, and label. At the same time, they can adjust the font size, style, and color of labels by using the options in the “Format” tab in PowerPoint. Using different colors for each level enhances the visual difference.

Treemaps excel at illustrating hierarchical structures. These charts make it easy to understand relationships and dependencies. They efficiently use space, compactly displaying a large amount of data, reducing the need for excessive scrolling or navigation. Additionally, using colors enhances the understanding of data by representing different variables or categories.

In some cases, treemaps might become complex, especially with deep hierarchies.  It becomes challenging for some users to interpret the chart. At the same time, displaying detailed information within each rectangle might be constrained by space. It potentially limits the amount of data that can be shown clearly. Without proper labeling and color coding, there’s a risk of misinterpretation.

A heatmap is a data visualization tool that uses color coding to represent values across a two-dimensional surface. In these, colors replace numbers to indicate the magnitude of each cell. This color-shaded matrix display is valuable for summarizing and understanding data sets with a glance [7] . The intensity of the color corresponds to the value it represents, making it easy to identify patterns, trends, and variations in the data.

As a tool, heatmaps help businesses analyze website interactions, revealing user behavior patterns and preferences to enhance overall user experience. In addition, companies use heatmaps to assess content engagement, identifying popular sections and areas of improvement for more effective communication. They excel at highlighting patterns and trends in large datasets, making it easy to identify areas of interest.

We can implement heatmaps to express multiple data types, such as numerical values, percentages, or even categorical data. Heatmaps help us easily spot areas with lots of activity, making them helpful in figuring out clusters [8] . When making these maps, it is important to pick colors carefully. The colors need to show the differences between groups or levels of something. And it is good to use colors that people with colorblindness can easily see.

Check our detailed guide on how to create a heatmap here. Also discover our collection of heatmap PowerPoint templates .

Pie charts are circular statistical graphics divided into slices to illustrate numerical proportions. Each slice represents a proportionate part of the whole, making it easy to visualize the contribution of each component to the total.

The size of the pie charts is influenced by the value of data points within each pie. The total of all data points in a pie determines its size. The pie with the highest data points appears as the largest, whereas the others are proportionally smaller. However, you can present all pies of the same size if proportional representation is not required [9] . Sometimes, pie charts are difficult to read, or additional information is required. A variation of this tool can be used instead, known as the donut chart , which has the same structure but a blank center, creating a ring shape. Presenters can add extra information, and the ring shape helps to declutter the graph.

Pie charts are used in business to show percentage distribution, compare relative sizes of categories, or present straightforward data sets where visualizing ratios is essential.

Real-Life Application of Pie Charts

Consider a scenario where you want to represent the distribution of the data. Each slice of the pie chart would represent a different category, and the size of each slice would indicate the percentage of the total portion allocated to that category.

Step 1: Define Your Data Structure

Imagine you are presenting the distribution of a project budget among different expense categories.

  • Column A: Expense Categories (Personnel, Equipment, Marketing, Miscellaneous)
  • Column B: Budget Amounts ($40,000, $30,000, $20,000, $10,000) Column B represents the values of your categories in Column A.

Step 2: Insert a Pie Chart

Using any of the accessible tools, you can create a pie chart. The most convenient tools for forming a pie chart in a presentation are presentation tools such as PowerPoint or Google Slides.  You will notice that the pie chart assigns each expense category a percentage of the total budget by dividing it by the total budget.

For instance:

  • Personnel: $40,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 40%
  • Equipment: $30,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 30%
  • Marketing: $20,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 20%
  • Miscellaneous: $10,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 10%

You can make a chart out of this or just pull out the pie chart from the data.

Pie chart template in data presentation

3D pie charts and 3D donut charts are quite popular among the audience. They stand out as visual elements in any presentation slide, so let’s take a look at how our pie chart example would look in 3D pie chart format.

3D pie chart in data presentation

Step 03: Results Interpretation

The pie chart visually illustrates the distribution of the project budget among different expense categories. Personnel constitutes the largest portion at 40%, followed by equipment at 30%, marketing at 20%, and miscellaneous at 10%. This breakdown provides a clear overview of where the project funds are allocated, which helps in informed decision-making and resource management. It is evident that personnel are a significant investment, emphasizing their importance in the overall project budget.

Pie charts provide a straightforward way to represent proportions and percentages. They are easy to understand, even for individuals with limited data analysis experience. These charts work well for small datasets with a limited number of categories.

However, a pie chart can become cluttered and less effective in situations with many categories. Accurate interpretation may be challenging, especially when dealing with slight differences in slice sizes. In addition, these charts are static and do not effectively convey trends over time.

For more information, check our collection of pie chart templates for PowerPoint .

Histograms present the distribution of numerical variables. Unlike a bar chart that records each unique response separately, histograms organize numeric responses into bins and show the frequency of reactions within each bin [10] . The x-axis of a histogram shows the range of values for a numeric variable. At the same time, the y-axis indicates the relative frequencies (percentage of the total counts) for that range of values.

Whenever you want to understand the distribution of your data, check which values are more common, or identify outliers, histograms are your go-to. Think of them as a spotlight on the story your data is telling. A histogram can provide a quick and insightful overview if you’re curious about exam scores, sales figures, or any numerical data distribution.

Real-Life Application of a Histogram

In the histogram data analysis presentation example, imagine an instructor analyzing a class’s grades to identify the most common score range. A histogram could effectively display the distribution. It will show whether most students scored in the average range or if there are significant outliers.

Step 1: Gather Data

He begins by gathering the data. The scores of each student in class are gathered to analyze exam scores.

After arranging the scores in ascending order, bin ranges are set.

Step 2: Define Bins

Bins are like categories that group similar values. Think of them as buckets that organize your data. The presenter decides how wide each bin should be based on the range of the values. For instance, the instructor sets the bin ranges based on score intervals: 60-69, 70-79, 80-89, and 90-100.

Step 3: Count Frequency

Now, he counts how many data points fall into each bin. This step is crucial because it tells you how often specific ranges of values occur. The result is the frequency distribution, showing the occurrences of each group.

Here, the instructor counts the number of students in each category.

  • 60-69: 1 student (Kate)
  • 70-79: 4 students (David, Emma, Grace, Jack)
  • 80-89: 7 students (Alice, Bob, Frank, Isabel, Liam, Mia, Noah)
  • 90-100: 3 students (Clara, Henry, Olivia)

Step 4: Create the Histogram

It’s time to turn the data into a visual representation. Draw a bar for each bin on a graph. The width of the bar should correspond to the range of the bin, and the height should correspond to the frequency.  To make your histogram understandable, label the X and Y axes.

In this case, the X-axis should represent the bins (e.g., test score ranges), and the Y-axis represents the frequency.

Histogram in Data Presentation

The histogram of the class grades reveals insightful patterns in the distribution. Most students, with seven students, fall within the 80-89 score range. The histogram provides a clear visualization of the class’s performance. It showcases a concentration of grades in the upper-middle range with few outliers at both ends. This analysis helps in understanding the overall academic standing of the class. It also identifies the areas for potential improvement or recognition.

Thus, histograms provide a clear visual representation of data distribution. They are easy to interpret, even for those without a statistical background. They apply to various types of data, including continuous and discrete variables. One weak point is that histograms do not capture detailed patterns in students’ data, with seven compared to other visualization methods.

A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. Each point represents a unique observation. It visualizes patterns, trends, or correlations between the two variables.

Scatter plots are also effective in revealing the strength and direction of relationships. They identify outliers and assess the overall distribution of data points. The points’ dispersion and clustering reflect the relationship’s nature, whether it is positive, negative, or lacks a discernible pattern. In business, scatter plots assess relationships between variables such as marketing cost and sales revenue. They help present data correlations and decision-making.

Real-Life Application of Scatter Plot

A group of scientists is conducting a study on the relationship between daily hours of screen time and sleep quality. After reviewing the data, they managed to create this table to help them build a scatter plot graph:

In the provided example, the x-axis represents Daily Hours of Screen Time, and the y-axis represents the Sleep Quality Rating.

Scatter plot in data presentation

The scientists observe a negative correlation between the amount of screen time and the quality of sleep. This is consistent with their hypothesis that blue light, especially before bedtime, has a significant impact on sleep quality and metabolic processes.

There are a few things to remember when using a scatter plot. Even when a scatter diagram indicates a relationship, it doesn’t mean one variable affects the other. A third factor can influence both variables. The more the plot resembles a straight line, the stronger the relationship is perceived [11] . If it suggests no ties, the observed pattern might be due to random fluctuations in data. When the scatter diagram depicts no correlation, whether the data might be stratified is worth considering.

Choosing the appropriate data presentation type is crucial when making a presentation . Understanding the nature of your data and the message you intend to convey will guide this selection process. For instance, when showcasing quantitative relationships, scatter plots become instrumental in revealing correlations between variables. If the focus is on emphasizing parts of a whole, pie charts offer a concise display of proportions. Histograms, on the other hand, prove valuable for illustrating distributions and frequency patterns. 

Bar charts provide a clear visual comparison of different categories. Likewise, line charts excel in showcasing trends over time, while tables are ideal for detailed data examination. Starting a presentation on data presentation types involves evaluating the specific information you want to communicate and selecting the format that aligns with your message. This ensures clarity and resonance with your audience from the beginning of your presentation.

1. Fact Sheet Dashboard for Data Presentation

types of variables used in data presentation

Convey all the data you need to present in this one-pager format, an ideal solution tailored for users looking for presentation aids. Global maps, donut chats, column graphs, and text neatly arranged in a clean layout presented in light and dark themes.

Use This Template

2. 3D Column Chart Infographic PPT Template

types of variables used in data presentation

Represent column charts in a highly visual 3D format with this PPT template. A creative way to present data, this template is entirely editable, and we can craft either a one-page infographic or a series of slides explaining what we intend to disclose point by point.

3. Data Circles Infographic PowerPoint Template

types of variables used in data presentation

An alternative to the pie chart and donut chart diagrams, this template features a series of curved shapes with bubble callouts as ways of presenting data. Expand the information for each arch in the text placeholder areas.

4. Colorful Metrics Dashboard for Data Presentation

types of variables used in data presentation

This versatile dashboard template helps us in the presentation of the data by offering several graphs and methods to convert numbers into graphics. Implement it for e-commerce projects, financial projections, project development, and more.

5. Animated Data Presentation Tools for PowerPoint & Google Slides

Canvas Shape Tree Diagram Template

A slide deck filled with most of the tools mentioned in this article, from bar charts, column charts, treemap graphs, pie charts, histogram, etc. Animated effects make each slide look dynamic when sharing data with stakeholders.

6. Statistics Waffle Charts PPT Template for Data Presentations

types of variables used in data presentation

This PPT template helps us how to present data beyond the typical pie chart representation. It is widely used for demographics, so it’s a great fit for marketing teams, data science professionals, HR personnel, and more.

7. Data Presentation Dashboard Template for Google Slides

types of variables used in data presentation

A compendium of tools in dashboard format featuring line graphs, bar charts, column charts, and neatly arranged placeholder text areas. 

8. Weather Dashboard for Data Presentation

types of variables used in data presentation

Share weather data for agricultural presentation topics, environmental studies, or any kind of presentation that requires a highly visual layout for weather forecasting on a single day. Two color themes are available.

9. Social Media Marketing Dashboard Data Presentation Template

types of variables used in data presentation

Intended for marketing professionals, this dashboard template for data presentation is a tool for presenting data analytics from social media channels. Two slide layouts featuring line graphs and column charts.

10. Project Management Summary Dashboard Template

types of variables used in data presentation

A tool crafted for project managers to deliver highly visual reports on a project’s completion, the profits it delivered for the company, and expenses/time required to execute it. 4 different color layouts are available.

11. Profit & Loss Dashboard for PowerPoint and Google Slides

types of variables used in data presentation

A must-have for finance professionals. This typical profit & loss dashboard includes progress bars, donut charts, column charts, line graphs, and everything that’s required to deliver a comprehensive report about a company’s financial situation.

Overwhelming visuals

One of the mistakes related to using data-presenting methods is including too much data or using overly complex visualizations. They can confuse the audience and dilute the key message.

Inappropriate chart types

Choosing the wrong type of chart for the data at hand can lead to misinterpretation. For example, using a pie chart for data that doesn’t represent parts of a whole is not right.

Lack of context

Failing to provide context or sufficient labeling can make it challenging for the audience to understand the significance of the presented data.

Inconsistency in design

Using inconsistent design elements and color schemes across different visualizations can create confusion and visual disarray.

Failure to provide details

Simply presenting raw data without offering clear insights or takeaways can leave the audience without a meaningful conclusion.

Lack of focus

Not having a clear focus on the key message or main takeaway can result in a presentation that lacks a central theme.

Visual accessibility issues

Overlooking the visual accessibility of charts and graphs can exclude certain audience members who may have difficulty interpreting visual information.

In order to avoid these mistakes in data presentation, presenters can benefit from using presentation templates . These templates provide a structured framework. They ensure consistency, clarity, and an aesthetically pleasing design, enhancing data communication’s overall impact.

Understanding and choosing data presentation types are pivotal in effective communication. Each method serves a unique purpose, so selecting the appropriate one depends on the nature of the data and the message to be conveyed. The diverse array of presentation types offers versatility in visually representing information, from bar charts showing values to pie charts illustrating proportions. 

Using the proper method enhances clarity, engages the audience, and ensures that data sets are not just presented but comprehensively understood. By appreciating the strengths and limitations of different presentation types, communicators can tailor their approach to convey information accurately, developing a deeper connection between data and audience understanding.

