Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, 5 problem-solving activities for the classroom.

5 Problem-Solving Activities for the Classroom

Problem-solving skills are necessary in all areas of life, and classroom problem solving activities can be a great way to get students prepped and ready to solve real problems in real life scenarios. Whether in school, work or in their social relationships, the ability to critically analyze a problem, map out all its elements and then prepare a workable solution is one of the most valuable skills one can acquire in life.

Educating your students about problem solving skills from an early age in school can be facilitated through classroom problem solving activities. Such endeavors encourage cognitive as well as social development, and can equip students with the tools they’ll need to address and solve problems throughout the rest of their lives. Here are five classroom problem solving activities your students are sure to benefit from as well as enjoy doing:

1. Brainstorm bonanza

Having your students create lists related to whatever you are currently studying can be a great way to help them to enrich their understanding of a topic while learning to problem-solve. For example, if you are studying a historical, current or fictional event that did not turn out favorably, have your students brainstorm ways that the protagonist or participants could have created a different, more positive outcome. They can brainstorm on paper individually or on a chalkboard or white board in front of the class.

2. Problem-solving as a group

Have your students create and decorate a medium-sized box with a slot in the top. Label the box “The Problem-Solving Box.” Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can’t seem to figure out on their own. Once or twice a week, have a student draw one of the items from the box and read it aloud. Then have the class as a group figure out the ideal way the student can address the issue and hopefully solve it.

3. Clue me in

This fun detective game encourages problem-solving, critical thinking and cognitive development. Collect a number of items that are associated with a specific profession, social trend, place, public figure, historical event, animal, etc. Assemble actual items (or pictures of items) that are commonly associated with the target answer. Place them all in a bag (five-10 clues should be sufficient.) Then have a student reach into the bag and one by one pull out clues. Choose a minimum number of clues they must draw out before making their first guess (two- three). After this, the student must venture a guess after each clue pulled until they guess correctly. See how quickly the student is able to solve the riddle.

4. Survivor scenarios

Create a pretend scenario for students that requires them to think creatively to make it through. An example might be getting stranded on an island, knowing that help will not arrive for three days. The group has a limited amount of food and water and must create shelter from items around the island. Encourage working together as a group and hearing out every child that has an idea about how to make it through the three days as safely and comfortably as possible.

5. Moral dilemma

Create a number of possible moral dilemmas your students might encounter in life, write them down, and place each item folded up in a bowl or bag. Some of the items might include things like, “I saw a good friend of mine shoplifting. What should I do?” or “The cashier gave me an extra $1.50 in change after I bought candy at the store. What should I do?” Have each student draw an item from the bag one by one, read it aloud, then tell the class their answer on the spot as to how they would handle the situation.

Classroom problem solving activities need not be dull and routine. Ideally, the problem solving activities you give your students will engage their senses and be genuinely fun to do. The activities and lessons learned will leave an impression on each child, increasing the likelihood that they will take the lesson forward into their everyday lives.

You may also like to read

  • Classroom Activities for Introverted Students
  • Activities for Teaching Tolerance in the Classroom
  • 5 Problem-Solving Activities for Elementary Classrooms
  • 10 Ways to Motivate Students Outside the Classroom
  • Motivating Introverted Students to Excel in the Classroom
  • How to Engage Gifted and Talented Students in the Classroom

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Assessment Tools ,  Engaging Activities

  • Online & Campus Doctorate (EdD) in Higher Edu...
  • Degrees and Certificates for Teachers & Educa...
  • Programming Teacher: Job Description and Sala...

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert @helyn_kim.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Ariell Bertrand, Melissa Arnold Lyon, Rebecca Jacobsen

April 18, 2024

Modupe (Mo) Olateju, Grace Cannon

April 15, 2024

Phillip Levine

April 12, 2024

Menu Trigger

New Designs for School 5 Steps to Teaching Students a Problem-Solving Routine

problem solving example in school

Jeff Heyck-Williams (He, His, Him) Director of the Two Rivers Learning Institute in Washington, DC

Two Rivers and joyful math

We’ve all had the experience of truly purposeful, authentic learning and know how valuable it is. Educators are taking the best of what we know about learning, student support, effective instruction, and interpersonal skill-building to completely reimagine schools so that students experience that kind of purposeful learning all day, every day.

Students can use the 5 steps in this simple routine to solve problems across the curriculum and throughout their lives.

When I visited a fifth-grade class recently, the students were tackling the following problem:

If there are nine people in a room and every person shakes hands exactly once with each of the other people, how many handshakes will there be? How can you prove your answer is correct using a model or numerical explanation?

There were students on the rug modeling people with Unifix cubes. There were kids at one table vigorously shaking each other’s hand. There were kids at another table writing out a diagram with numbers. At yet another table, students were working on creating a numeric expression. What was common across this class was that all of the students were productively grappling around the problem.

On a different day, I was out at recess with a group of kindergarteners who got into an argument over a vigorous game of tag. Several kids were arguing about who should be “it.” Many of them insisted that they hadn’t been tagged. They all agreed that they had a problem. With the assistance of the teacher they walked through a process of identifying what they knew about the problem and how best to solve it. They grappled with this very real problem to come to a solution that all could agree upon.

Then just last week, I had the pleasure of watching a culminating showcase of learning for our 8th graders. They presented to their families about their project exploring the role that genetics plays in our society. Tackling the problem of how we should or should not regulate gene research and editing in the human population, students explored both the history and scientific concerns about genetics and the ethics of gene editing. Each student developed arguments about how we as a country should proceed in the burgeoning field of human genetics which they took to Capitol Hill to share with legislators. Through the process students read complex text to build their knowledge, identified the underlying issues and questions, and developed unique solutions to this very real problem.

Problem-solving is at the heart of each of these scenarios, and an essential set of skills our students need to develop. They need the abilities to think critically and solve challenging problems without a roadmap to solutions. At Two Rivers Public Charter School in Washington, D.C., we have found that one of the most powerful ways to build these skills in students is through the use of a common set of steps for problem-solving. These steps, when used regularly, become a flexible cognitive routine for students to apply to problems across the curriculum and their lives.

The Problem-Solving Routine

At Two Rivers, we use a fairly simple routine for problem solving that has five basic steps. The power of this structure is that it becomes a routine that students are able to use regularly across multiple contexts. The first three steps are implemented before problem-solving. Students use one step during problem-solving. Finally, they finish with a reflective step after problem-solving.

Problem Solving from Two Rivers Public Charter School

Before Problem-Solving: The KWI

The three steps before problem solving: we call them the K-W-I.

The “K” stands for “know” and requires students to identify what they already know about a problem. The goal in this step of the routine is two-fold. First, the student needs to analyze the problem and identify what is happening within the context of the problem. For example, in the math problem above students identify that they know there are nine people and each person must shake hands with each other person. Second, the student needs to activate their background knowledge about that context or other similar problems. In the case of the handshake problem, students may recognize that this seems like a situation in which they will need to add or multiply.

The “W” stands for “what” a student needs to find out to solve the problem. At this point in the routine the student always must identify the core question that is being asked in a problem or task. However, it may also include other questions that help a student access and understand a problem more deeply. For example, in addition to identifying that they need to determine how many handshakes in the math problem, students may also identify that they need to determine how many handshakes each individual person has or how to organize their work to make sure that they count the handshakes correctly.

The “I” stands for “ideas” and refers to ideas that a student brings to the table to solve a problem effectively. In this portion of the routine, students list the strategies that they will use to solve a problem. In the example from the math class, this step involved all of the different ways that students tackled the problem from Unifix cubes to creating mathematical expressions.

This KWI routine before problem solving sets students up to actively engage in solving problems by ensuring they understand the problem and have some ideas about where to start in solving the problem. Two remaining steps are equally important during and after problem solving.

The power of teaching students to use this routine is that they develop a habit of mind to analyze and tackle problems wherever they find them.

During Problem-Solving: The Metacognitive Moment

The step that occurs during problem solving is a metacognitive moment. We ask students to deliberately pause in their problem-solving and answer the following questions: “Is the path I’m on to solve the problem working?” and “What might I do to either stay on a productive path or readjust my approach to get on a productive path?” At this point in the process, students may hear from other students that have had a breakthrough or they may go back to their KWI to determine if they need to reconsider what they know about the problem. By naming explicitly to students that part of problem-solving is monitoring our thinking and process, we help them become more thoughtful problem solvers.

After Problem-Solving: Evaluating Solutions

As a final step, after students solve the problem, they evaluate both their solutions and the process that they used to arrive at those solutions. They look back to determine if their solution accurately solved the problem, and when time permits they also consider if their path to a solution was efficient and how it compares to other students’ solutions.

The power of teaching students to use this routine is that they develop a habit of mind to analyze and tackle problems wherever they find them. This empowers students to be the problem solvers that we know they can become.

Jeff Heyck-Williams (He, His, Him)

Director of the two rivers learning institute.

Jeff Heyck-Williams is the director of the Two Rivers Learning Institute and a founder of Two Rivers Public Charter School. He has led work around creating school-wide cultures of mathematics, developing assessments of critical thinking and problem-solving, and supporting project-based learning.

Read More About New Designs for School

high school science experiment

NGLC Invites Applications from New England High School Teams for Our Fall 2024 Learning Excursion

March 21, 2024

NGLC's Bravely 2024-2025

Bring Your Vision for Student Success to Life with NGLC and Bravely

March 13, 2024

3 young children smiling

How to Nurture Diverse and Inclusive Classrooms through Play

Rebecca Horrace, Playful Insights Consulting, and Laura Dattile, PlanToys USA

March 5, 2024

problem solving example in school

Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

problem solving example in school

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

problem solving example in school

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

problem solving example in school

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

problem solving example in school

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

  • WordPress.org
  • Documentation
  • Learn WordPress
  • Members Newsfeed

problem solving example in school

20 Problem-Solving Activities for Middle School Students

  • Middle School Education

problem solving example in school

Introduction:

As students progress through middle school, it becomes increasingly important to develop their problem-solving skills. By engaging in problem-solving activities, students can enhance their critical thinking abilities, foster creativity, and become better prepared for the challenges they may face both in and out of the classroom. Here are 20 problem-solving activities that are perfect for middle school students.

1. Brainstorming Sessions: Encourage students to share their ideas on a particular topic or issue, fostering a collaborative environment that promotes creative problem solving.

2. Riddles: Challenge students with riddles that require critical thinking and lateral thinking skills to determine the answers.

3. Sudoku: Introduce sudoku puzzles as a fun and challenging math-based activity.

4. Chess Club: Encourage students to participate in chess clubs or tournaments to practice strategic thinking.

5. Escape Rooms: Plan an age-appropriate escape room activity to develop teamwork and problem-solving skills among the students.

6. Role-Playing Exercises: Use role-playing scenarios to allow students to think critically about real-life situations and practice problem-solving strategies.

7. Science Experiments: Design science experiments that require students to troubleshoot problems and test possible solutions.

8. Word Problems: Incorporate word problems in math lessons, encouraging students to use logic and math skills to solve them.

9. Puzzle Stations: Set up different puzzle stations around the classroom where students can work on spatial reasoning, logic puzzles, and other brain teasers during free time.

10. Debates: Organize debates on controversial topics, allowing students to present and argue their views while developing their critical thinking and persuasion skills.

11. Engineering Challenges: Provide engineering-based challenges such as bridge building or packaging design activities that require teamwork and creative problem solving.

12. Storytelling Workshops: Host a storytelling workshop where students collaborate to create stories from a given prompt and gradually face more complex narrative challenges.

13. Coding Clubs: Support students in learning coding basics and encourage them to develop problem-solving skills through coding projects.

14. Treasure Hunts: Create treasure hunts with clues that require problem solving, reasoning, and collaboration among the students.

15. Cooperative Games: Facilitate games that promote cooperation and communication, such as “human knot” or “cross the lava.”

16. Geocaching: Introduce geocaching as a fun activity where students use GPS devices to locate hidden objects and work as a team to solve puzzle-like tasks.

17. Exploratory Research Projects: Assign open-ended research projects that require students to investigate topics of interest and solve problems or answer questions through their research efforts.

18. Mock Trials: Set up mock trials in which students participate as lawyers, witnesses, or jury members, allowing them to analyze cases and think through legal problem-solving strategies.

19. Creative Writing Prompts: Share creative writing prompts requiring students to think critically about characters’ actions and decisions within fictional scenarios.

20. Invention Convention: Host an invention convention where students present their unique solutions to everyday problems, fostering creativity and innovative thinking.

Conclusion:

Problem-solving activities are essential for middle school students as they help in cultivating valuable life skills necessary to tackle real-world challenges. These 20 activities provide diverse and engaging opportunities for students to develop key problem-solving skills while fostering creativity, communication, critical thinking, and collaboration. Teachers and educators can easily adapt these activities to suit the individual needs of their middle school classrooms.

icon

Related Articles

207

Starting at a new school can be an exciting yet nerve-wracking experience…

no reactions

Introduction: As middle schoolers transition into more independence, it's crucial that they…

1. Unpredictable Growth Spurts: Middle school teachers witness students entering their classrooms…

problem solving example in school

Pedagogue is a social media network where educators can learn and grow. It's a safe space where they can share advice, strategies, tools, hacks, resources, etc., and work together to improve their teaching skills and the academic performance of the students in their charge.

If you want to collaborate with educators from around the globe, facilitate remote learning, etc., sign up for a free account today and start making connections.

Pedagogue is Free Now, and Free Forever!

  • New? Start Here
  • Frequently Asked Questions
  • Privacy Policy
  • Terms of Service
  • Registration

Don't you have an account? Register Now! it's really simple and you can start enjoying all the benefits!

We just sent you an Email. Please Open it up to activate your account.

I allow this website to collect and store submitted data.

  • Our Mission

Guiding Students to Be Independent Problem-Solvers in STEM Classrooms

Teaching high school students how to plan to solve a problem in science, technology, engineering, and math is a crucial step.

High school students working together in class

Teaching students to become independent problem-solvers can be a challenging task, especially with virtual teaching during the pandemic. For some students, solving problems is not intuitive, and they need to learn how to think about solving problems from a general perspective. As experts, teachers often do not realize that there are implicit skills and ways of thinking that may not be obvious or known to our students.

5 Strategies to Explicitly Model and Teach Problem-Solving Skills

1. Model hidden thinking involved in solving a problem. When solving a problem, I talk about every aspect of what I am doing out loud. In fact, I over-talk, providing reasoning for every step. For example, when solving a dimensional-analysis problem, I will include descriptions like, “OK, I am going to look for any numbers that I can cancel. I know I can cancel or reduce if I see a number in the numerator and another number in the denominator that have a common factor.”

I will even include moments of vulnerability and model the fact that I don’t always know what to do, but I will discuss my options and my decision process. I sometimes intentionally make mistakes and then use methods to check my work to correct my errors. It’s essential that we explicitly show students this internal dialogue to model problem-solving.

2. Facilitate student talk during problem-solving. I do my best to never solve problems for students, even if they ask me. This includes whole-class lessons and working with students in small groups or individually. Using the Socratic method, I ask many questions of the students. The questions can be as simple as “What do we do next?” or “What are options of what we can do?”

Once during a classroom observation, I was told that in a span of 10 minutes, I asked more than 72 questions. This models the questions that the students can use in self-talk to guide them in the problem-solving process. After the first test, many students say that they could hear my voice asking them the same questions over and over, but what they’re really learning are advanced problem-solving skills they can extend to future contexts.

We can also provide deeper understanding with questions such as “Why do we do that?” These provide reasoning and value to the actions of each step in the problem-solving process, further solidifying the students’ understanding of the concepts and skills.

3. Include discussion for planning for each problem. Teachers instinctively plan problems. Students, as novice learners, often do not know how to plan a problem. They look at a problem, see it as foreign, and don’t know where to begin. They give up.

Research shows that planning how to solve the problem is an essential step for novice learners. Provide a structure or protocol for students. It can include the following: identify and write the data with units for a problem, identify equations to be used, identify and write what they’re trying to solve for, draw a relevant vector diagram, and brainstorm possible steps.

4. Emphasize the process, not final answers. Often, when checking individual work, we ask for the final answers. But what if instead of asking who has the answer, we ask who has the method to solve it? When students ask for correct answers, it’s natural to provide an immediate response. Instead, we should reply with guiding questions to facilitate the process of their solving the problems for themselves.

Often, I don’t even calculate the answer in the final step and ask if we all agree on the steps. The conversation is especially valuable when different methods are volunteered, and we can analyze the advantages of each. I want the students to check our work and not look at a simple result at the end of the problem to confirm their work. This shifts students’ attention to look at the details of the steps and not glance at the end of the work for the final answer. Further, grading can include points for steps and not the final solution.

5. Teach explicitly problem solving. After solving problems, students can create their own problem-solving strategy that they write on a note card. Collect responses from students and create a class protocol that you post on your learning management system or in your physical classroom space. Scaffold further with a two-column approach. In the left column, students show the work, and in the right column, they explain and justify what they did and why. The act of adding a justification will make students think about their actions. This will improve the connection between conceptual ideas and the problem-solving itself.

These are only a few strategies to get your students intentionally thinking about problem-solving from a general perspective beyond focusing on specific problems and memorizing steps. There are many ways to model and teach the skill of problem-solving that encourage them to think about the process explicitly.

Chapter 9: Facilitating Complex Thinking

Problem-solving.

Somewhat less open-ended than creative thinking is problem solving , the analysis and solution of tasks or situations that are complex or ambiguous and that pose difficulties or obstacles of some kind (Mayer & Wittrock, 2006). Problem solving is needed, for example, when a physician analyzes a chest X-ray: a photograph of the chest is far from clear and requires skill, experience, and resourcefulness to decide which foggy-looking blobs to ignore, and which to interpret as real physical structures (and therefore real medical concerns). Problem solving is also needed when a grocery store manager has to decide how to improve the sales of a product: should she put it on sale at a lower price, or increase publicity for it, or both? Will these actions actually increase sales enough to pay for their costs?

Example 1: Problem Solving in the Classroom

Problem solving happens in classrooms when teachers present tasks or challenges that are deliberately complex and for which finding a solution is not straightforward or obvious. The responses of students to such problems, as well as the strategies for assisting them, show the key features of problem solving. Consider this example, and students’ responses to it. We have numbered and named the paragraphs to make it easier to comment about them individually:

Scene #1: A problem to be solved

A teacher gave these instructions: “Can you connect all of the dots below using only four straight lines?” She drew the following display on the chalkboard:

nine dots in a three by three grid

The problem itself and the procedure for solving it seemed very clear: simply experiment with different arrangements of four lines. But two volunteers tried doing it at the board, but were unsuccessful. Several others worked at it at their seats, but also without success.

