Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

Eight Instructional Strategies for Promoting Critical Thinking

how to promote critical thinking in students

  • Share article

(This is the first post in a three-part series.)

The new question-of-the-week is:

What is critical thinking and how can we integrate it into the classroom?

This three-part series will explore what critical thinking is, if it can be specifically taught and, if so, how can teachers do so in their classrooms.

Today’s guests are Dara Laws Savage, Patrick Brown, Meg Riordan, Ph.D., and Dr. PJ Caposey. Dara, Patrick, and Meg were also guests on my 10-minute BAM! Radio Show . You can also find a list of, and links to, previous shows here.

You might also be interested in The Best Resources On Teaching & Learning Critical Thinking In The Classroom .

Current Events

Dara Laws Savage is an English teacher at the Early College High School at Delaware State University, where she serves as a teacher and instructional coach and lead mentor. Dara has been teaching for 25 years (career preparation, English, photography, yearbook, newspaper, and graphic design) and has presented nationally on project-based learning and technology integration:

There is so much going on right now and there is an overload of information for us to process. Did you ever stop to think how our students are processing current events? They see news feeds, hear news reports, and scan photos and posts, but are they truly thinking about what they are hearing and seeing?

I tell my students that my job is not to give them answers but to teach them how to think about what they read and hear. So what is critical thinking and how can we integrate it into the classroom? There are just as many definitions of critical thinking as there are people trying to define it. However, the Critical Think Consortium focuses on the tools to create a thinking-based classroom rather than a definition: “Shape the climate to support thinking, create opportunities for thinking, build capacity to think, provide guidance to inform thinking.” Using these four criteria and pairing them with current events, teachers easily create learning spaces that thrive on thinking and keep students engaged.

One successful technique I use is the FIRE Write. Students are given a quote, a paragraph, an excerpt, or a photo from the headlines. Students are asked to F ocus and respond to the selection for three minutes. Next, students are asked to I dentify a phrase or section of the photo and write for two minutes. Third, students are asked to R eframe their response around a specific word, phrase, or section within their previous selection. Finally, students E xchange their thoughts with a classmate. Within the exchange, students also talk about how the selection connects to what we are covering in class.

There was a controversial Pepsi ad in 2017 involving Kylie Jenner and a protest with a police presence. The imagery in the photo was strikingly similar to a photo that went viral with a young lady standing opposite a police line. Using that image from a current event engaged my students and gave them the opportunity to critically think about events of the time.

Here are the two photos and a student response:

F - Focus on both photos and respond for three minutes

In the first picture, you see a strong and courageous black female, bravely standing in front of two officers in protest. She is risking her life to do so. Iesha Evans is simply proving to the world she does NOT mean less because she is black … and yet officers are there to stop her. She did not step down. In the picture below, you see Kendall Jenner handing a police officer a Pepsi. Maybe this wouldn’t be a big deal, except this was Pepsi’s weak, pathetic, and outrageous excuse of a commercial that belittles the whole movement of people fighting for their lives.

I - Identify a word or phrase, underline it, then write about it for two minutes

A white, privileged female in place of a fighting black woman was asking for trouble. A struggle we are continuously fighting every day, and they make a mockery of it. “I know what will work! Here Mr. Police Officer! Drink some Pepsi!” As if. Pepsi made a fool of themselves, and now their already dwindling fan base continues to ever shrink smaller.

R - Reframe your thoughts by choosing a different word, then write about that for one minute

You don’t know privilege until it’s gone. You don’t know privilege while it’s there—but you can and will be made accountable and aware. Don’t use it for evil. You are not stupid. Use it to do something. Kendall could’ve NOT done the commercial. Kendall could’ve released another commercial standing behind a black woman. Anything!

Exchange - Remember to discuss how this connects to our school song project and our previous discussions?

This connects two ways - 1) We want to convey a strong message. Be powerful. Show who we are. And Pepsi definitely tried. … Which leads to the second connection. 2) Not mess up and offend anyone, as had the one alma mater had been linked to black minstrels. We want to be amazing, but we have to be smart and careful and make sure we include everyone who goes to our school and everyone who may go to our school.

As a final step, students read and annotate the full article and compare it to their initial response.

Using current events and critical-thinking strategies like FIRE writing helps create a learning space where thinking is the goal rather than a score on a multiple-choice assessment. Critical-thinking skills can cross over to any of students’ other courses and into life outside the classroom. After all, we as teachers want to help the whole student be successful, and critical thinking is an important part of navigating life after they leave our classrooms.

usingdaratwo

‘Before-Explore-Explain’

Patrick Brown is the executive director of STEM and CTE for the Fort Zumwalt school district in Missouri and an experienced educator and author :

Planning for critical thinking focuses on teaching the most crucial science concepts, practices, and logical-thinking skills as well as the best use of instructional time. One way to ensure that lessons maintain a focus on critical thinking is to focus on the instructional sequence used to teach.

Explore-before-explain teaching is all about promoting critical thinking for learners to better prepare students for the reality of their world. What having an explore-before-explain mindset means is that in our planning, we prioritize giving students firsthand experiences with data, allow students to construct evidence-based claims that focus on conceptual understanding, and challenge students to discuss and think about the why behind phenomena.

Just think of the critical thinking that has to occur for students to construct a scientific claim. 1) They need the opportunity to collect data, analyze it, and determine how to make sense of what the data may mean. 2) With data in hand, students can begin thinking about the validity and reliability of their experience and information collected. 3) They can consider what differences, if any, they might have if they completed the investigation again. 4) They can scrutinize outlying data points for they may be an artifact of a true difference that merits further exploration of a misstep in the procedure, measuring device, or measurement. All of these intellectual activities help them form more robust understanding and are evidence of their critical thinking.

In explore-before-explain teaching, all of these hard critical-thinking tasks come before teacher explanations of content. Whether we use discovery experiences, problem-based learning, and or inquiry-based activities, strategies that are geared toward helping students construct understanding promote critical thinking because students learn content by doing the practices valued in the field to generate knowledge.

explorebeforeexplain

An Issue of Equity

Meg Riordan, Ph.D., is the chief learning officer at The Possible Project, an out-of-school program that collaborates with youth to build entrepreneurial skills and mindsets and provides pathways to careers and long-term economic prosperity. She has been in the field of education for over 25 years as a middle and high school teacher, school coach, college professor, regional director of N.Y.C. Outward Bound Schools, and director of external research with EL Education:

Although critical thinking often defies straightforward definition, most in the education field agree it consists of several components: reasoning, problem-solving, and decisionmaking, plus analysis and evaluation of information, such that multiple sides of an issue can be explored. It also includes dispositions and “the willingness to apply critical-thinking principles, rather than fall back on existing unexamined beliefs, or simply believe what you’re told by authority figures.”

Despite variation in definitions, critical thinking is nonetheless promoted as an essential outcome of students’ learning—we want to see students and adults demonstrate it across all fields, professions, and in their personal lives. Yet there is simultaneously a rationing of opportunities in schools for students of color, students from under-resourced communities, and other historically marginalized groups to deeply learn and practice critical thinking.

For example, many of our most underserved students often spend class time filling out worksheets, promoting high compliance but low engagement, inquiry, critical thinking, or creation of new ideas. At a time in our world when college and careers are critical for participation in society and the global, knowledge-based economy, far too many students struggle within classrooms and schools that reinforce low-expectations and inequity.

If educators aim to prepare all students for an ever-evolving marketplace and develop skills that will be valued no matter what tomorrow’s jobs are, then we must move critical thinking to the forefront of classroom experiences. And educators must design learning to cultivate it.

So, what does that really look like?

Unpack and define critical thinking

To understand critical thinking, educators need to first unpack and define its components. What exactly are we looking for when we speak about reasoning or exploring multiple perspectives on an issue? How does problem-solving show up in English, math, science, art, or other disciplines—and how is it assessed? At Two Rivers, an EL Education school, the faculty identified five constructs of critical thinking, defined each, and created rubrics to generate a shared picture of quality for teachers and students. The rubrics were then adapted across grade levels to indicate students’ learning progressions.

At Avenues World School, critical thinking is one of the Avenues World Elements and is an enduring outcome embedded in students’ early experiences through 12th grade. For instance, a kindergarten student may be expected to “identify cause and effect in familiar contexts,” while an 8th grader should demonstrate the ability to “seek out sufficient evidence before accepting a claim as true,” “identify bias in claims and evidence,” and “reconsider strongly held points of view in light of new evidence.”

When faculty and students embrace a common vision of what critical thinking looks and sounds like and how it is assessed, educators can then explicitly design learning experiences that call for students to employ critical-thinking skills. This kind of work must occur across all schools and programs, especially those serving large numbers of students of color. As Linda Darling-Hammond asserts , “Schools that serve large numbers of students of color are least likely to offer the kind of curriculum needed to ... help students attain the [critical-thinking] skills needed in a knowledge work economy. ”

So, what can it look like to create those kinds of learning experiences?

Designing experiences for critical thinking

After defining a shared understanding of “what” critical thinking is and “how” it shows up across multiple disciplines and grade levels, it is essential to create learning experiences that impel students to cultivate, practice, and apply these skills. There are several levers that offer pathways for teachers to promote critical thinking in lessons:

1.Choose Compelling Topics: Keep it relevant

A key Common Core State Standard asks for students to “write arguments to support claims in an analysis of substantive topics or texts using valid reasoning and relevant and sufficient evidence.” That might not sound exciting or culturally relevant. But a learning experience designed for a 12th grade humanities class engaged learners in a compelling topic— policing in America —to analyze and evaluate multiple texts (including primary sources) and share the reasoning for their perspectives through discussion and writing. Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care about and connect with can ignite powerful learning experiences.

2. Make Local Connections: Keep it real

At The Possible Project , an out-of-school-time program designed to promote entrepreneurial skills and mindsets, students in a recent summer online program (modified from in-person due to COVID-19) explored the impact of COVID-19 on their communities and local BIPOC-owned businesses. They learned interviewing skills through a partnership with Everyday Boston , conducted virtual interviews with entrepreneurs, evaluated information from their interviews and local data, and examined their previously held beliefs. They created blog posts and videos to reflect on their learning and consider how their mindsets had changed as a result of the experience. In this way, we can design powerful community-based learning and invite students into productive struggle with multiple perspectives.

3. Create Authentic Projects: Keep it rigorous

At Big Picture Learning schools, students engage in internship-based learning experiences as a central part of their schooling. Their school-based adviser and internship-based mentor support them in developing real-world projects that promote deeper learning and critical-thinking skills. Such authentic experiences teach “young people to be thinkers, to be curious, to get from curiosity to creation … and it helps students design a learning experience that answers their questions, [providing an] opportunity to communicate it to a larger audience—a major indicator of postsecondary success.” Even in a remote environment, we can design projects that ask more of students than rote memorization and that spark critical thinking.

Our call to action is this: As educators, we need to make opportunities for critical thinking available not only to the affluent or those fortunate enough to be placed in advanced courses. The tools are available, let’s use them. Let’s interrogate our current curriculum and design learning experiences that engage all students in real, relevant, and rigorous experiences that require critical thinking and prepare them for promising postsecondary pathways.

letsinterrogate

Critical Thinking & Student Engagement

Dr. PJ Caposey is an award-winning educator, keynote speaker, consultant, and author of seven books who currently serves as the superintendent of schools for the award-winning Meridian CUSD 223 in northwest Illinois. You can find PJ on most social-media platforms as MCUSDSupe:

When I start my keynote on student engagement, I invite two people up on stage and give them each five paper balls to shoot at a garbage can also conveniently placed on stage. Contestant One shoots their shot, and the audience gives approval. Four out of 5 is a heckuva score. Then just before Contestant Two shoots, I blindfold them and start moving the garbage can back and forth. I usually try to ensure that they can at least make one of their shots. Nobody is successful in this unfair environment.

I thank them and send them back to their seats and then explain that this little activity was akin to student engagement. While we all know we want student engagement, we are shooting at different targets. More importantly, for teachers, it is near impossible for them to hit a target that is moving and that they cannot see.

Within the world of education and particularly as educational leaders, we have failed to simplify what student engagement looks like, and it is impossible to define or articulate what student engagement looks like if we cannot clearly articulate what critical thinking is and looks like in a classroom. Because, simply, without critical thought, there is no engagement.

The good news here is that critical thought has been defined and placed into taxonomies for decades already. This is not something new and not something that needs to be redefined. I am a Bloom’s person, but there is nothing wrong with DOK or some of the other taxonomies, either. To be precise, I am a huge fan of Daggett’s Rigor and Relevance Framework. I have used that as a core element of my practice for years, and it has shaped who I am as an instructional leader.

So, in order to explain critical thought, a teacher or a leader must familiarize themselves with these tried and true taxonomies. Easy, right? Yes, sort of. The issue is not understanding what critical thought is; it is the ability to integrate it into the classrooms. In order to do so, there are a four key steps every educator must take.

  • Integrating critical thought/rigor into a lesson does not happen by chance, it happens by design. Planning for critical thought and engagement is much different from planning for a traditional lesson. In order to plan for kids to think critically, you have to provide a base of knowledge and excellent prompts to allow them to explore their own thinking in order to analyze, evaluate, or synthesize information.
  • SIDE NOTE – Bloom’s verbs are a great way to start when writing objectives, but true planning will take you deeper than this.

QUESTIONING

  • If the questions and prompts given in a classroom have correct answers or if the teacher ends up answering their own questions, the lesson will lack critical thought and rigor.
  • Script five questions forcing higher-order thought prior to every lesson. Experienced teachers may not feel they need this, but it helps to create an effective habit.
  • If lessons are rigorous and assessments are not, students will do well on their assessments, and that may not be an accurate representation of the knowledge and skills they have mastered. If lessons are easy and assessments are rigorous, the exact opposite will happen. When deciding to increase critical thought, it must happen in all three phases of the game: planning, instruction, and assessment.

TALK TIME / CONTROL

  • To increase rigor, the teacher must DO LESS. This feels counterintuitive but is accurate. Rigorous lessons involving tons of critical thought must allow for students to work on their own, collaborate with peers, and connect their ideas. This cannot happen in a silent room except for the teacher talking. In order to increase rigor, decrease talk time and become comfortable with less control. Asking questions and giving prompts that lead to no true correct answer also means less control. This is a tough ask for some teachers. Explained differently, if you assign one assignment and get 30 very similar products, you have most likely assigned a low-rigor recipe. If you assign one assignment and get multiple varied products, then the students have had a chance to think deeply, and you have successfully integrated critical thought into your classroom.

integratingcaposey

Thanks to Dara, Patrick, Meg, and PJ for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

  • This Year’s Most Popular Q&A Posts
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Facing Gender Challenges in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech in the Classroom
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • Entering the Teaching Profession
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

Kid Characters Observe Sky with Moon, Milky Way and Reach for the stars!

Sign Up & Sign In

module image 9

BLOG | PODCAST NETWORK | ADMIN. MASTERMIND | SWAG & MERCH | ONLINE TRAINING

Teach Better

  • Meet the Team
  • Join the Team
  • Our Philosophy
  • Teach Better Mindset
  • Custom Professional Development
  • Livestream Shows & Videos
  • Administrator Mastermind
  • Academy Online Courses
  • EDUcreator Club+
  • Podcast Network
  • Speakers Network
  • EDUpreneur Mastermind
  • Free Downloads
  • Ambassador Program
  • Free Facebook Group
  • Professional Development
  • Request Training
  • Speakers Network Home
  • Keynote Speakers

Strategies to Increase Critical Thinking Skills in students

Matthew Joseph October 2, 2019 Blog , Engage Better , Lesson Plan Better , Personalize Student Learning Better

how to promote critical thinking in students

In This Post:

  • The importance of helping students increase critical thinking skills.
  • Ways to promote the essential skills needed to analyze and evaluate.
  • Strategies to incorporate critical thinking into your instruction.

We ask our teachers to be “future-ready” or say that we are teaching “for jobs that don’t exist yet.” These are powerful statements. At the same time, they give teachers the impression that we have to drastically change what we are doing .

So how do we plan education for an unknown job market or unknown needs?

My answer: We can’t predict the jobs, but whatever they are, students will need to think critically to do them. So, our job is to teach our students HOW to think, not WHAT to think.

