• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

122 The Best Genetics Research Topics For Projects

genetics research topics

The study of genetics takes place across different levels of the education system in academic facilities all around the world. It is an academic discipline that seeks to explain the mechanism of heredity and genes in living organisms. First discovered back in the 1850s, the study of genetics has come a pretty long way, and it plays such an immense role in our everyday lives. Therefore, when you are assigned a genetics research paper, you should pick a topic that is not only interesting to you but one that you understand well.

Choosing Research Topics in Genetics

Even for the most knowledgeable person in the room, choosing a genetics topic for research papers can be, at times, a hectic experience. So we put together a list of some of the most exciting top in genetics to make the endeavor easier for you. However, note, while all the topics we’ve listed below will enable you to write a unique genetic project, remember what you choose can make or break your paper. So again, select a topic that you are both interested and knowledgeable on, and that has plenty of research materials to use. Without further ado, check out the topics below.

Interesting Genetics Topics for your Next Research Paper

  • Genes and DNA: write a beginners’ guide to genetics and its applications
  • Factors that contribute or/and cause genetic mutations
  • Genetics and obesity, what do you need to know?
  • Describe RNA information
  • Is there a possibility of the genetic code being confidential?
  • Are there any living cells present in the gene?
  • Cancer and genetics
  • Describe the role of genetics in the fight against Alzheimer’s disease
  • What is the gene
  • Is there a link between genetics and Parkinson’s disease? Explain your answer.
  • Replacement of genes and artificial chromosomes
  • Explain genetic grounds for obesity
  • Development and disease; how can genetics dissect the developing process
  • Analyzing gene expression – RNA
  • Gene interaction; eye development
  • Advances and developments in nanotechnology to enable therapeutic methods for the treatment of HIV and AIDS.
  • Isolating and identifying the cancer treatment activity of special organic metal compounds.
  • Analyzing the characteristics in certain human genes that can withstand heavy metals.
  • A detailed analysis of genotypes that is both sensitive and able to endure heavy metals.
  • Isolating special growth-inducing bacteria that can assist crops during heavy metal damage and identifying lipid directing molecules for escalating heavy metal endurance in plants.

Hot and Controversial Topics in Genetics

  • Is there a link between genetics and homosexuality? Explain your answer
  • Is it ethical and morally upright to grow human organs
  • Can DNA changes beat aging
  • The history and development of human cloning science
  • How addictive substances alter our genes
  • Are genetically modified foods safe for human and animal consumption?
  • Is depression a genetically based condition?
  • Genetic diagnosis of the fetus
  • Genetic analysis of the DNA structure
  • What impact does cloning have on future generations?
  • What is the link between genetics and autism?
  • Can artificial insemination have any sort of genetic impact on a person?
  • The advancements in genetic research and the bioethics that come with them.
  • Is human organ farming a possibility today?
  • Can genetics allow us to design and build a human to our specifications?
  • Is it ethical to try and tamper with human genetics in any way?

Molecular Genetics Topics

  • Molecular techniques: How to analyze DNA(including genomes), RNA as well as proteins
  • Stem cells describe their potential and shortcomings
  • Describe molecular and genome evolution
  • Describe DNA as the agent of heredity
  • Explain the power of targeted mutagenesis
  • Bacteria as a genetic system
  • Explain how genetic factors increase cancer susceptibility
  • Outline and describe recent advances in molecular cancer genetics
  • Does our DNA sequencing have space for more?
  • Terminal illness and DNA.
  • Does our DNA determine our body structure?
  • What more can we possibly discover about DNA?

Genetic Engineering Topics

  • Define gene editing, and outline key gene-editing technologies, explaining their impact on genetic engineering
  • The essential role the human microbiome plays in preventing diseases
  • The principles of genetic engineering
  • Project on different types of cloning
  • What is whole genome sequencing
  • Explain existing studies on DNA-modified organisms
  • How cloning can impact medicine
  • Does our genetics hold the key to disease prevention?
  • Can our genetics make us resistant to certain bacteria and viruses?
  • Why our genetics plays a role in chronic degenerative diseases.
  • Is it possible to create an organism in a controlled environment with genetic engineering?
  • Would cloning lead to new advancements in genetic research?
  • Is there a possibility to enhance human DNA?
  • Why do we share DNA with so many other animals on the planet?
  • Is our DNA still evolving or have reached our biological limit?
  • Can human DNA be manipulated on a molecular or atomic level?
  • Do we know everything there is to know about our DNA, or is there more?

Controversial Human Genetic Topics

  • Who owns the rights to the human genome
  • Is it legal for parents to order genetically perfect children
  • is genetic testing necessary
  • What is your stand on artificial insemination vs. ordinary pregnancy
  • Do biotech companies have the right to patent human genes
  • Define the scope of the accuracy of genetic testing
  • Perks of human genetic engineering
  • Write about gene replacement and its relationship to artificial chromosomes.
  • Analyzing DNA and cloning
  • DNA isolation and nanotechnology methods to achieve it.
  • Genotyping of African citizens.
  • Greatly mutating Y-STRs and the isolated study of their genetic variation.
  • The analytical finding of indels and their genetic diversity.

DNA Research Paper Topics

The role and research of DNA are so impactful today that it has a significant effect on our daily lives today. From health care to medication and ethics, over the last few decades, our knowledge of DNA has experienced a lot of growth. A lot has been discovered from the research of DNA and genetics.

Therefore, writing a good research paper on DNA is quite the task today. Choosing the right topic can make things a lot easier and interesting for writing your paper. Also, make sure that you have reliable resources before you begin with your paper.