Scene #2: Coaxing students to re-frame the problem

When no one seemed to be getting it, the teacher asked, “Think about how you’ve set up the problem in your mind—about what you believe the problem is about. For instance, have you made any assumptions about how long the lines ought to be? Don’t stay stuck on one approach if it’s not working!”

Scene #3: Alicia abandons a fixed response

After the teacher said this, Alicia indeed continued to think about how she saw the problem. “The lines need to be no longer than the distance across the square,” she said to herself. So she tried several more solutions, but none of them worked either.

The teacher walked by Alicia’s desk and saw what Alicia was doing. She repeated her earlier comment: “Have you assumed anything about how long the lines ought to be?”

Alicia stared at the teacher blankly, but then smiled and said, “Hmm! You didn’t actually say that the lines could be no longer than the matrix! Why not make them longer?” So she experimented again using oversized lines and soon discovered a solution:

Nine dots in a three-by-three grid, all dots are connected using just four lines. The first line travels through the top-right dot, the center dot, and the bottom-left dot. The second line travels from the the bottom-left dot, through the middle-left dot, and through the top-right dot, then extends past the top-right dot. The third line starts where the second line extended, forming an angle as it passes through the top-middle dot and the middle-right dot. The third line then extends past the right-middle dot until it is even with the bottom of the grid. The fourth line starts where the third line extended, then passes through the bottom-right, bottom-middle, and bottom-left dots. The end result are four lines, three of which form a right triangle with corners extending beyond the three-by-three grid, with the remaining line bisecting the right angle of the triangle so that it passes through the middle and top-right dots.

Scene #4: Willem’s and Rachel’s alternative strategies

Meanwhile, Willem worked on the problem. As it happened, Willem loved puzzles of all kinds, and had ample experience with them. He had not, however, seen this particular problem. “It must be a trick,” he said to himself, because he knew from experience that problems posed in this way often were not what they first appeared to be. He mused to himself: “Think outside the box, they always tell you. . .” And that was just the hint he needed: he drew lines outside the box by making them longer than the matrix and soon came up with this solution:

a mirror image of Alicia's solution

When Rachel went to work, she took one look at the problem and knew the answer immediately: she had seen this problem before, though she could not remember where. She had also seen other drawing-related puzzles, and knew that their solution always depended on making the lines longer, shorter, or differently angled than first expected. After staring at the dots briefly, she drew a solution faster than Alicia or even Willem. Her solution looked exactly like Willem’s.

This story illustrates two common features of problem solving: the effect of degree of structure or constraint on problem solving, and the effect of mental obstacles to solving problems. The next sections discuss each of these features, and then looks at common techniques for solving problems.

The effect of constraints: well-structured versus ill-structured problems

Problems vary in how much information they provide for solving a problem, as well as in how many rules or procedures are needed for a solution. A well-structured problem provides much of the information needed and can in principle be solved using relatively few clearly understood rules. Classic examples are the word problems often taught in math lessons or classes: everything you need to know is contained within the stated problem and the solution procedures are relatively clear and precise. An ill-structured problem has the converse qualities: the information is not necessarily within the problem, solution procedures are potentially quite numerous, and a multiple solutions are likely (Voss, 2006). Extreme examples are problems like “How can the world achieve lasting peace?” or “How can teachers insure that students learn?”

By these definitions, the nine-dot problem is relatively well-structured—though not completely. Most of the information needed for a solution is provided in Scene #1: there are nine dots shown and instructions given to draw four lines. But not all necessary information was given: students needed to consider lines that were longer than implied in the original statement of the problem. Students had to “think outside the box,” as Willem said—in this case, literally.

When a problem is well-structured, so are its solution procedures likely to be as well. A well-defined procedure for solving a particular kind of problem is often called an algorithm ; examples are the procedures for multiplying or dividing two numbers or the instructions for using a computer (Leiserson, et al., 2001). Algorithms are only effective when a problem is very well-structured and there is no question about whether the algorithm is an appropriate choice for the problem. In that situation it pretty much guarantees a correct solution. They do not work well, however, with ill-structured problems, where they are ambiguities and questions about how to proceed or even about precisely what the problem is about. In those cases it is more effective to use heuristics , which are general strategies—“rules of thumb,” so to speak—that do not always work, but often do, or that provide at least partial solutions. When beginning research for a term paper, for example, a useful heuristic is to scan the library catalogue for titles that look relevant. There is no guarantee that this strategy will yield the books most needed for the paper, but the strategy works enough of the time to make it worth trying.

In the nine-dot problem, most students began in Scene #1 with a simple algorithm that can be stated like this: “Draw one line, then draw another, and another, and another.” Unfortunately this simple procedure did not produce a solution, so they had to find other strategies for a solution. Three alternatives are described in Scenes #3 (for Alicia) and 4 (for Willem and Rachel). Of these, Willem’s response resembled a heuristic the most: he knew from experience that a good general strategy that often worked for such problems was to suspect a deception or trick in how the problem was originally stated. So he set out to question what the teacher had meant by the word line , and came up with an acceptable solution as a result.

Common obstacles to solving problems

The example also illustrates two common problems that sometimes happen during problem solving. One of these is functional fixedness : a tendency to regard the functions of objects and ideas as fixed (German & Barrett, 2005). Over time, we get so used to one particular purpose for an object that we overlook other uses. We may think of a dictionary, for example, as necessarily something to verify spellings and definitions, but it also can function as a gift, a doorstop, or a footstool. For students working on the nine-dot matrix described in the last section, the notion of “drawing” a line was also initially fixed; they assumed it to be connecting dots but not extending lines beyond the dots. Functional fixedness sometimes is also called response set , the tendency for a person to frame or think about each problem in a series in the same way as the previous problem, even when doing so is not appropriate to later problems. In the example of the nine-dot matrix described above, students often tried one solution after another, but each solution was constrained by a set response not to extend any line beyond the matrix.

Functional fixedness and the response set are obstacles in problem representation , the way that a person understands and organizes information provided in a problem. If information is misunderstood or used inappropriately, then mistakes are likely—if indeed the problem can be solved at all. With the nine-dot matrix problem, for example, construing the instruction to draw four lines as meaning “draw four lines entirely within the matrix” means that the problem simply could not be solved. For another, consider this problem: “The number of water lilies on a lake doubles each day. Each water lily covers exactly one square foot. If it takes 100 days for the lilies to cover the lake exactly, how many days does it take for the lilies to cover exactly half of the lake?” If you think that the size of the lilies affects the solution to this problem, you have not represented the problem correctly. Information about lily size is not relevant to the solution, and only serves to distract from the truly crucial information, the fact that the lilies double their coverage each day. (The answer, incidentally, is that the lake is half covered in 99 days; can you think why?)

Strategies to assist problem solving

Just as there are cognitive obstacles to problem solving, there are also general strategies that help the process be successful, regardless of the specific content of a problem (Thagard, 2005). One helpful strategy is problem analysis —identifying the parts of the problem and working on each part separately. Analysis is especially useful when a problem is ill-structured. Consider this problem, for example: “Devise a plan to improve bicycle transportation in the city.” Solving this problem is easier if you identify its parts or component subproblems, such as (1) installing bicycle lanes on busy streets, (2) educating cyclists and motorists to ride safely, (3) fixing potholes on streets used by cyclists, and (4) revising traffic laws that interfere with cycling. Each separate subproblem is more manageable than the original, general problem. The solution of each subproblem contributes the solution of the whole, though of course is not equivalent to a whole solution.

Another helpful strategy is working backward from a final solution to the originally stated problem. This approach is especially helpful when a problem is well-structured but also has elements that are distracting or misleading when approached in a forward, normal direction. The water lily problem described above is a good example: starting with the day when all the lake is covered (Day 100), ask what day would it therefore be half covered (by the terms of the problem, it would have to be the day before, or Day 99). Working backward in this case encourages reframing the extra information in the problem (i. e. the size of each water lily) as merely distracting, not as crucial to a solution.

A third helpful strategy is analogical thinking —using knowledge or experiences with similar features or structures to help solve the problem at hand (Bassok, 2003). In devising a plan to improve bicycling in the city, for example, an analogy of cars with bicycles is helpful in thinking of solutions: improving conditions for both vehicles requires many of the same measures (improving the roadways, educating drivers). Even solving simpler, more basic problems is helped by considering analogies. A first grade student can partially decode unfamiliar printed words by analogy to words he or she has learned already. If the child cannot yet read the word screen , for example, he can note that part of this word looks similar to words he may already know, such as seen or green , and from this observation derive a clue about how to read the word screen . Teachers can assist this process, as you might expect, by suggesting reasonable, helpful analogies for students to consider.

Bassok, J. (2003). Analogical transfer in problem solving. In Davidson, J. & Sternberg, R. (Eds.). The psychology of problem solving. New York: Cambridge University Press.

German, T. & Barrett, H. (2005). Functional fixedness in a technologically sparse culture. Psychological Science, 16 (1), 1–5.

Leiserson, C., Rivest, R., Cormen, T., & Stein, C. (2001). Introduction to algorithms. Cambridge, MA: MIT Press.

Luchins, A. & Luchins, E. (1994). The water-jar experiment and Einstellung effects. Gestalt Theory: An International Interdisciplinary Journal, 16 (2), 101–121.

Mayer, R. & Wittrock, M. (2006). Problem-solving transfer. In D. Berliner & R. Calfee (Eds.), Handbook of Educational Psychology, pp. 47–62. Mahwah, NJ: Erlbaum.

Thagard, R. (2005). Mind: Introduction to Cognitive Science, 2nd edition. Cambridge, MA: MIT Press.

Voss, J. (2006). Toulmin’s model and the solving of ill-structured problems. Argumentation, 19 (3), 321–329.

  • Educational Psychology. Authored by : Kelvin Seifert and Rosemary Sutton. Located at : https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=153 . License : CC BY: Attribution

TheHighSchooler

10 Problem-Solving Scenarios for High School Students

It is certainly common to come across difficult situations including forgetting an assignment at home or overusing your phone only to miss an important project deadline. We are always surrounded by little difficulties that might become bigger problems if not addressed appropriately.

Whether it is saving your friend from the addiction to social media platforms or communicating your personal boundaries to relatives, problem-solving skills are one of the important skills you need to acquire throughout the journey of life.

Do you think these skills are in-built with other high school students? Certainly not.

It takes innovative learning methodologies just like problem-solving scenarios that help you immerse in the subject matter with precision. With problem-solving scenarios, you come across a range of problems that help you build critical thinking skills, logical reasoning, and analytical techniques.

The article will take you through scenarios that are a combination of various problems that need to be addressed strategically and carefully. As you read ahead, make sure to brainstorm solutions and choose the best one that fits the scenario. 

Helpful scenarios to build a problem-solving attitude in high schoolers

Learning through scenarios helps students look at situations from a completely analytical perspective. Problem-solving scenarios offer a combination of various situations that test the thinking skills and growth mindset of high school students. The below-mentioned scenarios are perfect for implementing problem-solving skills simply by allowing open discussions and contributions by students.

1. Uninvited Guests

Uninvited Guests

You have arranged a party at your home after successfully winning the competition at the Science Fair. You invite everyone involved in the project however, one of your friends brings his cousin’s brother along. However, you have limited soft drink cans considering the number of invited people. How would you manage this situation without making anyone feel left out?

2. Communication Issues

Communication Issues

A new teacher has joined the high school to teach about environmental conservation. She often involves students in different agriculture activities and workshops. However, one of your friends, John, is not able to understand the subject matter. He is unable to communicate his doubts to the teachers. How would you motivate him to talk to the teacher without the fear of judgment?

3. Friendship or Personal Choice?

Friendship or Personal Choice?

The history teacher announced an exciting assignment opportunity that helps you explore ancient civilizations. You and your friend are pretty interested in doing the project as a team. One of your other friends, Jason, wants to join the team with limited knowledge and interest in the topic. Would you respect the friendship or deny him so you can score better on the assignment?

4. Peer Pressure 

Peer Pressure 

It is common for high schoolers to follow what their friends do. However, lately, your friends have discovered different ways of showing off their skills. While they do all the fun things, there are certain activities you are not interested in doing. It often puts you in trouble whether to go with friends or take a stand for what is right. Would you take the help of peer mentoring activities in school or try to initiate a direct conversation with them?

5. Team Building 

Team Building

Mr. Jason, the science teacher, assigns different projects and forms teams with random classmates. There are 7 people in each team who need to work towards project completion. As the group starts working, you notice that some members do not contribute at all. How will you ensure that everyone participates and coordinates with the team members?

6. Conflict Resolution 

The drama club and the English club are famous clubs in the school. Both clubs organize various events for the students. This time, both clubs have a tiff because of the event venue. Both clubs need the same auditorium for the venue on the same date. How would you mediate to solve the issue and even make sure that club members are on good terms with each other? 

7. Stress Management 

Stress Management

Your school often conducts different activities or asks students stress survey questions to ensure their happiness and well-being. However, one of your friends always misses them. He gets frustrated and seems stressed throughout the day. What would you do to ensure that your friend gets his issue acknowledged by teachers?

8. Time Management 

Time Management 

Your friend is always enthusiastic about new competitions in high school. He is running here and there to enroll and get certificates. In this case, he often misses important lectures and activities in class. Moreover, his parents complain that he misses swimming class too. How would you explain to him the importance of prioritizing and setting goals to solve this issue?

9. Educational Resources 

You and your friends are avid readers and often take advice from books. While most must-read books for bibliophiles are read by you, it is important to now look for other books. However, you witness that the school library lacks other important books on philosophy and the non-fiction category. How would you escalate this issue to the higher authorities by addressing the needs of students?

10. Financial Planning

Financial Planning

Finance is an important factor and that is why your parents help you plan your pocket money and budgeting. Off lately, they have stopped doing so considering that you can manage on your own. However, after a few months, you have started spending more on games and high-end school supplies. You realize that your spending habits are leading to loss of money and reduced savings. How shall you overcome this situation?

Wrapping Up 

Involving students in different learning practices and innovative ways inspires them to think out of the box and make use of imagination skills. With the usage of different problem-solving scenarios, high school students get an opportunity to delve into realistic examples and consequences of different incidents.

Such scenarios offer an excellent way to promote understanding, critical thinking skills and enhance creativity. Ensure to use different activities and games for creating a comprehensive learning environment.

problem solving example in school

Sananda Bhattacharya, Chief Editor of TheHighSchooler, is dedicated to enhancing operations and growth. With degrees in Literature and Asian Studies from Presidency University, Kolkata, she leverages her educational and innovative background to shape TheHighSchooler into a pivotal resource hub. Providing valuable insights, practical activities, and guidance on school life, graduation, scholarships, and more, Sananda’s leadership enriches the journey of high school students.

Explore a plethora of invaluable resources and insights tailored for high schoolers at TheHighSchooler, under the guidance of Sananda Bhattacharya’s expertise. You can follow her on Linkedin

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Don’t Just Tell Students to Solve Problems. Teach Them How.

The positive impact of an innovative uc san diego problem-solving educational curriculum continues to grow.

Published Date

Share this:, article content.

Problem solving is a critical skill for technical education and technical careers of all types. But what are best practices for teaching problem solving to high school and college students? 

The University of California San Diego Jacobs School of Engineering is on the forefront of efforts to improve how problem solving is taught. This UC San Diego approach puts hands-on problem-identification and problem-solving techniques front and center. Over 1,500 students across the San Diego region have already benefited over the last three years from this program. In the 2023-2024 academic year, approximately 1,000 upper-level high school students will be taking the problem solving course in four different school districts in the San Diego region. Based on the positive results with college students, as well as high school juniors and seniors in the San Diego region, the project is getting attention from educators across the state of California, and around the nation and the world.

{/exp:typographee}

In Summer 2023, th e 27 community college students who took the unique problem-solving course developed at the UC San Diego Jacobs School of Engineering thrived, according to Alex Phan PhD, the Executive Director of Student Success at the UC San Diego Jacobs School of Engineering. Phan oversees the project. 

Over the course of three weeks, these students from Southwestern College and San Diego City College poured their enthusiasm into problem solving through hands-on team engineering challenges. The students brimmed with positive energy as they worked together. 

What was noticeably absent from this laboratory classroom: frustration.

“In school, we often tell students to brainstorm, but they don’t often know where to start. This curriculum gives students direct strategies for brainstorming, for identifying problems, for solving problems,” sai d Jennifer Ogo, a teacher from Kearny High School who taught the problem-solving course in summer 2023 at UC San Diego. Ogo was part of group of educators who took the course themselves last summer.

The curriculum has been created, refined and administered over the last three years through a collaboration between the UC San Diego Jacobs School of Engineering and the UC San Diego Division of Extended Studies. The project kicked off in 2020 with a generous gift from a local philanthropist.

Not getting stuck

One of the overarching goals of this project is to teach both problem-identification and problem-solving skills that help students avoid getting stuck during the learning process. Stuck feelings lead to frustration – and when it’s a Science, Technology, Engineering and Math (STEM) project, that frustration can lead students to feel they don’t belong in a STEM major or a STEM career. Instead, the UC San Diego curriculum is designed to give students the tools that lead to reactions like “this class is hard, but I know I can do this!” –  as Ogo, a celebrated high school biomedical sciences and technology teacher, put it. 

Three years into the curriculum development effort, the light-hearted energy of the students combined with their intense focus points to success. On the last day of the class, Mourad Mjahed PhD, Director of the MESA Program at Southwestern College’s School of Mathematics, Science and Engineering came to UC San Diego to see the final project presentations made by his 22 MESA students.

“Industry is looking for students who have learned from their failures and who have worked outside of their comfort zones,” said Mjahed. The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. “And from there, they see pathways to real careers,” he said. 

What does it mean to explicitly teach problem solving? 

This approach to teaching problem solving includes a significant focus on learning to identify the problem that actually needs to be solved, in order to avoid solving the wrong problem. The curriculum is organized so that each day is a complete experience. It begins with the teacher introducing the problem-identification or problem-solving strategy of the day. The teacher then presents case studies of that particular strategy in action. Next, the students get introduced to the day’s challenge project. Working in teams, the students compete to win the challenge while integrating the day’s technique. Finally, the class reconvenes to reflect. They discuss what worked and didn't work with their designs as well as how they could have used the day’s problem-identification or problem-solving technique more effectively. 

The challenges are designed to be engaging – and over three years, they have been refined to be even more engaging. But the student engagement is about much more than being entertained. Many of the students recognize early on that the problem-identification and problem-solving skills they are learning can be applied not just in the classroom, but in other classes and in life in general. 

Gabriel from Southwestern College is one of the students who saw benefits outside the classroom almost immediately. In addition to taking the UC San Diego problem-solving course, Gabriel was concurrently enrolled in an online computer science programming class. He said he immediately started applying the UC San Diego problem-identification and troubleshooting strategies to his coding assignments. 