[1] Government of Canada, S.C. (2021) 5 Data Visualization 5.2 Bar Chart , 5.2 Bar chart .  https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/bargraph-diagrammeabarres/5214818-eng.htm

[2] Kosslyn, S.M., 1989. Understanding charts and graphs. Applied cognitive psychology, 3(3), pp.185-225. https://apps.dtic.mil/sti/pdfs/ADA183409.pdf

[3] Creating a Dashboard . https://it.tufts.edu/book/export/html/1870

[4] https://www.goldenwestcollege.edu/research/data-and-more/data-dashboards/index.html

[5] https://www.mit.edu/course/21/21.guide/grf-line.htm

[6] Jadeja, M. and Shah, K., 2015, January. Tree-Map: A Visualization Tool for Large Data. In GSB@ SIGIR (pp. 9-13). https://ceur-ws.org/Vol-1393/gsb15proceedings.pdf#page=15

[7] Heat Maps and Quilt Plots. https://www.publichealth.columbia.edu/research/population-health-methods/heat-maps-and-quilt-plots

[8] EIU QGIS WORKSHOP. https://www.eiu.edu/qgisworkshop/heatmaps.php

[9] About Pie Charts.  https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c8.htm

[10] Histograms. https://sites.utexas.edu/sos/guided/descriptive/numericaldd/descriptiven2/histogram/ [11] https://asq.org/quality-resources/scatter-diagram

types of variables used in data presentation

Like this article? Please share

Data Analysis, Data Science, Data Visualization Filed under Design

Related Articles

How to Make a Presentation Graph

Filed under Design • March 27th, 2024

How to Make a Presentation Graph

Detailed step-by-step instructions to master the art of how to make a presentation graph in PowerPoint and Google Slides. Check it out!

All About Using Harvey Balls

Filed under Presentation Ideas • January 6th, 2024

All About Using Harvey Balls

Among the many tools in the arsenal of the modern presenter, Harvey Balls have a special place. In this article we will tell you all about using Harvey Balls.

How to Design a Dashboard Presentation: A Step-by-Step Guide

Filed under Business • December 8th, 2023

How to Design a Dashboard Presentation: A Step-by-Step Guide

Take a step further in your professional presentation skills by learning what a dashboard presentation is and how to properly design one in PowerPoint. A detailed step-by-step guide is here!

Leave a Reply

types of variables used in data presentation

Data presentation: A comprehensive guide

Learn how to create data presentation effectively and communicate your insights in a way that is clear, concise, and engaging.

Raja Bothra

Building presentations

team preparing data presentation

Hey there, fellow data enthusiast!

Welcome to our comprehensive guide on data presentation.

Whether you're an experienced presenter or just starting, this guide will help you present your data like a pro.

We'll dive deep into what data presentation is, why it's crucial, and how to master it. So, let's embark on this data-driven journey together.

What is data presentation?

Data presentation is the art of transforming raw data into a visual format that's easy to understand and interpret. It's like turning numbers and statistics into a captivating story that your audience can quickly grasp. When done right, data presentation can be a game-changer, enabling you to convey complex information effectively.

Why are data presentations important?

Imagine drowning in a sea of numbers and figures. That's how your audience might feel without proper data presentation. Here's why it's essential:

  • Clarity : Data presentations make complex information clear and concise.
  • Engagement : Visuals, such as charts and graphs, grab your audience's attention.
  • Comprehension : Visual data is easier to understand than long, numerical reports.
  • Decision-making : Well-presented data aids informed decision-making.
  • Impact : It leaves a lasting impression on your audience.

Types of data presentation

Now, let's delve into the diverse array of data presentation methods, each with its own unique strengths and applications. We have three primary types of data presentation, and within these categories, numerous specific visualization techniques can be employed to effectively convey your data.

1. Textual presentation

Textual presentation harnesses the power of words and sentences to elucidate and contextualize your data. This method is commonly used to provide a narrative framework for the data, offering explanations, insights, and the broader implications of your findings. It serves as a foundation for a deeper understanding of the data's significance.

2. Tabular presentation

Tabular presentation employs tables to arrange and structure your data systematically. These tables are invaluable for comparing various data groups or illustrating how data evolves over time. They present information in a neat and organized format, facilitating straightforward comparisons and reference points.

3. Graphical presentation

Graphical presentation harnesses the visual impact of charts and graphs to breathe life into your data. Charts and graphs are powerful tools for spotlighting trends, patterns, and relationships hidden within the data. Let's explore some common graphical presentation methods:

  • Bar charts: They are ideal for comparing different categories of data. In this method, each category is represented by a distinct bar, and the height of the bar corresponds to the value it represents. Bar charts provide a clear and intuitive way to discern differences between categories.
  • Pie charts: It excel at illustrating the relative proportions of different data categories. Each category is depicted as a slice of the pie, with the size of each slice corresponding to the percentage of the total value it represents. Pie charts are particularly effective for showcasing the distribution of data.
  • Line graphs: They are the go-to choice when showcasing how data evolves over time. Each point on the line represents a specific value at a particular time period. This method enables viewers to track trends and fluctuations effortlessly, making it perfect for visualizing data with temporal dimensions.
  • Scatter plots: They are the tool of choice when exploring the relationship between two variables. In this method, each point on the plot represents a pair of values for the two variables in question. Scatter plots help identify correlations, outliers, and patterns within data pairs.

The selection of the most suitable data presentation method hinges on the specific dataset and the presentation's objectives. For instance, when comparing sales figures of different products, a bar chart shines in its simplicity and clarity. On the other hand, if your aim is to display how a product's sales have changed over time, a line graph provides the ideal visual narrative.

Additionally, it's crucial to factor in your audience's level of familiarity with data presentations. For a technical audience, more intricate visualization methods may be appropriate. However, when presenting to a general audience, opting for straightforward and easily understandable visuals is often the wisest choice.

In the world of data presentation, choosing the right method is akin to selecting the perfect brush for a masterpiece. Each tool has its place, and understanding when and how to use them is key to crafting compelling and insightful presentations. So, consider your data carefully, align your purpose, and paint a vivid picture that resonates with your audience.

What to include in data presentation

When creating your data presentation, remember these key components:

  • Data points : Clearly state the data points you're presenting.
  • Comparison : Highlight comparisons and trends in your data.
  • Graphical methods : Choose the right chart or graph for your data.
  • Infographics : Use visuals like infographics to make information more digestible.
  • Numerical values : Include numerical values to support your visuals.
  • Qualitative information : Explain the significance of the data.
  • Source citation : Always cite your data sources.

How to structure an effective data presentation

Creating a well-structured data presentation is not just important; it's the backbone of a successful presentation. Here's a step-by-step guide to help you craft a compelling and organized presentation that captivates your audience:

1. Know your audience

Understanding your audience is paramount. Consider their needs, interests, and existing knowledge about your topic. Tailor your presentation to their level of understanding, ensuring that it resonates with them on a personal level. Relevance is the key.

2. Have a clear message

Every effective data presentation should convey a clear and concise message. Determine what you want your audience to learn or take away from your presentation, and make sure your message is the guiding light throughout your presentation. Ensure that all your data points align with and support this central message.

3. Tell a compelling story

Human beings are naturally wired to remember stories. Incorporate storytelling techniques into your presentation to make your data more relatable and memorable. Your data can be the backbone of a captivating narrative, whether it's about a trend, a problem, or a solution. Take your audience on a journey through your data.

4. Leverage visuals

Visuals are a powerful tool in data presentation. They make complex information accessible and engaging. Utilize charts, graphs, and images to illustrate your points and enhance the visual appeal of your presentation. Visuals should not just be an accessory; they should be an integral part of your storytelling.

5. Be clear and concise

Avoid jargon or technical language that your audience may not comprehend. Use plain language and explain your data points clearly. Remember, clarity is king. Each piece of information should be easy for your audience to digest.

6. Practice your delivery

Practice makes perfect. Rehearse your presentation multiple times before the actual delivery. This will help you deliver it smoothly and confidently, reducing the chances of stumbling over your words or losing track of your message.

A basic structure for an effective data presentation

Armed with a comprehensive comprehension of how to construct a compelling data presentation, you can now utilize this fundamental template for guidance:

In the introduction, initiate your presentation by introducing both yourself and the topic at hand. Clearly articulate your main message or the fundamental concept you intend to communicate.

Moving on to the body of your presentation, organize your data in a coherent and easily understandable sequence. Employ visuals generously to elucidate your points and weave a narrative that enhances the overall story. Ensure that the arrangement of your data aligns with and reinforces your central message.

As you approach the conclusion, succinctly recapitulate your key points and emphasize your core message once more. Conclude by leaving your audience with a distinct and memorable takeaway, ensuring that your presentation has a lasting impact.

Additional tips for enhancing your data presentation

To take your data presentation to the next level, consider these additional tips:

  • Consistent design : Maintain a uniform design throughout your presentation. This not only enhances visual appeal but also aids in seamless comprehension.
  • High-quality visuals : Ensure that your visuals are of high quality, easy to read, and directly relevant to your topic.
  • Concise text : Avoid overwhelming your slides with excessive text. Focus on the most critical points, using visuals to support and elaborate.
  • Anticipate questions : Think ahead about the questions your audience might pose. Be prepared with well-thought-out answers to foster productive discussions.

By following these guidelines, you can structure an effective data presentation that not only informs but also engages and inspires your audience. Remember, a well-structured presentation is the bridge that connects your data to your audience's understanding and appreciation.

Do’s and don'ts on a data presentation

  • Use visuals : Incorporate charts and graphs to enhance understanding.
  • Keep it simple : Avoid clutter and complexity.
  • Highlight key points : Emphasize crucial data.
  • Engage the audience : Encourage questions and discussions.
  • Practice : Rehearse your presentation.

Don'ts:

  • Overload with data : Less is often more; don't overwhelm your audience.
  • Fit Unrelated data : Stay on topic; don't include irrelevant information.
  • Neglect the audience : Ensure your presentation suits your audience's level of expertise.
  • Read word-for-word : Avoid reading directly from slides.
  • Lose focus : Stick to your presentation's purpose.

Summarizing key takeaways

  • Definition : Data presentation is the art of visualizing complex data for better understanding.
  • Importance : Data presentations enhance clarity, engage the audience, aid decision-making, and leave a lasting impact.
  • Types : Textual, Tabular, and Graphical presentations offer various ways to present data.
  • Choosing methods : Select the right method based on data, audience, and purpose.
  • Components : Include data points, comparisons, visuals, infographics, numerical values, and source citations.
  • Structure : Know your audience, have a clear message, tell a compelling story, use visuals, be concise, and practice.
  • Do's and don'ts : Do use visuals, keep it simple, highlight key points, engage the audience, and practice. Don't overload with data, include unrelated information, neglect the audience's expertise, read word-for-word, or lose focus.

1. What is data presentation, and why is it important in 2023?

Data presentation is the process of visually representing data sets to convey information effectively to an audience. In an era where the amount of data generated is vast, visually presenting data using methods such as diagrams, graphs, and charts has become crucial. By simplifying complex data sets, presentation of the data may helps your audience quickly grasp much information without drowning in a sea of chart's, analytics, facts and figures.

2. What are some common methods of data presentation?

There are various methods of data presentation, including graphs and charts, histograms, and cumulative frequency polygons. Each method has its strengths and is often used depending on the type of data you're using and the message you want to convey. For instance, if you want to show data over time, try using a line graph. If you're presenting geographical data, consider to use a heat map.

3. How can I ensure that my data presentation is clear and readable?

To ensure that your data presentation is clear and readable, pay attention to the design and labeling of your charts. Don't forget to label the axes appropriately, as they are critical for understanding the values they represent. Don't fit all the information in one slide or in a single paragraph. Presentation software like Prezent and PowerPoint can help you simplify your vertical axis, charts and tables, making them much easier to understand.

4. What are some common mistakes presenters make when presenting data?

One common mistake is trying to fit too much data into a single chart, which can distort the information and confuse the audience. Another mistake is not considering the needs of the audience. Remember that your audience won't have the same level of familiarity with the data as you do, so it's essential to present the data effectively and respond to questions during a Q&A session.

5. How can I use data visualization to present important data effectively on platforms like LinkedIn?

When presenting data on platforms like LinkedIn, consider using eye-catching visuals like bar graphs or charts. Use concise captions and e.g., examples to highlight the single most important information in your data report. Visuals, such as graphs and tables, can help you stand out in the sea of textual content, making your data presentation more engaging and shareable among your LinkedIn connections.

Create your data presentation with prezent

Prezent can be a valuable tool for creating data presentations. Here's how Prezent can help you in this regard:

  • Time savings : Prezent saves up to 70% of presentation creation time, allowing you to focus on data analysis and insights.
  • On-brand consistency : Ensure 100% brand alignment with Prezent's brand-approved designs for professional-looking data presentations.
  • Effortless collaboration : Real-time sharing and collaboration features make it easy for teams to work together on data presentations.
  • Data storytelling : Choose from 50+ storylines to effectively communicate data insights and engage your audience.
  • Personalization : Create tailored data presentations that resonate with your audience's preferences, enhancing the impact of your data.

In summary, Prezent streamlines the process of creating data presentations by offering time-saving features, ensuring brand consistency, promoting collaboration, and providing tools for effective data storytelling. Whether you need to present data to clients, stakeholders, or within your organization, Prezent can significantly enhance your presentation-making process.