Helping Students Become Critical Thinkers

My answer is rooted in the call to empower our students to be critical thinkers. I believe that to be critical thinkers, educators need to provide students with the strategies they need. And we need to ask more than just surface-level questions.

Questions to students must motivate them to dig up background knowledge. They should inspire them to make connections to real-world scenarios. These make the learning more memorable and meaningful.

Critical thinking is a general term. I believe this term means that students effectively identify, analyze, and evaluate content or skills. In this process, they (the students) will discover and present convincing reasons in support of their answers or thinking.

You can look up critical thinking and get many definitions like this one from Wikipedia: “ Critical thinking consists of a mental process of analyzing or evaluating information, particularly statements or propositions that people have offered as true. ”

Essential Skills for Critical Thinking

In my current role as director of curriculum and instruction, I work to promote the use of 21st-century tools and, more importantly, thinking skills. Some essential skills that are the basis for critical thinking are:

  • Communication and Information skills
  • Thinking and Problem-Solving skills
  • Interpersonal and Self- Directional skills
  • Collaboration skills

These four bullets are skills students are going to need in any field and in all levels of education. Hence my answer to the question. We need to teach our students to think critically and for themselves.

One of the goals of education is to prepare students to learn through discovery . Providing opportunities to practice being critical thinkers will assist students in analyzing others’ thinking and examining the logic of others.

Understanding others is an essential skill in collaboration and in everyday life. Critical thinking will allow students to do more than just memorize knowledge.

Ask Questions

So how do we do this? One recommendation is for educators to work in-depth questioning strategies into a lesson launch.

Ask thoughtful questions to allow for answers with sound reasoning. Then, word conversations and communication to shape students’ thinking. Quick answers often result in very few words and no eye contact, which are skills we don’t want to promote.

When you are asking students questions and they provide a solution, try some of these to promote further thinking:

  • Could you elaborate further on that point?
  • Will you express that point in another way?
  • Can you give me an illustration?
  • Would you give me an example?
  • Will you you provide more details?
  • Could you be more specific?
  • Do we need to consider another point of view?
  • Is there another way to look at this question?

Utilizing critical thinking skills could be seen as a change in the paradigm of teaching and learning. Engagement in education will enhance the collaboration among teachers and students. It will also provide a way for students to succeed even if the school system had to start over.

[scroll down to keep reading]

Promoting critical thinking into all aspects of instruction.

Engagement, application, and collaboration are skills that withstand the test of time. I also promote the integration of critical thinking into every aspect of instruction.

In my experience, I’ve found a few ways to make this happen.

Begin lessons/units with a probing question: It shouldn’t be a question you can answer with a ‘yes’ or a ‘no.’ These questions should inspire discovery learning and problem-solving.

Encourage Creativity: I have seen teachers prepare projects before they give it to their students many times. For example, designing snowmen or other “creative” projects. By doing the design work or by cutting all the circles out beforehand, it removes creativity options.

It may help the classroom run more smoothly if every child’s material is already cut out, but then every student’s project looks the same. Students don’t have to think on their own or problem solve.

Not having everything “glue ready” in advance is a good thing. Instead, give students all the supplies needed to create a snowman, and let them do it on their own.

Giving independence will allow students to become critical thinkers because they will have to create their own product with the supplies you give them. This might be an elementary example, but it’s one we can relate to any grade level or project.

Try not to jump to help too fast – let the students work through a productive struggle .

Build in opportunities for students to find connections in learning.  Encouraging students to make connections to a real-life situation and identify patterns is a great way to practice their critical thinking skills. The use of real-world scenarios will increase rigor, relevance, and critical thinking.

A few other techniques to encourage critical thinking are:

  • Use analogies
  • Promote interaction among students
  • Ask open-ended questions
  • Allow reflection time
  • Use real-life problems
  • Allow for thinking practice

Critical thinking prepares students to think for themselves for the rest of their lives. I also believe critical thinkers are less likely to go along with the crowd because they think for themselves.

About Matthew X. Joseph, Ed.D.

Dr. Matthew X. Joseph has been a school and district leader in many capacities in public education over his 25 years in the field. Experiences such as the Director of Digital Learning and Innovation in Milford Public Schools (MA), elementary school principal in Natick, MA and Attleboro, MA, classroom teacher, and district professional development specialist have provided Matt incredible insights on how to best support teaching and learning. This experience has led to nationally publishing articles and opportunities to speak at multiple state and national events. He is the author of Power of Us: Creating Collaborative Schools and co-author of Modern Mentoring , Reimagining Teacher Mentorship (Due out, fall 2019). His master’s degree is in special education and his Ed.D. in Educational Leadership from Boston College.

Visit Matthew’s Blog

how to promote critical thinking in students

how to promote critical thinking in students

JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.

  • Order Tracking
  • Create an Account

how to promote critical thinking in students

200+ Award-Winning Educational Textbooks, Activity Books, & Printable eBooks!

  • Compare Products

Reading, Writing, Math, Science, Social Studies

  • Search by Book Series
  • Algebra I & II  Gr. 7-12+
  • Algebra Magic Tricks  Gr. 2-12+
  • Algebra Word Problems  Gr. 7-12+
  • Balance Benders  Gr. 2-12+
  • Balance Math & More!  Gr. 2-12+
  • Basics of Critical Thinking  Gr. 4-7
  • Brain Stretchers  Gr. 5-12+
  • Building Thinking Skills  Gr. Toddler-12+
  • Building Writing Skills  Gr. 3-7
  • Bundles - Critical Thinking  Gr. PreK-9
  • Bundles - Language Arts  Gr. K-8
  • Bundles - Mathematics  Gr. PreK-9
  • Bundles - Multi-Subject Curriculum  Gr. PreK-12+
  • Bundles - Test Prep  Gr. Toddler-12+
  • Can You Find Me?  Gr. PreK-1
  • Complete the Picture Math  Gr. 1-3
  • Cornell Critical Thinking Tests  Gr. 5-12+
  • Cranium Crackers  Gr. 3-12+
  • Creative Problem Solving  Gr. PreK-2
  • Critical Thinking Activities to Improve Writing  Gr. 4-12+
  • Critical Thinking Coloring  Gr. PreK-2
  • Critical Thinking Detective  Gr. 3-12+
  • Critical Thinking Tests  Gr. PreK-6
  • Critical Thinking for Reading Comprehension  Gr. 1-5
  • Critical Thinking in United States History  Gr. 6-12+
  • CrossNumber Math Puzzles  Gr. 4-10
  • Crypt-O-Words  Gr. 2-7
  • Crypto Mind Benders  Gr. 3-12+
  • Daily Mind Builders  Gr. 5-12+
  • Dare to Compare Math  Gr. 2-7
  • Developing Critical Thinking through Science  Gr. 1-8
  • Dr. DooRiddles  Gr. PreK-12+
  • Dr. Funster's  Gr. 2-12+
  • Editor in Chief  Gr. 2-12+
  • Fun-Time Phonics!  Gr. PreK-2
  • Half 'n Half Animals  Gr. K-4
  • Hands-On Thinking Skills  Gr. K-1
  • Inference Jones  Gr. 1-6
  • James Madison  Gr. 10-12+
  • Jumbles  Gr. 3-5
  • Language Mechanic  Gr. 4-7
  • Language Smarts  Gr. 1-4
  • Mastering Logic & Math Problem Solving  Gr. 6-9
  • Math Analogies  Gr. K-9
  • Math Detective  Gr. 3-8
  • Math Games  Gr. 3-8
  • Math Mind Benders  Gr. 5-12+
  • Math Ties  Gr. 4-8
  • Math Word Problems  Gr. 4-10
  • Mathematical Reasoning  Gr. Toddler-11
  • Middle School Science  Gr. 6-8
  • Mind Benders  Gr. PreK-12+
  • Mind Building Math  Gr. K-1
  • Mind Building Reading  Gr. K-1
  • Novel Thinking  Gr. 3-6
  • OLSAT® Test Prep  Gr. PreK-K
  • Organizing Thinking  Gr. 2-8
  • Pattern Explorer  Gr. 3-9
  • Practical Critical Thinking  Gr. 8-12+
  • Punctuation Puzzler  Gr. 3-8
  • Reading Detective  Gr. 3-12+
  • Red Herring Mysteries  Gr. 4-12+
  • Red Herrings Science Mysteries  Gr. 4-9
  • Science Detective  Gr. 3-6
  • Science Mind Benders  Gr. PreK-3
  • Science Vocabulary Crossword Puzzles  Gr. 4-6
  • Sciencewise  Gr. 4-12+
  • Scratch Your Brain  Gr. 2-12+
  • Sentence Diagramming  Gr. 3-12+
  • Smarty Pants Puzzles  Gr. 3-12+
  • Snailopolis  Gr. K-4
  • Something's Fishy at Lake Iwannafisha  Gr. 5-9
  • Teaching Technology  Gr. 3-12+
  • Tell Me a Story  Gr. PreK-1
  • Think Analogies  Gr. 3-12+
  • Think and Write  Gr. 3-8
  • Think-A-Grams  Gr. 4-12+
  • Thinking About Time  Gr. 3-6
  • Thinking Connections  Gr. 4-12+
  • Thinking Directionally  Gr. 2-6
  • Thinking Skills & Key Concepts  Gr. PreK-2
  • Thinking Skills for Tests  Gr. PreK-5
  • U.S. History Detective  Gr. 8-12+
  • Understanding Fractions  Gr. 2-6
  • Visual Perceptual Skill Building  Gr. PreK-3
  • Vocabulary Riddles  Gr. 4-8
  • Vocabulary Smarts  Gr. 2-5
  • Vocabulary Virtuoso  Gr. 2-12+
  • What Would You Do?  Gr. 2-12+
  • Who Is This Kid? Colleges Want to Know!  Gr. 9-12+
  • Word Explorer  Gr. 6-8
  • Word Roots  Gr. 3-12+
  • World History Detective  Gr. 6-12+
  • Writing Detective  Gr. 3-6
  • You Decide!  Gr. 6-12+

how to promote critical thinking in students

  • Special of the Month
  • Sign Up for our Best Offers
  • Bundles = Greatest Savings!
  • Sign Up for Free Puzzles
  • Sign Up for Free Activities
  • Toddler (Ages 0-3)
  • PreK (Ages 3-5)
  • Kindergarten (Ages 5-6)
  • 1st Grade (Ages 6-7)
  • 2nd Grade (Ages 7-8)
  • 3rd Grade (Ages 8-9)
  • 4th Grade (Ages 9-10)
  • 5th Grade (Ages 10-11)
  • 6th Grade (Ages 11-12)
  • 7th Grade (Ages 12-13)
  • 8th Grade (Ages 13-14)
  • 9th Grade (Ages 14-15)
  • 10th Grade (Ages 15-16)
  • 11th Grade (Ages 16-17)
  • 12th Grade (Ages 17-18)
  • 12th+ Grade (Ages 18+)
  • Test Prep Directory
  • Test Prep Bundles
  • Test Prep Guides
  • Preschool Academics
  • Store Locator
  • Submit Feedback/Request
  • Sales Alerts Sign-Up
  • Technical Support
  • Mission & History
  • Articles & Advice
  • Testimonials
  • Our Guarantee
  • New Products
  • Free Activities
  • Libros en Español

How To Promote Critical Thinking In Your Classroom

Promoting Thinking

November 25, 2006, by The Critical Thinking Co. Staff

Modeling of critical thinking skills by instructors is crucial for teaching critical thinking successfully. By making your own thought processes explicit in class - explaining your reasoning, evaluating evidence for a claim, probing the credibility of a source, or even describing what has puzzled or confused you - you provide a powerful example to students, particularly if you invite them to join in; e.g., "Can you see where we're headed with this?" "I can't think of other explanations; can you?" "This idea/principle struck me as difficult or confusing at first, but here's how I figured it out." You can encourage students to emulate this by using them in demonstrations, asking them to "think out loud" in order for classmates to observe how they reason through a problem.

Develop the habit of asking questions that require students to think critically, and tell students that you really expect them to give answers! In particular, Socratic questioning encourages students to develop and clarify their thinking: e.g., "Would your answer hold in all cases?" "How would you respond to a counter-example or counter-argument?" "Explain how you arrived at that answer?"

This is another skill that students can learn from your example, and can use in working with each other. Providing regular opportunities for pair or small group discussions after major points or demonstrations during lectures is also important: this allows students to process the new material, connect it to previously learned topics, and practice asking questions that promote further critical thinking. Obviously, conveying genuine respect for student input is essential. Communicating the message that you value and support student contributions and efforts to think critically increases confidence, and motivates students to continue building their thinking skills. An essential component of this process is the creation of a climate where students feel comfortable with exploring the process of reasoning through a problem without being "punished" for getting the wrong answer.

Researchers have found consistently that interaction among students, in the form of well-structured group discussions plays a central role in stimulating critical thinking. Discussing course material and its applications allows students to formulate and test hypotheses, practice asking thought-provoking questions, hear other perspectives, analyze claims, evaluate evidence, and explain and justify their reasoning. As they become more sophisticated and fluent in thinking critically, students can observe and critique each others' reasoning skills.

Critical Thinking: Facilitating and Assessing the 21st Century Skills in Education

So many times we hear our students say, “Why am I learning this?”

Illustration of varied colorful figures with varied word balloons

I believe that Critical Thinking is the spark that begins the process of authentic learning. Before going further, we must first develop an idea of what learning is… and what learning is not.  So many times we hear our students say, “Why am I learning this?” The reason they ask is because they have not really experienced the full spectrum of learning, and because of this are actually not learning to a full rewarding  extent! We might say they are being exposed to surface learning and not authentic (real) learning. The act of authentic learning is actually an exciting and engaging concept. It allows students to see real meaning and begin to construct their own knowledge.  Critical Thinking is core to learning. It is rewarding, engaging, and life long. Without critical thinking students are left to a universe of concepts and memorization.  Yes… over twelve years of mediocrity! When educators employ critical thinking in their classrooms, a whole new world of understanding is opened up.   What are some reasons to facilitate critical thinking with our students? Let me begin:

Ten Reasons For Student Critical Thinking in the classroom

  • Allows for necessary inquiry that makes learning exciting
  • Provides a method to go beyond memorization to promote understanding.
  • Allows students to visualize thoughts, concepts, theories, models & possibilities.
  • Promotes curriculum standards, trans-disciplinary ideas & real world connections.
  • Encourages a classroom culture of collaboration that promotes deeper thinking.
  • Builds skills of problem solving, making implications, & determining consequences.
  • Facilitates goal setting, promotion of process, and perseverance to achieve.
  • Teaches self reflection and critique, and the ability to listen to others’ thoughts.
  • Encourages point of view  while developing persuasive skills.
  • Guides interpretation while developing a skill to infer and draw conclusions.

I am excited by the spark that critical thinking ignites to support real and authentic learning in the classroom. I often wonder how much time students spend in the process of critical thinking in the classroom. I ask you to reflect on your typical school day. Are your students spending time in area of surface learning , or are they plunging into the engaging culture of deeper (real) learning?  At the same time … how are you assessing your students? So many times as educators, we are bound by the standards, and we forget the importance of promoting that critical thinking process that makes our standards come alive with understanding. A culture of critical thinking is not automatic, though with intentional planning  it can become a reality. Like the other 21st century skills, it must be built and continuously facilitated. Let’s take a look at how, we as educators, can do this.