  • Can we possibly identify and extract dinosaur DNA?
  • Is the possibility of cloning just around the corner?
  • Is there a connection between the way we behave and our genetic sequence?
  • DNA research and the environment we live in.
  • Does our DNA sequencing have something to do with our allergies?
  • The connection between hereditary diseases and our DNA.
  • The new perspectives and complications that DNA can give us.
  • Is DNA the reason all don’t have similar looks?
  • How complex human DNA is.
  • Is there any sort of connection between our DNA and cancer susceptibility and resistance?
  • What components of our DNA affect our decision-making and personality?
  • Is it possible to create DNA from scratch under the right conditions?
  • Why is carbon such a big factor in DNA composition?
  • Why is RNA something to consider in viral research and its impact on human DNA?
  • Can we detect defects in a person’s DNA before they are born?

Genetics Topics For Presentation

The subject of genetics can be quite broad and complex. However, choosing a topic that you are familiar with and is unique can be beneficial to your presentation. Genetics plays an important part in biology and has an effect on everyone, from our personal lives to our professional careers.

Below are some topics you can use to set up a great genetics presentation. It helps to pick a topic that you find engaging and have a good understanding of. This helps by making your presentation clear and concise.

  • Can we create an artificial gene that’s made up of synthetic chromosomes?
  • Is cloning the next step in genetic research and engineering?
  • The complexity and significance of genetic mutation.
  • The unlimited potential and advantages of human genetics.
  • What can the analysis of an individual’s DNA tell us about their genetics?
  • Is it necessary to conduct any form of genetic testing?
  • Is it ethical to possibly own a patent to patent genes?
  • How accurate are the results of a genetics test?
  • Can hereditary conditions be isolated and eliminated with genetic research?
  • Can genetically modified food have an impact on our genetics?
  • Can genetics have a role to play in an individual’s sexuality?
  • The advantages of further genetic research.
  • The pros and cons of genetic engineering.
  • The genetic impact of terminal and neurological diseases.

Biotechnology Topics For Research Papers

As we all know, the combination of biology and technology is a great subject. Biotechnology still offers many opportunities for eager minds to make innovations. Biotechnology has a significant role in the development of modern technology.

Below you can find some interesting topics to use in your next biotechnology research paper. Make sure that your sources are reliable and engage both you and the reader.

  • Settlements that promote sustainable energy technology maintenance.
  • Producing ethanol through molasses emission treatment.
  • Evapotranspiration and its different processes.
  • Circular biotechnology and its widespread framework.
  • Understanding the genes responsible for flora response to harsh conditions.
  • Molecule signaling in plants responding to dehydration and increased sodium.
  • The genetic improvement of plant capabilities in major crop yielding.
  • Pharmacogenomics on cancer treatment medication.
  • Pharmacogenomics on hypertension treating medication.
  • The uses of nanotechnology in genotyping.
  • How we can quickly detect and identify food-connected pathogens using molecular-based technology.
  • The impact of processing technology both new and traditional on bacteria cultures linked to Aspalathus linearis.
  • A detailed analysis of adequate and renewable sorghum sources for bioethanol manufacturing in South Africa.
  • A detailed analysis of cancer treatment agents represented as special quinone compounds.
  • Understanding the targeted administering of embelin to cancerous cells.

Tips for Writing an Interesting Genetics Research Paper

All the genetics research topics above are excellent, and if utilized well, could help you come up with a killer research paper. However, a good genetics research paper goes beyond the topic. Therefore, besides choosing a topic, you are most interested in, and one with sufficient research materials ensure you

Fully Understand the Research Paper Format

You may write on the most interesting genetics topics and have a well-thought-out set of ideas, but if your work is not arranged in an engaging and readable manner, your professor is likely to dismiss it, without looking at what you’ve written. That is the last thing you need as a person seeking to score excellent grades. Therefore, before you even put pen to paper, understand what research format is required.

Keep in mind that part of understanding the paper’s format is knowing what words to use and not to use. You can contact our trustful masters to get qualified assistance.

Research Thoroughly and Create an Outline

Whichever genetics research paper topics you decide to go with, the key to having excellent results is appropriately researching it. Therefore, embark on a journey to understand your genetics research paper topic by thoroughly studying it using resources from your school’s library and the internet.

Ensure you create an outline so that you can note all the useful genetic project ideas down. A research paper outline will help ensure that you don’t forget even one important point. It also enables you to organize your thoughts. That way, writing them down in the actual genetics research paper becomes smooth sailing. In other words, a genetics project outline is more like a sketch of the paper.

Other than the outline, it pays to have an excellent research strategy. In other words, instead of looking for information on any random source you come across, it would be wise to have a step-by-step process of looking for the research information.

For instance, you could start by reading your notes to see what they have to say about the topic you’ve chosen. Next, visit your school’s library, go through any books related to your genetics research paper topic to see whether the information on your notes is correct and for additional information on the topic. Note, you can visit the library either physically or via your school’s website. Lastly, browse educational sites such as Google Scholar, for additional information. This way, you’ll start your work with a bunch of excellent genetics project ideas, and at the same time, you’ll have enjoyed every step of the research process.

Get Down to Work

Now turn the genetics project ideas on your outline into a genetics research paper full of useful and factual information.

There is no denying writing a genetics research paper is one of the hardest parts of your studies. But with the above genetics topics and writing tips to guide you, it should be a tad easier. Good luck!

Leave a Reply Cancel reply

  • How It Works
  • PhD thesis writing
  • Master thesis writing
  • Bachelor thesis writing
  • Dissertation writing service
  • Dissertation abstract writing
  • Thesis proposal writing
  • Thesis editing service
  • Thesis proofreading service
  • Thesis formatting service
  • Coursework writing service
  • Research paper writing service
  • Architecture thesis writing
  • Computer science thesis writing
  • Engineering thesis writing
  • History thesis writing
  • MBA thesis writing
  • Nursing dissertation writing
  • Psychology dissertation writing
  • Sociology thesis writing
  • Statistics dissertation writing
  • Buy dissertation online
  • Write my dissertation
  • Cheap thesis
  • Cheap dissertation
  • Custom dissertation
  • Dissertation help
  • Pay for thesis
  • Pay for dissertation
  • Senior thesis
  • Write my thesis

119 Genetics Research Topics You Must Know About

genetics research topics

Put simply, Genetics is the study of genes and hereditary traits in living organisms. Knowledge in this field has gone up over time, and this is proportional to the amount of research.