So, go ahead, present your data with confidence, and watch your audience be wowed by your expertise.

Thank you for joining us on this data-driven journey. Stay tuned for more insights, and remember, data presentation is your ticket to making numbers come alive!

Sign up for our free trial or book a demo !

Get the latest from Prezent community

Join thousands of subscribers who receive our best practices on communication, storytelling, presentation design, and more. New tips weekly. (No spam, we promise!)

websights

Call Us Today! +91 99907 48956 | [email protected]

types of variables used in data presentation

It is the simplest form of data Presentation often used in schools or universities to provide a clearer picture to students, who are better able to capture the concepts effectively through a pictorial Presentation of simple data.

2. Column chart

types of variables used in data presentation

It is a simplified version of the pictorial Presentation which involves the management of a larger amount of data being shared during the presentations and providing suitable clarity to the insights of the data.

3. Pie Charts

pie-chart

Pie charts provide a very descriptive & a 2D depiction of the data pertaining to comparisons or resemblance of data in two separate fields.

4. Bar charts

Bar-Charts

A bar chart that shows the accumulation of data with cuboid bars with different dimensions & lengths which are directly proportionate to the values they represent. The bars can be placed either vertically or horizontally depending on the data being represented.

5. Histograms

types of variables used in data presentation

It is a perfect Presentation of the spread of numerical data. The main differentiation that separates data graphs and histograms are the gaps in the data graphs.

6. Box plots

box-plot

Box plot or Box-plot is a way of representing groups of numerical data through quartiles. Data Presentation is easier with this style of graph dealing with the extraction of data to the minutes of difference.

types of variables used in data presentation

Map Data graphs help you with data Presentation over an area to display the areas of concern. Map graphs are useful to make an exact depiction of data over a vast case scenario.

All these visual presentations share a common goal of creating meaningful insights and a platform to understand and manage the data in relation to the growth and expansion of one’s in-depth understanding of data & details to plan or execute future decisions or actions.

Importance of Data Presentation

Data Presentation could be both can be a deal maker or deal breaker based on the delivery of the content in the context of visual depiction.

Data Presentation tools are powerful communication tools that can simplify the data by making it easily understandable & readable at the same time while attracting & keeping the interest of its readers and effectively showcase large amounts of complex data in a simplified manner.

If the user can create an insightful presentation of the data in hand with the same sets of facts and figures, then the results promise to be impressive.

There have been situations where the user has had a great amount of data and vision for expansion but the presentation drowned his/her vision.

To impress the higher management and top brass of a firm, effective presentation of data is needed.

Data Presentation helps the clients or the audience to not spend time grasping the concept and the future alternatives of the business and to convince them to invest in the company & turn it profitable both for the investors & the company.

Although data presentation has a lot to offer, the following are some of the major reason behind the essence of an effective presentation:-

  • Many consumers or higher authorities are interested in the interpretation of data, not the raw data itself. Therefore, after the analysis of the data, users should represent the data with a visual aspect for better understanding and knowledge.
  • The user should not overwhelm the audience with a number of slides of the presentation and inject an ample amount of texts as pictures that will speak for themselves.
  • Data presentation often happens in a nutshell with each department showcasing their achievements towards company growth through a graph or a histogram.
  • Providing a brief description would help the user to attain attention in a small amount of time while informing the audience about the context of the presentation
  • The inclusion of pictures, charts, graphs and tables in the presentation help for better understanding the potential outcomes.
  • An effective presentation would allow the organization to determine the difference with the fellow organization and acknowledge its flaws. Comparison of data would assist them in decision making.

Recommended Courses

Data-Visualization-Using-PowerBI-Tableau

Data Visualization

Using powerbi &tableau.

tableau-course

Tableau for Data Analysis

mysql-course

MySQL Certification Program

powerbi-course

The PowerBI Masterclass

Need help call our support team 7:00 am to 10:00 pm (ist) at (+91 999-074-8956 | 9650-308-956), keep in touch, email: [email protected].

WhatsApp us

Book cover

Thesis Writing for Master's and Ph.D. Program pp 113–129 Cite as

Statistical Analysis: Data Presentation and Statistical Tests

  • Mahalakshmy Thulasingam 3 &
  • Kariyarath Cheriyath Premarajan 3  
  • First Online: 04 November 2018

4076 Accesses

  • Dummy Table
  • Inferential Statistics
  • True Population Value
  • Prevalence Ratio (PR)
  • Neonatal Sepsis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Dutton WA. Reasoning in research. Can Med Assoc J. 1959;81(6):489–93. http://www.ncbi.nlm.nih.gov/pubmed/13818921 . Accessed 28 July 2017

CAS   PubMed   PubMed Central   Google Scholar  

Sivia DS. Data analysis- a dialogue with the data. 2005. http://bayes.wustl.edu/sivia/lisbon05.pdf . Accessed 28 July 2017.

Kirkwood BR, Sterne JAC, Kirkwood BR. Essential medical statistics. Victoria, Australia: Blackwell Science; 2003.

Google Scholar  

Sarkar. Understanding data for medical statistics. Int J Adv Med Heal Res. 2014;1(1):30. https://doi.org/10.4103/2349-4220.134449 .

Article   Google Scholar  

Rao SA, Kadhiravan T, Swaminathan RP, Mahadevan S. Occupational exposure and tuberculosis among medical residents in a high-burden setting: an open-cohort study. Int J Tuberc Lung Dis. 2016;20(9):1162–7. https://doi.org/10.5588/ijtld.15.0638 .

Article   CAS   PubMed   Google Scholar  

Ramasamy S, Biswal N, Bethou A, Mathai B. Comparison of two empiric antibiotic regimen in late onset neonatal sepsis—a randomized controlled trial. J Trop Pediatr. 2014;60(1):83–6. https://doi.org/10.1093/tropej/fmt080 .

Article   PubMed   Google Scholar  

Paul Vogt W, editor. Dummy table. In: Dictionary of statistics & methodology. Thousand Oaks, CA: SAGE Publications, Inc. https://doi.org/10.4135/9781412983907.n596 .

Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT. Statement: updated guidelines for reporting parallel group randomised trails. BMJ Med. 2010;340:c332.

Developing a quantitative data analysis plan for observational studies developing a quantitative data analysis plan 2013. http://nceph.anu.edu.au/files/Data_Analysis_Plan_Guide_20131125.pdf . Accessed 13 Aug 2017.

Kumar AMV, Naik B, Guddemane DK, et al. Efficient, quality-assured data capture in operational research through innovative use of open-access technology. Public Heal Action. 2013;3(1):60–2. https://doi.org/10.5588/pha.13.0004 .

Article   CAS   Google Scholar  

Ohmann C, Kuchinke W, Canham S, et al. Standard requirements for GCP-compliant data management in multinational clinical trials. Trials. 2011;12:85. https://doi.org/10.1186/1745-6215-12-85 .

Article   PubMed   PubMed Central   Google Scholar  

Gravetter FJ, Wallnau LB. Essentials of statistics for the behavioral sciences. Baltimore: Wadsworth Cengage Learning; 2014.

Gordis L. Epidemiology. Philadelphia: Elsevier; 2013.

Gerstman B. Epidemiology kept simple. 3rd ed. Oxford: John Wiley & Sons; 2013. http://www.sjsu.edu/faculty/gerstman/eks/ . Accessed 1 Sep 2017

Epidemiology kept simple. http://www.sjsu.edu/faculty/gerstman/eks/formula_sheet.pdf . Accessed 13 August 2017.

Dahiru T. P-value, a true test of statistical significance? A cautionary note. Ann Ibadan Postgrad Med. 2008;6(1):21–6. http://www.ncbi.nlm.nih.gov/pubmed/25161440 . Accessed 15 Aug 2017

The UNION. Course material of UNION SORT-IT operational research workshop.

Knol MJ, Vandenbroucke JP, Scott P, Egger M. Practice of epidemiology what do case-control studies estimate? Survey of methods and assumptions in published case-control research. Am J Epidemiol. 2008;168(9):1073–81. https://doi.org/10.1093/aje/kwn217 .

Vandenbroucke JP, Pearce N. Case-control studies: basic concepts. Int J Epidemiol. 2012;41(5):1480–9. https://doi.org/10.1093/ije/dys147 .

Thompson ML, Myers JE, Kriebel D. Prevalence odds ratio or prevalence ratio in the analysis of cross sectional data: what is to be done? https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1757577/pdf/v055p00272.pdf . Accessed 31 Aug 2017.

Park SH, Goo JM, Jo C-H. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol. 2004;5(1):11–8. https://doi.org/10.3348/kjr.2004.5.1.11 .

Ajay Kumar M. Confidence intervals and test of significance. Indian J Community Med. 2006;31(1):46. https://doi.org/10.4103/0970-0218.54942 .

Coe R. It’s the effect size, stupid: what effect size is and why it is important. September 2002. https://www.leeds.ac.uk/educol/documents/00002182.htm . Accessed 25 Aug 2017.

Mariani AW, Pêgo-Fernandes PM, Mariani AW, Pêgo-Fernandes PM. Statistical significance and clinical significance. Sao Paulo Med J. 2014;132(2):71–2. https://doi.org/10.1590/1516-3180.2014.1322817 .

Government of Canada SC. Statistics: power from data! Using graphs. http://www.statcan.gc.ca/edu/power-pouvoir/ch9/using-utilisation/5214829-eng.htm . Accessed 15 Aug 2017.

Download references

Acknowledgement

The authors thank Dr Tanveer Rehman, Junior Resident and Dr Gunjan Kumar, Senior Resident, Department of PSM for critically reviewing the manuscript

Author information

Authors and affiliations.

Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India

Mahalakshmy Thulasingam ( Associate Professor ) & Kariyarath Cheriyath Premarajan ( Professor and Head )

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Sri Balaji Vidyapeeth (Deemed University), Pondicherry, India

Subhash Chandra Parija

Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India

Vikram Kate

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter.

Thulasingam, M., Premarajan, K.C. (2018). Statistical Analysis: Data Presentation and Statistical Tests. In: Parija, S., Kate, V. (eds) Thesis Writing for Master's and Ph.D. Program. Springer, Singapore. https://doi.org/10.1007/978-981-13-0890-1_11

Download citation

DOI : https://doi.org/10.1007/978-981-13-0890-1_11

Published : 04 November 2018

Publisher Name : Springer, Singapore

Print ISBN : 978-981-13-0889-5

Online ISBN : 978-981-13-0890-1

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • *New* Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

types of variables used in data presentation

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

17 Data Visualization Techniques All Professionals Should Know

Data Visualizations on a Page

  • 17 Sep 2019

There’s a growing demand for business analytics and data expertise in the workforce. But you don’t need to be a professional analyst to benefit from data-related skills.

Becoming skilled at common data visualization techniques can help you reap the rewards of data-driven decision-making , including increased confidence and potential cost savings. Learning how to effectively visualize data could be the first step toward using data analytics and data science to your advantage to add value to your organization.

Several data visualization techniques can help you become more effective in your role. Here are 17 essential data visualization techniques all professionals should know, as well as tips to help you effectively present your data.

Access your free e-book today.

What Is Data Visualization?

Data visualization is the process of creating graphical representations of information. This process helps the presenter communicate data in a way that’s easy for the viewer to interpret and draw conclusions.

There are many different techniques and tools you can leverage to visualize data, so you want to know which ones to use and when. Here are some of the most important data visualization techniques all professionals should know.

Data Visualization Techniques

The type of data visualization technique you leverage will vary based on the type of data you’re working with, in addition to the story you’re telling with your data .

Here are some important data visualization techniques to know:

  • Gantt Chart
  • Box and Whisker Plot
  • Waterfall Chart
  • Scatter Plot
  • Pictogram Chart
  • Highlight Table
  • Bullet Graph
  • Choropleth Map
  • Network Diagram
  • Correlation Matrices

1. Pie Chart

Pie Chart Example

Pie charts are one of the most common and basic data visualization techniques, used across a wide range of applications. Pie charts are ideal for illustrating proportions, or part-to-whole comparisons.

Because pie charts are relatively simple and easy to read, they’re best suited for audiences who might be unfamiliar with the information or are only interested in the key takeaways. For viewers who require a more thorough explanation of the data, pie charts fall short in their ability to display complex information.

2. Bar Chart

Bar Chart Example

The classic bar chart , or bar graph, is another common and easy-to-use method of data visualization. In this type of visualization, one axis of the chart shows the categories being compared, and the other, a measured value. The length of the bar indicates how each group measures according to the value.

One drawback is that labeling and clarity can become problematic when there are too many categories included. Like pie charts, they can also be too simple for more complex data sets.

3. Histogram

Histogram Example

Unlike bar charts, histograms illustrate the distribution of data over a continuous interval or defined period. These visualizations are helpful in identifying where values are concentrated, as well as where there are gaps or unusual values.

Histograms are especially useful for showing the frequency of a particular occurrence. For instance, if you’d like to show how many clicks your website received each day over the last week, you can use a histogram. From this visualization, you can quickly determine which days your website saw the greatest and fewest number of clicks.

4. Gantt Chart

Gantt Chart Example

Gantt charts are particularly common in project management, as they’re useful in illustrating a project timeline or progression of tasks. In this type of chart, tasks to be performed are listed on the vertical axis and time intervals on the horizontal axis. Horizontal bars in the body of the chart represent the duration of each activity.