Ten Ways to Facilitate Student Critical Thinking in the Classroom and School

  • Design Critical Thinking Activities.  (This might include mind mapping, making thinking visible, Socratic discussions, meta-cognitive mind stretches, Build an inquiry wall with students and talk about the process of thinking”
  • Provide time for students to collaborate.  (Collaboration can be the button that starts critical thinking. It provides group thinking that builds on the standards. Have students work together while solving multi-step and higher order thinking problems. Sometimes this might mean slow down to increase the learning.)
  • Provide students with a Critical Thinking rubric.  (Have them look at the rubric before a critical thinking activity, and once again when they are finished)
  • Make assessment of Critical Thinking an ongoing effort.  (While the teacher can assess, have students assess themselves. Self assessment can be powerful)
  • Concentrate on specific indicators in a rubric.  (There are various indicators such as; provides inquiry, answers questions, builds an argument etc. Concentrate on just one indicator while doing a lesson. There can even be an exit ticket reflection)
  • Integrate the idea of Critical Thinking in any lesson.  ( Do not teach this skill in isolation. How does is work with a lesson, stem activity, project built, etc. What does Critical Thinking look like in the online or blended environment? Think of online discussions.)
  • Post a Critical Thinking Poster in the room.  (This poster could be a copy of a rubric or even a list of “I Can Statements”. Point it out before a critical thinking activity.
  • Make Critical Thinking part of your formative  and summative assessment.   (Move around the room, talk to groups and students, stop the whole group to make adjustments.)
  • Point out Critical Thinking found in the content standards.  (Be aware that content standards often have words like; infer, debate, conclude, solve, prioritize, compare and contrast, hypothesize, and research. Critical Thinking has always been part of the standards. Show your students Bloom’s Taxonomy and post in the room. Where are they in their learning?
  • Plan for a school wide emphasis.  (A culture that builds Critical Thinking is usually bigger then one classroom. Develop school-wide vocabulary, posters, and initiatives.)

I keep talking about the idea of surface learning and deeper learning. This can best be seen in  Bloom’s Taxonomy. Often we start with Remembering.  This might be essential in providing students the map to the further areas of Bloom’s. Of course, we then find the idea of Understanding. This is where I believe critical thinking begins. Sometimes we need to critically think in order to understand. In fact, you might be this doing right now. I believe that too much time might be spent in Remembering, which is why students get a false idea of what learning really is. As we look at the rest of Bloom’s ( Apply, Analyze, Evaluate, and Create) we can see the deeper learning take place. and even steps toward the transfer and internalization of the learning. Some educators even tip Bloom’s upside down, stating that the Creating at the top will build an understanding. This must be done with careful facilitation and intentional scaffold to make sure there is some surface learning. After-all, Critical Thinking will need this to build on.

I have been mentioning rubrics and assessment tools through out this post. To me, these are essential in building that culture of critical thinking in the classroom. I want to provide you with some great resources that will give your some powerful tools to assess the skill of Critical Thinking.  Keep in mind that students can also self assess and journal using prompts from a Critical Thinking Rubric.

Seven Resources to Help with Assessment and Facilitation of Critical Thinking

  • Habits of Mind  – I think this is an awesome place to help teachers facilitate and assess critical thinking and more. Check out the  free resources page  which even has some wonderful posters. One of my favorites is the rubrics found on this  research page . Decide on spending some time because there are a lot of great resources.
  • PBLWorks  – The number one place for PBL in the world is at PBLWorks. You may know it as the BUCK Institute or BIE. I am fortunate to be part of their National Faculty which is probably why I rank it as number one. I encourage you to visit their site for everything PBL.  This link brings you to the resource area where you will discover some amazing  rubrics to facilitate Critical Thinking. You will find rubrics for grade bands K-2, 3-5, and 6-12. This really is a great place to start. You will need to sign up to be a member of PBLWorks. This is a wonderful idea, after-all it is free!
  • Microsoft Innovative Learning  – This   website  contains some powerful rubrics for assessing the 21st Century skills. The link will bring you to a PDF file with Critical Thinking rubrics you can use tomorrow for any grade level. Check out this  two page document  defining the 4 C’s and a  movie  giving you even more of an explanation.
  • New Tech School  – This amazing PBL group of schools provide some wonderful Learning Rubrics in their free area.  Here you will find an interesting collection of rubrics that assesses student learning in multiple areas. These are sure to get you off and started.
  • Foundation for Critical Thinking  –  Check out this  amazing page  to help give you descriptors.
  • Project Zero  – While it is not necessarily assessment based, you will find some powerful  routines for making thinking visible . As you conduct these types of activities you will find yourself doing some wonderful formative assessment of critical thinking.
  • Education Week  – Take a look at this resource that provides some great reasoning and some interesting links that provide a glimpse of critical thinking in the classroom.

Critical Thinking “I Can Statements”

As you can see, I believe that Critical Thinking is key to PBL, STEM, and Deeper Learning. It improves Communication and Collaboration, while promoting Creativity.  I believe every student should have these following “I Can Statements” as part of their learning experience. Feel free to copy and use in your classroom. Perhaps this is a great starting place as you promote collaborative and powerful learning culture!

  • I can not only answer questions, but can also think of new questions to ask 
  • I can take time to see what I am thinking to promote even better understanding 
  • I can attempt to see other peoples’ thinking while explaining my own 
  • I can look at a problem and determine needed steps to find a solution 
  • I can use proper collaboration skills to work with others productively to build solutions 
  • I can set a goal, design a plan, and persevere to accomplish the goal. 
  • I can map out strategies and processes that shows the action involved in a task. 
  • I can define and show my understanding of a concept, model, theory, or process. 
  • I can take time to reflect and productively critique my work and the work of others 
  • I can understand, observe, draw inferences, hypothesize and see implications.

cross-posted at  21centuryedtech.wordpress.com

Michael Gorman oversees one-to-one laptop programs and digital professional development for Southwest Allen County Schools near Fort Wayne, Indiana. He is a consultant for Discovery Education, ISTE, My Big Campus, and November Learning and is on the National Faculty for The Buck Institute for Education. His awards include district Teacher of the Year, Indiana STEM Educator of the Year and Microsoft’s 365 Global Education Hero. Read more at  21centuryedtech.wordpress.com .

Tech & Learning Newsletter

Tools and ideas to transform education. Sign up below.

 alt=

Best Apps and Sites for Augmented Reality

What Is Scratch And How Does It Work? What's New?

 alt=

3 Modern Challenges Facing District IT Leaders

Most Popular

how to promote critical thinking in students

Promoting and Assessing Critical Thinking

Critical thinking is a high priority outcome of higher education – critical thinking skills are crucial for independent thinking and problem solving in both our students’ professional and personal lives. But, what does it mean to be a critical thinker and how do we promote and assess it in our students? Critical thinking can be defined as being able to examine an issue by breaking it down, and evaluating it in a conscious manner, while providing arguments/evidence to support the evaluation. Below are some suggestions for promoting and assessing critical thinking in our students.

Thinking through inquiry

Asking questions and using the answers to understand the world around us is what drives critical thinking. In inquiry-based instruction, the teacher asks students leading questions to draw from them information, inferences, and predictions about a topic. Below are some example generic question stems that can serve as prompts to aid in generating critical thinking questions. Consider providing prompts such as these to students to facilitate their ability to also ask these questions of themselves and others. If we want students to generate good questions on their own, we need to teach them how to do so by providing them with the structure and guidance of example questions, whether in written form, or by our use of questions in the classroom.

Generic question stems

  • What are the strengths and weaknesses of …?
  • What is the difference between … and …?
  • Explain why/how …?
  • What would happen if …?
  • What is the nature of …?
  • Why is … happening?
  • What is a new example of …?
  • How could … be used to …?
  • What are the implications of …?
  • What is … analogous to?
  • What do we already know about …?
  • How does … affect …?
  • How does … tie in with what we have learned before?
  • What does … mean?
  • Why is … important?
  • How are … and … similar/different?
  • How does … apply to everyday life?
  • What is a counterarguement for …?
  • What is the best …and why?
  • What is a solution to the problem of …?
  • Compare … and … with regard to …?
  • What do you think causes …? Why?
  • Do you agree or disagree with this statement? What evidence is there to support your answer?
  • What is another way to look at …?

Critical thinking through writing

Another essential ingredient in critical thinking instruction is the use of writing. Writing converts students from passive to active learners and requires them to identify issues and formulate hypotheses and arguments. The act of writing requires students to focus and clarify their thoughts before putting them down on paper, hence taking them through the critical thinking process. Writing requires that students make important critical choices and ask themselves (Gocsik, 2002):

  • What information is most important?
  • What might be left out?
  • What is it that I think about this subject?
  • How did I arrive at what I think?
  • What are my assumptions? Are they valid?
  • How can I work with facts, observations, and so on, in order to convince others of what I think?
  • What do I not yet understand?

Consider providing the above questions to students so that they can evaluate their own writing as well. Some suggestions for critical thinking writing activities include:

  • Give students raw data and ask them to write an argument or analysis based on the data.
  • Have students explore and write about unfamiliar points of view or “what if” situations.
  • Think of a controversy in your field, and have the students write a dialogue between characters with different points of view.
  • Select important articles in your field and ask the students to write summaries or abstracts of them. Alternately, you could ask students to write an abstract of your lecture.
  • Develop a scenario that place students in realistic situations relevant to your discipline, where they must reach a decision to resolve a conflict.

See the Centre for Teaching Excellence (CTE) teaching tip “ Low-Stakes Writing Assignments ” for critical thinking writing assignments.

Critical thinking through group collaboration

Opportunities for group collaboration could include discussions, case studies, task-related group work, peer review, or debates. Group collaboration is effective for promoting critical thought because:

  • An effective team has the potential to produce better results than any individual,
  • Students are exposed to different perspectives while clarifying their own ideas,
  • Collaborating on a project or studying with a group for an exam generally stimulates interest and increases the understanding and knowledge of the topic.

See the CTE teaching tip “ Group Work in the Classroom: Types of Small Groups ” for suggestions for forming small groups in your classroom.

Assessing critical thinking skills

You can also use the students’ responses from the activities that promote critical thinking to assess whether they are, indeed, reaching your critical thinking goals. It is important to establish clear criteria for evaluating critical thinking. Even though many of us may be able to identify critical thinking when we see it, explicitly stated criteria help both students and teachers know the goal toward which they are working. An effective criterion measures which skills are present, to what extent, and which skills require further development. The following are characteristics of work that may demonstrate effective critical thinking:

  • Accurately and thoroughly interprets evidence, statements, graphics, questions, literary elements, etc.
  • Asks relevant questions.
  • Analyses and evaluates key information, and alternative points of view clearly and precisely.
  • Fair-mindedly examines beliefs, assumptions, and opinions and weighs them against facts.
  • Draws insightful, reasonable conclusions.
  • Justifies inferences and opinions.
  • Thoughtfully addresses and evaluates major alternative points of view.
  • Thoroughly explains assumptions and reasons.

It is also important to note that assessment is a tool that can be used throughout a course, not just at the end. It is more useful to assess students throughout a course, so you can see if criteria require further clarification and students can test out their understanding of your criteria and receive feedback. Also consider distributing your criteria with your assignments so that students receive guidance about your expectations. This will help them to reflect on their own work and improve the quality of their thinking and writing.

See the CTE teaching tip sheets “ Rubrics ” and “ Responding to Writing Assignments: Managing the Paper Load ” for more information on rubrics.

If you would like support applying these tips to your own teaching, CTE staff members are here to help.  View the  CTE Support  page to find the most relevant staff member to contact. 

  • Gocsik, K. (2002). Teaching Critical Thinking Skills. UTS Newsletter, 11(2):1-4
  • Facione, P.A. and Facione, N.C. (1994). Holistic Critical Thinking Scoring Rubric. Millbrae, CA: California Academic Press. www.calpress.com/rubric.html (retrieved September 2003)
  • King, A. (1995). Inquiring minds really do want to know: using questioning to teach critical thinking. Teaching of Psychology, 22(1): 13-17
  • Wade, C. and Tavris, C. (1987). Psychology (1st ed.) New York: Harper. IN: Wade, C. (1995). Using Writing to Develop and Assess Critical Thinking. Teaching of Psychology, 22(1): 24-28.

teaching tips

Catalog search

Teaching tip categories.

  • Assessment and feedback
  • Blended Learning and Educational Technologies
  • Career Development
  • Course Design
  • Course Implementation
  • Inclusive Teaching and Learning
  • Learning activities
  • Support for Student Learning
  • Support for TAs

Educationise

10 Innovative Strategies for Promoting Critical Thinking in the Classroom

Are you looking for innovative ways to promote critical thinking skills in your classroom? As an educator, you know the importance of developing strong critical thinking skills in your students. In today’s complex and ever-changing world, critical thinking is a vital skill that can make the difference between success and failure.

Critical Thinking Lessons and Activities

Now you may be wondering how to promote critical thinking in the classroom or how to develop critical thinking skills in the students. Well, to help you out, we’ve put together 10 surprising strategies to promote critical thinking skills in your classroom, complete with real-world examples and actionable strategies.

Strategies for Promoting Critical Thinking in the Classroom

These strategies are designed to promote active learning, inquiry-based learning, and Bloom’s Taxonomy levels of analysis, evaluation, and interpretation. Here they are:

1. Collaborative Learning

Collaborative learning is an effective way to promote critical thinking skills in your classroom. By encouraging your students to work together to solve complex problems, you can help them develop skills in analysis, evaluation, and interpretation.

For example, you could divide your students into small groups and give them a problem to solve. Each group can then present their solution to the class and the class can evaluate and critique each solution. This not only encourages critical thinking, but it also promotes teamwork and communication skills.

If you are looking for examples of critical thinking in the classroom, then read our article 11 activities that promote critical thinking skills in the classroom .

2. Questioning

Asking open-ended questions is another effective way to promote critical thinking skills in your classroom. Open-ended questions encourage your students to think deeply about a topic and consider different perspectives.

Read our article: 10 Best Educational Games for Kids That will Shape Their Future

For example, if you’re teaching a lesson on climate change, you could ask your students questions such as “What are the causes of climate change?” and “What are the potential consequences of climate change?” These questions encourage your students to analyze information and think critically about the topic.

3. Active Listening

Encouraging active listening is another way to promote critical thinking skills in your classroom. When students actively listen to each other, they consider different perspectives and analyze information more deeply.

Think Like a Detective – A Kid’s Guide to Critical Thinking

For example, you could ask your students to work in pairs and have each student share their opinion on a topic. The other student must actively listen and ask follow-up questions to better understand their partner’s perspective. This activity promotes critical thinking skills such as analysis, evaluation, and interpretation.

4. Case Studies

Using case studies is another effective way to promote critical thinking skills in your classroom. Case studies allow your students to apply critical thinking skills to real-world situations.

For example, if you’re teaching a lesson on business ethics , you could present a case study on a company that faced an ethical dilemma. Your students can then analyze the case study and identify potential solutions. This activity promotes critical thinking skills such as analysis, evaluation, and interpretation.

Organizing debates is another effective way to promote critical thinking skills in your classroom. Debates encourage your students to analyze and evaluate different viewpoints on a topic.

For example, if you’re teaching a lesson on gun control, you could organize a debate where half of the class argues for gun control and the other half argues against it. This activity promotes critical thinking skills such as analysis, evaluation, and interpretation.

Read our article: Engaging STEM Activities for Elementary, Middle and High School Students

6. Mind Mapping

Using mind mapping is another effective way to promote critical thinking skills in your classroom. Mind mapping allows your students to organize and analyze complex information.

For example, if you’re teaching a lesson on the solar system, you could have your students create a mind map of the different planets and their characteristics. This activity promotes critical thinking skills such as analysis, evaluation, and interpretation.

7. Gamification

Using game-based learning is another effective way to promote critical thinking skills in your classroom. Game-based learning engages your students and promotes critical thinking skills such as problem-solving, analysis, and evaluation.

For example, you could use an online game that requires your students to solve math problems. This activity promotes critical thinking skills such as problem-solving, analysis, and evaluation.

8. Problem-Based Learning

Using problem-based learning is another effective way to promote critical thinking skills in your classroom. Problem-based learning requires your students to solve real-world problems using critical thinking skills such as analysis, evaluation, and interpretation.

For example, you could present your students with a real-world problem, such as designing a sustainable community. Your students can then work in groups to research and propose solutions to the problem. This activity promotes critical thinking skills such as problem-solving, analysis, evaluation, and interpretation.

9. Reflection

Encouraging reflection is another way to promote critical thinking skills in your classroom. When students reflect on their learning experiences, they can identify areas where they need to improve and develop critical thinking skills.

For example, you could have your students keep a learning journal where they reflect on their learning experiences and identify areas where they need to improve. This activity promotes critical thinking skills such as analysis, evaluation, and interpretation.

10. Real-World Applications

Using real-world applications is another effective way to promote critical thinking skills in your classroom. When students can see how the skills they are learning can be applied in the real world, they are more motivated to learn and develop critical thinking skills.

For example, if you’re teaching a lesson on fractions, you could show your students how fractions are used in cooking recipes. This activity promotes critical thinking skills such as analysis, evaluation, and interpretation.