Right from the DNA structure discovery, a lot more has come out into the open. There are so many genetics research topics to choose from because of the wide scope of research done in recent years.

Genetics is so dear to us since it helps us understand our genes and hereditary traits. In this guide, you will get to understand this subject more and get several topic suggestions that you can consider when looking for interesting genetics topics.

Writing a paper on genetics is quite intriguing nowadays. Remember that because there are so many topics in genetics, choosing the right one is crucial. It will help you cut down on research time and the technicality of selecting content for the topic. Thus, it would matter a lot if you confirmed whether or not the topic you’re choosing has relevant sources in plenty.

What Is Genetics?

Before we even go deeper into genetics topics for research papers, it is essential to have a basic understanding of what the subject entails.

Genetics is a branch of Biology to start with. It is mainly focused on the study of genetic variation, hereditary traits, and genes.

Genetics has relations with several other subjects, including biotechnology, medicine, and agriculture. In Genetics, we study how genes act on the cell and how they’re transmitted from a parent to the offspring. In modern Genetics, the emphasis is more on DNA, which is the chemical substance found in genes. Remember that Genetics cut across animals, insects, and plants – basically any living organism there is.

Tips On How To Write A Decent Research Paper On Genetics

When planning to choose genetics topics, you should also make time and learn how to research. After all, this is the only way you can gather the information that will help you come up with the content for the paper. Here are some tips that can bail you out whenever you feel stuck:

Choosing the topic, nonetheless, is not an easy thing for many students. There are just so many options present, and often, you get spoilt for choice. But note that this is an integral stage/process that you have to complete. Do proper research on the topic and choose the kind of information that you’d like to apply.

Choose a topic that has enough sources academically. Also, choosing interesting topics in genetics is a flex that can help you during the writing process.

On the web, there’s a myriad of information that often can become deceiving. Amateurs try their luck to put together several pieces of information in a bid to try and convince you that they are the authority on the subject. Many students become gullible to such tricks and end up writing poorly in Genetics.

Resist the temptation to look for an easy way of gaining sources/information. You have to take your time and dig up information from credible resources. Otherwise, you’ll look like a clown in front of your professor with laughable Genetics content.

Also, it is quite important that you check when your sources were updated or published. It is preferred and advised that you use recent sources that have gone under satisfactory research and assessment.

Also, add a few words to each on what you’re planning to discuss.Now, here are some of the top genetics paper topics that can provide ideas on what to write about.

Good Ideas For Genetics Topics

Here are some brilliant ideas that you can use as research paper topics in the Genetics field:

  • Is the knowledge of Genetics ahead of replication and research?
  • What would superman’s genetics be like?
  • DNA molecules and 3D printing – How does it work?
  • How come people living in mountainous regions can withstand high altitudes?
  • How to cross genes in distinct animals.
  • Does gene-crossing really help to improve breeds or animals?
  • The human body’s biggest intriguing genetic contradictions
  • Are we still far away from achieving clones?
  • How close are we to fully cloning human beings?
  • Can genetics really help scientists to secure various treatments?
  • Gene’s regulation – more details on how they can be regulated.
  • Genetic engineering and its functioning.
  • What are some of the most fascinating facts in the field of Genetics?
  • Can you decipher genetic code?
  • Cancer vaccines and whether or not they really work.
  • Revealing the genetic pathways that control how proteins are made in a bacterial cell.
  • How food affects the human body’s response to and connection with certain plants’ and animals’ DNA.

Hot Topics In Genetics

In this list are some of the topics that raise a lot of attention and interest from the masses. Choose the one that you’d be interested in:

  • The question of death: Why do men die before women?
  • Has human DNA changed since the evolution process?
  • How much can DNA really change?
  • How much percentage of genes from the father goes to the child?
  • Does the mother have a higher percentage of genes transferred to the child?
  • Is every person unique in terms of their genes?
  • How does genetics make some of us alike?
  • Is there a relationship between diets and genetics?
  • Does human DNA resemble any other animal’s DNA?
  • Sleep and how long you will live on earth: Are they really related?
  • Does genetics or a healthy lifestyle dictate how long you’ll live?
  • Is genetics the secret to long life on earth?
  • How much does genetics affect your life’s quality?
  • The question on ageing: Does genetics have a role to play?
  • Can one push away certain diseases just by passing a genetic test?
  • Is mental illness continuous through genes?
  • The relationship between Parkinson’s, Alzheimer’s and the DNA.

Molecular Genetics Topics

Here is a list of topics to help you get a better understanding of Molecular genetics:

  • Mutation of genes and constancy.
  • What can we learn more about viruses, bacteria, and multicellular organisms?
  • A study on molecular genetics: What does it involve?
  • The changing of genetics in bacteria.
  • What is the elucidation of the chemical nature of a gene?
  • Prokaryotes genetics: Why does this take a centre stage in the genetics of microorganisms?
  • Cell study: How this complex assessment has progressed.
  • What tools can scientists wield in cell study?
  • A look into the DNA of viruses.
  • What can the COVID-19 virus help us to understand about genetics?
  • Examining molecular genetics through chemical properties.
  • Examining molecular genetics through physical properties.
  • Is there a way you can store genetic information?
  • Is there any distinction between molecular levels and subcellular levels?
  • Variability and inheritance: What you need to note about living things at the molecular level.
  • The research and study on molecular genetics: Key takeaways.
  • What scientists can do within the confines of molecular genetics?
  • Molecular genetics research and experiments: What you need to know.
  • What is molecular genetics, and how can you learn about it?

Human Genetics Research Topics

Human genetics is an interesting field that has in-depth content. Some topics here will jog your brain and invoke curiosity in you. However, if you have difficulty writing a scientific thesis , you can always contact us for help.