Utilizing Gantt charts to display timelines can be incredibly helpful, and enable team members to keep track of every aspect of a project. Even if you’re not a project management professional, familiarizing yourself with Gantt charts can help you stay organized.

5. Heat Map

Heat Map Example

A heat map is a type of visualization used to show differences in data through variations in color. These charts use color to communicate values in a way that makes it easy for the viewer to quickly identify trends. Having a clear legend is necessary in order for a user to successfully read and interpret a heatmap.

There are many possible applications of heat maps. For example, if you want to analyze which time of day a retail store makes the most sales, you can use a heat map that shows the day of the week on the vertical axis and time of day on the horizontal axis. Then, by shading in the matrix with colors that correspond to the number of sales at each time of day, you can identify trends in the data that allow you to determine the exact times your store experiences the most sales.

6. A Box and Whisker Plot

Box and Whisker Plot Example

A box and whisker plot , or box plot, provides a visual summary of data through its quartiles. First, a box is drawn from the first quartile to the third of the data set. A line within the box represents the median. “Whiskers,” or lines, are then drawn extending from the box to the minimum (lower extreme) and maximum (upper extreme). Outliers are represented by individual points that are in-line with the whiskers.

This type of chart is helpful in quickly identifying whether or not the data is symmetrical or skewed, as well as providing a visual summary of the data set that can be easily interpreted.

7. Waterfall Chart

Waterfall Chart Example

A waterfall chart is a visual representation that illustrates how a value changes as it’s influenced by different factors, such as time. The main goal of this chart is to show the viewer how a value has grown or declined over a defined period. For example, waterfall charts are popular for showing spending or earnings over time.

8. Area Chart

Area Chart Example

An area chart , or area graph, is a variation on a basic line graph in which the area underneath the line is shaded to represent the total value of each data point. When several data series must be compared on the same graph, stacked area charts are used.

This method of data visualization is useful for showing changes in one or more quantities over time, as well as showing how each quantity combines to make up the whole. Stacked area charts are effective in showing part-to-whole comparisons.

9. Scatter Plot

Scatter Plot Example

Another technique commonly used to display data is a scatter plot . A scatter plot displays data for two variables as represented by points plotted against the horizontal and vertical axis. This type of data visualization is useful in illustrating the relationships that exist between variables and can be used to identify trends or correlations in data.

Scatter plots are most effective for fairly large data sets, since it’s often easier to identify trends when there are more data points present. Additionally, the closer the data points are grouped together, the stronger the correlation or trend tends to be.

10. Pictogram Chart

Pictogram Example

Pictogram charts , or pictograph charts, are particularly useful for presenting simple data in a more visual and engaging way. These charts use icons to visualize data, with each icon representing a different value or category. For example, data about time might be represented by icons of clocks or watches. Each icon can correspond to either a single unit or a set number of units (for example, each icon represents 100 units).

In addition to making the data more engaging, pictogram charts are helpful in situations where language or cultural differences might be a barrier to the audience’s understanding of the data.

11. Timeline

Timeline Example

Timelines are the most effective way to visualize a sequence of events in chronological order. They’re typically linear, with key events outlined along the axis. Timelines are used to communicate time-related information and display historical data.

Timelines allow you to highlight the most important events that occurred, or need to occur in the future, and make it easy for the viewer to identify any patterns appearing within the selected time period. While timelines are often relatively simple linear visualizations, they can be made more visually appealing by adding images, colors, fonts, and decorative shapes.

12. Highlight Table

Highlight Table Example

A highlight table is a more engaging alternative to traditional tables. By highlighting cells in the table with color, you can make it easier for viewers to quickly spot trends and patterns in the data. These visualizations are useful for comparing categorical data.

Depending on the data visualization tool you’re using, you may be able to add conditional formatting rules to the table that automatically color cells that meet specified conditions. For instance, when using a highlight table to visualize a company’s sales data, you may color cells red if the sales data is below the goal, or green if sales were above the goal. Unlike a heat map, the colors in a highlight table are discrete and represent a single meaning or value.

13. Bullet Graph

Bullet Graph Example

A bullet graph is a variation of a bar graph that can act as an alternative to dashboard gauges to represent performance data. The main use for a bullet graph is to inform the viewer of how a business is performing in comparison to benchmarks that are in place for key business metrics.

In a bullet graph, the darker horizontal bar in the middle of the chart represents the actual value, while the vertical line represents a comparative value, or target. If the horizontal bar passes the vertical line, the target for that metric has been surpassed. Additionally, the segmented colored sections behind the horizontal bar represent range scores, such as “poor,” “fair,” or “good.”

14. Choropleth Maps

Choropleth Map Example

A choropleth map uses color, shading, and other patterns to visualize numerical values across geographic regions. These visualizations use a progression of color (or shading) on a spectrum to distinguish high values from low.

Choropleth maps allow viewers to see how a variable changes from one region to the next. A potential downside to this type of visualization is that the exact numerical values aren’t easily accessible because the colors represent a range of values. Some data visualization tools, however, allow you to add interactivity to your map so the exact values are accessible.

15. Word Cloud

Word Cloud Example

A word cloud , or tag cloud, is a visual representation of text data in which the size of the word is proportional to its frequency. The more often a specific word appears in a dataset, the larger it appears in the visualization. In addition to size, words often appear bolder or follow a specific color scheme depending on their frequency.

Word clouds are often used on websites and blogs to identify significant keywords and compare differences in textual data between two sources. They are also useful when analyzing qualitative datasets, such as the specific words consumers used to describe a product.

16. Network Diagram

Network Diagram Example

Network diagrams are a type of data visualization that represent relationships between qualitative data points. These visualizations are composed of nodes and links, also called edges. Nodes are singular data points that are connected to other nodes through edges, which show the relationship between multiple nodes.

There are many use cases for network diagrams, including depicting social networks, highlighting the relationships between employees at an organization, or visualizing product sales across geographic regions.

17. Correlation Matrix

Correlation Matrix Example

A correlation matrix is a table that shows correlation coefficients between variables. Each cell represents the relationship between two variables, and a color scale is used to communicate whether the variables are correlated and to what extent.

Correlation matrices are useful to summarize and find patterns in large data sets. In business, a correlation matrix might be used to analyze how different data points about a specific product might be related, such as price, advertising spend, launch date, etc.

Other Data Visualization Options

While the examples listed above are some of the most commonly used techniques, there are many other ways you can visualize data to become a more effective communicator. Some other data visualization options include:

  • Bubble clouds
  • Circle views
  • Dendrograms
  • Dot distribution maps
  • Open-high-low-close charts
  • Polar areas
  • Radial trees
  • Ring Charts
  • Sankey diagram
  • Span charts
  • Streamgraphs
  • Wedge stack graphs
  • Violin plots

Business Analytics | Become a data-driven leader | Learn More

Tips For Creating Effective Visualizations

Creating effective data visualizations requires more than just knowing how to choose the best technique for your needs. There are several considerations you should take into account to maximize your effectiveness when it comes to presenting data.

Related : What to Keep in Mind When Creating Data Visualizations in Excel

One of the most important steps is to evaluate your audience. For example, if you’re presenting financial data to a team that works in an unrelated department, you’ll want to choose a fairly simple illustration. On the other hand, if you’re presenting financial data to a team of finance experts, it’s likely you can safely include more complex information.

Another helpful tip is to avoid unnecessary distractions. Although visual elements like animation can be a great way to add interest, they can also distract from the key points the illustration is trying to convey and hinder the viewer’s ability to quickly understand the information.

Finally, be mindful of the colors you utilize, as well as your overall design. While it’s important that your graphs or charts are visually appealing, there are more practical reasons you might choose one color palette over another. For instance, using low contrast colors can make it difficult for your audience to discern differences between data points. Using colors that are too bold, however, can make the illustration overwhelming or distracting for the viewer.

Related : Bad Data Visualization: 5 Examples of Misleading Data

Visuals to Interpret and Share Information

No matter your role or title within an organization, data visualization is a skill that’s important for all professionals. Being able to effectively present complex data through easy-to-understand visual representations is invaluable when it comes to communicating information with members both inside and outside your business.

There’s no shortage in how data visualization can be applied in the real world. Data is playing an increasingly important role in the marketplace today, and data literacy is the first step in understanding how analytics can be used in business.

Are you interested in improving your analytical skills? Learn more about Business Analytics , our eight-week online course that can help you use data to generate insights and tackle business decisions.

This post was updated on January 20, 2022. It was originally published on September 17, 2019.

types of variables used in data presentation

About the Author

We use essential cookies to make Venngage work. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

Manage Cookies

Cookies and similar technologies collect certain information about how you’re using our website. Some of them are essential, and without them you wouldn’t be able to use Venngage. But others are optional, and you get to choose whether we use them or not.

Strictly Necessary Cookies

These cookies are always on, as they’re essential for making Venngage work, and making it safe. Without these cookies, services you’ve asked for can’t be provided.

Show cookie providers

  • Google Login

Functionality Cookies

These cookies help us provide enhanced functionality and personalisation, and remember your settings. They may be set by us or by third party providers.

Performance Cookies

These cookies help us analyze how many people are using Venngage, where they come from and how they're using it. If you opt out of these cookies, we can’t get feedback to make Venngage better for you and all our users.

  • Google Analytics

Targeting Cookies

These cookies are set by our advertising partners to track your activity and show you relevant Venngage ads on other sites as you browse the internet.

  • Google Tag Manager
  • Infographics
  • Daily Infographics
  • Graphic Design
  • Graphs and Charts
  • Data Visualization
  • Human Resources
  • Training and Development
  • Beginner Guides

Blog Data Visualization

10 Data Presentation Examples For Strategic Communication

By Krystle Wong , Sep 28, 2023

Data Presentation Examples

Knowing how to present data is like having a superpower. 

Data presentation today is no longer just about numbers on a screen; it’s storytelling with a purpose. It’s about captivating your audience, making complex stuff look simple and inspiring action. 

To help turn your data into stories that stick, influence decisions and make an impact, check out Venngage’s free chart maker or follow me on a tour into the world of data storytelling along with data presentation templates that work across different fields, from business boardrooms to the classroom and beyond. Keep scrolling to learn more! 

Click to jump ahead:

10 Essential data presentation examples + methods you should know

What should be included in a data presentation, what are some common mistakes to avoid when presenting data, faqs on data presentation examples, transform your message with impactful data storytelling.

Data presentation is a vital skill in today’s information-driven world. Whether you’re in business, academia, or simply want to convey information effectively, knowing the different ways of presenting data is crucial. For impactful data storytelling, consider these essential data presentation methods:

1. Bar graph

Ideal for comparing data across categories or showing trends over time.

Bar graphs, also known as bar charts are workhorses of data presentation. They’re like the Swiss Army knives of visualization methods because they can be used to compare data in different categories or display data changes over time. 

In a bar chart, categories are displayed on the x-axis and the corresponding values are represented by the height of the bars on the y-axis. 

types of variables used in data presentation

It’s a straightforward and effective way to showcase raw data, making it a staple in business reports, academic presentations and beyond.

Make sure your bar charts are concise with easy-to-read labels. Whether your bars go up or sideways, keep it simple by not overloading with too many categories.

types of variables used in data presentation

2. Line graph

Great for displaying trends and variations in data points over time or continuous variables.

Line charts or line graphs are your go-to when you want to visualize trends and variations in data sets over time.

One of the best quantitative data presentation examples, they work exceptionally well for showing continuous data, such as sales projections over the last couple of years or supply and demand fluctuations. 

types of variables used in data presentation

The x-axis represents time or a continuous variable and the y-axis represents the data values. By connecting the data points with lines, you can easily spot trends and fluctuations.

A tip when presenting data with line charts is to minimize the lines and not make it too crowded. Highlight the big changes, put on some labels and give it a catchy title.

types of variables used in data presentation

3. Pie chart

Useful for illustrating parts of a whole, such as percentages or proportions.

Pie charts are perfect for showing how a whole is divided into parts. They’re commonly used to represent percentages or proportions and are great for presenting survey results that involve demographic data. 

Each “slice” of the pie represents a portion of the whole and the size of each slice corresponds to its share of the total. 

types of variables used in data presentation

While pie charts are handy for illustrating simple distributions, they can become confusing when dealing with too many categories or when the differences in proportions are subtle.

Don’t get too carried away with slices — label those slices with percentages or values so people know what’s what and consider using a legend for more categories.

types of variables used in data presentation

4. Scatter plot

Effective for showing the relationship between two variables and identifying correlations.

Scatter plots are all about exploring relationships between two variables. They’re great for uncovering correlations, trends or patterns in data. 

In a scatter plot, every data point appears as a dot on the chart, with one variable marked on the horizontal x-axis and the other on the vertical y-axis.

types of variables used in data presentation

By examining the scatter of points, you can discern the nature of the relationship between the variables, whether it’s positive, negative or no correlation at all.

If you’re using scatter plots to reveal relationships between two variables, be sure to add trendlines or regression analysis when appropriate to clarify patterns. Label data points selectively or provide tooltips for detailed information.

types of variables used in data presentation

5. Histogram

Best for visualizing the distribution and frequency of a single variable.

Histograms are your choice when you want to understand the distribution and frequency of a single variable. 

They divide the data into “bins” or intervals and the height of each bar represents the frequency or count of data points falling into that interval. 

types of variables used in data presentation

Histograms are excellent for helping to identify trends in data distributions, such as peaks, gaps or skewness.