In conclusion, critical thinking skills are essential for success in today’s complex and ever-changing world. As an educator, you can promote critical thinking skills in your classroom by using these 10 surprising ways. Collaborative learning, questioning, active listening, case studies, debates, mind mapping, gamification, problem-based learning, reflection, and real-world applications are all effective ways to promote critical thinking skills. By incorporating these strategies into your teaching, you can help your students develop the critical thinking skills they need to succeed in the 21st century.

Share this:

One thought on “ 10 innovative strategies for promoting critical thinking in the classroom ”.

  • Pingback: Engaging Problem-Solving Activities That Spark Student Interest - Educationise

Leave a Reply Cancel reply

Discover more from educationise.

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

  • International edition
  • Australia edition
  • Europe edition

Man playing basketball

Critical thinking: how to help your students become better learners

Want your class to make the most out of learning opportunities? Try focusing not just on the task itself, but how they approach it

Encouraging students to build awareness, understanding and control of their thought processes – also known as metacognition – has been identified by the Education Endowment Foundation (EEF) Toolkit as one of the most cost-effective ways to improve learning. It’s also thought to help boost performance in subjects such as maths , science and English .

It’s all about about getting students to think critically about their own learning. As the EEF explains, learners can be given “specific strategies to set goals and monitor and evaluate their own academic development … the intention is often to give pupils a repertoire of strategies to choose from during learning activities”.

To help pupils begin to think in this way, you can divide the process into three parts: before a task (effective planning), during (self-monitoring) and after (evaluation and reflection). Work on setting goalsHelp students understand the importance of preparation and an effective approach to setting goals. For good goal setting, you need to include a combination of both short-term and long-term goals, focus on developing skills (instead of just desired outcomes) and consider potential obstacles. If students know what challenges may come their way, they should be better equipped to overcome them when the time comes.

Encourage self-awareness

It’s hard to manage our emotions and thoughts if we aren’t aware of what we’re thinking and feeling. Self-awareness doesn’t always come easily for students because their brains are going through a range of changes during their teenage years.

Research shows, however, that self-awareness can be developed by encouraging students to keep a diary . Evidence also suggests that writing a diary can actually improve physical health and mental wellbeing . It can help students to spot any trends and patterns, making it easier to manage emotions and choose effective thought processes before they get stressed about more difficult tasks.

Prompt self-questioning

If a task can be divided into the three stages of before, during and after then it’s possible to help students improve their metacognition by getting them to ask themselves good questions at each stage.

Before a task, this includes questions such as “Is this similar to previous tasks I’ve done?” and “What should I do first?” During a task, questions such as “Am I on the right track?’ and “Who can I ask for help?” ensure students monitor their performance and make adjustments if necessary. Finally, after a task, students can reflect and learn on their experiences by asking “What went well?”, “What do I need to improve on?” and “What would I do differently next time?”

Model your thought processes

Being exposed to a range of different thought processes gives students a larger variety of potential thinking strategies. Try modelling or talking through your thoughts when going through questions in a past exam paper, for example.

Evidence suggests that this strategy is currently under-used, with one study finding that “in 170 hours of observation, only one instance of a teacher modelling her thinking about reading or writing was recorded, and this was unplanned”. The approach may be effective because it avoids any ambiguity and allows students to tap into your expert knowledge and experience.

Bradley Busch is a registered psychologist, director at InnerDrive and author of Release Your Inner Drive . Follow @Inner_Drive on Twitter.

Follow us on Twitter via @GuardianTeach , like us on Facebook , and join the Guardian Teacher Network for the latest articles direct to your inbox

Looking for a teaching job? Or perhaps you need to recruit school staff? Take a look at Guardian Jobs , the education specialist

  • Teacher Network
  • The science of teaching and learning

Comments (…)

Most viewed.

K-12 Resources By Teachers, For Teachers Provided by the K-12 Teachers Alliance

  • Teaching Strategies
  • Classroom Activities
  • Classroom Management
  • Technology in the Classroom
  • Professional Development
  • Lesson Plans
  • Writing Prompts
  • Graduate Programs

Teaching Strategies to Promote Critical Thinking

Janelle cox.

  • September 9, 2014

Young boy pointing to a light bulb drawn on a chalkboard

Critical thinking is an essential skill that all students will use in almost every aspect of their lives. From solving problems to making informed decisions, thinking critically is a valuable skill that will help students navigate the world’s complexities. In a post-COVID teaching environment , incorporating teaching strategies that help students think rationally and independently is an excellent way to strengthen students’ abilities and prepare them for any new challenges in the future.

There are several techniques to engage students and help strengthen these skills. Here are some teaching strategies that prove to be effective.

Encourage Students to Question Everything

We are now living in a world where AI ( artificial intelligence ) is slowly making its way into the classrooms. With these innovations, it’s imperative today, more than ever, for students to question everything and understand how to verify information when making an informed decision. AI has the potential to spread misinformation or be biased. Teach students to be careful of what is and is not a reliable source . Discuss credibility and bias and have students look for examples of both trusted content and misinformation. By using different forms of media for this exercise, students will need to use their critical thinking skills to determine the validity of the information.

Activate Student Curiosity

You can activate a student’s curiosity by using the inquiry-based learning model. This approach involves posing questions or problems for students to discover the answers on their own. In this method, students develop questions they want to know the answers to, and their teacher serves as their guide providing support as needed along the way. This approach nurtures curiosity and self-directed learning by encouraging students to think critically and independently. Recent  research  from 2019 supports the assertion that the use of this model significantly enhances students’ critical thinking abilities.

Incorporate Project-Based Learning

Immerse students in real-world problem scenarios by having them partake in project-based learning. Engaging in hands-on projects where students need to collaborate, communicate, analyze information, and find solutions to their challenges is a great way to develop their critical thinking skills. Throughout the project, students must engage in higher-order thinking while gathering their information and making decisions throughout various stages.

This approach pushes students to think critically while they connect to a real-world issue, and it helps them understand the relevance this issue has in their lives. Throughout the project, students will hone their critical thinking skills because PBL is a process that requires reflection and continuous improvement.

Offer Diverse Perspectives

Consider offering students a variety of viewpoints. Sometimes classrooms are filled with students who share similar perspectives on their beliefs and cultural norms. When this happens, it hinders learners from alternative viewpoints or experiences. Exposing students to diverse perspectives will help to broaden their horizons and challenge them to think beyond their perspectives. In addition, being exposed to different viewpoints encourages students to be more open-minded so they are more equipped to develop problem-solving strategies and analytical skills. It also helps them to cultivate empathy which is critical for critical thinking because it helps them appreciate others more and be concerned for them.

To support diverse viewpoints in the classroom, use various primary sources such as documentaries and articles from people who have experienced current events firsthand. Or invite in a few guest speakers who can offer varying perspectives on the same topic. Bring diverse perspectives into the classroom through guest speakers or by watching documentaries from varying experts.

Assign Tasks on Critical Writing

Assign writing tasks that encourage students to organize and articulate their thoughts and defend their position. By doing so, you are offering students the opportunity to demonstrate their critical thinking skills as well as effectively communicate their thoughts and ideas. Whether it’s through a research paper or an essay, students will need to support their claims and show evidence to prove their point of view. Critical writing also requires students to analyze information, scrutinize different perspectives, and question the reliability of sources, all of which contribute to the development of their critical thinking skills.

Promote Collaboration

Collaborative learning is a powerful tool that promotes critical thinking among students. Whether it’s through group discussions, classroom debates , or group projects, peer interaction will help students develop the ability to think critically. For example, a classroom debate will challenge students to articulate their thoughts, defend their viewpoints, and consider opposing viewpoints.

It will also challenge students to have a deep understanding of the subject matter as well as sharpen their communication skills. Any group setting where students can work together and be exposed to the thought processes of their classmates will help them understand that their way of thinking is not the only way. Through peer interaction, students will develop the ability to think critically.

Critical thinking requires consistency and commitment. This means that to make the above teaching strategies effective, they must be used consistently throughout the year. Encourage students to question everything and verify all information and resources. Activate student curiosity by using the inquiry-based learning model. Incorporate a real-world project that students can work on throughout the entire semester or school year. Assign critical writing tasks that require students to analyze information and prove their point of view. Finally, foster peer interaction where students work with their classmates to sharpen their communication skills and gain a deeper understanding of other perspectives.

The ultimate goal is for students to become independent thinkers who are capable of analyzing and solving their own problems. By modeling and developing student’s critical thinking skills in the classroom we are setting the stage for our student’s growth and success in the future.

  • #CriticalThinking , #TeachingStrategies

More in Teaching Strategies

A teacher sits with her students while reading them and showing them a book.

Explaining the 5 Pillars of Reading

Reading is a fundamental skill that shapes the way we learn and communicate….

A collection of student tests with passing grades down to failing.

A Guide to Supporting Students with Bad Grades

Supporting students who are struggling academically as an educator can be challenging. Poor grades often…

A group of students standing with their teacher, learning about plants on a farm.

Learning Where You Live: The Power of Place-Based Education

Place-based learning is an innovative approach that engages students in their community. By…

A close-up of a students hand and their pencil grip.

Write On! Fun Ways to Help Kids Master Pencil Grip

Teaching children proper pencil grip will lay the foundation for successful writing. Holding…

Distance Learning

Using technology to develop students’ critical thinking skills.

by Jessica Mansbach

What Is Critical Thinking?

Critical thinking is a higher-order cognitive skill that is indispensable to students, readying them to respond to a variety of complex problems that are sure to arise in their personal and professional lives. The  cognitive skills at the foundation of critical thinking are  analysis, interpretation, evaluation, explanation, inference, and self-regulation.  

When students think critically, they actively engage in these processes:

  • Communication
  • Problem-solving

To create environments that engage students in these processes, instructors need to ask questions, encourage the expression of diverse opinions, and involve students in a variety of hands-on activities that force them to be involved in their learning.

Types of Critical Thinking Skills

Instructors should select activities based on the level of thinking they want students to do and the learning objectives for the course or assignment. The chart below describes questions to ask in order to show that students can demonstrate different levels of critical thinking.

*Adapted from Brown University’s Harriet W Sheridan Center for Teaching and Learning

Using Online Tools to Teach Critical Thinking Skills

Online instructors can use technology tools to create activities that help students develop both lower-level and higher-level critical thinking skills.

  • Example: Use Google Doc, a collaboration feature in Canvas, and tell students to keep a journal in which they reflect on what they are learning, describe the progress they are making in the class, and cite course materials that have been most relevant to their progress. Students can share the Google Doc with you, and instructors can comment on their work.
  • Example: Use the peer review assignment feature in Canvas and manually or automatically form peer review groups. These groups can be anonymous or display students’ names. Tell students to give feedback to two of their peers on the first draft of a research paper. Use the rubric feature in Canvas to create a rubric for students to use. Show students the rubric along with the assignment instructions so that students know what they will be evaluated on and how to evaluate their peers.
  • Example: Use the discussions feature in Canvas and tell students to have a debate about a video they watched. Pose the debate questions in the discussion forum, and give students instructions to take a side of the debate and cite course readings to support their arguments.  
  • Example: Us e goreact , a tool for creating and commenting on online presentations, and tell students to design a presentation that summarizes and raises questions about a reading. Tell students to comment on the strengths and weaknesses of the author’s argument. Students can post the links to their goreact presentations in a discussion forum or an assignment using the insert link feature in Canvas.
  • Example:  Use goreact, a narrated Powerpoint, or a Google Doc and instruct students to tell a story that informs readers and listeners about how the course content they are learning is useful in their professional lives. In the story, tell students to offer specific examples of readings and class activities that they are finding most relevant to their professional work. Links to the goreact presentation and Google doc can be submitted via a discussion forum or an assignment in Canvas. The Powerpoint file can be submitted via a discussion or submitted in an assignment.

Pulling it All Together

Critical thinking is an invaluable skill that students need to be successful in their professional and personal lives. Instructors can be thoughtful and purposeful about creating learning objectives that promote lower and higher-level critical thinking skills, and about using technology to implement activities that support these learning objectives. Below are some additional resources about critical thinking.

Additional Resources

Carmichael, E., & Farrell, H. (2012). Evaluation of the Effectiveness of Online Resources in Developing Student Critical Thinking: Review of Literature and Case Study of a Critical Thinking Online Site.  Journal of University Teaching and Learning Practice ,  9 (1), 4.

Lai, E. R. (2011). Critical thinking: A literature review.  Pearson’s Research Reports ,  6 , 40-41.

Landers, H (n.d.). Using Peer Teaching In The Classroom. Retrieved electronically from https://tilt.colostate.edu/TipsAndGuides/Tip/180

Lynch, C. L., & Wolcott, S. K. (2001). Helping your students develop critical thinking skills (IDEA Paper# 37. In  Manhattan, KS: The IDEA Center.

Mandernach, B. J. (2006). Thinking critically about critical thinking: Integrating online tools to Promote Critical Thinking. Insight: A collection of faculty scholarship , 1 , 41-50.

Yang, Y. T. C., & Wu, W. C. I. (2012). Digital storytelling for enhancing student academic achievement, critical thinking, and learning motivation: A year-long experimental study. Computers & Education , 59 (2), 339-352.

Insight Assessment: Measuring Thinking Worldwide

http://www.insightassessment.com/

Michigan State University’s Office of Faculty  & Organizational Development, Critical Thinking: http://fod.msu.edu/oir/critical-thinking

The Critical Thinking Community

http://www.criticalthinking.org/pages/defining-critical-thinking/766

Related Posts

Help Your Students Make Better Virtual Presentations

Web 2.0 Digital Tools Selection: Online Presentation Tools

USB Mic Comparison

Web 2.0 Digital Tools Selection Criteria

9 responses to “ Using Technology To Develop Students’ Critical Thinking Skills ”

This is a great site for my students to learn how to develop critical thinking skills, especially in the STEM fields.

Great tools to help all learners at all levels… not everyone learns at the same rate.

Thanks for sharing the article. Is there any way to find tools which help in developing critical thinking skills to students?

Technology needs to be advance to develop the below factors:

Understand the links between ideas. Determine the importance and relevance of arguments and ideas. Recognize, build and appraise arguments.

Excellent share! Can I know few tools which help in developing critical thinking skills to students? Any help will be appreciated. Thanks!

  • Pingback: EDTC 6431 – Module 4 – Designing Lessons That Use Critical Thinking | Mr.Reed Teaches Math
  • Pingback: Homepage
  • Pingback: Magacus | Pearltrees

Brilliant post. Will be sharing this on our Twitter (@refthinking). I would love to chat to you about our tool, the Thinking Kit. It has been specifically designed to help students develop critical thinking skills whilst they also learn about the topics they ‘need’ to.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Our Mission

Critical Thinking

Whether via classroom discussions, analysis of written text, higher-order questioning, or other strategies, learn and share ways to help students go deeper with their thinking.