  • Can you extend your life by up to 100% just by gaining more understanding of the structure of DNA?
  • What programming can you do with the help of DNA?
  • Production of neurotransmitters and hormones through DNA.
  • Is there something that you can change in the human body?
  • What is already predetermined in the human body?
  • Do genes capture and secure information on someone’s mentality?
  • Vaccines and their effect on the DNA.
  • What’s the likelihood that a majority of people on earth have similar DNA?
  • Breaking of the myostatin gene: What impact does it have on the human body?
  • Is obesity passed genetically?
  • What are the odds of someone being overweight when the rest of his lineage is obese?
  • A better understanding of the relationship between genetics and human metabolism.
  • The truths and myths engulfing human metabolism and genetics.
  • Genetic tests on sports performance: What you need to know.
  • An insight on human genetics.
  • Is there any way that you can prevent diseases that are transmitted genetically?
  • What are some of the diseases that can be passed from one generation to the next through genetics?
  • Genetic tests conducted on a person’s country of origin: Are they really accurate?
  • Is it possible to confirm someone’s country of origin just by analyzing their genes?

Current Topics in Genetics

A list to help you choose from all the most relevant topics:

  • DNA-altering experiments: How are scientists conducting them?
  • How important is it to educate kids about genetics while they’re still in early learning institutions?
  • A look into the genetics of men and women: What are the variations?
  • Successes and failures in the study of genetics so far.
  • What does the future of genetics compare to the current state?
  • Are there any TV series or science fiction films that showcase the future of genetics?
  • Some of the most famous myths today are about genetics.
  • Is there a relationship between genetics and homosexuality?
  • Does intelligence pass through generations?
  • What impact does genetics hold on human intelligence?
  • Do saliva and hair contain any genetic data?
  • What impact does genetics have on criminality?
  • Is it possible that most criminals inherit the trait through genetics?
  • Drug addiction and alcohol use: How close can you relate it to genetics?
  • DNA changes in animals, humans, and plants: What is the trigger?
  • Can you extend life through medication?
  • Are there any available remedies that extend a person’s life genetically?
  • Who can study genetics?
  • Is genetics only relevant to scientists?
  • The current approach to genetics study: How has it changed since ancient times?

Controversial Genetics Topics

Last, but definitely not least, are some controversial topics in genetics. These are topics that have gone through debate and have faced criticism all around. Here are some you can write a research paper about:

  • Gene therapy: Some of the ethical issues surrounding it.
  • The genetic engineering of animals: What questions have people raised about it?
  • The controversy around epigenetics.
  • The human evolution process and how it relates to genetics.
  • Gene editing and the numerous controversies around it.
  • The question on same-sex relations and genetics.
  • The use of personal genetic information in tackling forensic cases.
  • Gene doping in sports: What you need to know.
  • Gene patenting: Is it even possible?
  • Should gene testing be compulsory?
  • Genetic-based therapies and the cloud of controversy around them.
  • The dangers and opportunities that lie in genetic engineering.
  • GMOs and their impact on the health and welfare of humans.
  • At what stage in the control of human genetics do we stop to be human?
  • Food science and GMO.
  • The fight against GMOs: Why is it such a hot topic?
  • The pros and cons of genetic testing.
  • The debates around eugenics and genetics.
  • Labelling of foods with GMO: Should it be mandatory?
  • What really are the concerns around the use of GMOs?
  • The Supreme Court decision on the patent placed on gene discoveries.
  • The ethical issues surrounding nurses and genomic healthcare.
  • Cloning controversial issues.
  • Religion and genetics.
  • Behavior learning theories are pegged on genetics.
  • Countries’ war on GMOs.
  • Studies on genetic disorders.

Get Professional Help Online

Now that we have looked at the best rated topics in genetics, from interesting to controversial topics genetics, you have a clue on what to choose. These titles should serve as an example of what to select.

Nonetheless, if you need help with a thesis, we are available to offer professional and affordable thesis writing services . Our high quality college and university assignment assistance are available to all students online at a cheap rate. Get a sample to check on request and let us give you a hand when you need it most.

annotated bibliography topics

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Comment * Error message

Name * Error message

Email * Error message

Save my name, email, and website in this browser for the next time I comment.

As Putin continues killing civilians, bombing kindergartens, and threatening WWIII, Ukraine fights for the world's peaceful future.

Ukraine Live Updates

Subscribe or renew today

Every print subscription comes with full digital access

Science News

Here’s why some pigeons do backflips.

Meet the scientist homing in on the genes involved in making parlor roller pigeons do backward somersaults.

A genetic parasite may explain why humans and other apes lack tails

Ancient viruses helped speedy nerves evolve, more stories in genetics.

A young female-presenting person with allergies sneezes into a white handkerchief. They have brown skin and black hair pulled back into a ponytail. They are wearing a light yellow shirt and a backpack with black straps with a neon green camping roll strapped across their shoulders. Trees in various shades of green are blurred in the background.

Newfound immune cells are responsible for long-lasting allergies

A specialized type of immune cell appears primed to make the type of antibodies that lead to allergies, two research groups report.

A photograph of Krystal Tsosie smiling in her white lab coat, which has an embroidered tortoise on it.

Geneticist Krystal Tsosie advocates for Indigenous data sovereignty

A member of the Navajo Nation, she believes Indigenous geneticists have a big role to play in protecting and studying their own data.

A skull with an arrow shot through the nose is displayed on a black background. The Danish bog skull, known as Porsmose Man, dates to around 4,600 years ago.

How ancient herders rewrote northern Europeans’ genetic story

New DNA analyses show the extent of the Yamnaya people’s genetic reach starting 5,000 years ago and how it made descendants prone to diseases like MS.

A woman with long dark hair wearing a white T-shirt holds her right hand over her mouth while her left hand braces her against the wall. The image conveys nauseousness.

Fetuses make a protein that causes morning sickness in pregnancy

A hormone called GDF15 triggers a part of the brain involved in nausea and vomiting, a new study finds. Blocking its action may lead to treatments.

This image shows an MRI scan of the brain of someone with Huntington's disease.