Here’s something to take note of — ensure that your histogram bins are appropriately sized to capture meaningful data patterns. Using clear axis labels and titles can also help explain the distribution of the data effectively.

types of variables used in data presentation

6. Stacked bar chart

Useful for showing how different components contribute to a whole over multiple categories.

Stacked bar charts are a handy choice when you want to illustrate how different components contribute to a whole across multiple categories. 

Each bar represents a category and the bars are divided into segments to show the contribution of various components within each category. 

types of variables used in data presentation

This method is ideal for highlighting both the individual and collective significance of each component, making it a valuable tool for comparative analysis.

Stacked bar charts are like data sandwiches—label each layer so people know what’s what. Keep the order logical and don’t forget the paintbrush for snazzy colors. Here’s a data analysis presentation example on writers’ productivity using stacked bar charts:

types of variables used in data presentation

7. Area chart

Similar to line charts but with the area below the lines filled, making them suitable for showing cumulative data.

Area charts are close cousins of line charts but come with a twist. 

Imagine plotting the sales of a product over several months. In an area chart, the space between the line and the x-axis is filled, providing a visual representation of the cumulative total. 

types of variables used in data presentation

This makes it easy to see how values stack up over time, making area charts a valuable tool for tracking trends in data.

For area charts, use them to visualize cumulative data and trends, but avoid overcrowding the chart. Add labels, especially at significant points and make sure the area under the lines is filled with a visually appealing color gradient.

types of variables used in data presentation

8. Tabular presentation

Presenting data in rows and columns, often used for precise data values and comparisons.

Tabular data presentation is all about clarity and precision. Think of it as presenting numerical data in a structured grid, with rows and columns clearly displaying individual data points. 

A table is invaluable for showcasing detailed data, facilitating comparisons and presenting numerical information that needs to be exact. They’re commonly used in reports, spreadsheets and academic papers.

types of variables used in data presentation

When presenting tabular data, organize it neatly with clear headers and appropriate column widths. Highlight important data points or patterns using shading or font formatting for better readability.

9. Textual data

Utilizing written or descriptive content to explain or complement data, such as annotations or explanatory text.

Textual data presentation may not involve charts or graphs, but it’s one of the most used qualitative data presentation examples. 

It involves using written content to provide context, explanations or annotations alongside data visuals. Think of it as the narrative that guides your audience through the data. 

Well-crafted textual data can make complex information more accessible and help your audience understand the significance of the numbers and visuals.

Textual data is your chance to tell a story. Break down complex information into bullet points or short paragraphs and use headings to guide the reader’s attention.

10. Pictogram

Using simple icons or images to represent data is especially useful for conveying information in a visually intuitive manner.

Pictograms are all about harnessing the power of images to convey data in an easy-to-understand way. 

Instead of using numbers or complex graphs, you use simple icons or images to represent data points. 

For instance, you could use a thumbs up emoji to illustrate customer satisfaction levels, where each face represents a different level of satisfaction. 

types of variables used in data presentation

Pictograms are great for conveying data visually, so choose symbols that are easy to interpret and relevant to the data. Use consistent scaling and a legend to explain the symbols’ meanings, ensuring clarity in your presentation.

types of variables used in data presentation

Looking for more data presentation ideas? Use the Venngage graph maker or browse through our gallery of chart templates to pick a template and get started! 

A comprehensive data presentation should include several key elements to effectively convey information and insights to your audience. Here’s a list of what should be included in a data presentation:

1. Title and objective

  • Begin with a clear and informative title that sets the context for your presentation.
  • State the primary objective or purpose of the presentation to provide a clear focus.

types of variables used in data presentation

2. Key data points

  • Present the most essential data points or findings that align with your objective.
  • Use charts, graphical presentations or visuals to illustrate these key points for better comprehension.

types of variables used in data presentation

3. Context and significance

  • Provide a brief overview of the context in which the data was collected and why it’s significant.
  • Explain how the data relates to the larger picture or the problem you’re addressing.

4. Key takeaways

  • Summarize the main insights or conclusions that can be drawn from the data.
  • Highlight the key takeaways that the audience should remember.

5. Visuals and charts

  • Use clear and appropriate visual aids to complement the data.
  • Ensure that visuals are easy to understand and support your narrative.

types of variables used in data presentation

6. Implications or actions

  • Discuss the practical implications of the data or any recommended actions.
  • If applicable, outline next steps or decisions that should be taken based on the data.

types of variables used in data presentation

7. Q&A and discussion

  • Allocate time for questions and open discussion to engage the audience.
  • Address queries and provide additional insights or context as needed.

Presenting data is a crucial skill in various professional fields, from business to academia and beyond. To ensure your data presentations hit the mark, here are some common mistakes that you should steer clear of:

Overloading with data

Presenting too much data at once can overwhelm your audience. Focus on the key points and relevant information to keep the presentation concise and focused. Here are some free data visualization tools you can use to convey data in an engaging and impactful way. 

Assuming everyone’s on the same page

It’s easy to assume that your audience understands as much about the topic as you do. But this can lead to either dumbing things down too much or diving into a bunch of jargon that leaves folks scratching their heads. Take a beat to figure out where your audience is coming from and tailor your presentation accordingly.

Misleading visuals

Using misleading visuals, such as distorted scales or inappropriate chart types can distort the data’s meaning. Pick the right data infographics and understandable charts to ensure that your visual representations accurately reflect the data.

Not providing context

Data without context is like a puzzle piece with no picture on it. Without proper context, data may be meaningless or misinterpreted. Explain the background, methodology and significance of the data.

Not citing sources properly

Neglecting to cite sources and provide citations for your data can erode its credibility. Always attribute data to its source and utilize reliable sources for your presentation.

Not telling a story

Avoid simply presenting numbers. If your presentation lacks a clear, engaging story that takes your audience on a journey from the beginning (setting the scene) through the middle (data analysis) to the end (the big insights and recommendations), you’re likely to lose their interest.

Infographics are great for storytelling because they mix cool visuals with short and sweet text to explain complicated stuff in a fun and easy way. Create one with Venngage’s free infographic maker to create a memorable story that your audience will remember.

Ignoring data quality

Presenting data without first checking its quality and accuracy can lead to misinformation. Validate and clean your data before presenting it.

Simplify your visuals

Fancy charts might look cool, but if they confuse people, what’s the point? Go for the simplest visual that gets your message across. Having a dilemma between presenting data with infographics v.s data design? This article on the difference between data design and infographics might help you out. 

Missing the emotional connection

Data isn’t just about numbers; it’s about people and real-life situations. Don’t forget to sprinkle in some human touch, whether it’s through relatable stories, examples or showing how the data impacts real lives.

Skipping the actionable insights

At the end of the day, your audience wants to know what they should do with all the data. If you don’t wrap up with clear, actionable insights or recommendations, you’re leaving them hanging. Always finish up with practical takeaways and the next steps.

Can you provide some data presentation examples for business reports?

Business reports often benefit from data presentation through bar charts showing sales trends over time, pie charts displaying market share,or tables presenting financial performance metrics like revenue and profit margins.

What are some creative data presentation examples for academic presentations?

Creative data presentation ideas for academic presentations include using statistical infographics to illustrate research findings and statistical data, incorporating storytelling techniques to engage the audience or utilizing heat maps to visualize data patterns.

What are the key considerations when choosing the right data presentation format?

When choosing a chart format , consider factors like data complexity, audience expertise and the message you want to convey. Options include charts (e.g., bar, line, pie), tables, heat maps, data visualization infographics and interactive dashboards.

Knowing the type of data visualization that best serves your data is just half the battle. Here are some best practices for data visualization to make sure that the final output is optimized. 

How can I choose the right data presentation method for my data?

To select the right data presentation method, start by defining your presentation’s purpose and audience. Then, match your data type (e.g., quantitative, qualitative) with suitable visualization techniques (e.g., histograms, word clouds) and choose an appropriate presentation format (e.g., slide deck, report, live demo).

For more presentation ideas , check out this guide on how to make a good presentation or use a presentation software to simplify the process.  

How can I make my data presentations more engaging and informative?

To enhance data presentations, use compelling narratives, relatable examples and fun data infographics that simplify complex data. Encourage audience interaction, offer actionable insights and incorporate storytelling elements to engage and inform effectively.

The opening of your presentation holds immense power in setting the stage for your audience. To design a presentation and convey your data in an engaging and informative, try out Venngage’s free presentation maker to pick the right presentation design for your audience and topic. 

What is the difference between data visualization and data presentation?

Data presentation typically involves conveying data reports and insights to an audience, often using visuals like charts and graphs. Data visualization , on the other hand, focuses on creating those visual representations of data to facilitate understanding and analysis. 

Now that you’ve learned a thing or two about how to use these methods of data presentation to tell a compelling data story , it’s time to take these strategies and make them your own. 

But here’s the deal: these aren’t just one-size-fits-all solutions. Remember that each example we’ve uncovered here is not a rigid template but a source of inspiration. It’s all about making your audience go, “Wow, I get it now!”

Think of your data presentations as your canvas – it’s where you paint your story, convey meaningful insights and make real change happen. 

So, go forth, present your data with confidence and purpose and watch as your strategic influence grows, one compelling presentation at a time.

Presenting Research Data Effectively Through Tables and Figures

presenting research data

Presenting research data and key findings in an organized, visually attractive, and meaningful manner is a key part of a good research paper. This is particularly important in instances where complex data and information, which cannot be easily communicated through text alone, need to be presented engagingly. The best way to do this is through the use of tables and figures. They help to organize and summarize large amounts of data and present it in an easy-to-understand way.  

Tables are used to present numerical data, while figures are used to display non-numerical data, such as graphs, charts, and diagrams. There are different types of tables and figures, and choosing the appropriate format is essential to present the data effectively. This article provides some insights on how to present research data and findings using tables and figures.  

How to present research data in tables?

When complex data and statistical findings are too unwieldy or difficult to present either in text form or as figures, they can be presented through tables. Tables are best used where exact numerical values need to be analyzed and shared. It also aids in the comparison and contrast of various features or values among the different units. This allows swift and easy identification of patterns in the datasets. While presenting tables in a research paper, it is essential to incorporate certain core elements to ensure that readers are able to draw inferences and conclusions easily and quickly.  

  • Title of the table :  The title should be concise and clear and communicate the purpose of the table. Tables must be referenced in the text through table numbers. Both the table number and the title are ideally mentioned just above the table. 
  • Body of the table:  A crucial element in preparing the body of a table is to ensure uniformity in terms of units of measurement and the accurate use of decimal places. It is also important to format the table and ensure equal spacing between rows and columns.  
  • Keep it simple and accurate:  It is important to ensure that only relevant information is presented in the table. One needs to be cautious not to populate tables with unnecessary information or design elements. Using plain fonts, in italics or bold, and the use of color or border styles help make the table visually appealing. Rows and columns must be labeled clearly and accurately to ensure that there is no ambiguity in analyzing the data presented. 

How to present research data in figures?

Figures are a powerful tool for visually presenting research data and key study findings. Figures are usually used to communicate trends or relationships and general patterns emerging from datasets. They are also used to present research data and complex information in a simpler form. Figures can take various forms like graphs, pie charts, scatter plots, line diagrams, drawings, maps, and photos. Early career researchers need to know how best to present figures in their research papers. The following are some core elements that should be incorporated.  

  • Title:  Every figure must have a title that is clear and concise and must summarize the main point of the data being presented. It should be placed just below the figure. The numbering of the figures should be sequential and must correspond to the reference provided in the text. 
  • Type of figure:  The type of figure to be used is usually dictated by the kind of information to be conveyed. Researchers need to decide which type of figure will enable readers to understand the information being shared easily. For example, scatter plots can be used to show relationships between two variables, pie charts can be used to illustrate relative proportions, and graphs can be used for the quantitative relationship between variables.  
  • Use of Images:  When using figures, care should be taken to ensure that images are of a high resolution – sharp and clear. 
  • Labeling:  Ensuring that all parts of the figures and the axes are labeled accurately is crucial if readers are to glean important details quickly. Use standard font sizes and styles. Experts also suggest the inclusion of scale bars in maps. 

Tips for Effectively Presenting Research Data through Tables and Figures

When presenting research data through tables or figures, it’s important to ensure that it is adding value to the text and not merely repeating values. This means taking care of certain vital aspects to ensure that the presentation is uniform, clear, and easy to read. Here are some tips to help you achieve that:

  • Make sure that tables or figures add value to the text
  • Ensure uniformity in numbering of tables, figures, and values both in the text and in the visual presentation
  • Cite the source if tables and figures are used from a different source
  • Use appropriate scales when creating tables and figures
  • Use logarithmic scales if the data covers a wide range
  • Use linear scales if the data is relatively small
  • Check publication or style guide instructions of the target journal regarding the presentation of research data and findings, image resolution, presentation style, formatting, and so on
  • Remember, tables and figures are only tools to convey information – using too many of them can overwhelm readers

In summary, presenting research data through tables and figures can be an effective way to convey information. However, it’s important to follow these tips to ensure that the presentation is clear and easy to read. By taking care of these vital aspects, researchers can effectively communicate their findings to their intended audience.

Paperpal is an AI writing assistant that help academics write better, faster with real-time suggestions for in-depth language and grammar correction. Trained on millions of research manuscripts enhanced by professional academic editors, Paperpal delivers human precision at machine speed.  

Try it for free or upgrade to  Paperpal Prime , which unlocks unlimited access to premium features like academic translation, paraphrasing, contextual synonyms, consistency checks and more. It’s like always having a professional academic editor by your side! Go beyond limitations and experience the future of academic writing.  Get Paperpal Prime now at just US$19 a month!  