Gabriel noted that he was given a coding-specific troubleshooting strategy in the computer science course, but the more general problem-identification strategies from the UC San Diego class had been extremely helpful. It’s critical to “find the right problem so you can get the right solution. The strategies here,” he said, “they work everywhere.”

Phan echoed this sentiment. “We believe this curriculum can prepare students for the technical workforce. It can prepare students to be impactful for any career path.”

The goal is to be able to offer the course in community colleges for course credit that transfers to the UC, and to possibly offer a version of the course to incoming students at UC San Diego. 

As the team continues to work towards integrating the curriculum in both standardized high school courses such as physics, and incorporating the content as a part of the general education curriculum at UC San Diego, the project is expected to impact thousands more students across San Diego annually. 

Portrait of the Problem-Solving Curriculum

On a sunny Wednesday in July 2023, an experiential-learning classroom was full of San Diego community college students. They were about half-way through the three-week problem-solving course at UC San Diego, held in the campus’ EnVision Arts and Engineering Maker Studio. On this day, the students were challenged to build a contraption that would propel at least six ping pong balls along a kite string spanning the laboratory. The only propulsive force they could rely on was the air shooting out of a party balloon.

A team of three students from Southwestern College – Valeria, Melissa and Alondra – took an early lead in the classroom competition. They were the first to use a plastic bag instead of disposable cups to hold the ping pong balls. Using a bag, their design got more than half-way to the finish line – better than any other team at the time – but there was more work to do. 

As the trio considered what design changes to make next, they returned to the problem-solving theme of the day: unintended consequences. Earlier in the day, all the students had been challenged to consider unintended consequences and ask questions like: When you design to reduce friction, what happens? Do new problems emerge? Did other things improve that you hadn’t anticipated? 

Other groups soon followed Valeria, Melissa and Alondra’s lead and began iterating on their own plastic-bag solutions to the day’s challenge. New unintended consequences popped up everywhere. Switching from cups to a bag, for example, reduced friction but sometimes increased wind drag. 

Over the course of several iterations, Valeria, Melissa and Alondra made their bag smaller, blew their balloon up bigger, and switched to a different kind of tape to get a better connection with the plastic straw that slid along the kite string, carrying the ping pong balls. 

One of the groups on the other side of the room watched the emergence of the plastic-bag solution with great interest. 

“We tried everything, then we saw a team using a bag,” said Alexander, a student from City College. His team adopted the plastic-bag strategy as well, and iterated on it like everyone else. They also chose to blow up their balloon with a hand pump after the balloon was already attached to the bag filled with ping pong balls – which was unique. 

“I don’t want to be trying to put the balloon in place when it's about to explode,” Alexander explained. 

Asked about whether the structured problem solving approaches were useful, Alexander’s teammate Brianna, who is a Southwestern College student, talked about how the problem-solving tools have helped her get over mental blocks. “Sometimes we make the most ridiculous things work,” she said. “It’s a pretty fun class for sure.” 

Yoshadara, a City College student who is the third member of this team, described some of the problem solving techniques this way: “It’s about letting yourself be a little absurd.”

Alexander jumped back into the conversation. “The value is in the abstraction. As students, we learn to look at the problem solving that worked and then abstract out the problem solving strategy that can then be applied to other challenges. That’s what mathematicians do all the time,” he said, adding that he is already thinking about how he can apply the process of looking at unintended consequences to improve both how he plays chess and how he goes about solving math problems.

Looking ahead, the goal is to empower as many students as possible in the San Diego area and  beyond to learn to problem solve more enjoyably. It’s a concrete way to give students tools that could encourage them to thrive in the growing number of technical careers that require sharp problem-solving skills, whether or not they require a four-year degree. 

You May Also Like

Breakthrough study on post-traumatic stress disorder, creating a “greener,” more connected society, electronic health records unlock genetics of tobacco use disorder, following cellular lineage, stay in the know.

Keep up with all the latest from UC San Diego. Subscribe to the newsletter today.

You have been successfully subscribed to the UC San Diego Today Newsletter.

Campus & Community

Arts & culture, visual storytelling.

  • Media Resources & Contacts

Signup to get the latest UC San Diego newsletters delivered to your inbox.

Award-winning publication highlighting the distinction, prestige and global impact of UC San Diego.

Popular Searches: Covid-19   Ukraine   Campus & Community   Arts & Culture   Voices

problem solving example in school

Problem Solving Activities: 7 Strategies

  • Critical Thinking

problem solving example in school

Problem solving can be a daunting aspect of effective mathematics teaching, but it does not have to be! In this post, I share seven strategic ways to integrate problem solving into your everyday math program.

In the middle of our problem solving lesson, my district math coordinator stopped by for a surprise walkthrough. 

I was so excited!

We were in the middle of what I thought was the most brilliant math lesson– teaching my students how to solve problem solving tasks using specific problem solving strategies. 

It was a proud moment for me!

Each week, I presented a new problem solving strategy and the students completed problems that emphasized the strategy. 

Genius right? 

After observing my class, my district coordinator pulled me aside to chat. I was excited to talk to her about my brilliant plan, but she told me I should provide the tasks and let my students come up with ways to solve the problems. Then, as students shared their work, I could revoice the student’s strategies and give them an official name. 

What a crushing blow! Just when I thought I did something special, I find out I did it all wrong. 

I took some time to consider her advice. Once I acknowledged she was right, I was able to make BIG changes to the way I taught problem solving in the classroom. 

When I Finally Saw the Light

To give my students an opportunity to engage in more authentic problem solving which would lead them to use a larger variety of problem solving strategies, I decided to vary the activities and the way I approached problem solving with my students. 

Problem Solving Activities

Here are seven ways to strategically reinforce problem solving skills in your classroom. 

This is an example of seasonal problem solving activities.

Seasonal Problem Solving

Many teachers use word problems as problem solving tasks. Instead, try engaging your students with non-routine tasks that look like word problems but require more than the use of addition, subtraction, multiplication, and division to complete. Seasonal problem solving tasks and daily challenges are a perfect way to celebrate the season and have a little fun too!

Cooperative Problem Solving Tasks

Go cooperative! If you’ve got a few extra minutes, have students work on problem solving tasks in small groups. After working through the task, students create a poster to help explain their solution process and then post their poster around the classroom. Students then complete a gallery walk of the posters in the classroom and provide feedback via sticky notes or during a math talk session.

Notice and Wonder

Before beginning a problem solving task, such as a seasonal problem solving task, conduct a Notice and Wonder session. To do this, ask students what they notice about the problem. Then, ask them what they wonder about the problem. This will give students an opportunity to highlight the unique characteristics and conditions of the problem as they try to make sense of it. 

Want a better experience? Remove the stimulus, or question, and allow students to wonder about the problem. Try it! You’ll gain some great insight into how your students think about a problem.

This is an example of a math starter.

Math Starters

Start your math block with a math starter, critical thinking activities designed to get your students thinking about math and provide opportunities to “sneak” in grade-level content and skills in a fun and engaging way. These tasks are quick, designed to take no more than five minutes, and provide a great way to turn-on your students’ brains. Read more about math starters here ! 

Create your own puzzle box! The puzzle box is a set of puzzles and math challenges I use as fast finisher tasks for my students when they finish an assignment or need an extra challenge. The box can be a file box, file crate, or even a wall chart. It includes a variety of activities so all students can find a challenge that suits their interests and ability level.

Calculators

Use calculators! For some reason, this tool is not one many students get to use frequently; however, it’s important students have a chance to practice using it in the classroom. After all, almost everyone has access to a calculator on their cell phones. There are also some standardized tests that allow students to use them, so it’s important for us to practice using calculators in the classroom. Plus, calculators can be fun learning tools all by themselves!

Three-Act Math Tasks

Use a three-act math task to engage students with a content-focused, real-world problem! These math tasks were created with math modeling in mind– students are presented with a scenario and then given clues and hints to help them solve the problem. There are several sites where you can find these awesome math tasks, including Dan Meyer’s Three-Act Math Tasks and Graham Fletcher’s 3-Acts Lessons . 

Getting the Most from Each of the Problem Solving Activities

When students participate in problem solving activities, it is important to ask guiding, not leading, questions. This provides students with the support necessary to move forward in their thinking and it provides teachers with a more in-depth understanding of student thinking. Selecting an initial question and then analyzing a student’s response tells teachers where to go next. 

Ready to jump in? Grab a free set of problem solving challenges like the ones pictured using the form below. 

Which of the problem solving activities will you try first? Respond in the comments below.

problem solving example in school

Shametria Routt Banks

problem solving example in school

  • Assessment Tools
  • Content and Standards
  • Differentiation
  • Math & Literature
  • Math & Technology
  • Math Routines
  • Math Stations
  • Virtual Learning
  • Writing in Math

You may also like...

Math Games: Fostering Cooperative Math Conversations

2 Responses

This is a very cool site. I hope it takes off and is well received by teachers. I work in mathematical problem solving and help prepare pre-service teachers in mathematics.

Thank you, Scott! Best wishes to you and your pre-service teachers this year!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

©2024 The Routty Math Teacher.   All Rights Reserved.  Designed by Ashley Hughes.

Privacy overview.

helpful professor logo

39 Best Problem-Solving Examples

problem-solving examples and definition, explained below

Problem-solving is a process where you’re tasked with identifying an issue and coming up with the most practical and effective solution.

This indispensable skill is necessary in several aspects of life, from personal relationships to education to business decisions.

Problem-solving aptitude boosts rational thinking, creativity, and the ability to cooperate with others. It’s also considered essential in 21st Century workplaces.

If explaining your problem-solving skills in an interview, remember that the employer is trying to determine your ability to handle difficulties. Focus on explaining exactly how you solve problems, including by introducing your thoughts on some of the following frameworks and how you’ve applied them in the past.

Problem-Solving Examples

1. divergent thinking.

Divergent thinking refers to the process of coming up with multiple different answers to a single problem. It’s the opposite of convergent thinking, which would involve coming up with a singular answer .

The benefit of a divergent thinking approach is that it can help us achieve blue skies thinking – it lets us generate several possible solutions that we can then critique and analyze .

In the realm of problem-solving, divergent thinking acts as the initial spark. You’re working to create an array of potential solutions, even those that seem outwardly unrelated or unconventional, to get your brain turning and unlock out-of-the-box ideas.

This process paves the way for the decision-making stage, where the most promising ideas are selected and refined.

Go Deeper: Divervent Thinking Examples

2. Convergent Thinking

Next comes convergent thinking, the process of narrowing down multiple possibilities to arrive at a single solution.

This involves using your analytical skills to identify the best, most practical, or most economical solution from the pool of ideas that you generated in the divergent thinking stage.

In a way, convergent thinking shapes the “roadmap” to solve a problem after divergent thinking has supplied the “destinations.”

Have a think about which of these problem-solving skills you’re more adept at: divergent or convergent thinking?

Go Deeper: Convergent Thinking Examples

3. Brainstorming

Brainstorming is a group activity designed to generate a multitude of ideas regarding a specific problem. It’s divergent thinking as a group , which helps unlock even more possibilities.

A typical brainstorming session involves uninhibited and spontaneous ideation, encouraging participants to voice any possible solutions, no matter how unconventional they might appear.

It’s important in a brainstorming session to suspend judgment and be as inclusive as possible, allowing all participants to get involved.

By widening the scope of potential solutions, brainstorming allows better problem definition, more creative solutions, and helps to avoid thinking “traps” that might limit your perspective.

Go Deeper: Brainstorming Examples

4. Thinking Outside the Box

The concept of “thinking outside the box” encourages a shift in perspective, urging you to approach problems from an entirely new angle.

Rather than sticking to traditional methods and processes, it involves breaking away from conventional norms to cultivate unique solutions.

In problem-solving, this mindset can bypass established hurdles and bring you to fresh ideas that might otherwise remain undiscovered.

Think of it as going off the beaten track when regular routes present roadblocks to effective resolution.

5. Case Study Analysis

Analyzing case studies involves a detailed examination of real-life situations that bear relevance to the current problem at hand.

For example, if you’re facing a problem, you could go to another environment that has faced a similar problem and examine how they solved it. You’d then bring the insights from that case study back to your own problem.

This approach provides a practical backdrop against which theories and assumptions can be tested, offering valuable insights into how similar problems have been approached and resolved in the past.

See a Broader Range of Analysis Examples Here

6. Action Research

Action research involves a repetitive process of identifying a problem, formulating a plan to address it, implementing the plan, and then analyzing the results. It’s common in educational research contexts.

The objective is to promote continuous learning and improvement through reflection and action. You conduct research into your problem, attempt to apply a solution, then assess how well the solution worked. This becomes an iterative process of continual improvement over time.

For problem-solving, this method offers a way to test solutions in real-time and allows for changes and refinements along the way, based on feedback or observed outcomes. It’s a form of active problem-solving that integrates lessons learned into the next cycle of action.

Go Deeper: Action Research Examples

7. Information Gathering

Fundamental to solving any problem is the process of information gathering.

This involves collecting relevant data , facts, and details about the issue at hand, significantly aiding in the understanding and conceptualization of the problem.

In problem-solving, information gathering underpins every decision you make.

This process ensures your actions are based on concrete information and evidence, allowing for an informed approach to tackle the problem effectively.

8. Seeking Advice

Seeking advice implies turning to knowledgeable and experienced individuals or entities to gain insights on problem-solving.

It could include mentors, industry experts, peers, or even specialized literature.

The value in this process lies in leveraging different perspectives and proven strategies when dealing with a problem. Moreover, it aids you in avoiding pitfalls, saving time, and learning from others’ experiences.

9. Creative Thinking

Creative thinking refers to the ability to perceive a problem in a new way, identify unconventional patterns, or produce original solutions.

It encourages innovation and uniqueness, often leading to the most effective results.

When applied to problem-solving, creative thinking can help you break free from traditional constraints, ideal for potentially complex or unusual problems.

Go Deeper: Creative Thinking Examples

10. Conflict Resolution

Conflict resolution is a strategy developed to resolve disagreements and arguments, often involving communication, negotiation, and compromise.

When employed as a problem-solving technique, it can diffuse tension, clear bottlenecks, and create a collaborative environment.

Effective conflict resolution ensures that differing views or disagreements do not become roadblocks in the process of problem-solving.

Go Deeper: Conflict Resolution Examples

11. Addressing Bottlenecks

Bottlenecks refer to obstacles or hindrances that slow down or even halt a process.

In problem-solving, addressing bottlenecks involves identifying these impediments and finding ways to eliminate them.

This effort not only smooths the path to resolution but also enhances the overall efficiency of the problem-solving process.

For example, if your workflow is not working well, you’d go to the bottleneck – that one point that is most time consuming – and focus on that. Once you ‘break’ this bottleneck, the entire process will run more smoothly.

12. Market Research

Market research involves gathering and analyzing information about target markets, consumers, and competitors.

In sales and marketing, this is one of the most effective problem-solving methods. The research collected from your market (e.g. from consumer surveys) generates data that can help identify market trends, customer preferences, and competitor strategies.

In this sense, it allows a company to make informed decisions, solve existing problems, and even predict and prevent future ones.

13. Root Cause Analysis

Root cause analysis is a method used to identify the origin or the fundamental reason for a problem.

Once the root cause is determined, you can implement corrective actions to prevent the problem from recurring.

As a problem-solving procedure, root cause analysis helps you to tackle the problem at its source, rather than dealing with its surface symptoms.

Go Deeper: Root Cause Analysis Examples

14. Mind Mapping

Mind mapping is a visual tool used to structure information, helping you better analyze, comprehend and generate new ideas.

By laying out your thoughts visually, it can lead you to solutions that might not have been apparent with linear thinking.

In problem-solving, mind mapping helps in organizing ideas and identifying connections between them, providing a holistic view of the situation and potential solutions.

15. Trial and Error

The trial and error method involves attempting various solutions until you find one that resolves the problem.

It’s an empirical technique that relies on practical actions instead of theories or rules.

In the context of problem-solving, trial and error allows you the flexibility to test different strategies in real situations, gaining insights about what works and what doesn’t.

16. SWOT Analysis

SWOT is an acronym standing for Strengths, Weaknesses, Opportunities, and Threats.

It’s an analytic framework used to evaluate these aspects in relation to a particular objective or problem.

In problem-solving, SWOT Analysis helps you to identify favorable and unfavorable internal and external factors. It helps to craft strategies that make best use of your strengths and opportunities, whilst addressing weaknesses and threats.

Go Deeper: SWOT Analysis Examples

17. Scenario Planning

Scenario planning is a strategic planning method used to make flexible long-term plans.

It involves imagining, and then planning for, multiple likely future scenarios.

By forecasting various directions a problem could take, scenario planning helps manage uncertainty and is an effective tool for problem-solving in volatile conditions.

18. Six Thinking Hats

The Six Thinking Hats is a concept devised by Edward de Bono that proposes six different directions or modes of thinking, symbolized by six different hat colors.

Each hat signifies a different perspective, encouraging you to switch ‘thinking modes’ as you switch hats. This method can help remove bias and broaden perspectives when dealing with a problem.

19. Decision Matrix Analysis

Decision Matrix Analysis is a technique that allows you to weigh different factors when faced with several possible solutions.

After listing down the options and determining the factors of importance, each option is scored based on each factor.

Revealing a clear winner that both serves your objectives and reflects your values, Decision Matrix Analysis grounds your problem-solving process in objectivity and comprehensiveness.

20. Pareto Analysis

Also known as the 80/20 rule, Pareto Analysis is a decision-making technique.

It’s based on the principle that 80% of problems are typically caused by 20% of the causes, making it a handy tool for identifying the most significant issues in a situation.

Using this analysis, you’re likely to direct your problem-solving efforts more effectively, tackling the root causes producing most of the problem’s impact.

21. Critical Thinking

Critical thinking refers to the ability to analyze facts to form a judgment objectively.

It involves logical, disciplined thinking that is clear, rational, open-minded, and informed by evidence.

For problem-solving, critical thinking helps evaluate options and decide the most effective solution. It ensures your decisions are grounded in reason and facts, and not biased or irrational assumptions.

Go Deeper: Critical Thinking Examples

22. Hypothesis Testing

Hypothesis testing usually involves formulating a claim, testing it against actual data, and deciding whether to accept or reject the claim based on the results.

In problem-solving, hypotheses often represent potential solutions. Hypothesis testing provides verification, giving a statistical basis for decision-making and problem resolution.

Usually, this will require research methods and a scientific approach to see whether the hypothesis stands up or not.

Go Deeper: Types of Hypothesis Testing

23. Cost-Benefit Analysis

A cost-benefit analysis (CBA) is a systematic process of weighing the pros and cons of different solutions in terms of their potential costs and benefits.