Why Huntington’s disease may take so long to develop

Repeated bits of the disease-causing gene pile up in some brain cells. New treatments could involve stopping the additions.

A picture of a kingfisher bird diving toward the water

Here’s how high-speed diving kingfishers may avoid concussions

Understanding the genetic adaptations that protect the birds’ brains when they dive for food might one day offer clues to protecting human brains.

An overhead image of a white mouse on a red background.

These 8 GMOs tell a brief history of genetic modification

Since the first genetically modified organism 50 years ago, GMOs have brought us disease-resistant crops, new drugs and more.

Will Ungerer lies in a hospital bed, next to a teddy bear, as doctor Jerry Mendell leans over him. Both are looking at the camera and smiling.

Most of today’s gene therapies rely on viruses — and that’s a problem

The next big strides in gene therapy for rare diseases may come from CRISPR and new approaches to delivery.

A photo of a silk worm next to a large collection of silk strands.

In a first, genetically modified silkworms produced pure spider silk

An effort to engineer silkworms to produce spider silk brings us closer than ever to exploiting the extraordinary properties of this arachnid fiber.

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber? Become one now .

Sugar glider, mid-air on black background

How Sugar Gliders Got Their Wings

Several marsupial species, including sugar gliders, independently evolved a way to make membranes that allow them to glide through the air

Viviane Callier

Top view of beetle.

Unraveling the Secrets of This Weird Beetle’s 48-Hour Clock

New research examines the molecular machinery behind a beetle’s strange biological cycle

Andrew Chapman

A seated woman in a courtroom holds a photo of family members

Forensic Genealogy Offers Families the Gift of Closure

The forensic scientist’s toolbox is growing thanks to creative methods that generate reliable leads, analyze evidence, identify suspects and solve cold cases

Nancy La Vigne

Plasmodium falciparum microscopic image.

Ancient Malaria Genome from Roman Skeleton Hints at Disease’s History

Genetic information from ancient Roman remains is helping to reveal how malaria has moved and evolved alongside people

Tosin Thompson, Nature magazine

Brown giant panda approaching on leafy ground.

Rare Brown Panda Mystery Solved after 40 Years

Chinese researchers have found the gene responsible for the brown-and-white fur of a handful of giant pandas

Xiaoying You, Nature magazine

Colorful DNA helix

What Do You Mean, Bisexual People Are ‘Risk-Taking’? Why Genetic Studies about Sexuality Can Be Fraught

A recent study on risk-taking and bisexuality made assumptions that some experts don’t agree with.

Tulika Bose, Lauren Leffer, Timmy Broderick

Coccyx, computer illustration

How Humans Lost Their Tails

A newly discovered genetic mechanism helped eliminate the tails of human ancestors

This Genetically Engineered Petunia Glows in the Dark and Could Be Yours for $29

The engineered “firefly petunia” emits a continuous green glow thanks to genes from a light-up mushroom

Katherine Bourzac, Nature magazine

Dalmation standing outside, head turns towards tail

Why Do Dogs Wag Their Tail?

Is your dog’s tail-wagging a side effect of domestication, or did humans select for it?

Tom Metcalfe

Cloned rhesus monkey in cage

Meet ReTro, the First Cloned Rhesus Monkey to Reach Adulthood

A method that provides cloned embryos with a healthy placenta has led to the first cloned rhesus monkey that has survived to adulthood and could pave the way for more research involving the primates

Miryam Naddaf, Nature magazine

Skull was punctured by an arrow

Ancient DNA Reveals Origins of Multiple Sclerosis in Europe

A huge cache of ancient genomes spanning tens of thousands of years reveals the roots of traits in modern Europeans

Sara Reardon, Nature magazine

Close-up photograph of a wood ant (Formica rufa) on a tree

How Supergenes Shape Evolution

By locking together traits that work well together, supergenes provide striking evolutionary advantages. But they can also be costly because they make it nearly impossible to purge bad mutations

Main Logo

  • Vision, Mission and Purpose
  • Focus & Scope
  • Editorial Info
  • Open Access Policy
  • Editing Services
  • Article Outreach
  • Why with us
  • Focused Topics
  • Manuscript Guidelines
  • Ethics & Disclosures
  • What happens next to your Submission
  • Submission Link
  • Special Issues
  • Latest Articles
  • All Articles

Warning icon

Research Topics

The Center for Genetic Medicine’s faculty members represent 33 departments or programs across three Northwestern University schools and three Feinberg-affiliated healthcare institutions. Faculty use genetics and molecular genetic approaches to understand biological processes for a diverse range of practical and clinical applications.

Select a topic below to learn more and see a list of faculty associated with that type of research. For a full list of Center for Genetic Medicine members, visit our Members section .

  Animal Models of Human Disease

Using genetic approaches with model organisms to investigate cellular and physiological processes can lead to improved approaches for detection, prevention and treatment of human diseases.


  Bioinformatics & Statistics

Bioinformatics, a discipline that unites biology, computer science, statistical methods, and information technology, helps researchers understand how genes or parts of genes relate to other genes, and how genes interact to form networks. These studies provide insight to normal cellular functions and how these functions are disturbed by disease. Statistics is central to genetic approaches, providing quantitative support for biological observations, and statistical genetics is heavily used by laboratories performing gene and trait mapping, sequencing and genotyping, epidemiology, population genetics and risk analysis.

  Cancer Genetics and Genomics

Cancer begins with genetic changes, or mutations, that disrupt normal regulation of cell proliferation, survival and death. Inherited genetic changes contribute to the most common cancers, like breast and colon cancer, and genetic testing can help identify risks for disease. Tumors also develop additional genetic changes, or somatic mutations, that promote cancer growth and tumor metastases. These genetic changes can be readily defined through DNA and RNA sequencing. Genetic changes within a tumor can be used to develop and guide treatment options.