Related Reads:

  • 6 Tips for Post-Doc Researchers to Take Their Career to the Next Level
  • 5 Reasons for Rejection After Peer Review
  • Ethical Research Practices For Research with Human Subjects
  • Ethics in Science: Importance, Principles & Guidelines 

Empirical Research: A Comprehensive Guide for Academics 

How to write a scientific paper in 10 steps , you may also like, what are journal guidelines on using generative ai..., types of plagiarism and 6 tips to avoid..., quillbot review: features, pricing, and free alternatives, authorship in academia: ghost, guest, and gift authorship, what is an academic paper types and elements , should you use ai tools like chatgpt for..., publish research papers: 9 steps for successful publications , what are the different types of research papers, how to make translating academic papers less challenging, how long should a chapter be.

10 Methods of Data Presentation with 5 Great Tips to Practice, Best in 2024

10 Methods of Data Presentation with 5 Great Tips to Practice, Best in 2024

Leah Nguyen • 27 Oct 2023 • 10 min read

Finding ways to present information effectively? You can end deathly boring and ineffective data presentation right now with our 10 methods of data presentation . Check out the examples from each technique!

Have you ever presented a data report to your boss/coworkers/teachers thinking it was super dope like you’re some cyber hacker living in the Matrix, but all they saw was a pile of static numbers that seemed pointless and didn’t make sense to them?

Understanding digits is rigid . Making people from non-analytical backgrounds understand those digits is even more challenging.

How can you clear up those confusing numbers in the types of presentation that have the flawless clarity of a diamond? So, let’s check out best way to present data. 💎

Table of Contents

  • What are Methods of Data Presentations?
  • #1 – Tabular

#2 – Text

#3 – pie chart, #4 – bar chart, #5 – histogram, #6 – line graph, #7 – pictogram graph, #8 – radar chart, #9 – heat map, #10 – scatter plot.

  • 5 Mistakes to Avoid
  • Best Method of Data Presentation

Frequently Asked Questions

More tips with ahaslides.

  • Marketing Presentation
  • Survey Result Presentation
  • Types of Presentation

Alternative Text

Start in seconds.

Get any of the above examples as templates. Sign up for free and take what you want from the template library!

What are Methods of Data Presentation?

The term ’data presentation’ relates to the way you present data in a way that makes even the most clueless person in the room understand. 

Some say it’s witchcraft (you’re manipulating the numbers in some ways), but we’ll just say it’s the power of turning dry, hard numbers or digits into a visual showcase that is easy for people to digest.

Presenting data correctly can help your audience understand complicated processes, identify trends, and instantly pinpoint whatever is going on without exhausting their brains.

Good data presentation helps…

  • Make informed decisions and arrive at positive outcomes . If you see the sales of your product steadily increase throughout the years, it’s best to keep milking it or start turning it into a bunch of spin-offs (shoutout to Star Wars👀).
  • Reduce the time spent processing data . Humans can digest information graphically 60,000 times faster than in the form of text. Grant them the power of skimming through a decade of data in minutes with some extra spicy graphs and charts.
  • Communicate the results clearly . Data does not lie. They’re based on factual evidence and therefore if anyone keeps whining that you might be wrong, slap them with some hard data to keep their mouths shut.
  • Add to or expand the current research . You can see what areas need improvement, as well as what details often go unnoticed while surfing through those little lines, dots or icons that appear on the data board.

Methods of Data Presentation and Examples

Imagine you have a delicious pepperoni, extra-cheese pizza. You can decide to cut it into the classic 8 triangle slices, the party style 12 square slices, or get creative and abstract on those slices. 

There are various ways for cutting a pizza and you get the same variety with how you present your data. In this section, we will bring you the 10 ways to slice a pizza – we mean to present your data – that will make your company’s most important asset as clear as day. Let’s dive into 10 ways to present data efficiently.

#1 – Tabular 

Among various types of data presentation, tabular is the most fundamental method, with data presented in rows and columns. Excel or Google Sheets would qualify for the job. Nothing fancy.

a table displaying the changes in revenue between the year 2017 and 2018 in the East, West, North, and South region

This is an example of a tabular presentation of data on Google Sheets. Each row and column has an attribute (year, region, revenue, etc.), and you can do a custom format to see the change in revenue throughout the year.

When presenting data as text, all you do is write your findings down in paragraphs and bullet points, and that’s it. A piece of cake to you, a tough nut to crack for whoever has to go through all of the reading to get to the point.

  • 65% of email users worldwide access their email via a mobile device.
  • Emails that are optimised for mobile generate 15% higher click-through rates.
  • 56% of brands using emojis in their email subject lines had a higher open rate.

(Source: CustomerThermometer )

All the above quotes present statistical information in textual form. Since not many people like going through a wall of texts, you’ll have to figure out another route when deciding to use this method, such as breaking the data down into short, clear statements, or even as catchy puns if you’ve got the time to think of them.

A pie chart (or a ‘donut chart’ if you stick a hole in the middle of it) is a circle divided into slices that show the relative sizes of data within a whole. If you’re using it to show percentages, make sure all the slices add up to 100%.

Methods of data presentation

The pie chart is a familiar face at every party and is usually recognised by most people. However, one setback of using this method is our eyes sometimes can’t identify the differences in slices of a circle, and it’s nearly impossible to compare similar slices from two different pie charts, making them the villains in the eyes of data analysts.

a half-eaten pie chart

Bonus example: A literal ‘pie’ chart! 🥧

The bar chart is a chart that presents a bunch of items from the same category, usually in the form of rectangular bars that are placed at an equal distance from each other. Their heights or lengths depict the values they represent.

They can be as simple as this:

a simple bar chart example

Or more complex and detailed like this example of presentation of data. Contributing to an effective statistic presentation, this one is a grouped bar chart that not only allows you to compare categories but also the groups within them as well.

an example of a grouped bar chart

Similar in appearance to the bar chart but the rectangular bars in histograms don’t often have the gap like their counterparts.

Instead of measuring categories like weather preferences or favourite films as a bar chart does, a histogram only measures things that can be put into numbers.

an example of a histogram chart showing the distribution of students' score for the IQ test

Teachers can use presentation graphs like a histogram to see which score group most of the students fall into, like in this example above.

Recordings to ways of displaying data, we shouldn’t overlook the effectiveness of line graphs. Line graphs are represented by a group of data points joined together by a straight line. There can be one or more lines to compare how several related things change over time. 

an example of the line graph showing the population of bears from 2017 to 2022

On a line chart’s horizontal axis, you usually have text labels, dates or years, while the vertical axis usually represents the quantity (e.g.: budget, temperature or percentage).

A pictogram graph uses pictures or icons relating to the main topic to visualise a small dataset. The fun combination of colours and illustrations makes it a frequent use at schools.

How to Create Pictographs and Icon Arrays in Visme-6 pictograph maker

Pictograms are a breath of fresh air if you want to stay away from the monotonous line chart or bar chart for a while. However, they can present a very limited amount of data and sometimes they are only there for displays and do not represent real statistics.

If presenting five or more variables in the form of a bar chart is too stuffy then you should try using a radar chart, which is one of the most creative ways to present data.

Radar charts show data in terms of how they compare to each other starting from the same point. Some also call them ‘spider charts’ because each aspect combined looks like a spider web.

a radar chart showing the text scores between two students

Radar charts can be a great use for parents who’d like to compare their child’s grades with their peers to lower their self-esteem. You can see that each angular represents a subject with a score value ranging from 0 to 100. Each student’s score across 5 subjects is highlighted in a different colour.

a radar chart showing the power distribution of a Pokemon

If you think that this method of data presentation somehow feels familiar, then you’ve probably encountered one while playing Pokémon .

A heat map represents data density in colours. The bigger the number, the more colour intense that data will be represented.

a heatmap showing the electoral votes among the states between two candidates

Most U.S citizens would be familiar with this data presentation method in geography. For elections, many news outlets assign a specific colour code to a state, with blue representing one candidate and red representing the other. The shade of either blue or red in each state shows the strength of the overall vote in that state.

a heatmap showing which parts the visitors click on in a website

Another great thing you can use a heat map for is to map what visitors to your site click on. The more a particular section is clicked the ‘hotter’ the colour will turn, from blue to bright yellow to red.

If you present your data in dots instead of chunky bars, you’ll have a scatter plot. 

A scatter plot is a grid with several inputs showing the relationship between two variables. It’s good at collecting seemingly random data and revealing some telling trends.

a scatter plot example showing the relationship between beach visitors each day and the average daily temperature

For example, in this graph, each dot shows the average daily temperature versus the number of beach visitors across several days. You can see that the dots get higher as the temperature increases, so it’s likely that hotter weather leads to more visitors.

5 Data Presentation Mistakes to Avoid

#1 – assume your audience understands what the numbers represent.

You may know all the behind-the-scenes of your data since you’ve worked with them for weeks, but your audience doesn’t.

a sales data board from Looker

Showing without telling only invites more and more questions from your audience, as they have to constantly make sense of your data, wasting the time of both sides as a result.

While showing your data presentations, you should tell them what the data are about before hitting them with waves of numbers first. You can use interactive activities such as polls , word clouds and Q&A sections to assess their understanding of the data and address any confusion beforehand.

#2 – Use the wrong type of chart

Charts such as pie charts must have a total of 100% so if your numbers accumulate to 193% like this example below, you’re definitely doing it wrong.

a bad example of using a pie chart in the 2012 presidential run

Before making a chart, ask yourself: what do I want to accomplish with my data? Do you want to see the relationship between the data sets, show the up and down trends of your data, or see how segments of one thing make up a whole?

Remember, clarity always comes first. Some data visualisations may look cool, but if they don’t fit your data, steer clear of them. 

#3 – Make it 3D

3D is a fascinating graphical presentation example. The third dimension is cool, but full of risks.

types of variables used in data presentation

Can you see what’s behind those red bars? Because we can’t either. You may think that 3D charts add more depth to the design, but they can create false perceptions as our eyes see 3D objects closer and bigger than they appear, not to mention they cannot be seen from multiple angles.

#4 – Use different types of charts to compare contents in the same category

types of variables used in data presentation

This is like comparing a fish to a monkey. Your audience won’t be able to identify the differences and make an appropriate correlation between the two data sets. 

Next time, stick to one type of data presentation only. Avoid the temptation of trying various data visualisation methods in one go and make your data as accessible as possible.

#5 – Bombard the audience with too much information

The goal of data presentation is to make complex topics much easier to understand, and if you’re bringing too much information to the table, you’re missing the point.

a very complicated data presentation with too much information on the screen

The more information you give, the more time it will take for your audience to process it all. If you want to make your data understandable and give your audience a chance to remember it, keep the information within it to an absolute minimum.

What are the Best Methods of Data Presentation?

Finally, which is the best way to present data?

The answer is…

There is none 😄 Each type of presentation has its own strengths and weaknesses and the one you choose greatly depends on what you’re trying to do. 

For example:

  • Go for a scatter plot if you’re exploring the relationship between different data values, like seeing whether the sales of ice cream go up because of the temperature or because people are just getting more hungry and greedy each day?
  • Go for a line graph if you want to mark a trend over time. 
  • Go for a heat map if you like some fancy visualisation of the changes in a geographical location, or to see your visitors’ behaviour on your website.
  • Go for a pie chart (especially in 3D) if you want to be shunned by others because it was never a good idea👇

example of how a bad pie chart represents the data in a complicated way

Got a question? We've got answers.

What is chart presentation?

When can i use charts for presentation, why should use charts for presentation, what are the 4 graphical methods of presenting data.

' src=

Leah Nguyen

Words that convert, stories that stick. I turn complex ideas into engaging narratives - helping audiences learn, remember, and take action.

More from AhaSlides

Business Analyst Skills 101: A Roadmap To Success In The Data-Driven Era

Forgot password? New user? Sign up

Existing user? Log in

Data Presentation - Tables

Already have an account? Log in here.

Tables are a useful way to organize information using rows and columns. Tables are a versatile organization tool and can be used to communicate information on their own, or they can be used to accompany another data representation type (like a graph). Tables support a variety of parameters and can be used to keep track of frequencies, variable associations, and more.

For example, given below are the weights of 20 students in grade 10: \[50, 45, 48, 39, 40, 48, 54, 50, 48, 48, \\ 50, 39, 41, 46, 44, 43, 54, 57, 60, 45.\]

To find the frequency of \(48\) in this data, count the number of times that \(48\) appears in the list. There are \(4\) students that have this weight.

The list above has information about the weight of \(20\) students, and since the data has been arranged haphazardly, it is difficult to classify the students properly.

To make the information more clear, tabulate the given data.

\[\begin{array} \\ \text{Weights in kg} & & & \text{Frequency} \\ 39 & & & 2 \\ 40 & & & 1 \\ 41 & & & 1 \\ 43 & & & 1 \\ 44 & & & 1 \\ 45 & & & 2 \\ 46 & & & 1 \\ 48 & & & 4 \\ 50 & & & 3 \\ 54 & & & 2 \\ 57 & & & 1 \\ 60 & & & 1 \end{array}\]

This table makes the data more easy to understand.

Making a Table

Making and using tables.

To make a table, first decide how many rows and columns are needed to clearly display the data. To do this, consider how many variables are included in the data set.

The following is an example of a table where there are two variables.

The following is an example of a table with three variables.