Illustration of a book shelf shaped like a person's profile

.css-13ygqr6:hover{background-color:#d1ecfa;}.css-13ygqr6:visited{color:#979797;}.css-13ygqr6.node--video:before{content:'';display:inline-block;height:20px;width:20px;margin:0 4px 0 0;background:url(data:image/svg+xml,%3Csvg%20width%3D%2242px%22%20height%3D%2242px%22%20viewBox%3D%220%200%2042%2042%22%20alt%3D%22Video%20icon%22%20data-testid%3D%22play-circle%22%20version%3D%221.1%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%3Ctitle%3EVideo%3C%2Ftitle%3E%3Cdefs%3E%3C%2Fdefs%3E%3Cg%20id%3D%22play-circle%22%20fill%3D%22%23000000%22%3E%3Cpath%20d%3D%22M21%2C0%20C9.38%2C0%200%2C9.38%200%2C21%20C0%2C32.62%209.38%2C42%2021%2C42%20C32.62%2C42%2042%2C32.62%2042%2C21%20C42%2C9.38%2032.62%2C0%2021%2C0%20L21%2C0%20Z%20M21%2C36.7733333%20C12.32%2C36.7733333%205.22666667%2C29.7266667%205.22666667%2C21%20C5.22666667%2C12.2733333%2012.32%2C5.22666667%2021%2C5.22666667%20C29.68%2C5.22666667%2036.7733333%2C12.32%2036.7733333%2C21%20C36.7733333%2C29.68%2029.68%2C36.7733333%2021%2C36.7733333%20L21%2C36.7733333%20Z%22%20id%3D%22circle%22%3E%3C%2Fpath%3E%3Cpath%20d%3D%22M29.54%2C19.88%20L17.7333333%2C12.9733333%20C16.8466667%2C12.46%2015.7733333%2C13.1133333%2015.7733333%2C14.0933333%20L15.7733333%2C27.9066667%20C15.7733333%2C28.9333333%2016.8933333%2C29.54%2017.7333333%2C29.0266667%20L29.5866667%2C22.12%20C30.4266667%2C21.6066667%2030.4266667%2C20.3933333%2029.54%2C19.88%20L29.54%2C19.88%20Z%22%20id%3D%22triangle%22%3E%3C%2Fpath%3E%3C%2Fg%3E%3C%2Fsvg%3E) no-repeat left bottom/18px 18px;} Slowing Down the Reading Process to Build Students’ Comprehension Skills

Collage of book covers about counting

Using Picture Books to Teach Children About Large Numbers

Science teacher working with a small group of elementary students at a table

Exploring Before Explaining Sparks Learning

Illustration of the Thinker made of paper trash

Guiding Students to Harness Mistakes for Learning

Illustration of two children with a big book

How to Move From the ‘Main Idea’ to ‘Background Knowledge’

Illustration of waste basket full of folded paper

Tapping Into the Metacognition of Mistakes

Illustration of hands with a globe

5 Ways to Increase Elementary Students’ Knowledge of Other Countries

An illustration of the inside of a mind while writing

Why Students Should Write in All Subjects

AI-generated image of George Washington surfing

9 Tips for Using AI for Learning (and Fun!)

Making a Math Lesson More Hands-On

Making a Math Lesson More Hands-On

Photo of middle school student doing math on board

5 Ways to Stop Thinking for Your Students

Photo of high school students at board in classroom

A Collaborative Approach to Mistake Analysis

Student working on math problems on a whiteboard

6 Ways to Improve Students’ Math Literacy

Teacher writing on whiteboard.

Using Morning Messages to Start the Day in Distance Learning

A small group of students work together at a whiteboard

How to Turn Your Math Classroom Into a ‘Thinking Classroom’

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Athl Train
  • v.38(3); Jul-Sep 2003

Active Learning Strategies to Promote Critical Thinking

Stacy E. Walker, PhD, ATC, provided conception and design; acquisition and analysis and interpretation of the data; and drafting, critical revision, and final approval of the article.

To provide a brief introduction to the definition and disposition to think critically along with active learning strategies to promote critical thinking.

Data Sources:

I searched MEDLINE and Educational Resources Information Center (ERIC) from 1933 to 2002 for literature related to critical thinking, the disposition to think critically, questioning, and various critical-thinking pedagogic techniques.

Data Synthesis:

The development of critical thinking has been the topic of many educational articles recently. Numerous instructional methods exist to promote thought and active learning in the classroom, including case studies, discussion methods, written exercises, questioning techniques, and debates. Three methods—questioning, written exercises, and discussion and debates—are highlighted.

Conclusions/Recommendations:

The definition of critical thinking, the disposition to think critically, and different teaching strategies are featured. Although not appropriate for all subject matter and classes, these learning strategies can be used and adapted to facilitate critical thinking and active participation.

The development of critical thinking (CT) has been a focus of educators at every level of education for years. Imagine a certified athletic trainer (ATC) who does not consider all of the injury options when performing an assessment or an ATC who fails to consider using any new rehabilitation techniques because the ones used for years have worked. Envision ATCs who are unable to react calmly during an emergency because, although they designed the emergency action plan, they never practiced it or mentally prepared for an emergency. These are all examples of situations in which ATCs must think critically.

Presently, athletic training educators are teaching many competencies and proficiencies to entry-level athletic training students. As Davies 1 pointed out, CT is needed in clinical decision making because of the many changes occurring in education, technology, and health care reform. Yet little information exists in the athletic training literature regarding CT and methods to promote thought. Fuller, 2 using the Bloom taxonomy, classified learning objectives, written assignments, and examinations as CT and nonCT. Athletic training educators fostered more CT in their learning objectives and written assignments than in examinations. The disposition of athletic training students to think critically exists but is weak. Leaver-Dunn et al 3 concluded that teaching methods that promote the various components of CT should be used. My purpose is to provide a brief introduction to the definition and disposition to think critically along with active learning strategies to promote CT.

DEFINITION OF CRITICAL THINKING

Four commonly referenced definitions of critical thinking are provided in Table ​ Table1. 1 . All of these definitions describe an individual who is actively engaged in the thought process. Not only is this person evaluating, analyzing, and interpreting the information, he or she is also analyzing inferences and assumptions made regarding that information. The use of CT skills such as analysis of inferences and assumptions shows involvement in the CT process. These cognitive skills are employed to form a judgment. Reflective thinking, defined by Dewey 8 as the type of thinking that consists of turning a subject over in the mind and giving it serious and consecutive consideration, can be used to evaluate the quality of judgment(s) made. 9 Unfortunately, not everyone uses CT when solving problems. Therefore, in order to think critically, there must be a certain amount of self-awareness and other characteristics present to enable a person to explain the analysis and interpretation and to evaluate any inferences made.

Various Definitions of Critical Thinking

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-038-03-0263-t01.jpg

DISPOSITION TO THINK CRITICALLY

Recently researchers have begun to investigate the relationship between the disposition to think critically and CT skills. Many believe that in order to develop CT skills, the disposition to think critically must be nurtured as well. 4 , 10 – 12 Although research related to the disposition to think critically has recently increased, as far back as 1933 Dewey 8 argued that possession of knowledge is no guarantee for the ability to think well but that an individual must desire to think. Open mindedness, wholeheartedness, and responsibility were 3 of the attitudes he felt were important traits of character to develop the habit of thinking. 8

More recently, the American Philosophical Association Delphi report on critical thinking 7 was released in 1990. This report resulted from a questionnaire regarding CT completed by a cross-disciplinary panel of experts from the United States and Canada. Findings included continued support for the theory that to develop CT, an individual must possess and use certain dispositional characteristics. Based upon the dispositional phrases, the California Critical Thinking Dispositional Inventory 13 was developed. Seven dispositions (Table ​ (Table2) 2 ) were derived from the original 19 published in the Delphi report. 12 It is important to note that these are attitudes or affects, which are sought after in an individual, and not thinking skills. Facione et al 9 purported that a person who thinks critically uses these 7 dispositions to form and make judgments. For example, if an individual is not truth seeking, he or she may not consider other opinions or theories regarding an issue or problem before forming an opinion. A student may possess the knowledge to think critically about an issue, but if these dispositional affects do not work in concert, the student may fail to analyze, evaluate, and synthesize the information to think critically. More research is needed to determine the relationship between CT and the disposition to think critically.

Dispositions to Think Critically 12

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-038-03-0263-t02.jpg

METHODS TO PROMOTE CRITICAL THOUGHT

Educators can use various instructional methods to promote CT and problem solving. Although educators value a student who thinks critically about concepts, the spirit or disposition to think critically is, unfortunately, not always present in all students. Many college faculty expect their students to think critically. 14 Some nursing-specific common assumptions made by university nursing teaching faculty are provided 15 (Table ​ (Table3) 3 ) because no similar research exists in athletic training. Espeland and Shanta 16 argued that faculty who select lecture formats as a large part of their teaching strategy may be enabling students. When lecturing, the instructor organizes and presents essential information without student input. This practice eliminates the opportunity for students to decide for themselves what information is important to know. For example, instead of telling our students via lecture what medications could be given to athletes with an upper respiratory infection, they could be assigned to investigate medications and decide which one is appropriate.

Common Assumptions of Nursing Faculty 15

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-038-03-0263-t03.jpg

Students need to be exposed to diverse teaching methods that promote CT in order to nurture the CT process. 14 , 17 – 19 As pointed out by Kloss, 20 sometimes students are stuck and unable to understand that various answers exist for one problem. Each ATC has a different method of taping a sprained ankle, performing special tests, and obtaining medical information. Kloss 20 stated that students must be exposed to ambiguity and multiple interpretations and perspectives of a situation or problem in order to stimulate growth. As students move through their clinical experiences, they witness the various methods for taping ankles, performing special tests, and obtaining a thorough history from an injured athlete. Paul and Elder 21 stated that many professors may try to encourage students to learn a body of knowledge by stating that body of knowledge in a sequence of lectures and then asking students to internalize knowledge outside of class on their own time. Not all students possess the thinking skills to analyze and synthesize information without practice. The following 3 sections present information and examples of different teaching techniques to promote CT.

Questioning

An assortment of questioning tactics exists to promote CT. Depending on how a question is asked, the student may use various CT skills such as interpretation, analysis, and recognition of assumptions to form a conclusion. Mills 22 suggested that the thoughtful use of questions may be the quintessential activity of an effective teacher. Questions are only as good as the thought put into them and should go beyond knowledge-level recall. 22 Researchers 23 , 24 have found that often clinical teachers asked significantly more lower-level cognitive questions than higher-level questions. Questions should be designed to promote evaluation and synthesis of facts and concepts. Asking a student to evaluate when proprioception exercises should be included in a rehabilitation program is more challenging than asking a student to define proprioception. Higher-level thinking questions should start or end with words or phrases such as, “explain,” “compare,” “why,” “which is a solution to the problem,” “what is the best and why,” and “do you agree or disagree with this statement?” For example, a student could be asked to compare the use of parachlorophenylalanine versus serotonin for control of posttreatment soreness. Examples of words that can be used to begin questions to challenge at the different levels of the Bloom Taxonomy 25 are given in Table ​ Table4. 4 . The Bloom Taxonomy 25 is a hierarchy of thinking skills that ranges from simple skills, such as knowledge, to complex thinking, such as evaluation. Depending on the initial words used in the question, students can be challenged at different levels of cognition.

Examples of Questions 23

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-038-03-0263-t04.jpg

Another type of questioning technique is Socratic questioning. Socratic questioning is defined as a type of questioning that deeply probes or explores the meaning, justification, or logical strength of a claim, position, or line of reasoning. 4 , 26 Questions are asked that investigate assumptions, viewpoints, consequences, and evidence. Questioning methods, such as calling on students who do not have their hands up, can enhance learning by engaging students to think. The Socratic method focuses on clarification. A student's answer to a question can be followed by asking a fellow student to summarize the previous answer. Summarizing the information allows the student to demonstrate whether he or she was listening, had digested the information, and understood it enough to put it into his or her own words. Avoiding questions with one set answer allows for different viewpoints and encourages students to compare problems and approaches. Asking students to explain how the high school and the collegiate or university field experiences are similar and different is an example. There is no right or wrong answer because the answers depend upon the individual student's experiences. 19 Regardless of the answer, the student must think critically about the topic to form a conclusion of how the field experiences are different and similar.

In addition to using these questioning techniques, it is equally important to orient the students to this type of classroom interaction. Mills 22 suggested that provocative questions should be brief and contain only one or two issues at a time for class reflection. It is also important to provide deliberate silence, or “wait” time, for students upon asking questions. 22 , 27 Waiting at least 5 seconds allows the students to think and encourages thought. Elliot 18 argued that waiting even as long as 10 seconds allows the students time to think about possibilities. If a thought question is asked, time must be given for the students to think about the answer.

Classroom Discussion and Debates

Classroom discussion and debates can promote critical thinking. Various techniques are available. Bernstein 28 developed a negotiation model in which students were confronted with credible but antagonistic arguments. Students were challenged to deal with the tension between the two arguments. This tension is believed to be one component driving critical thought. Controversial issues in psychology, such as animal rights and pornography, were presented and discussed. Students responded favorably and, as the class progressed over time, they reported being more comfortable arguing both sides of an issue. In athletic training education, a negotiation model could be employed to discuss certain topics, such as the use of heat versus ice or the use of ultrasound versus electric stimulation in the treatment of an injury. Students could be assigned to defend the use of a certain treatment. Another strategy to promote students to seek both sides of an issue is pro and con grids. 29 Students create grids with the pros and cons or advantages or disadvantages of an issue or treatment. Debate was used to promote CT in second-year medical students. 30 After debating, students reported improvements in literature searching, weighing risks and benefits of treatments, and making evidence-based decisions. Regardless of the teaching methods used, students should be exposed to analyzing the costs and benefits of issues, problems, and treatments to help prepare them for real-life decision making.

Observing the reasoning skills of another person was used by Galotti 31 to promote CT. Students were paired, and 4 reasoning tasks were administered. As the tasks were administered, students were told to talk aloud through the reasoning process of their decisions. Students who were observing were to write down key phrases and statements. This same process can be used in an injury-evaluation class. One student performs an evaluation while the others in the class observe. Classroom discussion can then follow. Another alternative is to divide students into pairs. One student performs an evaluation while the other observes. After the evaluation is completed, the students discuss with each other the evaluation (Table ​ (Table5 5 presents examples). Another option is to have athletic training students observe a student peer or ATC during a field evaluation of an athlete. While observing, the student can write down any questions or topics to discuss after the evaluation, providing the student an opportunity to ask why certain evaluation methods were and were not used.

Postevaluation Questions

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-038-03-0263-t05.jpg

Daily newspaper clippings directly related to current classroom content also allow an instructor to incorporate discussion into the classroom. 32 For example, an athlete who has been reported to have died as a result of heat illness could provide subject matter for classroom discussion or various written assignments. Such news also affords the instructor an opportunity to discuss the affective components involved. Students could be asked to step into the role of the ATC and think about the reported implications of this death from different perspectives. They could also list any assumptions made by the article or follow-up questions they would ask if they could interview the persons involved. This provides a forum to enlighten students to think for themselves and realize that not each person in the room perceives the article the same way. Whatever the approach taken, investigators and educators agree that assignments and arguments are useful to promote thought among students.

Written Assignments

In-class and out-of-class assignments can also serve as powerful vehicles to allow students to expand their thinking processes. Emig 33 believed that involving students in writing serves their learning uniquely because writing, as process and product, possesses a cluster of attributes that correspond uniquely to certain powerful learning strategies. As a general rule, assignments for the purpose of promoting thought should be short (not long term papers) and focus on the aspect of thinking. 19 Research or 1-topic papers may or may not be a student's own thoughts, and Meyers 32 argued that term papers often prove to be exercises in recapitulating the thoughts of others.

Allegretti and Frederick 34 used a variety of cases from a book to promote CT regarding different ethical issues. Countless case-study situations can be created to allow students to practice managing situations and assess clinical decision making. For example, after reading the National Athletic Trainers' Association position statement on lightning, a student can be asked to address the following scenario: “Explain how you would handle a situation in which a coach has kept athletes outside practicing unsafely. What information would you use from this statement to explain your concerns? Explain why you picked the specific concerns.” These questions can be answered individually or in small groups and then discussed in class. The students will pick different concerns based on their thinking. This variety in answers is not only one way to show that no answer is right or wrong but also allows students to defend their answers to peers. Questions posed on listservs are excellent avenues to enrich a student's education. Using these real-life questions, students read about real issues and concerns of ATCs. These topics present excellent opportunities to pose questions to senior-level athletic training students to examine how they would handle the situation. This provides the students a safe place to analyze the problem and form a decision. Once the students make a decision, additional factors, assumptions, and inferences can be discussed by having all students share the solution they chose.

Lantz and Meyers 35 used personification and assigned students to assume the character of a drug. Students were to relate themselves to the drug, in the belief that drugs exhibit many unique characteristics, such as belonging to a family, interaction problems, adverse reactions, and so forth. The development of analogies comes from experience and comparing one theory or scenario to another with strong similarities.

Fopma-Loy and Ulrich 36 identified various CT classroom exercises educators can implement to promote higher-order thought (Table ​ (Table6). 6 ). Many incorporate a personal reaction from the student and allow the student to link that learning to his or her feelings. This personal reaction of feelings to cognitive information is important to show the relevance of material.