  Cardiovascular Genetics

Cardiovascular disease is one of the leading causes of death in the US, and the risk of  cardiovascular disease is highly dependent inherited genetic changes. The most common forms of heart disease including heart failure, arrhythmias, and vascular disease are under heritable genetic changes. We work to identify and understand the functions of genes that affect the risk of developing cardiovascular disease, as well as to understand the function of genes involved in the normal and pathological development of the heart.

  Clinical and Therapeutics

Using genetic data identifies pathways for developing new therapies and applying existing therapies. DNA sequencing and epigenetic profiling of tumors helps define the precise defects responsible for cancer progression. We use genetic signals to validate pathways for therapy development.  We are using gene editing methods to correct genetic defects. These novel strategies are used to treat patients at Northwestern Memorial Hospital and the Ann & Robert H. Lurie Children's Hospital of Chicago.


The genomic blueprint of a single fertilized egg directs the formation of the entire organism. To understand the cellular processes that allow cells to create organs and whole animals from this blueprint, we use genetic approaches to investigate the development of model organisms and humans. Induced pluripotent stem cells can be readily generated from skin, blood or urine cells and used to mirror human developmental processes. These studies help us define how genes coordinate normal human development and the changes that occur in diseases, with the goal of improving detection, prevention and treatment of human disease.

  Epigenetics/Chromatin Structure/Gene Expression

Abnormal gene expression underlies many diseases, including cancer and cardiovascular diseases. We investigate how gene expression is regulated by chromatin structure and other regulators to understand abnormal gene expression in disease, and to learn how to manipulate gene expression for therapeutic purposes.

  Gene Editing/Gene Therapy

Gene editing tools like CRISPR/Cas can be used to directly alter the DNA code. This tool is being used to generate cell and animal models of human diseases and disease processes. Gene therapy is being used to treat human disease conditions.

  Genetic Counseling

As part of training in genetic counseling, each student completes a thesis project. These projects examine all aspects of genetic counseling ranging from family-based studies to mechanisms of genetic action. With the expansion of genetic testing, genetic counselors are now conducting research on outcomes, cost effectiveness, and quality improvement.

  Genetic Determinants of Cellular Biology

Genetic mutations ultimately change the functionality of the cells in which they are found. Mutations in genes encoding nuclear, cytoplasmic and extracellular matrix protein lead to many different human diseases, ranging from neurological and developmental disorders to cancer and heart disease. Using induced pluripotent stem cell and gene-editing technologies, it is now possible to generate and study nearly every human genetic disorder. Having cellular models of disease is necessary to develop new treatments.


Many immunological diseases, such as Rheumatoid arthritis, Lupus, scleroderma, and others have a genetic basis. We work to understand how genetic changes and misregulation contribute to immunological diseases, and use genetic approaches to investigate how the immune system functions.

  Infectious Disease/Microbiome

The susceptibility and/or pathological consequences of many infectious diseases have a genetic basis. We investigate how human genes interact with infectious diseases, and use genetic approaches to determine the interactions between pathogens and the host. Genetic tools, including deep sequencing, are most commonly used to define the microbiome as it undergoes adaptation and maladaptation to its host environment.


We work to understand how genes contribute to neurological diseases, and use genetic approaches to investigate how the nervous system functions. Epilepsy, movement disorders, and dementia are heritable and under genetic influence. Neuromuscular diseases including muscular dystrophies and myopathies arise from primary mutations and research in genetic correction is moving into human trials and drug approvals.

  Population Genetics/Epidemiology

Genetic data is increasingly available from large human populations and is advancing the population-level understanding of genetic risk. Northwestern participates in All-Of-US, which aims to build a cohort of one million citizens to expand genetic knowledge of human diseases. Race and ancestry have genetic determinants and genetic polymorphisms can help mark disease risks better than other markers of race/ancestry. We use epidemiology and population genetics to investigate the genetic basis of disease, and to assess how genetic diseases affect subgroups within broader populations.


Research is examining how germ cells are specified. We study the broad range of biology required to transmit genetic information from one generation to another, and how to facilitate the process of reproduction when difficulties arise or to avoid passing on mutant genes.

Follow Center for Genetic Medicine on Twitter

Grad Coach

Research Topics & Ideas

Biotechnology and Genetic Engineering

Research topics and ideas about biotechnology and genetic engineering

If you’re just starting out exploring biotechnology-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from recent studies.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan  to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Research topic idea mega list

Biotechnology Research Topic Ideas

Below you’ll find a list of biotech and genetic engineering-related research topics ideas. These are intentionally broad and generic , so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • Developing CRISPR-Cas9 gene editing techniques for treating inherited blood disorders.
  • The use of biotechnology in developing drought-resistant crop varieties.
  • The role of genetic engineering in enhancing biofuel production efficiency.
  • Investigating the potential of stem cell therapy in regenerative medicine for spinal cord injuries.
  • Developing gene therapy approaches for the treatment of rare genetic diseases.
  • The application of biotechnology in creating biodegradable plastics from plant materials.
  • The use of gene editing to enhance nutritional content in staple crops.
  • Investigating the potential of microbiome engineering in treating gastrointestinal diseases.
  • The role of genetic engineering in vaccine development, with a focus on mRNA vaccines.
  • Biotechnological approaches to combat antibiotic-resistant bacteria.
  • Developing genetically engineered organisms for bioremediation of polluted environments.
  • The use of gene editing to create hypoallergenic food products.
  • Investigating the role of epigenetics in cancer development and therapy.
  • The application of biotechnology in developing rapid diagnostic tools for infectious diseases.
  • Genetic engineering for the production of synthetic spider silk for industrial use.
  • Biotechnological strategies for improving animal health and productivity in agriculture.
  • The use of gene editing in creating organ donor animals compatible with human transplantation.
  • Developing algae-based bioreactors for carbon capture and biofuel production.
  • The role of biotechnology in enhancing the shelf life and quality of fresh produce.
  • Investigating the ethics and social implications of human gene editing technologies.
  • The use of CRISPR technology in creating models for neurodegenerative diseases.
  • Biotechnological approaches for the production of high-value pharmaceutical compounds.
  • The application of genetic engineering in developing pest-resistant crops.
  • Investigating the potential of gene therapy in treating autoimmune diseases.
  • Developing biotechnological methods for producing environmentally friendly dyes.