A table is good for organizing quantitative data in a way that it is easy to look things up. For example, a table would be good way to associate a person’s name, age, and favorite food. However, when trying to communicate relations, such as how a person’s favorite food changes over time, a graph would be a better choice.

Using the table below, determine the average age of the group?

Good practices for making tables Label what each row or column represents Include units in labels when data is numerical Format data consistently (use consistent units and formatting)
What is wrong with this table? Flavor of Ice Cream Number Sold (cones) Chocolate 104 Vanilla two-hundred Strawberry 143 Coconut thirty Mango 126 Show answer Answer: The data isn’t consistently formatted. The number of cones sold is written in numbers in both symbols and words. It would be easier to understand if all entries were numerical symbols.
What is wrong with this table? Jack blue Sarah yellow Billy green Ron red Christina blue Margret purple Show answer Answer: There are no labels on the columns. It is not clear what the table is displaying — does the table show what color shirt each person is wearing? Do it show what each person's favorite color is? It isn't clear because labels are missing.

Many word processing softwares include tools for making tables. You can easily make tables in Microsoft Word and Excel and in Google Docs and Sheets.

Here is an example table (left blank) with which you could record information about a person's age, weight, and height.

Tables are used to present information in all types of fields. Geologists might make a table to record data about types of rocks they find while doing field work, political researchers might create a table to record information about potential voters, and physicists might make a table to record observations about the speed of a ball rolled on various surfaces.

Problem Loading...

Note Loading...

Set Loading...

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Surg Infect (Larchmt)

Logo of sur

Basic Introduction to Statistics in Medicine, Part 1: Describing Data

Wyatt p. bensken.

1 Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.

Fredric M. Pieracci

2 Department of Surgery, Denver Health Medical Center, Denver, Colorado, USA.

Vanessa P. Ho

3 Department of Surgery, MetroHealth Medical Center, Cleveland, Ohio, USA.

Background: Standardized and concise data presentation forms the base for subsequent analysis and interpretation. This article reviews types of data, data properties and distributions, and both numerical and graphical methods of data presentation.

Methods: For the purposes of illustration, the National Inpatient Sample was queried to categorize patients as having either emergency general surgery or non-emergency general surgery admissions.

Results: Variables are categorized as either categorical or numerical. Within the former, there are ordinal and or nominal subtypes; within the latter, there are ratio and interval subtypes. Categorical data are typically displayed as number (%). Numerical data must be assessed for normality as normally distributed data behave in certain patterns that allow for specific statistical tests to be used. Several properties exist for numerical data, including measurements of central tendency (mean, median, and mode), as well as standard deviation, range, and interquartile range. The best initial assessment of the distribution of numerical data is graphical with both histograms and box plots.

Conclusion: Knowledge of the types, distribution, and properties of data is essential to move forward with hypothesis testing.

Counting and measurement is the basis of all research and accurate representation of numeric data ensures that research is systematic and reproducible. After the design of a research study, the most critical juncture in a project is a complete and accurate description of the data and the methods used to obtain the results. Utilizing a systematic description of the data as a first step not only ensures transparent reporting of results, but helps the investigator identify potential problems in their analytic process or data sources to guide analytic decisions. Examining the distribution and structure of data ensures that the test and analyses chosen are the most appropriate and statistically valid. In addition to aiding the investigator, a clear description of the methods and data will aid in peer review and the study's utility in the broader research enterprise. Specifically, the description helps readers to understand external validity of a particular study, in other words, are findings generalizable to other populations? When drafting a manuscript, the description of data presentation and analysis should be standardized to the point where, after reading it, an independent party could reproduce your results exactly.

There are two cornerstones to an appropriate description of data: (1) a well-developed and presented table that describes your population, often referred to as a demographics table or Table 1 and (2) data visualization with appropriately chosen graphics. In this article, we provide examples of how to describe and visualize data using a nationally representative database, the Nationwide Inpatient Sample, to demonstrate a robust and thorough description of the methods and data used, while also highlighting specific pitfalls. We also demonstrate how weighted databases may add an extra layer of complexity to describing your study population. It is our goal that this work provides a road map for investigators seeking to utilize best practices in describing and presenting their data.

Types of Quantitative Data

To demonstrate these data science statistical practices and pitfalls, we used data from the 2017 Nationwide Inpatient Sample (NIS) from the Healthcare Cost and Utilization Project (HCUP). The NIS is an approximately 20% sample of all-payer hospitalizations that are included as part of HCUP that are then weighted to provide national estimates. This weighting means that each observed hospitalization in the sample represents a specific number of hospitalizations in the population. With this, the sample of 7.1 million hospitalizations represents more than 35.7 million hospitalizations. It includes parameters covering patient demographics (race, gender, age, payer, etc.), admission and discharge status, diagnoses, procedures, length of stay (LOS), and cost. All data are at the discharge-level and the NIS does not provide patient identifiers to be able to link hospitalizations. In this study we identified patients who underwent emergency general surgery (EGS) in 2017. Here, EGS is defined as appendectomy, colectomy and colostomy, laparotomy, laparoscopy, lysis of adhesions, small bowel resection, ulcer repair, and gallbladder procedures, as previously described by Smith et al. [ 1 ]. Specifically, we required that the hospitalization contain both a diagnosis and procedure code for EGS.

Of note, NIS data are structured to be able to perform a weighted adjustment to establish a nationally representative sample. For this article, however, the only weighted analysis we present is for the overall number of EGS procedures. This weighting followed guidelines from the Agency for Healthcare Research and Quality (AHRQ) using the given weights, cluster, and strata. Because of this weighting, the national estimates are presented with standard errors. Data cleaning was done via SAS, version 9 (SAS Institute, Cary, NC) with visualizations made in R version 3.6.1 using the tidyverse and patchwork packages [ 2 , 3 ]. Sample data available online were also used to build the skewed distributions in Figure 1 [ 4 ].

An external file that holds a picture, illustration, etc.
Object name is sur.2020.429_figure1.jpg

Example of normal and skewed distributions, using simulated data.

Using these data, we demonstrate how to construct a demographics table or Table 1 while also showing the value of graphical visualization of data to illustrate the distribution of age and LOS. The 2017 NIS contained 7,159,694 admissions that, when weighted, represent a national estimate of 35,798,453 hospitalizations. There was a total of 11,034 (1.6%) hospitalizations for emergency general surgery (EGS), representing an estimated 555,170 ± 5,969 (1.6% ± 0.01) nationally in 2017.

Data Cleaning and Categorization for Analysis

Data collection is typically organized via a data table, spreadsheet, or data frame. These datasets are typically organized such that each row of data represents one observation or unit to be studied (such as a single patient, one admission, or a hospital) and each column of data is a collected parameter (such as age or sex). Broadly, there are two types of variables: categorical (nominal and ordinal) and numeric (interval and ratio) ( Table 1 ). Categorical data represent named groups of observations and are not quantitative. Categorical data can be ordered (ordinal) or not ordered (nominal). In our example below, represented by Table 2 , gender, race, payer, and disposition are examples of categorical nominal variables. In the below example, the age categories (<18 years, 18–34, 35–49, etc.) are examples of ordered categorical variables.

Table of Demographics

Description of the study population, comparing those hospitalization not for EGS and those for EGS. These data come from the 2017 Nationwide Inpatient Sample. Note that two cells are presented as “<” (less than); this is due to data restrictions of displaying cells less than 11.

EGS = emergency general surgery; SD = standard deviation; IQR = interquartile range; LOS = length of stay; SNF = skilled nursing facility; ICF = intermediate care facility.

Numerical data are collected as numbers. Length of stay is an example of numerical data. Length of stay is a continuous variable, meaning that it is a measure of length, represented by the unit “days” and usually rounded to the nearest integer. Length of stay is also an example of “ratio” data, whereby the numbers are meaningfully related and zero is an absolute number. In other words, a person who had a LOS of 6 days was in the hospital twice as long as a person in the hospital for 3 days, and no one has a negative LOS. This differs from interval data. Interval data are characterized by numbers that have equal distances between values but there is no fixed beginning. An example of this is time in a 12-hour clock. These distinctions are important because some numbers should not be added or subtracted, and only ratio data can be interpreted as multiples of each other. Some numeric data should not be treated as continuous, such as injury severity scale (ISS) because an ISS of 20 is not twice as bad as an ISS of 10. Furthermore, other seemingly numeric data do not even represent numbers, such as medical record number or zip code, which should be considered categorical data because the numbers are really only assigned labels.

Numerical data can be converted to categories if the researchers believe this conversion is appropriate. However, it is important to remember that converting data from continuous to categorical necessarily results in loss of information granularity. This may limit future analyses. Age is a continuous numerical variable that consists of ratio data. In Table 2 , age is described multiple ways. As continuous numerical data, age can be represented as a distribution with a mean and standard deviation, or a median and interquartile range. Alternatively, age was also converted into a categorical ordinal variable. We elected to present standard groups, namely, <18, 18–34, 35–49, 40–64, 65–79, 80+. These groups are not even intervals but are socially representative of groups that have similar attributes (child, young adult, etc.); another way to categorize age might be by deciles. Yet another way to group numerical data would be into those either above or below the median value for that parameter. Finally, numerical data may be grouped into categories to replicate findings from previous research, in which certain groupings were found to be meaningful. The researchers can decide which data presentation is most appropriate for their study and study question, and whether “cutting” numeric data into categories is useful or advantageous to demonstrate specific concepts being studied.

Data distribution and properties

When visualizing data, we are often seeking some conclusion regarding the distribution of the data, that is the shape of the data. Frequently, researchers try to determine if data follow a normal (or bell-shaped) distribution but often encounter data that is either left-skewed or right-skewed. Figure 1 demonstrates a normal distribution as well as distributions that are both left-skewed and right-skewed. The normal distribution is often desired because it allows for a number of powerful statistical tests to be conducted with the data, such as a Student t-test and linear regression, whereas skewed distributions violate important statistical assumptions of these tests. Another common distribution found in medical research is a bimodal distribution that as two peaks, which may occur, for example, if we saw the highest frequencies of a disease or condition in young adulthood and then again in older adulthood. Whereas the normal distribution is the most commonly discussed, it is actually found in only the minority of cases. It is important to note that there are numerous other statistical distributions with their own assumptions and analyses that are beyond the scope of this article but that researchers may encounter in the literature.

Mean, median, and mode are called measures of central tendency and are the simplest way to describe where the middle of numerical data distribution lies. The arithmetic mean is the average of all the numbers (the sum of numbers divided by the total count of items that were included in the sum). Technically, numeric scales such as Likert scales or injury severity scores that are not ratio data should not be presented as means. In a 10-point Likert scale, a value of eight is not twice as large as a level of four, nor is it four times as bad as a value of two, and thus a mean value cannot really be interpreted. A mean is most appropriate when a ratio continuous variable is normally distributed, or the values are shaped like a classic bell curve. Means can also be used more confidently when sample sizes are large and are therefore more likely to follow a normal distribution.

The median value is the middle number if all numerical values are lined up sequentially. A median and range is less affected to outliers than a mean and standard deviation, which makes the median a better choice for variables with a skewed distribution, a large number of outliers, or small sample size. Because no arithmetic is used to calculate them, median values are more interpretable for things such as scales or scores that cannot be added or subtracted. The mode is the value observed frequently. For a parameter that is distributed normally, the mean, median, and mode are all the same.

In addition to measurements of central tendency, the range, interquartile range, and standard deviation are useful properties. The range is displayed as the minimum and maximum value for the variable. Reviewing the minimum and maximum values can often help identify data entry errors, for example, an age of 510 years entered by mistake when the actual age was 51 years. The interquartile range represents the 25th percentile to the 75th percentile for the variable and is typically listed after the median. Mean values are typically displayed with a standard deviation, which indicates how wide the spread of numbers is around the average value.

Demographics table example

In the example demographics table ( Table 2 ), categorical variables such as gender, race, payer, admission type, and disposition are presented as n (%) and these are relatively straightforward. Important groupings here are dependent on the researcher's aims. For example, race groups or disposition can be combined or separated.

We present multiple ways to show numerical data. Looking first at age, there is a small difference between mean and median, where the mean age for EGS and non-EGS groups is slightly lower than the median age, suggesting that there are young outliers that skew the mean age with a leftward tail. Grouping by age categories may provide extra detail about age distribution, showing more than one-half of all EGS and non-EGS admissions occur in adults over the age of 40, whereas hospitalizations for EGS occurs in a lower proportion of pediatric patients.

Alternatively, the mean values for LOS as well as total charges are much larger than the median values, suggesting that there are outliers with long LOS that skew the data to have a long rightward tail. This is common for hospital and intensive care unit LOS data. For total charges, the standard deviations are larger than the value of the means, suggesting that there is a wide variation in charges and utilizing the mean for this variable is likely not the best approach for further analysis. Thus, without even seeing the actual data, the reader can make inferences about their shape based on the differences between mean and median calculations and also on the relative size of the standard deviation compared with the mean. Familiarity with the most common shapes of data such as age and LOS will also draw attention to unusual patterns and alert readers when the incorrect statistical test is being applied.