It allows you to measure the positive effects against the negatives and informs your problem-solving strategy.

By using CBA, you can identify which solution offers the greatest benefit for the least cost, significantly improving efficacy and efficiency in your problem-solving process.

Go Deeper: Cost-Benefit Analysis Examples

24. Simulation and Modeling

Simulations and models allow you to create a simplified replica of real-world systems to test outcomes under controlled conditions.

In problem-solving, you can broadly understand potential repercussions of different solutions before implementation.

It offers a cost-effective way to predict the impacts of your decisions, minimizing potential risks associated with various solutions.

25. Delphi Method

The Delphi Method is a structured communication technique used to gather expert opinions.

The method involves a group of experts who respond to questionnaires about a problem. The responses are aggregated and shared with the group, and the process repeats until a consensus is reached.

This method of problem solving can provide a diverse range of insights and solutions, shaped by the wisdom of a collective expert group.

26. Cross-functional Team Collaboration

Cross-functional team collaboration involves individuals from different departments or areas of expertise coming together to solve a common problem or achieve a shared goal.

When you bring diverse skills, knowledge, and perspectives to a problem, it can lead to a more comprehensive and innovative solution.

In problem-solving, this promotes communal thinking and ensures that solutions are inclusive and holistic, with various aspects of the problem being addressed.

27. Benchmarking

Benchmarking involves comparing one’s business processes and performance metrics to the best practices from other companies or industries.

In problem-solving, it allows you to identify gaps in your own processes, determine how others have solved similar problems, and apply those solutions that have proven to be successful.

It also allows you to compare yourself to the best (the benchmark) and assess where you’re not as good.

28. Pros-Cons Lists

A pro-con analysis aids in problem-solving by weighing the advantages (pros) and disadvantages (cons) of various possible solutions.

This simple but powerful tool helps in making a balanced, informed decision.

When confronted with a problem, a pro-con analysis can guide you through the decision-making process, ensuring all possible outcomes and implications are scrutinized before arriving at the optimal solution. Thus, it helps to make the problem-solving process both methodical and comprehensive.

29. 5 Whys Analysis

The 5 Whys Analysis involves repeatedly asking the question ‘why’ (around five times) to peel away the layers of an issue and discover the root cause of a problem.

As a problem-solving technique, it enables you to delve into details that you might otherwise overlook and offers a simple, yet powerful, approach to uncover the origin of a problem.

For example, if your task is to find out why a product isn’t selling your first answer might be: “because customers don’t want it”, then you ask why again – “they don’t want it because it doesn’t solve their problem”, then why again – “because the product is missing a certain feature” … and so on, until you get to the root “why”.

30. Gap Analysis

Gap analysis entails comparing current performance with potential or desired performance.

You’re identifying the ‘gaps’, or the differences, between where you are and where you want to be.

In terms of problem-solving, a Gap Analysis can help identify key areas for improvement and design a roadmap of how to get from the current state to the desired one.

31. Design Thinking

Design thinking is a problem-solving approach that involves empathy, experimentation, and iteration.

The process focuses on understanding user needs, challenging assumptions , and redefining problems from a user-centric perspective.

In problem-solving, design thinking uncovers innovative solutions that may not have been initially apparent and ensures the solution is tailored to the needs of those affected by the issue.

32. Analogical Thinking

Analogical thinking involves the transfer of information from a particular subject (the analogue or source) to another particular subject (the target).

In problem-solving, you’re drawing parallels between similar situations and applying the problem-solving techniques used in one situation to the other.

Thus, it allows you to apply proven strategies to new, but related problems.

33. Lateral Thinking

Lateral thinking requires looking at a situation or problem from a unique, sometimes abstract, often non-sequential viewpoint.

Unlike traditional logical thinking methods, lateral thinking encourages you to employ creative and out-of-the-box techniques.

In solving problems, this type of thinking boosts ingenuity and drives innovation, often leading to novel and effective solutions.

Go Deeper: Lateral Thinking Examples

34. Flowcharting

Flowcharting is the process of visually mapping a process or procedure.

This form of diagram can show every step of a system, process, or workflow, enabling an easy tracking of the progress.

As a problem-solving tool, flowcharts help identify bottlenecks or inefficiencies in a process, guiding improved strategies and providing clarity on task ownership and process outcomes.

35. Multivoting

Multivoting, or N/3 voting, is a method where participants reduce a large list of ideas to a prioritized shortlist by casting multiple votes.

This voting system elevates the most preferred options for further consideration and decision-making.

As a problem-solving technique, multivoting allows a group to narrow options and focus on the most promising solutions, ensuring more effective and democratic decision-making.

36. Force Field Analysis

Force Field Analysis is a decision-making technique that identifies the forces for and against change when contemplating a decision.

The ‘forces’ represent the differing factors that can drive or hinder change.

In problem-solving, Force Field Analysis allows you to understand the entirety of the context, favoring a balanced view over a one-sided perspective. A comprehensive view of all the forces at play can lead to better-informed problem-solving decisions.

TRIZ, which stands for “The Theory of Inventive Problem Solving,” is a problem-solving, analysis, and forecasting methodology.

It focuses on finding contradictions inherent in a scenario. Then, you work toward eliminating the contraditions through finding innovative solutions.

So, when you’re tackling a problem, TRIZ provides a disciplined, systematic approach that aims for ideal solutions and not just acceptable ones. Using TRIZ, you can leverage patterns of problem-solving that have proven effective in different cases, pivoting them to solve the problem at hand.

38. A3 Problem Solving

A3 Problem Solving, derived from Lean Management, is a structured method that uses a single sheet of A3-sized paper to document knowledge from a problem-solving process.

Named after the international paper size standard of A3 (or 11-inch by 17-inch paper), it succinctly records all key details of the problem-solving process from problem description to the root cause and corrective actions.

Used in problem-solving, this provides a straightforward and logical structure for addressing the problem, facilitating communication between team members, ensuring all critical details are included, and providing a record of decisions made.

39. Scenario Analysis

Scenario Analysis is all about predicting different possible future events depending upon your decision.

To do this, you look at each course of action and try to identify the most likely outcomes or scenarios down the track if you take that course of action.

This technique helps forecast the impacts of various strategies, playing each out to their (logical or potential) end. It’s a good strategy for project managers who need to keep a firm eye on the horizon at all times.

When solving problems, Scenario Analysis assists in preparing for uncertainties, making sure your solution remains viable, regardless of changes in circumstances.

How to Answer “Demonstrate Problem-Solving Skills” in an Interview

When asked to demonstrate your problem-solving skills in an interview, the STAR method often proves useful. STAR stands for Situation, Task, Action, and Result.

Situation: Begin by describing a specific circumstance or challenge you encountered. Make sure to provide enough detail to allow the interviewer a clear understanding. You should select an event that adequately showcases your problem-solving abilities.

For instance, “In my previous role as a project manager, we faced a significant issue when our key supplier abruptly went out of business.”

Task: Explain what your responsibilities were in that situation. This serves to provide context, allowing the interviewer to understand your role and the expectations placed upon you.

For instance, “It was my task to ensure the project remained on track despite this setback. Alternative suppliers needed to be found without sacrificing quality or significantly increasing costs.”

Action: Describe the steps you took to manage the problem. Highlight your problem-solving process. Mention any creative approaches or techniques that you used.

For instance, “I conducted thorough research to identify potential new suppliers. After creating a shortlist, I initiated contact, negotiated terms, assessed samples for quality and made a selection. I also worked closely with the team to re-adjust the project timeline.”

Result: Share the outcomes of your actions. How did the situation end? Did your actions lead to success? It’s particularly effective if you can quantify these results.

For instance, “As a result of my active problem solving, we were able to secure a new supplier whose costs were actually 10% cheaper and whose quality was comparable. We adjusted the project plan and managed to complete the project just two weeks later than originally planned, despite the major vendor setback.”

Remember, when you’re explaining your problem-solving skills to an interviewer, what they’re really interested in is your approach to handling difficulties, your creativity and persistence in seeking a resolution, and your ability to carry your solution through to fruition. Tailoring your story to highlight these aspects will help exemplify your problem-solving prowess.

Go Deeper: STAR Interview Method Examples

Benefits of Problem-Solving

Problem-solving is beneficial for the following reasons (among others):

  • It can help you to overcome challenges, roadblocks, and bottlenecks in your life.
  • It can save a company money.
  • It can help you to achieve clarity in your thinking.
  • It can make procedures more efficient and save time.
  • It can strengthen your decision-making capacities.
  • It can lead to better risk management.

Whether for a job interview or school, problem-solving helps you to become a better thinking, solve your problems more effectively, and achieve your goals. Build up your problem-solving frameworks (I presented over 40 in this piece for you!) and work on applying them in real-life situations.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Teaching Expertise

  • Classroom Ideas
  • Teacher’s Life
  • Deals & Shopping
  • Privacy Policy

20 Problem-Solving Activities For Middle School: Discussions, Games, Strategies, And Resources

November 20, 2023 //  by  Lesa M.K. Bullins, EdS

Problem-solving skills are important to the building of critical thinking, which in turn strengthens student executive function. Good problem solvers can build stronger cognitive flexibility, a critical component of executive functioning.

The teenage years are a crucial time for neuroplasticity, so it is a prime time for learning and developing important cognitive skills along with critical information. Bring problem-solving to life in your middle school classroom with these 20 activities.

1. Feelings Expression Scenarios

VRhfTG2lRtyvT6ci0JrO

A huge part of problem-solving is properly expressing your own feelings. Students often struggle to state how they feel without combative, aggressive, or accusatory language; therefore opportunities to practice with realistic situations is a key problem-solving component. You can create scenario task cards to support students in realistic applications for relatable situations, or use pre-made cards.

Learn More:  Pinterest

2. Empathy Empowered Discussions

In addition to being able to calmly and kindly express one's feelings, empathy is a key problem-solving component. Teens can often struggle to express empathy as they have difficulty recognizing and interpreting due to the teenage brain functioning.

Teenage brains are still developing, so different areas of the brain are controlling different functions than we see in adult brains; furthermore, since teens are still figuring out what they think and feel about a variety of things, it can be difficult for them to recognize and consider the feelings and thoughts of others. You can instigate empathy discussions through relatable content like this short video.

Learn More:  Austin Wideman

3. Model, Model, Model...and then Model Some More!

DqtOJtcdTHebUO0ro4f0

Students learn more from what they see you do than what they hear you say! This means you have to be an active and purposeful model of what you expect. So make sure you are aware of your actions and words in front of your students!

Learn More:  Education World

4. Get Out of the Way

t4o5jmo2TeQcND7Lrq1A

We need to allow students the time and space to solve problems. We cannot intervene every time they struggle to find the answer right away. Constant intervention hinders critical thinking and decision-making skills.

Make sure to leave some room for students to figure out solutions. Keep safe proximity so students have the comfort to know you are there if they cannot find a solution, but resist the urge to jump in as soon as you see them struggling.

Learn More:  Brookings

5. Plan a Road Trip

PFuLbsTZQhmGbtpdTiyS

Engage problem-solving skills within context while reinforcing math, research, geography, and communication skills, too! Students can plan a road trip from start to finish in small groups. As an added bonus, you can let students travel virtually to the places they planned for their trip using Google Earth.

If time allows, they can even take screenshots and stage selfies for a presentation to share their trip with the class! This is a really great cross-curricular activity for the digital classroom, too!

6. Escape the Room

Escape rooms were made for problem-solving, so what better way to build these skills for students in an exciting way! Create different challenge activities surrounding a variety of subjects and skills to reinforce while lettings students put problem-solving to use finding practical solutions to escape the room!

Divide kids into teams and get on this engaging problem-solving activity!

7. Teach Explicit Strategies for Reflection

vK3W9SpTmq3VYd4r2Jgw

Students can build analytical skills by reflecting on their problem-solving process. Teach explicit skills to help students recognize and reflect on how they solve problems to reinforce future use and strengthen overall critical thinking abilities. Check out how Ellie from Cognitive Cardio made it work even in the time constraints of middle school schedules!

Learn More:  Cognitive Cardio With MSMM

8. Daily Practice

Give students short, interesting, and challenging problems to solve during the morning and afternoon transition times. Daily practice solving challenges is important for cognitive development and reinforces academic skills! You can find tons of daily challenges online or create your own.

9. Build Something

Let students work together in teams to build something from simple building materials. Increase the challenge by limiting resources or requiring students to pick their own resources for building blocks from a variety of random items. You can check out the marshmallow toothpick tower-building activity!

Learn more: Wow Sci

10. Blind Drawing Partners

Students can work in partner pairs or small groups to develop a vast array of abilities through this problem-solving activity. Blind team-building activities are excellent, low-prep ways to engage students' critical thinking and communication!

There are different ways you can implement this, but check out this video for an example of one application of the blind drawing game.

Learn more: Philip Barry

11. Laser Maze

Create a laser maze for students to get active in problem-solving. Create and implement different time durations to increase the challenge. Do not have lasers? No budget for lasers? Don't worry, red painter's tape will do the job!

Learn More:  That Phillips Family

12. Shared Story Puzzles

nPSNcmFiRVC1CDZolcOG

Creating story puzzles that force students to work in groups together to put together, add on, and create a cohesive story that is meaningful is another challenging task to engage in collaborative problem-solving.

Learn More:  Secondary English Coffee Shop

13. Yarn Webs

This social-skill-building collaborative problem-solving activity is fun for any age. Organize students into teams then let them choose a color of yarn, build a team web, and see who can navigate. There are so many ways this activity can be adapted, but you can watch a video of one interpretation here .

Learn More:  KEYSAmeriCorps

14. Scavenger Hunt

Create a series of clues that students must solve to progress through the game. Working in groups can help build conflict resolution and social skills as well. Check out how to create scavenger hunts for the classroom in this video by Learning Life.

Learn more: Learning Life

15. Boom! Math!

An excellent way to build advanced problem-solving skills, as well as mathematical analysis, is to create math Boom Cards with word problems like these from Math in the Middle. Boom cards are a great activity for students to practice and build skills!

Learn more: Boom Learning

16. Wheel of Solutions

Cf3YCAJ3SSKhlx2rjPf8

Give students practice in exercising a number of different kinds of problem-solving skills by spinning and communicating a solution using the skills on which they land. You can make one in the classroom with a posterboard or create a digital wheel. Such a fun interactive resource! Use this great pre-made digital activity from Resource Haven on Boom Learning or create your own!

Learn More:  Boom Learning

17. Collaborative Math

Another activity for team building that supports mathematical concept reinforcement is students working together to collaboratively solve math problems. Check out how Runde's Room made sure everyone is engaged in working on solving parts of the problem through the sticky-note collaborative math activity.

18. Get Mysterious

700

Math Mysteries are a fun activity that builds out-of-the-box thinking and creates an inquisitive environment. Problem-solving develops through the process of inquisition! You can create your own or use Lee and Miller's 40 Fabulous Math Mysteries Kid's Can't Resist Scholastic book found here.

19. Logic Puzzles and Games

gAdNuviYSyOxSwkt110P

In addition to logic-building games like Chess, you can provide logic puzzles for morning and afternoon transitions, during downtime, or for early finishers. Logic puzzles help students think critically. You can make your own or get some prefabricated resources like the ones found in this book by Chris King .

Learn More:  Brainzilla

20. Lead Number Talks

Number talks are important to building problem-solving. Number talks allow students to build on one another in a collaborative way, discuss how they have solved problems before, consider how those solutions may be applicable to new skills they are about to learn, and build depth in math concepts.

So instead of getting quiet, get them talking!

Learn More:  North Dakota Teaching Kayla Durkin

  • Author Rights
  • Diversity, Equity & Inclusion

Journal of Leadership Education

  • JOLE 2023 Special Issue
  • Editorial Staff
  • 20th Anniversary Issue
  • The Development of Problem-Solving Skills for Aspiring Educational Leaders

Jeremy D. Visone 10.12806/V17/I4/R3

Introduction

Solving problems is a quintessential aspect of the role of an educational leader. In particular, building leaders, such as principals, assistant principals, and deans of students, are frequently beset by situations that are complex, unique, and open-ended. There are often many possible pathways to resolve the situations, and an astute educational leader needs to consider many factors and constituencies before determining a plan of action. The realm of problem solving might include student misconduct, personnel matters, parental complaints, school culture, instructional leadership, as well as many other aspects of educational administration. Much consideration has been given to the development of problem-solving skills for educational leaders. This study was designed to answer the following research question: “How do aspiring educational leaders’ problem solving skills, as well as perceptions of their problem-solving skills, develop during a year-long graduate course sequence focused on school-level leadership that includes the presentation of real-world scenarios?” This mixed-methods study extends research about the development of problem-solving skills conducted with acting administrators (Leithwood & Steinbach, 1992, 1995).

The Nature of Problems

Before examining how educational leaders can process and solve problems effectively, it is worth considering the nature of problems. Allison (1996) posited simply that problems are situations that require thought and/or actions. Further, there are different types of problems presented to educational leaders. First, there are  well-structured problems , which can be defined as those with clear goals and relatively prescribed resolution pathways, including an easy way of determining whether goals were met (Allison, 1996).

Conversely,  ill-structured problems  are those with more open-ended profiles, whereby the goals, resolution pathways, or evidence of success are not necessarily clear. These types of problems could also be considered  unstructured  (Leithwood & Steinbach, 1995) or  open-design  (Allison, 1996). Many of the problems presented to educational leaders are unstructured problems. For example, a principal must decide how to discipline children who misbehave, taking into consideration their disciplinary history, rules and protocols of the school, and other contextual factors; determine how best to raise student achievement (Duke, 2014); and resolve personnel disputes among staff members. None of these problems point to singular solutions that can be identified as “right” or “wrong.” Surely there are responses that are less desirable than others (i.e. suspension or recommendation for expulsion for minor infractions), but, with justification and context, many possible solutions exist.

Problem-Solving Perspectives and Models

Various authors have shared perspectives about effective problem solving. Marzano, Waters, and McNulty (2005) outlined the “21 Responsibilities of the School Leader.” These responsibilities are highly correlated with student achievement based upon the authors’ meta- analysis of 69 studies about leadership’s effect on student achievement. The most highly correlated of the responsibilities was  situational awareness , which refers to understanding the school deeply enough to anticipate what might go wrong from day-to-day, navigate the individuals and groups within the school, and recognize issues that might surface at a later time (Marzano et al., 2005). Though the authors discuss the utility of situational awareness for long- term, large-scale decision making, in order for an educational leader to effectively solve the daily problems that come her way, she must again have a sense of situational awareness, lest she make seemingly smaller-scale decisions that will lead to large-scale problems later.