Research topic evaluator

Biotech & GE Research Topic Ideas (Continued)

  • The use of genetic engineering in enhancing the efficiency of photosynthesis in plants.
  • Biotechnological innovations in creating sustainable aquaculture practices.
  • The role of biotechnology in developing non-invasive prenatal genetic testing methods.
  • Genetic engineering for the development of novel enzymes for industrial applications.
  • Investigating the potential of xenotransplantation in addressing organ donor shortages.
  • The use of biotechnology in creating personalised cancer vaccines.
  • Developing gene editing tools for combating invasive species in ecosystems.
  • Biotechnological strategies for improving the nutritional quality of plant-based proteins.
  • The application of genetic engineering in enhancing the production of renewable energy sources.
  • Investigating the role of biotechnology in creating advanced wound care materials.
  • The use of CRISPR for targeted gene activation in regenerative medicine.
  • Biotechnological approaches to enhancing the sensory qualities of plant-based meat alternatives.
  • Genetic engineering for improving the efficiency of water use in agriculture.
  • The role of biotechnology in developing treatments for rare metabolic disorders.
  • Investigating the use of gene therapy in age-related macular degeneration.
  • The application of genetic engineering in developing allergen-free nuts.
  • Biotechnological innovations in the production of sustainable and eco-friendly textiles.
  • The use of gene editing in studying and treating sleep disorders.
  • Developing biotechnological solutions for the management of plastic waste.
  • The role of genetic engineering in enhancing the production of essential vitamins in crops.
  • Biotechnological approaches to the treatment of chronic pain conditions.
  • The use of gene therapy in treating muscular dystrophy.
  • Investigating the potential of biotechnology in reversing environmental degradation.
  • The application of genetic engineering in improving the shelf life of vaccines.
  • Biotechnological strategies for enhancing the efficiency of mineral extraction in mining.

Recent Biotech & GE-Related Studies

While the ideas we’ve presented above are a decent starting point for finding a research topic in biotech, they are fairly generic and non-specific. So, it helps to look at actual studies in the biotech space to see how this all comes together in practice.

Below, we’ve included a selection of recent studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • Genetic modifications associated with sustainability aspects for sustainable developments (Sharma et al., 2022)
  • Review On: Impact of Genetic Engineering in Biotic Stresses Resistance Crop Breeding (Abebe & Tafa, 2022)
  • Biorisk assessment of genetic engineering — lessons learned from teaching interdisciplinary courses on responsible conduct in the life sciences (Himmel et al., 2022)
  • Genetic Engineering Technologies for Improving Crop Yield and Quality (Ye et al., 2022)
  • Legal Aspects of Genetically Modified Food Product Safety for Health in Indonesia (Khamdi, 2022)
  • Innovative Teaching Practice and Exploration of Genetic Engineering Experiment (Jebur, 2022)
  • Efficient Bacterial Genome Engineering throughout the Central Dogma Using the Dual-Selection Marker tetAOPT (Bayer et al., 2022)
  • Gene engineering: its positive and negative effects (Makrushina & Klitsenko, 2022)
  • Advances of genetic engineering in streptococci and enterococci (Kurushima & Tomita, 2022)
  • Genetic Engineering of Immune Evasive Stem Cell-Derived Islets (Sackett et al., 2022)
  • Establishment of High-Efficiency Screening System for Gene Deletion in Fusarium venenatum TB01 (Tong et al., 2022)
  • Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops (Tanwar et al., 2022)
  • Genetic research: legal and ethical aspects (Rustambekov et al., 2023). Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts (Thagun et al., 2022)
  • The role of genetic breeding in food security: A review (Sam et al., 2022). Biotechnology: use of available carbon sources on the planet to generate alternatives energy (Junior et al., 2022)
  • Biotechnology and biodiversity for the sustainable development of our society (Jaime, 2023) Role Of Biotechnology in Agriculture (Shringarpure, 2022)
  • Plants That Can be Used as Plant-Based Edible Vaccines; Current Situation and Recent Developments (İsmail, 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Topic Kickstarter: Research topics in education

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Genetics and Molecular Research (GMR)

Genetics and Molecular Research (GMR)

A peer-reviewed, all-electronic journal available at no charge to readers

Research Topics

Cultural evolution as a means to understand worldwide differences in the impact of the covid-19 pandemic and human health overall ( january 2022 ).

Though man has evolved very little physically and genetically since civilization arose about 5,000 years ago and even since the origins of Homo sapiens in Africa, the way in which we live has changed considerably and continues to change. The study of this process, which has its parallels in classical Darwinian evolution is called “Cultural Evolution”. An interesting and very relevant aspect of cultural evolution is how societies differ and how this affects their success, including how long and well people live. This is particularly pertinent at the moment, as we … READ MORE. 

Intelligent solutions in E-Health and Medical Communications Services (May 2021)

Vietnamese medical research (march 2021).

In 2019, Vietnam reached the 12 th position in scientific production in Asia, producing over 12,000 publications, according to the Scimago Journal & Country Rank, up from about 400 in 2000, showing a remarkable trend towards improvement. Investigators throughout the country have sought to insert Vietnam into the mainstream of world-class research. Herein, we present research concerning various areas of medical care, including autism, cardiovascular disease markers, hypertension, ischemic stroke, molecular diagnosis of cancer, neurological pathologies, novel cancer surgery techniques, and osteoporosis. This research topic special session demonstrates the diversity of medical research developed in Vietnam as well as the quality of their scientific studies. Besides adapting new techniques to local conditions, these studies demonstrate problems unique to this region of the world. We hope that this initiative helps insert Vietnam into the mainstream of international scientific investigation. We also believe that it will serve as encouragement to researchers from Vietnam and other countries in Southeast Asia, and those from other emerging countries, to continue to conduct and publish quality scientific investigations, so that they can effectively participate in the worldwide efforts to improve human health conditions.