Data description and visualization using histograms

Although there are several statistical tests to assess for normality of a certain parameter, often the most obvious method is visual interpretation of a histogram. A histogram is a visual representation of the distribution of the data, where the frequency of a value is plotted on the y-axis, typically as bars, against the value of the variable on the x-axis. We present several histograms below, overlaying the normal distribution to highlight skewness. Of note, the y-axis here is not the frequency (the number of individuals in each bin) but rather the density. The density is a re-scaling of the frequency to accommodate a true normal distribution, where the area under the curve and the sum of the area of the bars equals one. The visual shape of the distribution will be identical with either frequency or density on the y-axis. Formal comparisons of these data are presented in a follow-up article [ 5 ]. Figure 2 highlights the distribution of age between non-EGS cases and EGS hospitalizations. As suggested by the demographics table, there is a large number of young non-EGS admissions, which leads to skewing of the age data; the histogram shows this more clearly than simply the presentation of the means and medians. Note also that the non-EGS age has a tri - modal distribution, with three peaks of frequency compared with only a single peak in the EGS group.

An external file that holds a picture, illustration, etc.
Object name is sur.2020.429_figure2.jpg

Distribution of age (in years) stratified by those hospitalizations that were not for emergency general surgery (EGS) and those that were for EGS.

Another commonly used figure is the boxplot, seen in the lower half of Figure 3 . This is another way to demonstrate the distribution of the data and is a very efficient method of communicating data. The middle bar represents the median, the edges of the box are the first and third quartiles, and the lines (commonly called whiskers) represent the data extending to 1.5 times the interquartile range. Points outside this are displayed and represent the most extreme outliers. They are another useful visualization, especially when presenting the distribution of a value across groups (e.g., LOS stratified by race). Figures 2 and ​ and3 3 demonstrate the distribution, and particularly the skewness, of two of the continuous variables of interest: age ( Fig. 3 ) and LOS. In particular, LOS shows a skewed distribution and inflation of the mean but arriving at these conclusions can be much easier using well-developed data visualizations such as Figure 3 . In these figures we can clearly see the outliers in the boxplots, whereas the histograms confirm that the distributions do not follow a normal distribution (the black curve overlaid). Additionally, we would likely want to present the median and interquartile range when describing these variables because we know the mean and standard deviation are highly sensitive to these outliers. Although we present these figures in this article, in a study we would likely include them as a supplement for reviewers and fellow researchers to reference if needed.

An external file that holds a picture, illustration, etc.
Object name is sur.2020.429_figure3.jpg

Distribution, both histogram and boxplot, of the age (in years) of those hospitalizations for emergency general surgery (EGS). The y-axis of the histogram represents the density (not frequency), and the normal curve for these data is overlaid to highlight the skew in age data for this population.

Example of data description for a methods section of an article

Ideally, the methods section of an article will be comprehensive enough that would allow for your work to be reproduced. In addition to the overview, data source(s), study population, inclusion/exclusion criteria, and variables of interest (as we do in our own methods section), it is important to describe how data will be displayed. The portion of the methods that includes this information, from a hypothetical study, could be as follows: “Numerical data are expressed as median (interquartile range) and were assessed for normality using both the XXX test and visually using both histograms and boxplots. Categorical data are expressed as number (%). Because age was not distributed normally, and rather followed a bimodal distribution, this variable was converted to categorical and dichotomized around the median. Time to surgery was also not distributed normally and so converted into three categories: <24 hours, 24–72 hours, and >72 hours, based on our prior study (appropriate citation).”

The complete description of our data, as the first step of the analysis stage, is crucial to understanding the study population as well as informing our later statistical decisions. This process of describing the data can also serve as a mechanism for study validity and ensure that earlier parts of the study (e.g., data cleaning, processing, and management) did not introduce any errors. One example of this may be if we were studying a condition primarily prevalent in older adults but identified younger adults in the exploratory analysis. This would either suggest a data or coding error, which should be investigated thoroughly, or unique cases of the condition of study that may warrant exclusion.

This ability to spot errors also links to the ability to make additional study cohort restrictions to better refine the study population or remove heterogeneity. In our example of EGS, there are two key areas in our data exploration that could influence future analytic decisions: age and admission type. Of our EGS population, 8% of hospitalizations were children and 31% were 65 years old or older ( Table 1 ). In our study we would first, perhaps, exclude children from the analysis by considering potential heterogeneity or differences, in disease presentation and management across later age groups. If our study question was to examine only the geriatric population, we might restrict our analysis to the 31% that are 65 years old or older. Furthermore, although termed emergency general surgery, we identified that 16.2% of hospitalizations for EGS were labelled elective ( Table 1 ), which highlights a limitation of administrative data and use of diagnosis codes. For that reason, and in hopes of creating the most accurate case definition, we could consider restricting on both age and admission type, to focus on older adults who were non-elective admissions.

Once the study cohort has been identified and the initial descriptive statistics have been conducted, data visualization is an important next step. This visualization of the data, much like the description of the data, serves two important purposes: first it provides a way to convey important information about your study population and second it aids decisions for subsequent statistical analyses. In addition to these important principles to convey your data and findings, these visualizations can help assess the normality of variables that identifies skewness and informs the validity of statistical comparisons and regression models, discussed in more detail elsewhere. Lack of normality and distributions, would require us to utilize non-parametric analyses, which again are detailed in a follow-up article [ 5 ].

Another important consideration in the creation of a Demographics Table is whether or not to include p values. Historically, these tables have included p values as a way to identify statistically significant differences between the two groups efficiently, with a threshold of significance to be 0.05 (that is, only p values <0.05 are considered statistically significant). This statistical value was introduced to prominence by statistician Ronald Fisher in 1925 as a mechanism to assess the probability that the result obtained is as or more extreme than what was observed due to chance alone [ 6 , 7 ]. In recent years, however, there has been a shift away from the reliance on p values because of a myriad of factors, including the increasing emphasis on the threshold to determine significance or results, and the often misleading interpretation or reasoning surrounding these cut points [ 6–8 ]. One additional limitation of an arbitrary p value is that in large datasets such as the NIS, statistical significance is easily achieved even when differences between groups are small and likely not clinically or meaningfully significant. For these reasons, we have chosen not to display them and, instead, focus our description of the data on meaningful differences while leaving hypothesis testing to specific questions in comparing the data.

The final important point to raise in this article is our analysis of the unweighted data. The NIS, and many other federal and nationally representative datasets, includes weighting information, which makes it possible to create national estimates. We did present the national estimate for the number of hospitalizations, but the rest of our description was on the unweighted and thus cannot be taken as national estimates. One must think critically about the intention of the study and its goals when deciding on weighting, as weighting adds another layer of complexity to describing the data, conducting the analyses, and reporting the results. Primarily, weighting results in standard errors for each estimate and its proportion. This standard error helps capture the complex survey design elements but makes reporting the results much more challenging. As the point of this article was not to produce national estimates but to demonstrate statistical principles, we chose not to account for weight.

In conclusion, accurately describing data in tables and figure helps to make important decisions on study inclusion criteria, present and convey results to readers, and make decisions regarding which statistical approach is valid. Although the field has previously emphasized including p values in tables, recent advancements have de-emphasized this and, instead, descriptions of data should focus on meaningful differences not just those that may be statistically significant.

Funding Information

Dr. Ho is supported by the Case Western Reserve University Clinical and Translational Science Collaborative of Cleveland (KL2TR002547).

Author Disclosure Statement

Dr. Ho's spouse is a consultant for Zimmer Biomet, Sig Medical, Atricure, and Medtronic.

This publication was made possible by the Clinical and Translational Science Collaborative of Cleveland, KL2TR002547 from the National Center for Advancing Translational Sciences (NCATS) component of the National Institutes of Health and NIH roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

COMMENTS

  1. Understanding Data Presentations (Guide + Examples)

    A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. ... Choosing the appropriate data presentation type is crucial when making a presentation. Understanding the nature of ...

  2. Data Presentation: A Comprehensive Guide

    Definition: Data presentation is the art of visualizing complex data for better understanding. Importance: Data presentations enhance clarity, engage the audience, aid decision-making, and leave a lasting impact. Types: Textual, Tabular, and Graphical presentations offer various ways to present data.

  3. What Is Data Presentation? (Definition, Types And How-To)

    This method of displaying data uses diagrams and images. It is the most visual type for presenting data and provides a quick glance at statistical data. There are four basic types of diagrams, including: Pictograms: This diagram uses images to represent data. For example, to show the number of books sold in the first release week, you may draw ...

  4. Types of Variables in Research & Statistics

    In these cases you may call the preceding variable (i.e., the rainfall) the predictor variable and the following variable (i.e. the mud) the outcome variable. Other common types of variables Once you have defined your independent and dependent variables and determined whether they are categorical or quantitative, you will be able to choose the ...

  5. PDF Tabular and Graphical Presentation of Data

    GRAPHICAL PRESENTATION OF DATA Graphs • Show trends and patterns in the data. • Paint an interesting picture and make a visual impact. • Reveal relations between variables in the data. • Used to present data that is too numerous or complicated to describe adequately in the text

  6. Data Presentation

    5. Histograms. It is a perfect Presentation of the spread of numerical data. The main differentiation that separates data graphs and histograms are the gaps in the data graphs. 6. Box plots. Box plot or Box-plot is a way of representing groups of numerical data through quartiles. Data Presentation is easier with this style of graph dealing with ...

  7. Data Presentation

    Visual communication. Audience and context. Charts, graphs, and images. Focus on important points. Design principles. Storytelling. Persuasiveness. Dashboards. For a breakdown of these objectives, check out Excel Dashboards & Data Visualization course to help you become a world-class financial analyst.

  8. Statistical data presentation

    In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and ...

  9. PDF Variables and Data presentation

    The standard deviation controls the spread of the distribution. A smaller standard deviation indicates that the data is tightl\൹ clustered around the mean; the normal distribution will be taller. A larger standard deviation indicates that the data is spre對ad out around the mean; the normal distribution will be flatter and wider.

  10. Scales of Measurement and Presentation of Statistical Data

    Abstract. Measurement scale is an important part of data collection, analysis, and presentation. In the data collection and data analysis, statistical tools differ from one data type to another. There are four types of variables, namely nominal, ordinal, discrete, and continuous, and their nature and application are different.

  11. Statistical Analysis: Data Presentation and Statistical Tests

    Types of Variables. Choosing appropriate statistical test or presentation of data largely depends on the type of variable. The two major divisions of variables are (i) Categorical Variable (ii) Numerical variable [].Categorical variable are non-numerical variables and the data in these variables fall into finite number of categories.

  12. Ultimate Guide to Using Data Visualization in Your Presentation

    1. Collect your data. First things first, and that is to have all your information ready. Especially for long business presentations, there can be a lot of information to consider when working on your slides. Having it all organized and ready to use will make the whole process much easier to go through. 2.

  13. 17 Important Data Visualization Techniques

    Here are some important data visualization techniques to know: 1. Pie Chart. Pie charts are one of the most common and basic data visualization techniques, used across a wide range of applications. Pie charts are ideal for illustrating proportions, or part-to-whole comparisons.

  14. 10 Data Presentation Examples For Strategic Communication

    8. Tabular presentation. Presenting data in rows and columns, often used for precise data values and comparisons. Tabular data presentation is all about clarity and precision. Think of it as presenting numerical data in a structured grid, with rows and columns clearly displaying individual data points.

  15. Presenting data in tables and charts

    Presentation of categorical variables. In order to analyze the distribution of a variable, data should be organized according to the occurrence of different results in each category. As for categorical variables, frequency distributions may be presented in a table or a graph, including bar charts and pie or sector charts.

  16. Presenting Research Data Effectively Through Tables and Figures

    The best way to do this is through the use of tables and figures. They help to organize and summarize large amounts of data and present it in an easy-to-understand way. Tables are used to present numerical data, while figures are used to display non-numerical data, such as graphs, charts, and diagrams. There are different types of tables and ...

  17. 10 Methods of Data Presentation with 5 Great Tips to ...

    Among various types of data presentation, tabular is the most fundamental method, with data presented in rows and columns. Excel or Google Sheets would qualify for the job. Nothing fancy. This is an example of a tabular presentation of data on Google Sheets.

  18. Data Presentation

    Data Presentation - Tables. Tables are a useful way to organize information using rows and columns. Tables are a versatile organization tool and can be used to communicate information on their own, or they can be used to accompany another data representation type (like a graph). Tables support a variety of parameters and can be used to keep ...

  19. How to Present Data Effectively

    When the numbers allow for it, opt for something different. For example, donut charts can sometimes be used to execute the same effect as pie charts. But these conventional graphs and charts aren't applicable to all types of data. For example, if you're comparing numerous variables and factors, a bar chart would do no good.

  20. Data Presentation Types. In the process of Data Visualisation…

    The four identified categories for data presentation are -. Comparison. Composition. Distribution. Relationship/Trend. This blog covers an overview of most frequently used charts. (The list by no ...

  21. Basic Introduction to Statistics in Medicine, Part 1: Describing Data

    Background: Standardized and concise data presentation forms the base for subsequent analysis and interpretation. This article reviews types of data, data properties and distributions, and both numerical and graphical methods of data presentation. ... Age is a continuous numerical variable that consists of ratio data.

  22. 10 Data Presentation Tips

    Thankfully, we're here to help. Here are 10 data presentation tips to effectively communicate with executives, senior managers, marketing managers, and other stakeholders. 1. Choose a Communication Style. Every data professional has a different way of presenting data to their audience. Some people like to tell stories with data, illustrating ...

  23. Precipitating factors, presentation and outcomes of diabetic

    Precipitating factors, presentation and outcomes were summarised as frequencies and their corresponding percentages and presented in tables and charts. Results: The median age of participants was 33 years (IQR 23, 44.5). Type 1 DM represented 63.3% and type 2 DM 34.2% of the patients.