Other authors have focused on problems that can be considered more aligned with the daily work of educational leaders. Considering the problem-type classification dichotomies of Allison (1996) and Leithwood and Steinbach (1995), problems that educational leaders face on a daily basis can be identified as either well-structured or unstructured. Various authors have developed problem-solving models focused on unstructured problems (Bolman & Deal, 2008; Leithwood & Steinbach, 1995; Simon, 1993), and these models will be explored next.

Simon (1993) outlined three phases of the decision-making process. The first is to find problems that need attention. Though many problems of educational leaders are presented directly to them via, for example, an adult referring a child for discipline, a parent registering a complaint about a staff member, or a staff member describing a grievance with a colleague, there is a corollary skill of identifying what problems—of the many that come across one’s desk— require immediate attention, or ultimately, any attention, at all. Second, Simon identified “designing possible courses of action” (p. 395). Finally, educational leaders must evaluate the quality of their decisions. From this point of having selected a viable and positively evaluated potential solution pathway, implementation takes place.

Bolman and Deal (2008) outlined a model of reframing problems using four different frames, through which problems of practice can be viewed. These frames provide leaders with a more complete set of perspectives than they would likely utilize on their own. The  structural frame  represents the procedural and systems-oriented aspects of an organization. Within this frame, a leader might ask whether there is a supervisory relationship involved in a problem, if a protocol exists to solve such a problem, or what efficiencies or logical processes can help steer a leader toward a resolution that meets organizational goals. The  human resource frame  refers to the needs of individuals within the organization. A leader might try to solve a problem of practice with the needs of constituents in mind, considering the development of employees and the balance between their satisfaction and intellectual stimulation and the organization’s needs. The  political frame  includes the often competing interests among individuals and groups within the organization, whereby alliances and negotiations are needed to navigate the potential minefield of many groups’ overlapping aims. From the political frame, a leader could consider what the interpersonal costs will be for the leader and organization among different constituent groups, based upon which alternatives are selected. Last, the  symbolic frame  includes elements of meaning within an organization, such as traditions, unspoken rules, and myths. A leader may need to consider this frame when proposing a solution that might interfere with a long-standing organizational tradition.

Bolman and Deal (2008) identified the political and symbolic frames as weaknesses in most leaders’ consideration of problems of practice, and the weakness in recognizing political aspects of decision making for educational leaders was corroborated by Johnson and Kruse (2009). An implication for leadership preparation is to instruct students in the considerations of these frames and promote their utility when examining problems.

Authors have noted that experts use different processes than novice problem solvers (Simon, 1993; VanLehn, 1991). An application of this would be Simon’s (1993) assertion that experts can rely on their extensive experience to remember solutions to many problems, without having to rely on an extensive analytical process. Further, they may not even consider a “problem” identified by a novice a problem, at all. With respect to educational leaders, Leithwood and Steinbach (1992, 1995) outlined a set of competencies possessed by expert principals, when compared to their typical counterparts. Expert principals were better at identifying the nature of problems; possessing a sense of priority, difficulty, how to proceed, and connectedness to prior situations; setting meaningful goals for problem solving, such as seeking goals that are student-centered and knowledge-focused; using guiding principles and long-term purposes when determining the best courses of action; seeing fewer obstacles and constraints when presented with problems; outlining detailed plans for action that include gathering extensive information to inform decisions along the plan’s pathway; and responding with confidence and calm to problem solving. Next, I will examine how problem-solving skills are developed.

Preparation for Educational Leadership Problem Solving

How can the preparation of leaders move candidates toward the competencies of expert principals? After all, leading a school has been shown to be a remarkably complex enterprise (Hallinger & McCary, 1990; Leithwood & Steinbach, 1992), especially if the school is one where student achievement is below expectations (Duke, 2014), and the framing of problems by educational leaders has been espoused as a critically important enterprise (Bolman & Deal, 2008; Dimmock, 1996; Johnson & Kruse, 2009; Leithwood & Steinbach, 1992, 1995; Myran & Sutherland, 2016). In other disciplines, such as business management, simulations and case studies are used to foster problem-solving skills for aspiring leaders (Rochford & Borchert, 2011; Salas, Wildman, & Piccolo, 2009), and attention to problem-solving skills has been identified as an essential curricular component in the training of journalism and mass communication students (Bronstein & Fitzpatrick, 2015). Could such real-world problem solving methodologies be effective in the preparation of educational leaders? In a seminal study about problem solving for educational leaders, Leithwood and Steinbach (1992, 1995) sought to determine if effective problem-solving expertise could be explicitly taught, and, if so, could teaching problem- processing expertise be helpful in moving novices toward expert competence? Over the course of four months and four separate learning sessions, participants in the control group were explicitly taught subskills within six problem-solving components: interpretation of the problem for priority, perceived difficulty, data needed for further action, and anecdotes of prior experience that can inform action; goals for solving the problem; large-scale principles that guide decision making; barriers or obstacles that need to be overcome; possible courses of action; and the confidence of the leader to solve the problem. The authors asserted that providing conditions to participants that included models of effective problem-solving, feedback, increasingly complex problem-solving demands, frequent opportunities for practice, group problem-solving, individual reflection, authentic problems, and help to stimulate metacognition and reflection would result in educational leaders improving their problem-solving skills.

The authors used two experts’ ratings of participants’ problem-solving for both process (their methods of attacking the problem) and product (their solutions) using a 0-3 scale in a pretest-posttest design. They found significant increases in some problem-solving skills (problem interpretation, goal setting, and identification of barriers or obstacles that need to be overcome) after explicit instruction (Leithwood & Steinbach, 1992, 1995). They recommended conducting more research on the preparation of educational leaders, with particular respect to approaches that would improve the aspiring leaders’ problem-solving skills.

Solving problems for practicing principals could be described as constructivist, since most principals do solve problems within a social context of other stakeholders, such as teachers, parents, and students (Leithwood & Steinbach, 1992). Thus, some authors have examined providing opportunities for novice or aspiring leaders to construct meaning from novel scenarios using the benefits of, for example, others’ point of view, expert modeling, simulations, and prior knowledge (Duke, 2014; Leithwood & Steinbach, 1992, 1995; Myran & Sutherland, 2016; Shapira-Lishchinsky, 2015). Such collaborative inquiry has been effective for teachers, as well (DeLuca, Bolden, & Chan, 2017). Such learning can be considered consistent with the ideas of other social constructivist theorists (Berger & Luckmann, 1966; Vygotsky, 1978) as well, since individuals are working together to construct meaning, and they are pushing into areas of uncertainty and lack of expertise.

Shapira-Lishchinsky (2015) added some intriguing findings and recommendations to those of Leithwood and Steinbach (1992, 1995). In this study, 50 teachers with various leadership roles in their schools were presented regularly with ethical dilemmas during their coursework. Participants either interacted with the dilemmas as members of a role play or by observing those chosen. When the role play was completed, the entire group debriefed and discussed the ethical dilemmas and role-playing participants’ treatment of the issues. This method was shown, through qualitative analysis of participants’ discussions during the simulations, to produce rich dialogue and allow for a safe and controlled treatment of difficult issues. As such, the use of simulations was presented as a viable means through which to prepare aspiring educational leaders. Further, the author suggested the use of further studies with simulation-based learning that seek to gain information about aspiring leaders’ self-efficacy and psychological empowerment. A notable example of project-based scenarios in a virtual collaboration environment to prepare educational leaders is the work of Howard, McClannon, and Wallace (2014). Shapira-Lishchinsky (2015) also recommended similar research in other developed countries to observe the utility of the approaches of simulation and social constructivism to examine them for a wider and diverse aspiring administrator candidate pool.

Further, in an extensive review of prior research studies on the subject, Hallinger and Bridges (2017) noted that Problem-Based Learning (PBL), though applied successfully in other professions and written about extensively (Hallinger & Bridges, 1993, 2017; Stentoft, 2017), was relatively unheralded in the preparation of educational leaders. According to the authors, characteristics of PBL included problems replacing theory as the organization of course content, student-led group work, creation of simulated products by students, increased student ownership over learning, and feedback along the way from professors. Their review noted that PBL had positive aspects for participants, such as increased motivation, real-world connections, and positive pressure that resulted from working with a team. However, participants also expressed concerns about time constraints, lack of structure, and interpersonal dynamics within their teams. There were positive effects found on aspiring leaders’ problem-solving skill development with PBL (Copland, 2000; Hallinger & Bridges, 2017). Though PBL is much more prescribed than the scenarios strategy described in the Methods section below, the applicability of real-world problems to the preparation of educational leaders is summarized well by Copland (2000):

[I]nstructional practices that activate prior knowledge and situate learning in contexts similar to those encountered in practice are associated with the development of students’ ability to understand and frame problems. Moreover, the incorporation of debriefing techniques that encourage students’ elaboration of knowledge and reflection on learning appear to help students solidify a way of thinking about problems. (p. 604)

This study involved a one-group pretest-posttest design. No control group was assigned, as the pedagogical strategy in question—the use of real-world scenarios to build problem-solving skill for aspiring educational leaders—is integral to the school’s curriculum that prepares leaders, and, therefore, it is unethical to deny to student participants (Gay & Airasian, 2003). Thus, all participants were provided instruction with the use of real-world scenarios.

Participants.  Graduate students at a regional, comprehensive public university in the Northeast obtaining a 6 th -year degree (equivalent to a second master’s degree) in educational leadership and preparing for certification as educational administrators served as participants. Specifically, students in three sections of the same full-year, two-course sequence, entitled “School Leadership I and II” were invited to participate. This particular course was selected from the degree course sequence, as it deals most directly with the problem-solving nature and daily work of school administrators. Some key outcomes of the course include students using data to drive school improvement action plans, communicating effectively with a variety of stakeholders, creating a safe and caring school climate, creating and maintaining a strategic and viable school budget, articulating all the steps in a hiring process for teachers and administrators, and leading with cultural proficiency.

The three sections were taught by two different professors. The professors used real- world scenarios in at least half of their class meetings throughout the year, or in approximately 15 classes throughout the year. During these classes, students were presented with realistic situations that have occurred, or could occur, in actual public schools. Students worked with their classmates to determine potential solutions to the problems and then discussed their responses as a whole class under the direction of their professor, a master practitioner. Both professors were active school administrators, with more than 25 years combined educational leadership experience in public schools. It should be noted that the scenario presentation and discussions took place during the class sessions, only. These were not presented for homework or in online forums.

Of the 44 students in these three sections, 37 volunteered to participate at some point in the data collection sequence, but not all students in the pretest session attended the posttest session months later and vice versa. As a result, only 20 students’ data were used for the matched pairs analysis. All 37 participants were certified professional educators in public schools in Connecticut. The participants’ professional roles varied and included classroom teachers, instructional coaches, related service personnel, unified arts teachers, as well as other non- administrative educational roles. Characteristics of participants in the overall and matched pairs groups can be found in Table 1.

Table 1 Participant Characteristics

Procedure.  Participants’ data were compared between a fall of 2016 baseline data collection period and a spring of 2017 posttest data collection period. During the fall data collection period, participants were randomly assigned one of two versions of a Google Forms survey. After items about participant characteristics, the survey consisted of 11 items designed to elicit quantitative and qualitative data about participants’ perceptions of their problem-solving abilities, as well as their ability to address real-world problems faced by educational leaders. The participants were asked to rate their perception of their situational awareness, flexibility, and problem solving ability on a 10-point (1-10) Likert scale, following operational definitions of the terms (Marzano, Waters, & McNulty, 2005; Winter, 1982). They were asked, for each construct, to write open-ended responses to justify their numerical rating. They were then asked to write what they perceived they still needed to improve their problem-solving skills. The final four items included two real-world, unstructured, problem-based scenarios for which participants were asked to create plans of action. They were also asked to rate their problem-solving confidence with respect to their proposed action plans for each scenario on a 4-point (0-3) Likert scale.

During the spring data collection period, participants accessed the opposite version of the Google Forms survey from the one they completed in the fall. All items were identical on the two survey versions, except the scenarios, which were different on each survey version. The use of two versions was to ensure that any differences in perceived or actual difficulty among the four scenarios provided would not alter results based upon the timing of participant access (Leithwood & Steinbach, 1995). In order to link participants’ fall and spring data in a confidential manner, participants created a unique, six-digit alphanumeric code.

A focus group interview followed each spring data collection session. The interviews were recorded to allow for accurate transcription. The list of standard interview questions can be found in Table 2. This interview protocol was designed to elicit qualitative data with respect to aspiring educational leaders’ perceptions about their developing problem-solving abilities.

Table 2 Focus Group Interview Questions ___________________________________________________________________________________________

Please describe the development of your problem-solving skills as an aspiring educational leader over the course of this school year. In what ways have you improved your skills? Be as specific as you can.

What has been helpful to you (i.e. coursework, readings, experiences, etc.) in this development of your problem-solving skills? Why?

What do you believe you still need for the development in your problem-solving skills as an aspiring educational leader?

Discuss your perception of your ability to problem solve as an aspiring educational leader. How has this changed from the beginning of this school year? Why?

Please add anything else you perceive is relevant to this conversation about the development of your problem-solving skills as an aspiring educational leader.

___________________________________________________________________________________________

Data Analysis.

Quantitative data .  Data were obtained from participants’ responses to Likert-scale items relating to their confidence levels with respect to aspects of problem solving, as well as from the rating of participants’ responses to the given scenarios  against a rubric. The educational leadership problem-solving rubric chosen (Leithwood & Steinbach, 1995) was used with permission, and it reflects the authors’ work with explicitly teaching practicing educational leaders components of problem solving. The adapted rubric can be found in Figure 1. Through the use of this rubric, each individual response by a participant to a presented scenario was assigned a score from 0-15. It should be noted that affect data (representing the final 3 possible points on the 18-point rubric) were obtained via participants’ self-reporting their confidence with respect to their proposed plans of action. To align with the rubric, participants self-assessed their confidence through this item with a 0-3 scale.

0 = No Use of the Subskill 1 = There is Some Indication of Use of the Subskill 2 = The Subskill is Present to Some Degree 3 = The Subskill is Present to a Marked Degree; This is a Fine Example of this Subskill

Figure 1.  Problem-solving model for unstructured problems. Adapted from “Expert Problem Solving: Evidence from School and District Leaders,” by K. Leithwood and R. Steinbach, pp. 284-285. Copyright 1995 by the State University of New York Press.

I compared Likert-scale items and rubric scores via descriptive statistics and rubric scores also via a paired sample  t -test and Cohen’s  d , all using the software program IBM SPSS. I did not compare the Likert-scale items about situational awareness, flexibility, and problem solving ability with  t -tests or Cohen’s  d , since these items did not represent a validated instrument. They were only single items based upon participants’ ratings compared to literature-based definitions. However, the value of the comparison of means from fall to spring was triangulated with qualitative results to provide meaning. For example, to say that participants’ self-assessment ratings for perceived problem-solving abilities increased, I examined both the mean difference for items from fall to spring and what participants shared throughout the qualitative survey items and focus group interviews.

Prior to scoring participants’ responses to the scenarios using the rubric, and in an effort to maximize the content validity of the rubric scores, I calibrated my use of the rubric with two experts from the field. Two celebrated principals, representing more than 45 combined years of experience in school-level administration, collaboratively and comparatively scored participant responses. Prior to scoring, the team worked collaboratively to construct appropriate and comprehensive exemplar responses to the four problem-solving scenarios. Then the team blindly scored fall pretest scenario responses using the Leithwood and Steinbach (1995) rubric, and upon comparing scores, the interrater reliability correlation coefficient was .941, indicating a high degree of agreement throughout the team.

Qualitative data.  These data were obtained from open-ended items on the survey, including participants’ responses to the given scenarios, as well as the focus group interview transcripts. I analyzed qualitative data consistent with the grounded theory principles of Strauss and Corbin (1998) and the constant comparative methods of Glaser (1965), including a period of open coding of results, leading to axial coding to determine the codes’ dimensions and relationships between categories and their subcategories, and selective coding to arrive at themes. Throughout the entire data analysis process, I repeatedly returned to raw data to determine the applicability of emergent codes to previously analyzed data. Some categorical codes based upon the review of literature were included in the initial coding process. These codes were derived from the existing theoretical problem-solving models of Bolman and Deal (2008) and Leithwood and Steinbach (1995). These codes included  modeling ,  relationships , and  best for kids . Open codes that emerged from the participants’ responses included  experience ,  personality traits ,  current job/role , and  team . Axial coding revealed, for example, that current jobs or roles cited, intuitively, provided both sufficient building-wide perspective and situational memory (i.e. for special education teachers and school counselors) and insufficient experiences (i.e. for classroom teachers) to solve the given problems with confidence. From such understandings of the codes, categories, and their dimensions, themes were developed.

Quantitative Results.   First, participants’ overall, aggregate responses (not matched pairs) were compared from the fall to spring, descriptively. These findings are outlined in Table  3. As is seen in the table, each item saw a modest increase over the course of the year. Participant perceptions of their problem-solving abilities across the three constructs presented (situational awareness, flexibility, and problem solving) did increase over the course of the year, as did the average group score for the problem-solving scenarios. However, due to participant differences in the two data collection periods, these aggregate averages do not represent a matched-pair dataset.

Table 3 Fall to Spring Comparison of Likert-Scale and Rubric-Scored Items

a  These problem-solving dimensions from literature were rated by participants on a scale from 1- 10. b  Participants received a rubric score for each scenario between 0-18. Participants’ two scenario scores for each data collection period (fall, spring) were averaged to arrive at the scores represented here.

In order to determine the statistical significance of the increase in participants’ problem- solving rubric scores, a paired-samples  t -test was applied to the fall ( M  = 9.15;  SD  = 2.1) and spring ( M  = 9.25;  SD  = 2.3) averages. Recall that 20 participants had valid surveys for both the fall and spring. The  t -test ( t  = -.153;  df  = 19;  p  = .880) revealed no statistically significant change from fall to spring, despite the minor increase (0.10). I applied Cohen’s  d  to calculate the effect size. The small sample size ( n  = 20) for the paired-sample  t -test may have contributed to the lack of statistical significance. However, standard deviations were also relatively small, so the question of effect size was of particular importance. Cohen’s  d  was 0.05, which is also very small, indicating that little change—really no improvement, from a statistical standpoint—in participants’ ability to create viable action plans to solve real-world problems occurred throughout the year. However, the participants’ perceptions of their problem-solving abilities did increase, as evidenced by the increases in the paired-samples perception means shown in Table 3, though these data were only examined descriptively (from a quantitative perspective) due to the fact that these questions were individual items that are not part of a validated instrument.