Exercises to Promote Critical Thought 36

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-038-03-0263-t06.jpg

Last, poems are another avenue that can be used to promote CT. 20 Although poems are widely thought of as an assignment in an English class, athletic training students may benefit from this creative writing activity. The focus of this type of homework activity should be on reviewing content creatively. The lines of the poem need not rhyme as long as appropriate content is explained in the poem. For example, a poem on the knee could be required to include signs, symptoms, and anatomical content of one injury or various injuries. A poem on head injuries could focus on the different types of history questions that should be asked. Students should understand that the focus of the assignment is a creative review of the material and not a test of their poetic qualities. The instructor should complete a poem as well. To break the ice, the instructor's poem can be read first, followed by a student volunteering to read his or her poem.

CONCLUSIONS

Regardless of the methods used to promote CT, care must be taken to consider the many factors that may inhibit a student from thinking critically. The student's disposition to think critically is a major factor, and if a deficit in a disposition is noticed, this should be nurtured. Students should be encouraged to be inquisitive, ask questions, and not believe and accept everything they are told. As pointed out by Loving and Wilson 14 and Oermann, 19 thought develops with practice and evaluation over time using multiple strategies. Additionally, faculty should be aware of their course goals and learning objectives. If these goals and objectives are stated as higher-order thought outcomes, then activities that promote CT should be included in classroom activities and assignments. 14 Finally, it is important that CT skills be encouraged and reinforced in all classes by teaching faculty, not only at the college level but at every level of education. Although huge gains in CT may not be reflected in all college students, we can still plant the seed and encourage students to use their thinking abilities in the hope these will grow over time.

  • Description Generator

Child Report Generator

  • Marking and Grading Assistant
  • Lesson Plans
  • Lesson Plan Power Points

Email & Message Reply Generator

  • Story Writer

Question Generator

  • Multi Choice Generator
  • Long Form Question Generator
  • All Articles
  • Digital Literacy Blog
  • Digital Divide & Equity in Education
  • Culturally Responsive Teaching
  • Feedback Strategies for Student Success
  • Growth Mindset Blog
  • English Language
  • English Literature
  • Religious Studies
  • Phonics and Reading
  • Get Started in Seconds

Subject Description Generator

How to promote critical thinking in the classroom.

A comprehensive guide for educators on enhancing critical thinking skills among students through innovative classroom techniques.

Empower Your Students with Critical Thinking Skills

In the evolving landscape of education, fostering critical thinking in the classroom has become paramount. As educators, it's essential to cultivate an environment where students can analyze information critically, engage in meaningful debate, and approach problems with a solution-oriented mindset. This article explores practical strategies to enhance critical thinking skills, leveraging the power of inquiry-based learning and open-ended questioning.

Asking open-ended questions is a cornerstone of promoting critical thinking. By challenging students with questions that require more than a yes or no answer, educators can stimulate deeper thought and encourage students to explore multiple perspectives. Integrating these questions into lesson plans can transform the classroom into a dynamic space for intellectual exploration.

Debate is another powerful tool in the critical thinking arsenal. Structured debates on relevant topics not only sharpen students' argumentation skills but also teach them to consider and respect different viewpoints. This form of student-centered learning fosters a sense of ownership over the learning process, making education a collaborative and engaging experience.

Inquiry-based learning activities are designed to put students in the driver's seat of their educational journey. By posing questions, problems, or scenarios, teachers can guide students through a process of discovery that encourages critical analysis and independent thought. This approach not only boosts critical thinking but also aligns with the natural curiosity and creativity of learners.

Utilizing AI teaching assistants, like those offered by Planit Teachers, can further enhance critical thinking in the classroom. These innovative platforms provide tools such as Lesson Plan Generators and AI Marking Assistants, which free up valuable time for educators to focus on developing student-centered learning experiences that promote critical thinking.

Transform Your Grading with AI Teacher Marking

Revolutionize your grading process with our advanced AI Teacher Marking tool. Our AI algorithms can efficiently grade a variety of assignments, providing detailed feedback and insights.

AI Teacher Marking doesnt just grade; it provides constructive criticism, pinpoints errors, identifies model answers, and references the mark scheme for a holistic evaluation.

By automating the grading process, AI Teacher Marking frees up valuable time for educators, allowing them to focus more on student engagement and personalized teaching.

AI Teacher Marking revolutionizes workflow efficiency for educators. The tool's capability to quickly process and grade student submissions in bulk significantly reduces the time spent on manual marking.

Beyond just grading, AI Teacher Marking offers deep analytical insights into student performance. It provides educators with detailed reports highlighting class trends, common misconceptions, and areas needing more focus.

Revolutionize Your Teaching with AI-Powered Lesson Plans

Welcome to the future of education! Planit Teachers brings you AI-powered lesson plans, tailored for any subject and age group. Just describe your topic and age group, and our advanced AI will craft a bespoke, unique lesson plan designed specifically for your needs.

Our AI-driven lesson plans are not just about convenience, they're about quality. Each plan is meticulously crafted to ensure it meets the highest educational standards. Plus, with our AI's ability to learn and adapt, your lesson plans will only get better over time.

But that's not all! With each lesson plan, you'll also receive a comprehensive list of resources to aid your teaching. And the best part? You can save your plan to your account, edit it as you see fit, and even generate a PDF for offline use or printing.

Innovative Long Form Question Generator

Transform the way you create quizzes with our state-of-the-art Long Form Question Generator. Designed for educators, this revolutionary tool crafts unlimited, expertly written questions tailored to any topic or age group, all powered by advanced AI.

Experience the freedom to customize your quizzes to align perfectly with your educational goals. Our generator allows for unparalleled customization of topics, difficulty levels, and more, enabling you to craft the perfect questions for your students in mere minutes.

Elevate your teaching and engage your students like never before. Save time, enhance learning, and ensure your quizzes are always fresh and relevant. Our Long Form Question Generator is your ultimate partner in creating dynamic, impactful educational content.

End of term reports are a time consuming and stressful task for any teacher. We've built a tool to help you save time and effort when writing reports. Simply describe the child and we'll generate a report for you. You can then edit the report to make it perfect and download it as a PDF. Your report can be tailored using tone, length and complexity settings.

Get back control of your free time using our Child Report Generator. Instant report generation for any child. Happy, angry, concerned and comedic reports generated instantly to your exact specifications.

Crafting quizzes and question sheets for your class is a problem of the past with our Question Generator. Simply describe the topic and age group and we'll do the rest, crafting you a bespoke and totally unique set of questions built exactly for your needs.

With your new quiz, you'll also get a list of resources to help as well as the ability to save your quiz to your account and edit it later. You can then generate a PDF from your quiz, download it for offline use and print for your class.

Get back control of your free time using our Question Generator. Instant quiz and question generation for any topic and age group.

When teaching English, Teachers often need to spend time crafting complex subject, landscape, setting and character descriptions. With our Subject Description Generator, you can instantly generate a description for any subject, landscape, setting or character. Simply describe the subject, landscape, setting or character and we'll do the rest, crafting you a bespoke and totally unique description built exactly for your needs.

We even tailor the description to your exact specifications, allowing you to choose the length, complexity and tone of the description. We then craft the wording to perfectly match your age group and child level.

Multiple Choice Question Generator

Say goodbye to the hassle of creating quizzes manually. Our innovative Multiple Choice Question Generator empowers teachers to generate unlimited questions with 4 multiple choice answers on any topic for any age group, all powered by AI.

Tailor your quizzes to perfectly match your teaching needs. With the ability to customize topics, difficulty levels, and more, you can create the ideal quiz for your class in minutes. Plus, save your quizzes for future use, edit them as needed, and even generate PDFs for easy sharing and printing.

Reclaim your free time and enhance your teaching with quizzes that engage and challenge your students. Our Multiple Choice Question Generator is the ultimate tool for instant, hassle-free quiz creation for any subject and age group.

AI-powered instant replies for emails and messages. Everyone knows that teachers already have enough on their plate, so we've built a tool to help you save time and effort when replying to emails and messages from parents, students and colleagues. Simply describe the topic of the email and we'll generate a reply for you. You can then edit the reply to make it perfect and send it off. If it totally misses the mark, you can instantly regenerate a new reply and try again.

Get back control of your free time using our Email, Message, Class Dojo Reply Generator. Instant message generation for any usage.

Related Articles

  • 10 Innovative Ways to Engage Students in Virtual Learning - Planit Teachers
  • The Power of Gamification in Education - Boost Student Engagement
  • Innovative Approaches to Assessing Student Learning - Planit Teachers
  • The Science of Effective Learning Strategies | Planit Teachers
  • Empowering Students Through Project-Based Learning
  • 10 Creative Ways to Engage Students in Virtual Learning - Planit Teachers
  • Innovative Assessment Strategies: Moving Beyond Traditional Testing - Planit Teachers
  • The Science of Motivation: Strategies to Inspire Student Success - Planit Teachers
  • The Art of Inquiry-Based Learning: Fostering Curiosity and Critical Inquiry in the Classroom
  • The Impact of Outdoor Education: Fostering Exploration and Environmental Awareness
  • The Magic of Mind Mapping: Boosting Creativity and Critical Thinking in Students
  • The Power of Peer Collaboration: Fostering Student Engagement
  • Empowering Teachers: Tools and Resources for Effective Lesson Planning - Planit Teachers
  • The Benefits of Project-Based Learning: Engaging Students Through Real-World Experiences
  • The Art of Questioning: Enhancing Critical Thinking Through Inquiry-Based Learning - Planit Teachers
  • The Art of Effective Feedback: Strategies for Providing Constructive Criticism - Planit Teachers
  • Creative Ways to Engage Students in Online Learning - Planit Teachers
  • The Science of Learning: Understanding How Students Learn Best
  • The Art of Effective Feedback: Strategies for Providing Constructive Criticism
  • The Evolution of Lesson Planning: From Paper to AI-Powered Platforms

Enhancing students’ critical thinking and creative thinking: An integrated mind mapping and robot-based learning approach

  • Published: 16 May 2024

Cite this article

how to promote critical thinking in students

  • Min-Chi Chiu 1 , 2 &
  • Gwo-Jen Hwang   ORCID: orcid.org/0000-0001-5155-276X 3 , 4  

180 Accesses

Explore all metrics

Fostering students’ critical thinking and creative thinking is an important aim in education. For example, art courses not only focus on artwork creation, but also on theoretical knowledge for identifying artworks. In the conventional lecture-based instruction mode for theoretical knowledge delivery, students’ learning outcomes could be affected owing to the lack of student-teacher interactions, and hence researchers have started to employ interactive learning technologies, such as robots, to cope with this problem. However, without proper guidance and support, students’ learning outcomes in such an interactive learning mode could be limited. To improve students’ learning effectiveness, this study proposed a mind mapping-assisted robot (MM-R) approach for an art course. A quasi-experimental design was adopted to explore the effects of the proposed learning approach on students’ performance in art appreciation, digital painting creation, creative thinking tendency, and critical thinking awareness. A total of 48 students from two classes in a university in central Taiwan were recruited to participate in this study. One class was the experimental group ( n  = 25) adopting the MM-R approach, while the other class was the control group ( n  = 23) adopting the conventional robot (C-R) approach. The results indicated that the integration of the MM-R approach improved students’ learning achievement, performance in digital painting creation, creative thinking tendency, and critical thinking awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

how to promote critical thinking in students

Similar content being viewed by others

how to promote critical thinking in students

Arts and crafts robots or LEGO® MINDSTORMS robots? A comparative study in educational robotics

how to promote critical thinking in students

A Learning Environment for Geography and History Using Mixed Reality, Tangible Interfaces and Educational Robotics

how to promote critical thinking in students

Learning Robotics in a Science Museum Theatre Play: Investigation of Learning Outcomes, Contexts and Experiences

Data availability.

The data and materials are available upon request to the corresponding author.

Code availability

Not applicable.

Abd Karim, R., & Abu, A. G. (2018). Using mobile-assisted mind mapping technique (mammat) to improve writing skills of esl students. Journal of Social Science and Humanities, 1 (2), 1–6. https://doi.org/10.26666/rmp.jssh.2018.2.1

Article   Google Scholar  

Abd Karim, R., & Mustapha, R. (2022). TVET student’s perception on digital mind map to stimulate learning of technical skills in Malaysia. Journal of Technical Education and Training, 14 (1), 1–13.

Afari, E., & Khine, M. S. (2017). Robotics as an educational tool: Impact of Lego mindstorms. International Journal of Information and Education Technology, 7 (6), 437–442. https://doi.org/10.18178/ijiet.2017.7.6.908

Alam, A. (2022). Employing adaptive learning and intelligent tutoring robots for virtual classrooms and smart campuses: Reforming education in the age of artificial intelligence. In Advanced Computing and Intelligent Technologies , 395–406. https://doi.org/10.1007/978-981-19-2980-9_32

Alkhatib, O. J. (2019, March 1–8). A framework for implementing higher-order thinking skills (problem-solving, critical thinking, creative thinking, and decision-making) in engineering & humanities . In 2019 Advances in Science and Engineering Technology International Conferences (ASET), IEEE.

An, J. S., & Huh, Y. J. (2019). Effect of creative thinking through art collaboration class. Journal of the Korea Convergence Society, 10 (7), 121–131. https://doi.org/10.15207/JKCS.2019.10.7.121

Andrews, R. (2015). Critical thinking and/or argumentation in higher education. The Palgrave handbook of critical thinking in higher education (pp. 49–62). Palgrave Macmillan US.

Chapter   Google Scholar  

Astrodjojo, D. R. (2018). The development of teaching materials using learning cycle 5E to increase critical thinking skills and students learning outcome of high school students on the subject of reaction rate. JPPS (Jurnal Penelitian Pendidikan Sains), 8 (1). https://doi.org/10.26740/jpps.v8n1.p%25p

Aykac, V. (2015). An application regarding the availability of mind maps in visual art education based on active learning method. Procedia-Social and Behavioral Sciences, 174 , 1859–1866. https://doi.org/10.1016/j.sbspro.2015.01.848

Bezanilla, M. J., Domínguez, H. G., & Ruiz, M. P. (2021). Importance and possibilities of development of critical thinking in the university: The teacher’s perspective. REMIE: Multidisciplinary Journal of Educational Research, 11 (1), 20–48.

Bhuvaneswari, T., & Beh, S. L. (2013). Changes in teaching and learning through digital media for higher education institutions. International Journal of Mobile Learning and Organisation, 2 (3), 201–215. https://doi.org/10.1504/IJMLO.2008.020315

Bonk, C. J., & Cunningham, D. J. (2012). Searching for learner-centered, constructivist, and sociocultural components of collaborative educational learning tools. Electronic collaborators (pp. 25–50). Routledge.

Bravo, F. A., Hurtado, J. A., & González, E. (2021). Using robots with storytelling and drama activities in science education. Education Sciences, 11 (7), 329.

Bravo Sánchez, F. Á, González Correal, A. M., & Guerrero, E. G. (2017). Interactive drama with robots for teaching non-technical subjects. Journal of Human-Robot Interaction, 6 (2), 48–69.

Brown, G. T., & Wang, Z. (2013). Illustrating assessment: How Hong Kong university students conceive of the purposes of assessment. Studies in Higher Education, 38 (7), 1037–1057. https://doi.org/10.1080/03075079.2011.616955

Buzan, T., & Buzan, B. (2002). How to mind map . Thorsons.

Google Scholar  

Buzan, T., & Buzan, B. (2006). The mind map book . Pearson Education.

Bybee, R. W., & Trowbridge, J. H. (1990). Applying standards-based constructivism: A two-step guide for motivating students . Cambridge University Press.

Carless, D., & Lam, R. (2014). The examined life: Perspectives of lower primary school students in Hong Kong. Education 3–13, 42 (3), 313–329. https://doi.org/10.1080/03004279.2012.689988

Chai, C. S., Deng, F., Tsai, P. S., Koh, J. H. L., & Tsai, C. C. (2015). Assessing multidimensional students’ perceptions of twenty-first-century learning practices. Asia Pacific Education Review, 16 (3), 389–398. https://doi.org/10.1007/s12564-015-9379-4

Chang, C. W., Lee, J. H., Wang, C. Y., & Chen, G. D. (2010). Improving the authentic learning experience by integrating robots into the mixed-reality environment. Computers & Education, 55 (4), 1572–1578. https://doi.org/10.1016/j.compedu.2010.06.023

Chang, C. Y., Panjaburee, P., Lin, H. C., Lai, C. L., & Hwang, G. H. (2022). Effects of online strategies on students’ learning performance, self-efficacy, self-regulation and critical thinking in university online courses. Educational Technology Research and Development, 70 (1), 185–204. https://doi.org/10.1007/s11423-021-10071-y

Chao, J. Y., Liu, C. H., & Kao, H. C. (2023). Science, Technology, Engineering, and Mathematics Curriculum Design for Teaching Mathematical Concept of Perspective at Indigenous Elementary School using Robots. Sensors and Materials, 35 (5), 1547–1556.

Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: A narrative overview. Procedia Computer Science, 136 , 16–24. https://doi.org/10.1016/j.procs.2018.08.233

Chen, C. H., & Chung, H. Y. (2023). Fostering computational thinking and problem-solving in programming: Integrating Concept maps into Robot Block-based programming. Journal of Educational Computing Research . https://doi.org/10.1177/07356331231205052

Chen, X., Cheng, G., Zou, D., Zhong, B., & Xie, H. (2023). Artificial Robots for Precision Education. Educational Technology & Society, 26 (1), 171–186.

Chen Hsieh, J. (2022). Multimodal Digital Storytelling Presentations among Middle-School learners of English as a Foreign Language: Emotions, grit and perceptions. RELC Journal . https://doi.org/10.1177/00336882221102233

Chin, K. Y., Hong, Z. W., & Chen, Y. L. (2014). Impact of using an educational robot-based learning system on students’ motivation in elementary education. IEEE Transactions on Learning Technologies, 7 (4), 333–345.

Chiu, M. C., Hwang, G. J., & Tu, Y. F. (2022). Roles, applications, and research designs of robots in science education: a systematic review and bibliometric analysis of journal publications from 1996 to 2020. Interactive Learning Environments, 1–26. https://doi.org/10.1080/10494820.2022.2129392

Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). SAGE Publications.

Cristea, A. D., Berdie, A. D., Osaci, M., & Chirtoc, D. (2011). The advantages of using mind map for learning web dynpro. Computer Applications in Engineering Education, 19 (1), 201–207.

Cruickshank, D. (1996). The ‘art’of reflection: Using drawing to uncover knowledge development in student nurses. Nurse Education Today, 16 (2), 127–130. https://doi.org/10.1016/S0260-6917(96)80069-4

Davies, M. (2011). Concept mapping, mind mapping and argument mapping: What are the differences and do they matter? Higher Education, 62 (3), 279–301. https://doi.org/10.1007/s10734-010-9387-6

Deaver, S. P. (2012). Art-based learning strategies in art therapy graduate education. Art Therapy, 29 (4), 158–165. https://doi.org/10.1080/07421656.2012.730029

Debbag, M., Cukurbasi, B., & Fidan, M. (2021). Use of digital mind maps in technology education: A pilot study with pre-service science teachers. Informatics in Education, 20 (1), 47–68.

Dewey, J. (1934). In J. Boydston (Ed.), Art as experience, reprinted in 1989, John dewey: The later works, 1925–1953. (Vol. 10). Southern Illinois University.

Dong, Y., Zhu, S., & Li, W. (2021). Promoting sustainable creativity: An empirical study on the application of mind mapping tools in graphic design education. Sustainability, 13 (10), 5373. https://doi.org/10.3390/su13105373

Dorouka, P., Papadakis, S., & Kalogiannakis, M. (2020). Tablets and apps for promoting robotics, mathematics, STEM education and literacy in early childhood education. International Journal of Mobile Learning and Organisation, 14 (2), 255–274.

Dumitru, D. (2019). Creating meaning. The importance of arts, humanities and Culture for critical thinking development. Studies in Higher Education, 44 (5), 870–879. https://doi.org/10.1080/03075079.2019.1586345

Edwards, S., & Cooper, N. (2010). Mind mapping as a teaching resource. The Clinical Teacher, 7 (4), 236–239. https://doi.org/10.1111/j.1743-498X.2010.00395.x

Edwards, C., Edwards, A., Spence, P. R., & Lin, X. (2018). I, teacher: Using artificial intelligence (AI) and social robots in communication and instruction. Communication Education, 67 (4), 473–480. https://doi.org/10.1080/03634523.2018.1502459

Eppler, M. J. (2006). A comparison between concept maps, mind maps, conceptual diagrams, and visual metaphors as complementary tools for knowledge construction and sharing. Information Visualization, 5 (3), 202–210.

Evripidou, S., Amanatiadis, A., Christodoulou, K., & Chatzichristofis, S. A. (2021). Introducing algorithmic thinking and sequencing using tangible robots. IEEE Transactions on Learning Technologies, 14 (1), 93–105. https://doi.org/10.1109/TLT.2021.3058060

Fadillah, R. (2019). STUDENTS’perception on the use of mind mapping application software in learning writing. Celtic: A Journal of Culture English Language Teaching Literature and Linguistics, 6 (1), 58–64.

Fan, X., & Zhong, X. (2022). Artificial intelligence-based creative thinking skill analysis model using human–computer interaction in art design teaching. Computers and Electrical Engineering, 100 , 107957. https://doi.org/10.1016/j.compeleceng.2022.107957

Fish, B. J. (2019). Response art in art therapy: Historical and contemporary overview. Art Therapy, 36 (3), 122–132. https://doi.org/10.1080/07421656.2019.1648915

Freire, P. (1973). Education for critical consciousness (Vol. 1). Bloomsbury Publishing.

Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive learning in preschool education. Computers & Education, 70 , 53–64. https://doi.org/10.1016/j.compedu.2013.07.043

Fu, Q. K., Lin, C. J., Hwang, G. J., & Zhang, L. (2019). Impacts of a mind mapping-based contextual gaming approach on EFL students’ writing performance, learning perceptions and generative uses in an English course. Computers & Education, 137 , 59–77. https://doi.org/10.1016/j.compedu.2019.04.005

Gerecke, U., & Wagner, B. (2007). The challenges and benefits of using robots in higher education. Intelligent Automation & Soft Computing, 13 (1), 29–43. https://doi.org/10.1080/10798587.2007.10642948

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research . Routledge.

Goldstain, O. H., Ben-Gal, I., & Bukchin, Y. (2011). Evaluation of telerobotic interface components for teaching robot operation. IEEE Transactions on Learning Technologies, 4 (4), 365–376. https://doi.org/10.1109/TLT.2011.19

Goldston, M. J., Day, J. B., Sundberg, C., & Dantzler, J. (2010). Psychometric analysis of a 5E learning cycle lesson plan assessment instrument. International Journal of Science and Mathematics Education, 8 (4), 633–648. https://doi.org/10.1007/s10763-009-9178-7

Hardiman, M. M., JohnBull, R. M., Carran, D. T., & Shelton, A. (2019). The effects of arts-integrated instruction on memory for science content. Trends in Neuroscience and Education, 14 , 25–32. https://doi.org/10.1016/j.tine.2019.02.002

Hayadi, B. H., Bastian, A., Rukun, K., Jalius, N., Lizar, Y., & Guci, A. (2018). Expert system in the application of learning models with forward chaining method. International Journal of Engineering Technology, 7 (2.29), 845–848.

Heyvaert, M., Maes, B., & Onghena, P. (2013). Mixed methods research synthesis: Definition, framework, and potential. Quality & Quantity, 47 , 659–676.

Hidayati, N., Zubaidah, S., Suarsini, E., & Praherdhiono, H. (2019). Examining the relationship between creativity and critical thinking through integrated problem-based learning and digital mind maps. Universal Journal of Education Research , 7 (9A), 171–179. https://doi.org/10.13189/ujer.2019.071620

Ho, T. K. L., & Lin, H. S. (2015). A web-based painting tool for enhancing student attitudes toward learning art creation. Computers & Education, 89 , 32–41. https://doi.org/10.1016/j.compedu.2015.08.015

Howitt, C. (2009). 3-D mind maps: Placing young children in the centre of their own learning. Teaching Science: The Journal of the Australian Science Teachers Association , 55 (2).

Hölling, H. (2016). The aesthetics of change: on the relative durations of the impermanent and critical thinking in conservation. Authenticity in Transition: Changing Practices in Art Making and Conservation, 13–24.

Hsu, T. C., & Chen, M. S. (2022). The engagement of students when learning to use a personal audio classifier to control robot cars in a computational thinking board game. Research and Practice in Technology Enhanced Learning, 17 (1), 1–17. https://doi.org/10.1186/s41039-022-00202-1

Article   MathSciNet   Google Scholar  

Huang, Z. M. (2021). Exploring imagination as a methodological source of knowledge: Painting students’ intercultural experience at a UK university. International Journal of Research & Method in Education, 44 (4), 366–378. https://doi.org/10.1080/1743727X.2020.1796958

Hutson, J., & Olsen, T. (2022). Virtual reality and art history: A case study of digital humanities and immersive learning environments. Journal of Higher Education Theory and Practice, 22 (2).

Hwang, G. J., Yang, T. C., Tsai, C. C., & Yang, S. J. H. (2009). A context-aware ubiquitous learning environment for conducting complex science experiments. Computers & Education, 53 (2), 402–413. https://doi.org/10.1016/j.compedu.2009.02.016

Hwang, G. J., Lee, H. Y., & Chen, C. H. (2019). Lessons learned from integrating concept mapping and gaming approaches into learning scenarios using mobile devices: Analysis of an activity for a geology course. International Journal of Mobile Learning and Organisation, 13 (3), 286–308.

Ishiguro, C., & Okada, T. (2022). How can inspiration be encouraged in art learning? Arts-based methods in education around the world (pp. 205–230). River.

Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10 (4), 905. https://doi.org/10.3390/su10040905

Kalaitzidou, M., & Pachidis, T. P. (2023). Recent robots in STEAM Education. Education Sciences, 13 (3), 272. https://doi.org/10.3390/educsci13030272

Kokotovich, V. (2008). Problem analysis and thinking tools: an empirical study of non-hierarchical mind mapping. Design studies, 29 (1), 49–69. https://doi.org/10.1016/j.destud.2007.09.001

Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and peer tutors for children: A field trial. Human–Computer Interaction, 19 (1–2), 61–84.

Köhler, C., Hartig, J., & Naumann, A. (2021). Detecting instruction effects-deciding between covariance analytical and change-score approach. Educational Psychology Review, 33 , 1191–1211. https://doi.org/10.1007/s10648-020-09590-6

Kotcherlakota, S., Zimmerman, L., & Berger, A. M. (2013). Developing scholarly thinking using mind maps in graduate nursing education. Nurse educator , 27 (6), 252–255. https://doi.org/10.1097/01.NNE.0000435264.15495.51

Konijn , E. A., & Hoorn, J. F. (2020). Robot tutor and pupils’ educational ability: Teaching the times tables. Computers & Education , 157 , 103970. https://doi.org/10.1016/j.compedu.2020.103970

Kuo, Y. T., Garcia Bravo, E., Whittinghill, D. M., & Kuo, Y. C. (2023). Walking into a modern painting: The impacts of using virtual reality on student learning performance and experiences in art appreciation. International Journal of Human–Computer Interaction, 1–22. https://doi.org/10.1080/10447318.2023.2278929

Lai, C. L., & Hwang, G. J. (2014). Effects of mobile learning time on students’ conception of collaboration, communication, complex problem-solving, meta-cognitive awareness and creativity. International Journal of Mobile Learning and Organisation, 8 (3), 276–291. https://doi.org/10.1504/IJMLO.2014.067029

Lai, C. L., & Hwang, G. J. (2015). An interactive peer-assessment criteria development approach to improving students’ art design performance using handheld devices. Computers & Education, 85 , 149–159. https://doi.org/10.1016/j.compedu.2015.02.011

Lee, C. S., Wang, M. H., Kuan, W. K., Huang, S. H., Tsai, Y. L., Ciou, Z. H., Yang, C. K., & Kubota, N. (2021). BCI-based hit-loop agent for human and AI robot co-learning with AIoT application. Journal of Ambient Intelligence and Humanized Computing, 1–25. https://doi.org/10.1007/s12652-021-03487-0

Liang, J. C., & Hwang, G. J. (2023). A robot-based digital storytelling approach to enhancing EFL learners’ multimodal storytelling ability and narrative engagement. Computers & Education, 201 , 104827. https://doi.org/10.1016/j.compedu.2023.104827

Lin, C. J., Hwang, G. J., Fu, Q. K., & Chen, J. F. (2018). A flipped contextual game-based learning approach to enhancing EFL students’ English business writing performance and reflective behaviors. Journal of Educational Technology & Society, 21 (3), 117–131.

Lin, H. C., Hwang, G. J., & Hsu, Y. D. (2019). Effects of ASQ-based flipped learning on nurse practitioner learners’ nursing skills, learning achievement and learning perceptions. Computers & Education, 139 , 207–221. https://doi.org/10.1016/j.compedu.2019.05.014

Liu, H., Sheng, J., & Zhao, L. (2022). Innovation of teaching tools during robot programming learning to promote middle school students’ critical thinking. Sustainability, 14 (11), 6625. https://doi.org/10.3390/su14116625

Malycha, C. P., & Maier, G. W. (2017). Enhancing creativity on different complexity levels by eliciting mental models. Psychology of Aesthetics Creativity and the Arts, 11 (2), 187. https://doi.org/10.1037/aca0000080

Mernick, A. (2021). Critical arts pedagogy: Nurturing critical consciousness and self-actualization through art education. Art Education, 74 (5), 19–24. https://doi.org/10.1080/00043125.2021.1928468

Meyer, T. (2017). Next art education: Eight theses future art educators should think about. International Journal of Education through Art, 13 (3), 369–384. https://doi.org/10.1386/eta.13.3.369_1

Mijwil, M. M., Aggarwal, K., Mutar, D. S., Mansour, N., & Singh, R. (2022). The position of artificial intelligence in the future of education: an overview. Journal of Applied Sciences, 10 (2).

Miles, M. B., Huberman, A. M., & Saldaña, J. (2013). Qualitative data analysis: A methods sourcebook (3rd ed.). SAGE Publications, Inc.

Moraiti, I., Fotoglou, A., & Drigas, A. (2022). Coding with block programming languages in educational robotics and mobiles, improve problem solving, creativity & critical thinking skills. International Journal of Interactive Mobile Technologies , 16 (20). https://doi.org/10.3991/ijim.v16i20.34247

 Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J. J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning , 1 (209 – 0015), 13. https://doi.org/10.2316/Journal.209.2013.1.209-0015

Nurkhin, A., & Pramusinto, H. (2020). Problem-based learning strategy: Its impact on students’ critical and creative thinking skills. European Journal of Educational Research, 9 (3), 1141–1150.