Qualitative Results.   Participant responses to open-ended items on the questionnaire, responses to the scenarios, and oral responses to focus group interview questions served as sources of qualitative data. Since the responses to the scenarios were focused on participant competence with problem solving, as measured by the aforementioned rubric (Leithwood &  Steinbach, 1995), these data were examined separately from data collected from the other two sources.

Responses to scenarios.  As noted, participants’ rubric ratings for the scenarios did not display a statistically significant increase from fall to spring. As such, this outline will not focus upon changes in responses from fall to spring. Rather, I examined the responses, overall, through the lens of the Leithwood and Steinbach (1995) problem-solving framework indicators against which they were rated. Participants typically had outlined reasonable, appropriate, and logical solution processes. For example, in a potential bullying case scenario, two different participants offered, “I would speak to the other [students] individually if they have said or done anything mean to other student [ sic ] and be clear that it is not tolerable and will result in major consequences” and “I would initiate an investigation into the situation beginning with [an] interview with the four girls.” These responses reflect actions that the consulted experts anticipated from participants and deemed as logical and needed interventions. However, these two participants omitted other needed steps, such as addressing the bullied student’s mental health needs, based upon her mother’s report of suicidal ideations. Accordingly, participants earned points for reasonable and logical responses very consistently, yet, few full-credit responses were observed.

Problem interpretation scores were much more varied. For this indicator, some participants were able to identify many, if not all, the major issues in the scenarios that needed attention. For example, for a scenario where two teachers were not interacting professionally toward each other, many participants correctly identified that this particular scenario could include elements of sexual harassment, professionalism, teaching competence, and personality conflict. However, many other participants missed at least two of these key elements of the problem, leaving their solution processes incomplete. The categories of (a) goals and (b) principles and values also displayed a similarly wide distribution of response ratings.

One category, constraints, presented consistent difficulty for the participants. Ratings were routinely 0 and 1. Participants could not consistently report what barriers or obstacles would need addressing prior to success with their proposed solutions. To be clear, it was not a matter of participants listing invalid or unrealistic barriers or obstacles; rather, the participants were typically omitting constraints altogether from their responses. For example, for a scenario involving staff members arriving late and unprepared to data team meetings, many participants did not identify that a school culture of not valuing data-driven decision making or lack of norms for data team work could be constraints that the principal could likely face prior to reaching a successful resolution.

Responses to open-ended items.  When asked for rationale regarding their ratings for situational awareness, flexibility, and problem solving, participants provided open-ended responses. These responses revealed patterns worth considering, and, again, this discussion will consider, in aggregate, responses made in both the pre- and post- data collection periods, again due to the similarities in responses between the two data collection periods. The most frequently observed code (112 incidences) was  experience . Closely related were the codes  current job/role  (50 incidences). Together, these codes typically represented a theme that participants were linking their confidence with respect to problem solving with their exposure (or lack thereof) in their professional work. For example, a participant reported, “As a school counselor, I have a lot of contact with many stakeholders in the school -admin [ sic ], parents, teachers, staff, etc. I feel that I have a pretty good handle on the systemic issues.” This example is one of many where individuals working in counseling, instructional coaching, special education, and other support roles expressed their advanced levels of perspective based upon their regular contact with many stakeholders, including administrators. Thus, they felt they had more prior knowledge and situational memory about problems in their schools.

However, this category of codes also included those, mostly classroom or unified arts teachers, who expressed that their relative lack of experiences outside their own classrooms limited their perspective for larger-scale problem solving. One teacher succinctly summarized this sentiment, “I have limited experience in being part of situations outside of my classroom.” Another focused on the general problem solving skill in her classroom not necessarily translating to confidence with problem solving at the school level: “I feel that I have a high situational awareness as a teacher in the classroom, but as I move through these leadership programs I find that I struggle to take the perspective of a leader.” These experiences were presented in opposition to their book learning or university training. There were a number of instances (65 combined) of references to the value of readings, class discussions, group work, scenarios presented, research, and coursework in the spring survey. When asked what the participants need more, again, experience was referenced often. One participant summarized this concept, “I think that I, personally, need more experience in the day-to-day . . . setting.” Another specifically separated experiences from scenario work, “[T]here is [ sic ] some things you can not [ sic ] learn from merely discussing a ‘what if” scenario. A seasoned administrator learns problem solving skills on the job.”

Another frequently cited code was  personality traits  (63 incidences), which involved participants linking elements of their own personalities to their perceived abilities to process problems, almost exclusively from an assets perspective. Examples of traits identified by participants as potentially helpful in problem solving included: open-mindedness, affinity for working with others, not being judgmental, approachability, listening skills, and flexibility. One teacher exemplified this general approach by indicating, “I feel that I am a good listener in regards to inviting opinions. I enjoy learning through cooperation and am always willing to adapt my teaching to fit needs of the learners.” However, rare statements of personality traits interfering with problem solving included, “I find it hard to trust others [ sic ] abilities” and “my personal thoughts and biases.”

Another important category of the participant responses involved connections with others. First, there were many references to  relationships  (27 incidences), mostly from the perspective that building positive relationships leads to greater problem-solving ability, as the aspiring leader knows stakeholders better and can rely on them due to the history of positive interactions. One participant framed this idea from a deficit perspective, “Not knowing all the outlying relationships among staff members makes situational awareness difficult.” Another identified that established positive relationships are already helpful to an aspiring leader, “I have strong rapport with fellow staff members and administrators in my building.” In a related way, many instances of the code  team  were identified (29). These references overwhelmingly identified that solving problems within a team context is helpful. One participant stated, “I often team with people to discuss possible solutions,” while another elaborated,

I recognize that sometimes problems may arise for which I am not the most qualified or may not have the best answer. I realize that I may need to rely on others or seek out help/opinions to ensure that I make the appropriate decision.

Overall, participants recognized that problem-solving for leaders does not typically occur in a vacuum.

Responses to focus group interview questions.  As with the open-ended responses, patterns were evident in the interview responses, and many of these findings were supportive of the aforementioned themes. First, participants frequently referenced the power of group work to help build their understanding about problems and possible solutions. One participant stated, “hearing other people talk and realizing other concerns that you may not have thought of . . . even as a teacher sometimes, you look at it this way, and someone else says to see it this way.” Another added, “seeing it from a variety of persons [ sic ] point of views. How one person was looking at it, and how another person was looking at it was really helpful.” Also, the participants noted the quality of the discussion was a direct result of “professors who have had real-life experience” as practicing educational leaders, so they could add more realistic feedback and insight to the discussions.

Perhaps most notable in the participant responses during the focus groups was the emphasis on the value of real-world scenarios for the students. These were referenced, without prompting, in all three focus groups by many participants. Answers to the question about what has been most helpful in the development of their problem-solving skills included, “I think the real-world application we are doing,” “I think being presented with all the scenarios,” and “[the professor] brought a lot of real situations.”

With respect to what participants believed they still needed to become better and more confident problem solvers, two patterns emerged. First, students recognized that they have much more to learn, especially with respect to policy and law. It is noteworthy that, with few exceptions, these students had not taken the policy or law courses in the program, and they had not yet completed their administrative internships. Some students actually reported rating themselves as less capable problem solvers in the spring because they now understood more clearly what they lacked in knowledge. One student exemplified this sentiment, “I might have graded myself higher in the fall than I did now . . . [I now can] self identify areas I could improve in that I was not as aware of.” Less confidence in the spring was a minority opinion, however. In a more typical response, another participant stated, “I feel much more prepared for that than I did at the beginning of the year.”

Overall, the most frequently discussed future need identified was experience, either through the administrative internship or work as a formal school administrator. Several students summarized this idea, “That real-world experience to have to deal with it without being able to talk to 8 other people before having to deal with it . . . until you are the person . . . you don’t know” and “They tell you all they want. You don’t know it until you are in it.” Overall, most participants perceived themselves to have grown as problem solvers, but they overwhelmingly recognized that they needed more learning and experience to become confident and effective problem solvers.

This study continues a research pathway about the development of problem-solving skills for administrators by focusing on their preparation. The participants did not see a significant increase in their problem-solving skills over the year-long course in educational leadership.

Whereas, this finding is not consistent with the findings of others who focused on the development of problem-solving skills for school leaders (Leithwood & Steinbach, 1995; Shapira-Lishchinsky, 2015), nor is it consistent with PBL research about the benefits of that approach for aspiring educational leaders (Copland, 2000; Hallinger & Bridges, 2017), it is important to note that the participants in this study were at a different point in their careers. First, they were aspirants, as opposed to practicing leaders. Also, the studied intervention (scenarios) was not the same or nearly as comprehensive as the prescriptive PBL approach. Further, unlike the participants in either the practicing leader or PBL studies, because these individuals had not yet had their internship experiences, they had no practical work as educational leaders. This theme of lacking practical experience was observed in both open-ended responses and focus group interviews, with participants pointing to their upcoming internship experiences, or even their eventual work as administrators, as a key missing piece of their preparation.

Despite the participants’ lack of real gains across the year of preparation in their problem- solving scores, the participants did, generally, report an increase in their confidence in problem solving, which they attributed to a number of factors. The first was the theme of real-world context. This finding was consistent with others who have advocated for teaching problem solving through real-world scenarios (Duke, 2014; Leithwood & Steinbach, 1992, 1995; Myran & Sutherland, 2016; Shapira-Lishchinsky, 2015). This study further adds to this conversation, not only a corroboration of the importance of this method (at least in aspiring leaders’ minds), but also that participants specifically recognized their professors’ experiences as school administrators as important for providing examples, context, and credibility to the work in the classroom.

In addition to the scenario approach, the participants also recognized the importance of learning from one another. In addition to the experiences of their practitioner-professors, many participants espoused the value of hearing the diverse perspectives of other students. The use of peer discussion was also an element of instruction in the referenced studies (Leithwood & Steinbach, 1995; Shapira-Lishchinsky, 2015), corroborating the power of aspiring leaders learning from one another and supporting existing literature about the social nature of problem solving (Berger & Luckmann, 1966; Leithwood & Steinbach, 1992; Vygotsky, 1978).

Finally, the ultimate theme identified through this study is the need for real-world experience in the field as an administrator or intern. It is simply not enough to learn about problem solving or learn the background knowledge needed to solve problems, even when the problems presented are real-world in nature. Scenarios are not enough for aspiring leaders to perceive their problem-solving abilities to be adequate or for their actual problem-solving abilities to improve. They need to be, as some of the participants reasoned, in positions of actual responsibility, where the weight of their decisions will have tangible impacts on stakeholders, including students.

The study of participants’ responses to the scenarios connected to the Four Frames model of Bolman and Deal (2008). The element for which participants received the consistently highest scores was identifying solution processes. This area might most logically be connected to the structural and human resource frames, as solutions typically involve working to meet individuals’ needs, as is necessary in the human resource frame, and attending to protocols and procedures, which is the essence of the structural frame. As identified above, the political and symbolic frames have been cited by the authors as the most underdeveloped by educational leaders, and this assertion is corroborated by the finding in this study that participants struggled the most with identifying constraints, which can sometimes arise from an understanding of the competing personal interests in an organization (political frame) and the underlying meaning behind aspects of an organization (symbolic frame), such as unspoken rules and traditions. The lack of success identifying constraints is also consistent with participants’ statements that they needed actual experiences in leadership roles, during which they would likely encounter, firsthand, the types of constraints they were unable to articulate for the given scenarios. Simply, they had not yet “lived” these types of obstacles.

The study includes several notable limitations. First, the study’s size is limited, particularly with only 20 participants’ data available for the matched pairs analysis. Further, this study was conducted at one university, within one particular certification program, and over three sections of one course, which represented about one-half of the time students spend in the program. It is likely that more gains in problem-solving ability and confidence would have been observed if this study was continued through the internship year. Also, the study did not include a control group. The lack of an experimental design limits the power of conclusions about causality. However, this limitation is mitigated by two factors. First, the results did not indicate a statistically significant improvement, so there is not a need to attribute a gain score to a particular variable (i.e. use of scenarios), anyway, and, second, the qualitative results did reveal the perceived value for participants in the use of scenarios, without any prompting of the researcher. Finally, the participant pool was not particularly diverse, though this fact is not particularly unusual for the selected university, in general, representing a contemporary challenge the university’s state is facing to educate its increasingly diverse student population, with a teaching and administrative workforce that is predominantly White.

The findings in this study invite further research. In addressing some of the limitations identified here, expanding this study to include aspiring administrators across other institutions representing different areas of the United States and other developed countries, would provide a more generalizable set of results. Further, studying the development of problem-solving skills during the administrative internship experience would also add to the work outlined here by considering the practical experience of participants.

In short, this study illustrates for those who prepare educational leaders the value of using scenarios in increasing aspiring leaders’ confidence and knowledge. However, intuitively, scenarios alone are not enough to engender significant change in their actual problem-solving abilities. Whereas, real-world context is important to the development of aspiring educational leaders’ problem-solving skills, the best context is likely to be the real work of administration.

Allison, D. J. (1996). Problem finding, classification and interpretation: In search of a theory of administrative problem processing. In K. Leithwood, J. Chapman, D. Corson, P. Hallinger, & A. Hart (Eds.),  International handbook of educational leadership and administration  (pp. 477–549). Norwell, MA: Kluwer Academic.

Berger, P. L., & Luckmann, T. (1966).  The social construction of reality . Garden City, NJ: Doubleday.

Bolman, L. G., & Deal, T. E. (2008).  Re-framing organizations: Artistry, choice and leadership  (4th ed.). San Francisco: Jossey Bass.

Bronstein, C., & Fitzpatrick, K. R. (2015). Preparing tomorrow’s leaders: Integrating leadership development in journalism and mass communication education.  Journalism & Mass Communication Educator, 70 (1), 75–88. https://doi.org/10.1177/1077695814566199

Copland, M. A. (2000). Problem-based learning and prospective principals’ problem-framing ability.  Educational Administration Quarterly ,  36 , 585–607.

Deluca, C., Bolden, B., & Chan, J. (2017). Systemic professional learning through collaborative inquiry: Examining teachers’ perspectives.  Teaching and Teacher Education ,  67 , 67–78. https://doi.org/10.1016/j.tate.2017.05.014

Dimmock, C. (1996). Dilemmas for school leaders and administrators in restructuring. In K. Leithwood, J. Chapman, D. Corson, P. Hallinger, & A. Hart (Eds.),  International Handbook of Educational Leadership and Administration  (pp. 135–170). Norwell, MA: Kluwer Academic.

Duke, D. L. (2014). A bold approach to developing leaders for low-performing schools. Management in Education, 28 (3), 80–85. https://doi.org/10.1177/0892020614537665

Gay, L. R., & Airasian, P. (2003).  Educational research: Competancies for analysis and applications  (7th ed.). Upper Saddle River, NJ: Pearson Education.

Glaser, B. G. (1965). The constant comparative method of qualitative analysis.  Social Problems, 12 (4), 436-445.

Hallinger, P., & Bridges, E. (1993). Problem-based learning in medical and managerial education. In P. Hallinger, K. Leithwood, & J. Murphy (Eds.),  Cognitive perspectives on educational leadership  (pp. 253–267). New York: Teachers’ College Press.

Hallinger, P., & Bridges, E. M. (2017). A systematic review of research on the use of problem- based learning in the preparation and development of school leaders.  Educational Administration Quarterly . 53(2), 255-288. https://doi.org/10.1177/0013161X16659347

Hallinger, P., & McCary, C. E. (1990). Developing the strategic thinking of instructional leaders. Elementary School Journal ,  91 (2), 89–108.

Howard, B. B., McClannon, T. W., & Wallace, P. R. (2014). Collaboration through role play among graduate students in educational leadership in distance learning.  American Journal of Distance Education ,  28 (1), 51–61. https://doi.org/10.1080/08923647.2014.868665

Johnson, B. L., & Kruse, S. D. (2009).  Decision making for educational leaders: Underexamined dimensions and issues . Albany, NY: State University of New York Press.

Leithwood, K., & Steinbach, R. (1992). Improving the problem-solving expertise of school administrators: Theory and practice.  Education and Urban Society ,  24 (3), 317–345. Retrieved from https://journals.sagepub.com.ccsu.idm.oclc.org/doi/pdf/10.1177/0013124592024003003

Leithwood, K., & Steinbach, R. (1995).  Expert problem solving: Evidence from school and district leaders . Albany, NY: State University of New York Press.

Marzano, R. J., Waters, T., & McNulty, B. A. (2005).  School leadership that works: From research to results . Denver, CO: ASCD.

Myran, S., & Sutherland, I. (2016). Problem posing in leadership education: Using case study to foster more effective problem solving.  Journal of Cases in Educational Leadership ,  19 (4), 57–71. https://doi.org/10.1177/1555458916664763

Rochford, L., & Borchert, P. S. (2011). Assessing higher level learning: Developing rubrics for case analysis.  Journal of Education for Business ,  86 , 258–265. https://doi.org/10.1080/08832323.2010.512319

Salas, E., Wildman, J. L., & Piccolo, R. F. (2009). Using simulation based training to enhance management education.  Academy of Management Learning & Education ,  8 (4), 559–573. https://doi.org/10.5465/AMLE.2009.47785474

Shapira-Lishchinsky, O. (2015). Simulation-based constructivist approach for education leaders. Educational Management Administration & Leadership ,  43 (6), 972–988. https://doi.org/10.1177/1741143214543203

Simon, H. A. (1993). Decision making: Rational, nonrational, and irrational.  Educational Administration Quarterly ,  29 (3), 392–411. https://doi.org/10.1177/0013161X93029003009

Stentoft, D. (2017). From saying to doing interdisciplinary learning: Is problem-based learning the answer?  Active Learning in Higher Education ,  18 (1), 51–61. https://doi.org/10.1177/1469787417693510

Strauss, A., & Corbin, J. (1998).  Basics of qualitative research  (2nd ed.). Thousand Oaks, CA: Sage.

VanLehn, K. (1991). Rule acquisition events in the discovery of problem-solving strategies. Cognitive Science ,  15 (1), 1–47. https://doi.org/10.1016/0364-0213(91)80012-T

Vygotsky, L. S. (1978).  Mind in society . Cambridge, MA: Harvard University Press.

Winter, R. (1982). Dilemma analysis: A contribution to methodology for action research. Cambridge Journal of Education, 12 (3), 166-173.

Author Biography

Dr. Jeremy Visone is an Assistant Professor of Educational Leadership, Policy, & Instructional Technology. Until 2016, he worked as an administrator at both the elementary and secondary levels, most recently at Anna Reynolds Elementary School, a National Blue Ribbon School in 2016. Dr. Visone can be reached at  [email protected] .