O’Connell, R. M. (2014). Mind mapping for critical thinking. In Cases on teaching critical thinking through visual representation strategies , 354–386. https://doi.org/10.4018/978-1-4666-5816-5.ch014

Oreck, B. (2004). The artistic and professional development of teachers: A study of teachers’ attitudes toward and use of the arts in teaching. Journal of Teacher Education, 55 (1), 55–69. https://doi.org/10.1177/0022487103260072

Otukile-Mongwaketse, M. (2018). Teacher centered approaches: Their implications for today’s inclusive classrooms. International Journal of Psychoogy and Counseling, 10 (2), 11–21. https://doi.org/10.5897/IJPC2016.0393

Park, Y. S. (2023). Creative and critical entanglements with AI in Art Education. Studies in Art Education, 64 (4), 406–425. https://doi.org/10.1080/00393541.2023.2255084

Patton, R. M., & Buffington, M. L. (2016). Keeping up with our students: The evolution of technology and standards in art education. Arts Education Policy Review, 117 (3), 1–9. https://doi.org/10.1080/10632913.2014.944961

Ramdani, A., Jufri, A. W., Gunawan, G., Fahrurrozi, M., & Yustiqvar, M. (2021). Analysis of students’ critical thinking skills in terms of gender using Science Teaching materials based on the 5E learning cycle Integrated with local Wisdom. Jurnal Pendidikan IPA Indonesia, 10 (2), 187–199. https://doi.org/10.15294/jpii.v10i2.29956

Rim, H., Choi, I., & Noh, S. (2014). A study on the application of robotic programming to promote logical and critical thinking in mathematics education. The Mathematical Education, 53 (3), 413–434. https://doi.org/10.7468/mathedu.2014.53.3.413

Ryu, H. J., Kwak, S. S., & KIM, M. S. (2008). Design factors for external form of robots as elementary school teaching assistants. Bulletin of Japanese Society for the Science of Design, 54 (6), 39–48. https://doi.org/10.11247/jssdj.54.39_3

Sajnani, N., Mayor, C., & Tillberg-Webb, H. (2020). Aesthetic presence: The role of the arts in the education of creative arts therapists in the classroom and online. The Arts in Psychotherapy, 69 , 101. https://doi.org/10.1016/j.aip.2020.101668

Sari, R., Sumarmi, S., Astina, I., Utomo, D., & Ridhwan, R. (2021). Increasing students critical thinking skills and learning motivation using inquiry mind map. International Journal of Emerging Technologies in Learning (iJET), 16 (3), 4–19. https://doi.org/10.3991/ijet.v16i03.16515

Saunders, G., & Klemming, F. (2003). Integrating technology into a traditional learning environment: Reasons for and risks of success. Active Learning in Higher Education, 4 (1), 74–86. https://doi.org/10.1177/1469787403004001006

Setiawan, I. W. P., Suartama, I. K., & Putri, D. A. W. M. (2017). Pengaruh Model Pembelajaran Learning Cycle 5e Berbantuan Mind Mapping Terhadap Hasil Belajar Matematika. Mimbar PGSD Undiksha, 5 (2). https://doi.org/10.23887/jjpgsd.v5i2.10841

Štuikys, V., & Burbaitė, R. (2018). Smart devices and educational robotics as technology for STEM knowledge. Springer , 57–67. https://doi.org/10.1007/978-3-319-78485-4_3

Sun, M., Wang, M., & Wegerif, R. (2019). Using computer-based cognitive mapping to improve students’ divergent thinking for creativity development. British Journal of Educational Technology, 50 (5), 2217–2233. https://doi.org/10.1111/bjet.12825

Sun, Q., Lu, Z., & Ren, X. (2023). The influence of humanities on art and design learning performance: An empirical study. International Journal of Art & Design Education . https://doi.org/10.1111/jade.12474

Ulger, K. (2018). The effect of problem-based learning on the creative thinking and critical thinking disposition of students in visual arts education. Interdisciplinary Journal of Problem-Based Learning, 12 (1).

Usengül, L., & Bahçeci, F. (2020). The Effect of LEGO WeDo 2.0 education on academic achievement and attitudes and computational thinking skills of Learners toward Science. World Journal of Education, 10 (4), 83–93. https://doi.org/10.5430/wje.v10n4p83

Utami, D., & Subali, B. (2019, October). The effectiveness of 5E learning cycle accompanied by mind mapping on creative thinking. In Proceeding of the 2nd International Conference Education Culture and Technology, ICONECT 2019, 20–21 August 2019, Kudus, Indonesia .

Van den Berghe, R., Verhagen, J., Oudgenoeg-Paz, O., Van der Ven, S., & Leseman, P. (2019). Social robots for language learning: A review. Review of Educational Research, 89 (2), 259–295. https://doi.org/10.3102/0034654318821286

Ververi, C., Koufou, T., Moutzouris, A., & Andreou, L. V. (2020, April 20–21). Introducing robotics to an English for academic purposes curriculum in higher education: The student experience . In 2020 IEEE Global Engineering Education Conference (EDUCON), Porto, Portugal.

Walia, D. N. (2012). Traditional teaching methods vs. CLT: A study. Frontiers of Language and Teaching, 3 (1), 125–131.

Westlund, J. K., & Breazeal, C. (2015, March 65–66). The interplay of robot language level with children’s language learning during storytelling. In Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction extended abstracts, New York, United States.

Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., & Picard, R. (2009). Affect-aware tutors: Recognising and responding to student affect. International Journal of Learning Technology, 4 (3–4), 129–164. https://doi.org/10.1504/IJLT.2009.028804

Wu, H. Z., & Wu, Q. T. (2020). Impact of mind mapping on the critical thinking ability of clinical nursing students and teaching application. Journal of International Medical Research, 48 (3). https://doi.org/10.1177/0300060519893225

Wu, W. L., Hsu, Y., Yang, Q. F., Chen, J. J., & Jong, M. S. Y. (2021). Effects of the self-regulated strategy within the context of spherical video-based virtual reality on students’ learning performances in an art history class. Interactive Learning Environments, 1–24. https://doi.org/10.1080/10494820.2021.1878231

Yang, J., & Zhang, B. (2019). Artificial intelligence in intelligent tutoring robots: A systematic review and design guidelines. Applied Sciences , 9 (10), 2078. https://doi.org/10.3390/app9102078

Yang, Q. F., Lian, L. W., & Zhao, J. H. (2023). Developing a gamified artificial intelligence educational robot to promote learning effectiveness and behavior in laboratory safety courses for undergraduate students. International Journal of Educational Technology in Higher Education, 20 (1), 18. https://doi.org/10.1186/s41239-023-00391-9

Yu, F. Y., & Liu, Y. H. (2005). Potential values of incorporating a multiple-choice question construction in physics experimentation instruction. International Journal of Science Education, 27 (11), 1319–1335. https://doi.org/10.1080/09500690500102854

Yuliyanto, A., Basit, R. A., Muqodas, I., Wulandari, H., & Mifta, D. (2020). Alternative learning of the future based on Verbal-Linguistic, and visual-spatial intelligence through Youtube-based mind map when Pandemic Covid-19. Jurnal JPSD (Jurnal Pendidikan Sekolah Dasar), 7 (2), 132–141. https://doi.org/10.12928/jpsd.v7i2.16925

Zampetakis, L. A., Tsironis, L., & Moustakis, V. (2007). Creativity development in engineering education: The case of mind mapping. Journal of Management Development, 26 (4), 370–380. https://doi.org/10.1108/02621710710740110

Zhang, X., Chen, Y., Li, D., Hu, L., Hwang, G. J., & Tu, Y. F. (2023). Engaging young students in effective robotics education: an embodied learning-based computer programming approach. Journal of Educational Computing Research, 62 (2), 532–558. https://doi.org/10.1177/07356331231213548

Download references

This study is supported in part by the National Science and Technology Council of Taiwan under contract numbers NSTC 112-2410-H-011-012-MY3 and MOST 111-2410-H-011 -007 -MY3. The study is also supported by the “Empower Vocational Education Research Center” of National Taiwan University of Science and Technology (NTUST) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and affiliations.

Department of Information Management, Ling Tung University, Taichung, Taiwan

Min-Chi Chiu

Department of Multimedia Design, National Taichung University of Science and Technology, Taichung, Taiwan

Graduate Institute of Educational Information and Measurement, National Taichung University of Education, Taichung, Taiwan

Gwo-Jen Hwang

Graduate Institute of Digital Learning and Education, National Taiwan University of Science and Technology, Taipei, Taiwan

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Min-Chi Chiu. Project administration were performed by Gwo-Jen Hwang and Min-Chi Chiu. Methodology and supervision were performed Gwo-Jen Hwang and Min-Chi Chiu. The first draft of the manuscript was written by Min-Chi Chiu. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gwo-Jen Hwang .

Ethics declarations

Ethics approval.

The ethical requirements for research in this selected university were followed.

Consent to participate

The participants all agreed to take part in this study.

Consent for publication

The publication of this study has been approved by all authors.

Conflicts of interest/Competing interests

There is no potential conflict of interest in this study.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Chiu, MC., Hwang, GJ. Enhancing students’ critical thinking and creative thinking: An integrated mind mapping and robot-based learning approach. Educ Inf Technol (2024). https://doi.org/10.1007/s10639-024-12752-6

Download citation

Received : 14 August 2023

Accepted : 29 April 2024

Published : 16 May 2024

DOI : https://doi.org/10.1007/s10639-024-12752-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Mind mapping
  • Intelligent robot
  • 5E instructional model
  • Artwork appreciation
  • Creative thinking tendency
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. why is Importance of Critical Thinking Skills in Education

    how to promote critical thinking in students

  2. 60 Critical Thinking Strategies For Learning

    how to promote critical thinking in students

  3. Educational Classroom Posters And Resources

    how to promote critical thinking in students

  4. QuickTips: Promoting Critical Thinking Skills in Young Learners

    how to promote critical thinking in students

  5. 7 Methods to Develop Creative Thinking Skills for Students

    how to promote critical thinking in students

  6. What Education in Critical Thinking Implies Infographic

    how to promote critical thinking in students

VIDEO

  1. Study Media Studies at Eduvos

  2. How to Develop Critical Thinking Skills? Urdu / Hindi

  3. Teacher De-Wokefies Student By Teaching Critical Thinking

  4. Logical or Critical Reasoning Complete lesson for the preparation to do well on the test

  5. Top 10 Media Literacy Resources for Educators and Students

  6. 🔓🧠💯Unlock Your Brain Full Potential with these 💥🤔🔎Top 4 Exercises to Boost Critical Thinking Skills

COMMENTS

  1. Eight Instructional Strategies for Promoting Critical Thinking

    Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care ...

  2. Strategies for Encouraging Critical Thinking Skills in Students

    These seven strategies can help students cultivate their critical thinking skills. (These strategies can be modified for all students with the aid of a qualified educator.) 1. Encourage Questioning. One of the fundamental pillars of critical thinking is curiosity. Encourage students to ask questions about the subject matter and challenge ...

  3. Helping Students Hone Their Critical Thinking Skills

    Teach Reasoning Skills. Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems.

  4. Strategies to Increase Critical Thinking Skills in students

    The importance of helping students increase critical thinking skills. Ways to promote the essential skills needed to analyze and evaluate. Strategies to incorporate critical thinking into your instruction. We ask our teachers to be "future-ready" or say that we are teaching "for jobs that don't exist yet." These are powerful statements.

  5. How To Promote Critical Thinking In Your Classroom

    You can encourage students to emulate this by using them in demonstrations, asking them to "think out loud" in order for classmates to observe how they reason through a problem. Develop the habit of asking questions that require students to think critically, and tell students that you really expect them to give answers!

  6. Ten Ways to Facilitate Student Critical Thinking in the Classroom and

    Provides a method to go beyond memorization to promote understanding. Allows students to visualize thoughts, concepts, theories, models & possibilities. ... Ten Ways to Facilitate Student Critical Thinking in the Classroom and School. Design Critical Thinking Activities. (This might include mind mapping, making thinking visible, Socratic ...

  7. 4 Strategies for Sparking Critical Thinking in Young Students

    Fostering investigative conversation in grades K-2 isn't easy, but it can be a great vehicle to promote critical thinking. By Paige Tutt. ... "An interesting question and the discussion that follows can open up paths of critical thinking for students at any age," Orr says. "With a few thoughtful prompts and a lot of noticing and ...

  8. Boosting Critical Thinking Across the Curriculum

    Boosting Critical Thinking Across the Curriculum. Visible thinking routines that encourage students to document and share their ideas can have a profound effect on their learning. In my coaching work with schools, I am often requested to model strategies that help learners think deeply and critically across multiple disciplines and content areas.

  9. Promoting and Assessing Critical Thinking

    Critical thinking can be defined as being able to examine an issue by breaking it down, and evaluating it in a conscious manner, while providing arguments/evidence to support the evaluation. Below are some suggestions for promoting and assessing critical thinking in our students. Asking questions and using the answers to understand the world ...

  10. Critical Thinking in the Classroom: A Guide for Teachers

    Critical thinking is a key skill that goes far beyond the four walls of a classroom. It equips students to better understand and interact with the world around them. Here are some reasons why fostering critical thinking is important: Making Informed Decisions: Critical thinking enables students to evaluate the pros and cons of a situation ...

  11. 11 Activities That Promote Critical Thinking In The Class

    6. Start a Debate. In this activity, the teacher can act as a facilitator and spark an interesting conversation in the class on any given topic. Give a small introductory speech on an open-ended topic. The topic can be related to current affairs, technological development or a new discovery in the field of science.

  12. 10 Innovative Strategies for Promoting Critical Thinking in the

    In conclusion, critical thinking skills are essential for success in today's complex and ever-changing world. As an educator, you can promote critical thinking skills in your classroom by using these 10 surprising ways. Collaborative learning, questioning, active listening, case studies, debates, mind mapping, gamification, problem-based ...

  13. Critical thinking: how to help your students become better learners

    To help pupils begin to think in this way, you can divide the process into three parts: before a task (effective planning), during (self-monitoring) and after (evaluation and reflection). Work on ...

  14. Questions to Provoke Critical Thinking

    Questions to Provoke Critical Thinking. Varying question stems can sustain engagement and promote critical thinking. The timing, sequence and clarity of questions you ask students can be as important as the type of question you ask. The table below is organized to help formulate questions provoking gradually higher levels of thinking.

  15. Teaching Strategies to Promote Critical Thinking

    Critical thinking requires consistency and commitment. This means that to make the above teaching strategies effective, they must be used consistently throughout the year. Encourage students to question everything and verify all information and resources. Activate student curiosity by using the inquiry-based learning model.

  16. Using Technology To Develop Students' Critical Thinking Skills

    The cognitive skills at the foundation of critical thinking are analysis, interpretation, evaluation, explanation, inference, and self-regulation. When students think critically, they actively engage in these processes: To create environments that engage students in these processes, instructors need to ask questions, encourage the expression of ...

  17. 7 Ways to Teach Critical Thinking in Elementary Education

    Inspire creativity. Imagination is key to teaching critical thinking in elementary school. Teachers should seek out new ways for students to use information to create something new. Art projects are an excellent way to do this. Students can also construct inventions, write a story or poem, create a game, sing a song—the sky's the limit.

  18. PDF Using Critical Thinking Teaching Methods to Increase Student Success

    surprisingly, little knowledge on how to develop critical thinking skills in students. The Paul, Elder, and Bartell study found that while 89% of the sampled instructors identified critical thinking as a primary objective, only 9% included tasks in class that were clearly designed to promote critical thinking on a typical day in class. More

  19. Critical Thinking

    Critical Thinking. Whether via classroom discussions, analysis of written text, higher-order questioning, or other strategies, learn and share ways to help students go deeper with their thinking. ... Too often math students lean on teachers to think for them, but there are some simple ways to guide them to think for themselves. Crystal Frommert ...

  20. Active Learning Strategies to Promote Critical Thinking

    The development of critical thinking has been the topic of many educational articles recently. Numerous instructional methods exist to promote thought and active learning in the classroom, including case studies, discussion methods, written exercises, questioning techniques, and debates. Three methods—questioning, written exercises, and ...

  21. How to Promote Critical Thinking in the Classroom

    This article explores practical strategies to enhance critical thinking skills, leveraging the power of inquiry-based learning and open-ended questioning. Asking open-ended questions is a cornerstone of promoting critical thinking. By challenging students with questions that require more than a yes or no answer, educators can stimulate deeper ...

  22. Enhancing students' critical thinking and creative thinking: An

    Fostering students' critical thinking and creative thinking is an important aim in education. For example, art courses not only focus on artwork creation, but also on theoretical knowledge for identifying artworks. In the conventional lecture-based instruction mode for theoretical knowledge delivery, students' learning outcomes could be affected owing to the lack of student-teacher ...

  23. Effects of Game-Based Learning on Students' Critical Thinking: A Meta

    GBL might promote not only academic achievement but also critical thinking, according to both problem-based learning and social conflict theories (Noroozi et al., 2020; Wu et al., 2012), though GBL might foster cognitive biases that hinder critical thinking (West et al., 2008).First, GBL can simulate real-world problems without perfect information in a safe environment, allowing students to ...

  24. Collaborative Critical Thinking Problem Sets Enhance Student Perceived

    Collaborative learning and peer-to-peer teaching activities can greatly enhance student learning and engagement in the classroom. This work evaluates the implementation of an additional required class period dedicated to collaborative problem solving activities. A two-semester integrative upper-level anatomy and physiology course (Human Anatomy and Physiology 1 and 2) was revised for the 2022 ...

  25. Social Sciences

    These tools promote engagement and creativity, enabling students to visually express their ideas, even if they lack traditional artistic skills (Kohnke 2019). They enhance the learning process by aiding in the summarization of content and strengthening reading, writing, critical thinking, and communication skills (Nurchurifiani and Zulianti ...