Problem-Solving Practices and Complexity in School Psychology

  • Published: 07 November 2016
  • Volume 21 , pages 38–48, ( 2017 )

Cite this article

  • John Brady   ORCID: orcid.org/0000-0002-1065-0897 1 &
  • William R. Espinosa 2  

427 Accesses

Explore all metrics

How do experienced school psychologists solve problems in their practice? What can trainers of school psychologists learn about how to structure training and mentoring of graduate students from what actually happens in schools, and how can this inform our teaching at the university? This qualitative multi-interview study explored the processes that five experienced school psychologist used to solve problems in their practice in the schools. The interviews described their problem-solving efforts as being imbedded in complex school contexts and reliant on a dynamic team process of searching for solutions. The paper suggests that these teams fit what the field of complexity theory calls complex adaptive systems (CAS) and outlines what the research on such systems tells us about enhancing their function. It concludes with suggestions that training programs include these concepts in their consultation training and ensure that all students experience case work that is ongoing and supervised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

problem solving example in school

Stage Theory of Cognitive Development—Jean Piaget

problem solving example in school

When Does a Researcher Choose a Quantitative, Qualitative, or Mixed Research Approach?

Feyisa Mulisa

problem solving example in school

Investigating blended learning interactions in Philippine schools through the community of inquiry framework

Juliet Aleta R. Villanueva, Petrea Redmond, … Douglas Eacersall

Anton-LaHart, J., & Rosenfield, S. (2004). A survey of preservice consultation training in school psychology programs. Journal of Educational and Psychological Consultation, 15 (1), 41–62.

Article   Google Scholar  

Athanasiou, M. S., Geil, M., Hazel, C. E., & Copeland, E. P. (2002). A look inside school-based consultation: a qualitative study of the beliefs and practices of school psychologists and teachers. School Psychology Quarterly, 17 (3), 258–298. doi: 10.1521/scpq.17.3.258.20884 .

Bazeley, P. (2007). Qualitative data analysis with NVivo . Thousand Oaks: Sage.

Google Scholar  

Bergan, J. R., & Kratochwill, T. R. (1990). Behavioral consultation and therapy . New York: Plenum Press.

Bolman, L., & Deal, T. (2013). Reframing organizations . San Francisco: Jossey-Bass.

Bramlett, R. K., Murphy, J. J., Johnson, J., Wallingsford, L., & Hall, J. D. (2002). Contemporary practices in school psychology: a national survey of roles and referral problems. Psychology in the Schools, 39 (3), 327.

Creswell, J. W. (2013). Qualitative inquiry & research design: choosing among five approaches (3rd ed.). Los Angeles: SAGE Publications.

DiGregorio, S. (2000). Using NVivo for your literature review. In Strategies in Qualitative Research: Issues and Results from Analysis Using QSR, NVivo and NUD*IST. Conference at the Institute of Educatin, London (pp.29-30).

Donovan, L., McCoy, D., Denune, H., Barnett, D. W., Graden, J. L., & Carr, V. (2014). Preparing doctoral-level consultants for systems change: implementing and supervising multitiered practices in early childhood education . doi: 10.1080/10474412.2014.929957 .

Dowd-Eagle, S., & Eagle, J. (2014). Qualitative and mixed methods design in consultation research. In W. Erchul & S. Sheridan (Eds.), Handbook of research in school consultation (2nd ed., pp. 450–472). New York: Routledge.

Fishman, D. B. (1999). The case for pragmatic psychology eBook Academic Collection on EBSCOhost. (pp. 1 online resource (xxvii, 387 p.)). Retrieved from http://libproxy.chapman.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=100438

Glaser, B., & Strauss, A. (1967). The discovery of grounded theory . Chicago: Aldine.

Gutkin, T. B. (2002). Training school-based consultants: some thoughts on grains of sand and building anthills. Journal of Educational and Psychological Consultation, 13 (1/2), 133–146.

Hazel, C., Laviolette, G., & Lineman, J. (2010). Training professional psychologists in school-based consultation: what the syllabi suggest. Training and Education in Professional Psychology, 4 (4), 235–243. doi: 10.1037/a0020072 .

Hill, C. E., Knox, S., Thompson, B. J., Williams, E. N., Hess, S. A., & Ladany, N. (2005). Consensual qualitative research: an update. Journal of Counseling Psychology, 52 (2), 196–205. doi: 10.1037/0022-0167.52.2.196 .

Holland, J. H. (2014). Complexity a very short introduction . New York: Oxford University Press.

Book   Google Scholar  

Illback, R. (2014). Organizational development and change facilitation in school settings. In W. Erchul & S. Sheridan (Eds.), Handbook of research in school consultation (pp. 276–303). New York: Routledge.

Kennedy, E. K., Frederickson, N., & Monsen, J. (2008). Do educational psychologists “walk the talk” when consulting? Educational Psychology in Practice, 24 (3), 169–187. doi: 10.1080/02667360802256733 .

Kratochwill, T. R., Hoagwood, K. E., Kazak, A. E., Weisz, J. R., Hood, K., Vargas, L. A., & Banez, G. A. (2012). Practice-based evidence for children and adolescents: advancing the research agenda in schools. School Psychology Review, 41 (2), 215–235.

Lopez, E. C., & Nastasi, B. K. (2014). Process and outcome research in selected models of consultation. In W. P. Erchul & S. M. Sheridan (Eds.), Handbook of research in school consultation (2nd ed.). New York: Routledge.

Mason, M. (2008). Complexity theory and the philosophy of education : Wiley Blackwell.

Meyers, J. (2002). A 30 year perspective on best practices for consultation training. Journal of Educational and Psychological Consultation, 13 (1/2), 35–54.

Meyers, J., Truscott, S., Meyers, A., Varjas, K., & Kim, S. (2014). Qualitative and mixed methods design in consultation research. In W. Erchul & S. Sheridan (Eds.), Handbook of research in school consultation (2nd ed., pp. 103–137). New York: Routledge.

Morrison, K. (2002). School leadership and complexity theory . London: Routledge-Falmer.

National Association of School Psychologists (NASP) (2010). Model for comprehensive and integrated school psychological services . Bethesda, Maryland: National Association of School Psychologists.

Newell, M., & Newman, D. (2014). Qualitative and mixed methods design in consultation research. In W. Erchul & S. Sheridan (Eds.), Handbook of research in school consultation (2nd ed., pp. 421–429). New York: Routledge.

Polkinghorne, D., & Gribbons, B. (1999). Applications of qualitative research strategies to school psychology research problems. In C. Reynolds & T. Gutkin (Eds.), The handbook of school psychology (3rd ed., pp. 108–136). New York: Wiley.

Pryzwansky, W. B., & Noblit, G. W. (1990). Understanding and improving consultation practice: the qualitative case study approach. Journal of Educational and Psychological Consultation, 1 (4), 293.

Saldaña, J. (2009). The coding manual for qualitative researchers . Thousand Oaks: Sage Publications.

Schön, D. (1987). Educating the reflective practitioner . San Francisco: Jossey-Bass.

Schön, D. A. (1983). The reflective practitioner: how professionals think in action . New York: Basic Books.

Seidman, I. (2013). Interviewing as qualitative research: a guide for researchers in education and the social sciences (4th ed.). New York: Teachers College Press.

Shulman, L. S., & Wilson, S. M. (2004). The wisdom of practice: essays on teaching, learning, and learning to teach (1st ed.). San Francisco: Jossey-Bass.

Stake, R. E. (2010). Qualitative research: studying how things work . New York: Guilford Press.

Thornberg, R. (2014). Consultation barriers between teachers and external consultants: a grounded theory of change resistance in school consultation. Journal of Educational and Psychological Consultation, 24 (3), 183–210. doi: 10.1080/10474412.2013.846188 .

Tilly, W., Niebling, B., & Rahn-Blakeslee, A. (2010). Making problem solving school psychology work in schools. In G. Peacock, R. Ervin, E. Daly, & K. Merrell (Eds.), Practical handbook of school psychology (pp. 579–596). New York: Guilford.

Download references

Author information

Authors and affiliations.

College of Educational Studies, Chapman University, One University Drive, Orange, CA, 92866, USA

23 Carpenteria, Irvine, CA, 92602, USA

William R. Espinosa

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to John Brady .

Ethics declarations

Conflict of interest.

John Brady has a consulting position with the school system used in the study and was an instructor in the participants’ graduate programs. William Espinosa has declared that he has no conflicts of interest.

Research Involving Human Participants and/or Animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants in the study.

Interview Protocol

First interview: focused life history.

Tell me as much about yourself in relation to your becoming a school psychologist and your history with the aspect of problem solving.

How did you come to be a school psychologist?

What in your past led you to the profession?

In the first 5 years on the job as a school psychologist, how did you start off as a psychologist, and how does that compare to today?

From then on the following years?

What has the role of leadership influenced your practice?

Tell me about your leadership role.

How did you get into leadership?

Why did you get into it?

How did it go?

Helping other psychologists be successful.

Looking back, how do you think that experience influenced you in this regard?

Second Interview: the Details of the Psychologists’ Lived Experience of Consulting

The purpose of this interview is to concentrate on the concrete details of his/her experience as a consultant problem solver. This is not the time for opinions but for describing the day-to-day details of what is done, which form the foundation for later exploration of opinions/theories. We are striving to reconstruct the myriad details of our participants’ experiences.

Let us look at the two cases you made notes on; tell me about the first on in terms of your work on it.

What in your practice helps with this consulting?

What are the barriers to it?

What training have you gotten in these areas?

What do you like about this kind of work?

Let us look at your time sheets for the past few days. You marked off the time you were consulting. Tell me about some of that experience.

Third Interview: the Meaning/Theory/Understanding of the Experience of Consulting

The purpose of this interview is to address the intellectual and emotional connections between the participant’s work and life. This interview focuses on meaning making by them about consulting.

Given what you have said about your life before you became a psychologist and your practice of consulting now, how do you understand consulting in your life?

What sense does it make to you?

Where do you see yourself going in the future with this?

What factors in your life interacted to bring you to your present situation/practice?

We have talked about your practice of consulting/problem solving/helping as part of being a school psychologist starting with your early life experiences and things that got you into the field and then on some specific cases you are working on now and looking at what you do daily for a 3-day period. Now let us focus on what you think of all this. What meaning do you make of this part of your practice as a school psychologist?

What theories or rules or processes do you use to help in this?

Do you see any patterns in what you do?

Where have you gotten help to do this?

What in your life and work environment facilitates your problem solving?

What in your life, work environment is a barrier to problem solving? Have you been able to overcome barriers and how did you do that?

How do you rate yourself in this area?

What could you do to get better?

Is there anything else you want to say about this?

Rights and permissions

Reprints and permissions

About this article

Brady, J., Espinosa, W.R. Problem-Solving Practices and Complexity in School Psychology. Contemp School Psychol 21 , 38–48 (2017). https://doi.org/10.1007/s40688-016-0103-0

Download citation

Published : 07 November 2016

Issue Date : March 2017

DOI : https://doi.org/10.1007/s40688-016-0103-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Problem solving
  • School psychologist
  • Find a journal
  • Publish with us
  • Track your research

Career Sidekick

Interview Questions

Comprehensive Interview Guide: 60+ Professions Explored in Detail

26 Good Examples of Problem Solving (Interview Answers)

By Biron Clark

Published: November 15, 2023

Employers like to hire people who can solve problems and work well under pressure. A job rarely goes 100% according to plan, so hiring managers will be more likely to hire you if you seem like you can handle unexpected challenges while staying calm and logical in your approach.

But how do they measure this?

They’re going to ask you interview questions about these problem solving skills, and they might also look for examples of problem solving on your resume and cover letter. So coming up, I’m going to share a list of examples of problem solving, whether you’re an experienced job seeker or recent graduate.

Then I’ll share sample interview answers to, “Give an example of a time you used logic to solve a problem?”

Problem-Solving Defined

It is the ability to identify the problem, prioritize based on gravity and urgency, analyze the root cause, gather relevant information, develop and evaluate viable solutions, decide on the most effective and logical solution, and plan and execute implementation. 

Problem-solving also involves critical thinking, communication, listening, creativity, research, data gathering, risk assessment, continuous learning, decision-making, and other soft and technical skills.

Solving problems not only prevent losses or damages but also boosts self-confidence and reputation when you successfully execute it. The spotlight shines on you when people see you handle issues with ease and savvy despite the challenges. Your ability and potential to be a future leader that can take on more significant roles and tackle bigger setbacks shine through. Problem-solving is a skill you can master by learning from others and acquiring wisdom from their and your own experiences. 

It takes a village to come up with solutions, but a good problem solver can steer the team towards the best choice and implement it to achieve the desired result.

Watch: 26 Good Examples of Problem Solving

Examples of problem solving scenarios in the workplace.

  • Correcting a mistake at work, whether it was made by you or someone else
  • Overcoming a delay at work through problem solving and communication
  • Resolving an issue with a difficult or upset customer
  • Overcoming issues related to a limited budget, and still delivering good work through the use of creative problem solving
  • Overcoming a scheduling/staffing shortage in the department to still deliver excellent work
  • Troubleshooting and resolving technical issues
  • Handling and resolving a conflict with a coworker
  • Solving any problems related to money, customer billing, accounting and bookkeeping, etc.
  • Taking initiative when another team member overlooked or missed something important
  • Taking initiative to meet with your superior to discuss a problem before it became potentially worse
  • Solving a safety issue at work or reporting the issue to those who could solve it
  • Using problem solving abilities to reduce/eliminate a company expense
  • Finding a way to make the company more profitable through new service or product offerings, new pricing ideas, promotion and sale ideas, etc.
  • Changing how a process, team, or task is organized to make it more efficient
  • Using creative thinking to come up with a solution that the company hasn’t used before
  • Performing research to collect data and information to find a new solution to a problem
  • Boosting a company or team’s performance by improving some aspect of communication among employees
  • Finding a new piece of data that can guide a company’s decisions or strategy better in a certain area

Problem Solving Examples for Recent Grads/Entry Level Job Seekers

  • Coordinating work between team members in a class project
  • Reassigning a missing team member’s work to other group members in a class project
  • Adjusting your workflow on a project to accommodate a tight deadline
  • Speaking to your professor to get help when you were struggling or unsure about a project
  • Asking classmates, peers, or professors for help in an area of struggle
  • Talking to your academic advisor to brainstorm solutions to a problem you were facing
  • Researching solutions to an academic problem online, via Google or other methods
  • Using problem solving and creative thinking to obtain an internship or other work opportunity during school after struggling at first

You can share all of the examples above when you’re asked questions about problem solving in your interview. As you can see, even if you have no professional work experience, it’s possible to think back to problems and unexpected challenges that you faced in your studies and discuss how you solved them.

Interview Answers to “Give an Example of an Occasion When You Used Logic to Solve a Problem”

Now, let’s look at some sample interview answers to, “Give me an example of a time you used logic to solve a problem,” since you’re likely to hear this interview question in all sorts of industries.

Example Answer 1:

At my current job, I recently solved a problem where a client was upset about our software pricing. They had misunderstood the sales representative who explained pricing originally, and when their package renewed for its second month, they called to complain about the invoice. I apologized for the confusion and then spoke to our billing team to see what type of solution we could come up with. We decided that the best course of action was to offer a long-term pricing package that would provide a discount. This not only solved the problem but got the customer to agree to a longer-term contract, which means we’ll keep their business for at least one year now, and they’re happy with the pricing. I feel I got the best possible outcome and the way I chose to solve the problem was effective.

Example Answer 2:

In my last job, I had to do quite a bit of problem solving related to our shift scheduling. We had four people quit within a week and the department was severely understaffed. I coordinated a ramp-up of our hiring efforts, I got approval from the department head to offer bonuses for overtime work, and then I found eight employees who were willing to do overtime this month. I think the key problem solving skills here were taking initiative, communicating clearly, and reacting quickly to solve this problem before it became an even bigger issue.

Example Answer 3:

In my current marketing role, my manager asked me to come up with a solution to our declining social media engagement. I assessed our current strategy and recent results, analyzed what some of our top competitors were doing, and then came up with an exact blueprint we could follow this year to emulate our best competitors but also stand out and develop a unique voice as a brand. I feel this is a good example of using logic to solve a problem because it was based on analysis and observation of competitors, rather than guessing or quickly reacting to the situation without reliable data. I always use logic and data to solve problems when possible. The project turned out to be a success and we increased our social media engagement by an average of 82% by the end of the year.

Answering Questions About Problem Solving with the STAR Method

When you answer interview questions about problem solving scenarios, or if you decide to demonstrate your problem solving skills in a cover letter (which is a good idea any time the job description mention problem solving as a necessary skill), I recommend using the STAR method to tell your story.

STAR stands for:

It’s a simple way of walking the listener or reader through the story in a way that will make sense to them. So before jumping in and talking about the problem that needed solving, make sure to describe the general situation. What job/company were you working at? When was this? Then, you can describe the task at hand and the problem that needed solving. After this, describe the course of action you chose and why. Ideally, show that you evaluated all the information you could given the time you had, and made a decision based on logic and fact.

Finally, describe a positive result you got.

Whether you’re answering interview questions about problem solving or writing a cover letter, you should only choose examples where you got a positive result and successfully solved the issue.

Example answer:

Situation : We had an irate client who was a social media influencer and had impossible delivery time demands we could not meet. She spoke negatively about us in her vlog and asked her followers to boycott our products. (Task : To develop an official statement to explain our company’s side, clarify the issue, and prevent it from getting out of hand). Action : I drafted a statement that balanced empathy, understanding, and utmost customer service with facts, logic, and fairness. It was direct, simple, succinct, and phrased to highlight our brand values while addressing the issue in a logical yet sensitive way.   We also tapped our influencer partners to subtly and indirectly share their positive experiences with our brand so we could counter the negative content being shared online.  Result : We got the results we worked for through proper communication and a positive and strategic campaign. The irate client agreed to have a dialogue with us. She apologized to us, and we reaffirmed our commitment to delivering quality service to all. We assured her that she can reach out to us anytime regarding her purchases and that we’d gladly accommodate her requests whenever possible. She also retracted her negative statements in her vlog and urged her followers to keep supporting our brand.

What Are Good Outcomes of Problem Solving?

Whenever you answer interview questions about problem solving or share examples of problem solving in a cover letter, you want to be sure you’re sharing a positive outcome.

Below are good outcomes of problem solving:

  • Saving the company time or money
  • Making the company money
  • Pleasing/keeping a customer
  • Obtaining new customers
  • Solving a safety issue
  • Solving a staffing/scheduling issue
  • Solving a logistical issue
  • Solving a company hiring issue
  • Solving a technical/software issue
  • Making a process more efficient and faster for the company
  • Creating a new business process to make the company more profitable
  • Improving the company’s brand/image/reputation
  • Getting the company positive reviews from customers/clients

Every employer wants to make more money, save money, and save time. If you can assess your problem solving experience and think about how you’ve helped past employers in those three areas, then that’s a great start. That’s where I recommend you begin looking for stories of times you had to solve problems.

Tips to Improve Your Problem Solving Skills

Throughout your career, you’re going to get hired for better jobs and earn more money if you can show employers that you’re a problem solver. So to improve your problem solving skills, I recommend always analyzing a problem and situation before acting. When discussing problem solving with employers, you never want to sound like you rush or make impulsive decisions. They want to see fact-based or data-based decisions when you solve problems.

Next, to get better at solving problems, analyze the outcomes of past solutions you came up with. You can recognize what works and what doesn’t. Think about how you can get better at researching and analyzing a situation, but also how you can get better at communicating, deciding the right people in the organization to talk to and “pull in” to help you if needed, etc.

Finally, practice staying calm even in stressful situations. Take a few minutes to walk outside if needed. Step away from your phone and computer to clear your head. A work problem is rarely so urgent that you cannot take five minutes to think (with the possible exception of safety problems), and you’ll get better outcomes if you solve problems by acting logically instead of rushing to react in a panic.

You can use all of the ideas above to describe your problem solving skills when asked interview questions about the topic. If you say that you do the things above, employers will be impressed when they assess your problem solving ability.

If you practice the tips above, you’ll be ready to share detailed, impressive stories and problem solving examples that will make hiring managers want to offer you the job. Every employer appreciates a problem solver, whether solving problems is a requirement listed on the job description or not. And you never know which hiring manager or interviewer will ask you about a time you solved a problem, so you should always be ready to discuss this when applying for a job.

Related interview questions & answers:

  • How do you handle stress?
  • How do you handle conflict?
  • Tell me about a time when you failed

Biron Clark

About the Author

Read more articles by Biron Clark

Continue Reading

15 Most Common Pharmacist Interview Questions and Answers

15 most common paralegal interview questions and answers, top 30+ funny interview questions and answers, 60 hardest interview questions and answers, 100+ best ice breaker questions to ask candidates, top 20 situational interview questions (& sample answers), 15 most common physical therapist interview questions and answers, 15 most common project manager interview questions and answers.

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

problem solving example in school

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

problem solving example in school

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

problem solving example in school

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

problem solving example in school

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

‘Our goal is to get students to see problems as…

Share this:.

  • Click to share on Facebook (Opens in new window)
  • Click to share on X (Opens in new window)
  • Click to print (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • Entertainment
  • Immigration
  • Sports Betting

Post-Tribune

‘our goal is to get students to see problems as opportunities’, teens pitch start-up ideas at innovate within regional competition.

Munster High School students Charity Ibikunle (l to r) and her partner Lauren Dumaresq leave the stage after their presentation during the Innovate WithIN Region 4 Finals, hosted on the campus of Purdue Northwest along with the Society of Innovators on Friday,  April 19, 2024. (John Smierciak/for the Post-Tribune)

Ten teams of Lake County high school students did their best to pitch their problem-solving entrepreneurial ideas to a panel of judges Friday at Purdue Northwest as part of the Innovate WithIN regional pitch competition.

Don Wettrick, CEO of STARTedUP Foundation, who organizes the event in cooperation with Purdue Northwest and the Purdue Society of Innovators, said this is the seventh year for the competition. Six regional events are held and the winners from those rounds go on to compete for the state title – along with $25,000 in company seed money and scholarship funds – on June 21 at Butler University.

Wettrick said the local anchor school is Hobart High School, where the competition started, and as word of the competition spread, more schools have become involved. This year there were three teams from Munster, two from Lowell, two from Hobart, and one each from Hanover Central, Hammond and Lake Central high schools.

More than 3,000 Indiana high schoolers sent in applications for consideration. That number was whittled down to 10 in each region. The winner of each region plus four wild cards will compete for the state title.

“Our whole goal is to get students to see problems as opportunities,” Wettrick said.

Don Wettrick, CEO, The STARTedUP Foundation addresses the families and friends of competitors during the Innovate WithIN Region 4 Finals, hosted on the campus of Purdue Northwest along with the Society of Innovators on Friday, April 19, 2024. (John Smierciak/for the Post-Tribune)

Whether students go into entrepreneurship after their experience or choose a different path, the skills they learn help change the way they look at the world, he said.

Jason Williams, manager director of the Society of Innovators at Purdue Northwest, said there were 600 applicants in Northwest Indiana alone.

“The quality of the applicants and the number of applicants continues to grow,” Williams said. Along with the growth of the competition is the growth of an ecosystem of support that is spreading around it, providing mentorship and assistance after the contest ends.

Dr. Rachel Clapp-Smith, dean of Purdue University Northwest College of Business at PNW, said it is inspiring to see the innovation brought out in the competition by the region’s youth. She described the university as fertile ground for entrepreneurship.

Judges (l to r) Emily Edwards, Curt Bowers, Anne Marie Murphy, Wade Brietzke and Kristin Burton listen to the presenters during the Innovate WithIN Region 4 Finals, hosted on the campus of Purdue Northwest along with the Society of Innovators on Friday, April 19, 2024. (John Smierciak/for the Post-Tribune)

She said the solutions to tomorrow’s problems can be found in the minds of today’s high school students.

“I know I am probably going to see a CEO, a future change maker, a future business leader here today,” Clapp-Smith said.

One by one the teams took the stage to talk about the problem their business would fix.

Ashton Verbish from Hanover Central High School explained what brought him to his idea of “SafetyGlow,” an emergency lighting system for disabled semi-trucks.

As a newer driver who lives in Cedar Lake and often uses local highways and interstates, he said he noticed how difficult it is to see semi trucks that have pulled over on the shoulder. The three triangles they are required by law to put behind their trucks are difficult to spot in the few seconds a vehicle moving 40-plus miles an hour has to see something approaching at night.

Julianne Verbish records her son, Ashton Verbish of Hanover Central High Schools, as he presents during the Innovate WithIN Region 4 Finals, hosted on the campus of Purdue Northwest along with the Society of Innovators on Friday, April 19, 2024. (John Smierciak/for the Post-Tribune)

His solution is a band of flashing lights that can be attached from corner to corner on the back of the truck to form a large “X.”

Noah Kaiser and Mikel Ivy from Hobart High School pitched their product “Safe Trips,” a product designed to keep youth accounted for when they are on classroom trips or with other organizations or businesses. The team said their idea stemmed from an incident where Kaiser’s younger brother was hiding and the family could not find him.

They have devised a bracelet and are working on an app that allows teachers or event organizers, for example, to provide each child with a GPS bracelet. The bracelet is registered to the child and the teacher and parent can track the child’s location. After the event, the bracelet is returned and can be reassigned for future use.

The Munster High School team behind “Wringo” walked away with first place. Ameen Musleh, Vasili Papageorge and Conner Gomez wowed the judges with their “perfect solution” designed to help instill confidence and reduce anxiety among people who have sweaty hands.

Munster High School students, Josephine Pirok (left), Brooke Weatherly and Nabeel Rabie describe their presentation to the judges during the Innovate WithIN Region 4 Finals, hosted on the campus of Purdue Northwest along with the Society of Innovators on Friday, April 19, 2024. (John Smierciak/for the Post-Tribune)

Wringo is a product the user holds in their hand for 15 seconds and it leaves hands dry and natural for 30 minutes.

The Wringo team will head to Butler University in June to make their pitch at the state competition. There also are four at-large positions in the six districts that will be filled with the top four scoring teams district-wide after the top six winners are named. Williams said the 10 teams heading to state will be announced Friday.

There will be a pep rally for the state finalists on June 7 at the Lake County Corn Dogs game in Crown Point.

[email protected]

More in Post-Tribune

Main Street is Griffith will receive a full makeover now that the town has approval of a $1.5 million matching grant from the Indiana Department of Transportation (INDOT). The Griffith Town Council announced the grant award at its meeting on April 16. INDOT’s Community Crossing Matching Grant (CCMG) will cover half of the estimated $3 million cost of the project, which is expected to commence sometime during 2024. The town will pay its portion of the matching grant with remaining funds from the town-wide sidewalk project or other leftover bond funds that allow for this work, according to Town Council President […]

Post-Tribune | Griffith’s Main Street getting a total rebuild

Snow — Crown Point’s renowned white deer — will be remembered Sunday in a memorial at Crown Point United Methodist Church. The memorial stems from the outpouring of grief and concern over the female deer, who was euthanized on April 1 after it was determined the injuries sustained when she was hit by a car were too severe for her to be released back in the wild. Another contributing factor was the absence of a large wildlife rescue able to care for an adult deer. As a resident of south Crown Point, the Rev. Mark Wilken said he saw Snow […]

Post-Tribune | Memorial to pay tribute to Snow the white deer

North America is losing bird populations and while humans have a lot to do with that loss, they can work to reverse it, too, particularly at the Indiana Dunes.

Post-Tribune | ‘The situation is kind of dire, but it is not hopeless’

Painting brightly colored cats offered an artful respite for kids and caregivers Wednesday during one of the many programs offered at Sunset Hill Farm County Park.

Post-Tribune | Art program at Sunset Hill offers fun for kids, parents

Trending nationally.

  • Jennifer Lopez ‘disappointed’ by ’embarrassing’ concert sales but vows to move on
  • Disney, Universal report leg injuries, loss of consciousness on rides
  • O.J. Simpson did not die surrounded by loved ones, says lawyer
  • Aspen home sells for $108 million, making Colorado one of the few states with $100+ million houses
  • DeSantis signs school chaplains bill opposed by pastors, Satanists, ACLU

Yale School of Engineering and Applied Science

News & Events

  • Submit an Event
  • Yale Engineering Magazine

Explore News and Research

Greater access to clean water, thanks to a better membrane

problem solving example in school

Reverse osmosis - a system that purifies water by pushing it through a very fine semi-permeable membrane - has been increasingly used to provide safe and clean drinking water to areas of the world where it’s most needed. The most commonly used membranes are made from polyamide, a polymer that offers excellent water permeability and salt rejection. But these membranes are also delicate and susceptible to “biofouling,” when a bacterial biofilm grows on the surface and blocks the membranes’ passages. Chlorine can be used to prevent membrane biofouling, but it can also deteriorate the polyamide films. To overcome these limitations, the industry has widely adopted a series of costly pretreatment steps. 

With an innovative material design, the Yale and Nanjing researchers have developed a reverse osmosis membrane that not only desalinates water but is also resistant to chlorine as well as fouling. Rather than using the industry gold standard of polyamide to develop these membranes, the researchers instead used polyester. 

The choice of material is critical, as this polyester membrane allows for substantial water permeability, has a high rejection for sodium chloride and boron, and a complete resistance toward chlorine. The ultrasmooth, low-energy surface of the membrane also outdoes polyamide membranes in preventing fouling and mineral scaling. 

Further, the team designed the membranes so that they could be easily adopted by the industry.

"The fabrication process of the polyester membrane is similar to state-of-the-art polyamide membranes, so existing industrial production lines could potentially be adapted to quickly scale-up manufacturing,” said Elimelech, the Sterling Professor of Chemical and Environmental Engineering.

Prof. Xuan Zhang of Nanjing University of Science & Technology, China said that after optimizing the design, their membranes could eventually outperform today’s polyamide membranes in their levels of water-salt selectivity, offering a path to considerably reducing pretreatment steps in desalination.

They also noted that as water scarcity has increasingly become a problem around the globe, new desalination technologies are needed, and the one they’ve developed avoids many of the challenges that current systems face.

“Advanced membranes with resistance toward fouling and scaling hold immense promise for increasing freshwater access to those who need it,” said co-author Ryan DuChanois, a former Ph.D. student in Elimelech’s lab and now postdoctoral associate at Rice University.

IMAGES

  1. Developing Problem-Solving Skills for Kids

    problem solving example in school

  2. Questions to Help Kids Solve Problems (Infographic)

    problem solving example in school

  3. problem-solving-steps-poster

    problem solving example in school

  4. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    problem solving example in school

  5. What's Your Problem? Teaching Problem and Solution

    problem solving example in school

  6. Digital Tools To Teach Problem Solving

    problem solving example in school

VIDEO

  1. GEN 1001 Problem Solving 1

  2. Problem Solving Example 3

  3. problem_solving_example_1

  4. PHYS2210

  5. solving example 2 #class10 #maths #vlog #education

  6. 7.3 Work Energy Problem Solving & Example 7.9 Loop the Loop

COMMENTS

  1. 5 Problem-Solving Activities for the Classroom

    2. Problem-solving as a group. Have your students create and decorate a medium-sized box with a slot in the top. Label the box "The Problem-Solving Box.". Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can't seem to figure out on their own.

  2. Problem-Solving in Elementary School

    Reading and Social Problem-Solving. Moss Elementary classrooms use a specific process to develop problem-solving skills focused on tending to social and interpersonal relationships. The process also concentrates on building reading skills—specifically, decoding and comprehension. Stop, Look, and Think. Students define the problem.

  3. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition ...

  4. Teaching Problem Solving

    Problem solving is a necessary skill in all disciplines and one that the Sheridan Center is focusing on as part of the Brown Learning Collaborative, which provides students the opportunity to achieve new levels of excellence in six key skills traditionally honed in a liberal arts education ­- critical reading, writing, research, data ...

  5. 5 Step Problem Solving Process Model for Students

    The three steps before problem solving: we call them the K-W-I. The "K" stands for "know" and requires students to identify what they already know about a problem. The goal in this step of the routine is two-fold. First, the student needs to analyze the problem and identify what is happening within the context of the problem.

  6. Strengthening High School Students' Problem-Solving Skills

    Finding, shaping, and solving problems puts high school students in charge of their learning and bolsters critical-thinking skills. As an educator for over 20 years, I've heard a lot about critical thinking, problem-solving, and inquiry and how they foster student engagement. However, I've also seen students draw a blank when they're ...

  7. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  8. 20 Problem-Solving Activities for Middle School Students

    Sudoku: Introduce sudoku puzzles as a fun and challenging math-based activity. 4. Chess Club: Encourage students to participate in chess clubs or tournaments to practice strategic thinking. 5. Escape Rooms: Plan an age-appropriate escape room activity to develop teamwork and problem-solving skills among the students. 6.

  9. Guiding Students to Be Independent Problem-Solvers in High School STEM

    This shifts students' attention to look at the details of the steps and not glance at the end of the work for the final answer. Further, grading can include points for steps and not the final solution. 5. Teach explicitly problem solving. After solving problems, students can create their own problem-solving strategy that they write on a note ...

  10. Problem-solving

    Problem-solving. Somewhat less open-ended than creative thinking is problem solving, the analysis and solution of tasks or situations that are complex or ambiguous and that pose difficulties or obstacles of some kind (Mayer & Wittrock, 2006). Problem solving is needed, for example, when a physician analyzes a chest X-ray: a photograph of the ...

  11. 10 Problem-Solving Scenarios for High School Students

    The below-mentioned scenarios are perfect for implementing problem-solving skills simply by allowing open discussions and contributions by students. 1. Uninvited Guests. You have arranged a party at your home after successfully winning the competition at the Science Fair. You invite everyone involved in the project however, one of your friends ...

  12. Don't Just Tell Students to Solve Problems. Teach Them How

    The University of California San Diego Jacobs School of Engineering is on the forefront of efforts to improve how problem solving is taught. This UC San Diego approach puts hands-on problem-identification and problem-solving techniques front and center. Over 1,500 students across the San Diego region have already benefited over the last three ...

  13. Problem Solving Activities: 7 Strategies

    Getting the Most from Each of the Problem Solving Activities. When students participate in problem solving activities, it is important to ask guiding, not leading, questions. This provides students with the support necessary to move forward in their thinking and it provides teachers with a more in-depth understanding of student thinking.

  14. 39 Best Problem-Solving Examples (2024)

    Problem-Solving Examples 1. Divergent Thinking. ... Whether for a job interview or school, problem-solving helps you to become a better thinking, solve your problems more effectively, and achieve your goals. Build up your problem-solving frameworks (I presented over 40 in this piece for you!) and work on applying them in real-life situations. ...

  15. 9 problem-solving examples for students (plus benefits)

    The following are problem-solving examples for students: 1. Brainstorming. Brainstorming is a creative process that can generate many potential solutions to an issue. When brainstorming, involve your students in creating lists. For example, if you want to focus on some historical figures and their significance, you can ask students to come up ...

  16. 20 Problem-Solving Activities For Middle School: Discussions, Games

    Problem-solving skills are important to the building of critical thinking, which in turn strengthens student executive function. Good problem solvers can build stronger cognitive flexibility, a critical component of executive functioning. The teenage years are a crucial time for neuroplasticity, so it is a prime time for learning and developing important cognitive skills along with …

  17. The Development of Problem-Solving Skills for Aspiring Educational

    3 = The Subskill is Present to a Marked Degree; This is a Fine Example of this Subskill. Figure 1. Problem-solving model for unstructured problems. Adapted from "Expert Problem Solving: Evidence from School and District Leaders," by K. Leithwood and R. Steinbach, pp. 284-285. ... Another focused on the general problem solving skill in her ...

  18. Problem-Solving Practices and Complexity in School Psychology

    Consultation regarding children's problems in learning and behavior is one of the only ten core competencies of school psychology (National Association of School Psychologists (NASP) 2010) and is taught in all accredited school psychology training programs. The problem-solving model the first author and most trainers have taught in graduate ...

  19. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  20. 26 Good Examples of Problem Solving (Interview Answers)

    Examples of Problem Solving Scenarios in the Workplace. Correcting a mistake at work, whether it was made by you or someone else. Overcoming a delay at work through problem solving and communication. Resolving an issue with a difficult or upset customer. Overcoming issues related to a limited budget, and still delivering good work through the ...

  21. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  22. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  23. What is a Cause and Effect Diagram? Definition, Examples, Benefits, and

    Here are a few examples of Cause and Effect Diagrams in different contexts: 1. Manufacturing Defects: Problem: Defects in manufactured products. Major Categories: Materials, Methods, Machinery, Manpower, Measurement, Environment. Sub-Causes or Factors: For each major category: Materials: Poor quality raw materials, incorrect material ...

  24. 'Our goal is to get students to see problems as opportunities'

    Ten teams of Lake County high school students did their best to pitch their problem-solving entrepreneurial ideas to a panel of judges Friday at Purdue Northwest as part of the Innovate WithIN regi…

  25. Greater access to clean water, thanks to a better membrane

    Water scarcity around the world is a bigger problem than ever, and desalination is critical to solving it. The best available technologies for separating salt from seawater, though, are costly and require a great deal of maintenance. ... School of Engineering & Applied Science | Yale University 17 Hillhouse Avenue • U.S. Mail: P.O. Box 208292 ...