The manuscripts were selected and submitted by a coalition of Vietnamese medical science researchers.


Unlocking the genetic mysteries behind plant adaptation: New insights into the evolution of a water-saving trait in the pineapple family (bromeliaceae)

Adaptation of the photosynthetic mechanism in air plants (tillandsia) occurs through gene duplication.

Researchers at the University of Vienna, along with collaborators from France, Germany, Switzerland and the USA, have achieved a major breakthrough in understanding how genetic drivers influence the evolution of a specific photosynthesis mechanism in Tillandsia (air plants). This sheds light on the complex actions that cause plant adaptation and ecological diversity. The results of their study are now published in Plant Cell.

Some plant species have evolved a water-saving trait called Crassulacean Acid Metabolism (CAM). CAM plants like most Tillandsia species -- the most species-rich genus in the pineapple family (Bromeliaceae) -- optimise their water use efficiency: While other plants normally open their stomata (tiny pores in their leaves) during the day to absorb carbon dioxide for photosynthesis, CAM plants do this at night and stash CO 2 away for later use, helping them survive with less water. This trait evolved independently several times across the plant kingdom. However, the evolution of the complex genetic basis of CAM has remained elusive, making it a focus of research in evolutionary biology.

Gene Regulation is Key

In this study, the research team focused on a Tillandsia species pair exhibiting divergent forms of photosynthetis- CAM vs. C3 -- meaning that the C3-species lacks the specialized adaptation to arid conditions. By using advanced techniques to study the plants' genetics and biochemistry -- e.g. analyses of gene arrangements, molecular and gene family evolution, temporal differential gene expression and metabolites -- they discovered that changes in gene regulation are mainly responsible for genomic mechanisms driving CAM evolution in Tillandsia.

Clara Groot Crego, Department of Botany and Biodiversity Research at University of Vienna and lead author of the study, explains: "Our findings reveal that while large-scale changes have influenced Tillandsia's genomes like other plants, the adjustment of how photosynthesis works mainly happens through how genes are regulated -- not by changing the sequences that code for proteins." Key insights from the study, funded by the Austrian Science Fund (FWF) and the University of Vienna, include the identification of CAM-related gene families undergoing accelerated expansion in CAM species. This highlights the critical role of gene family evolution in generating novel variation that drives CAM evolution.

Into New Niches by Repeated Evolution

"CAM repeatedly evolved in different Tillandsia species and has accelerated their ability to colonize new ecological niches, serving as a key driver of the rampant speciation observed within this group," says Ovidiu Paun, Department of Botany and Biodiversity Research at University of Vienna and principal investigator of the study. "Our research highlights the potential importance of genetic innovation, beyond mere base pair changes, in driving ecological diversification," Paun adds.

Thibault Leroy, principal investigator from INRAE Toulouse, France, emphasizes that this study has implications beyond basic science. "Understanding how CAM evolved can help develop strategies to make crops more resilient to water shortages and cope with climate change."

The research will be extended across more species of this and other plant groups in the framework of a newly collaborative project jointly funded by the Austrian Science Fund (FWF) and the French National Agency for Research (ANR).

  • Evolutionary Biology
  • Endangered Plants
  • Exotic Species
  • Environmental Issues
  • Drought Research
  • Biodiversity
  • Timeline of evolution
  • Photosynthesis
  • Chlorophyll
  • Chloroplast
  • Hydroponics
  • Plant sexuality

Story Source:

Materials provided by University of Vienna . Note: Content may be edited for style and length.

Journal Reference :

  • Clara Groot Crego, Jaqueline Hess, Gil Yardeni, Marylaure de La Harpe, Clara Priemer, Francesca Beclin, Sarah Saadain, Luiz A Cauz-Santos, Eva M Temsch, Hanna Weiss-Schneeweiss, Michael H J Barfuss, Walter Till, Wolfram Weckwerth, Karolina Heyduk, Christian Lexer, Ovidiu Paun, Thibault Leroy. CAM evolution is associated with gene family expansion in an explosive bromeliad radiation . The Plant Cell , 2024; DOI: 10.1093/plcell/koae130

Cite This Page :

Explore More

  • Simulations Support Dark Matter Theory
  • 3D Printed Programmable Living Materials
  • Emergence of Animals: Magnetic Field Collapse
  • Ice Shelves Crack from Weight of Meltwater Lakes
  • Countries' Plans to Remove CO2 Not Enough
  • Toward Robots With Human-Level Touch Sensitivity
  • 'Doubling' in Origin of Cancer Cells
  • New Catalyst for Using Captured Carbon
  • Random Robots Are More Reliable
  • Significant Discovery in Teleportation Research

Trending Topics

Strange & offbeat.

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

April 30, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:


peer-reviewed publication

trusted source

Researchers identify over 2,000 genetic signals linked to blood pressure in study of over 1 million people

by Queen Mary, University of London

blood pressure

Researchers led by Queen Mary University of London have discovered over a hundred new regions of the human genome, also known as genomic loci, that appear to influence a person's blood pressure. In total, over 2,000 independent genetic signals for blood pressure are now reported, demonstrating that blood pressure is a highly complex trait influenced by thousands of different genetic variants.

The study, published in Nature Genetics, is one of the largest such genomic studies of blood pressure to date, including data from over 1 million individuals and laying the groundwork for researchers to better understand how blood pressure is regulated.

To understand the genetics of blood pressure, the researchers combined four large datasets from genome-wide association studies (GWAS) of blood pressure and hypertension. After analyzing the data, they found over 2,000 genomic loci linked to blood pressure, including 113 new regions.

The analyses also implicated hundreds of previously unreported genes that affect blood pressure. Such insights could point to potential new drug targets, and help to advance precision medicine in the early detection and prevention of hypertension ( high blood pressure ).

From these analyses, the researchers were able to calculate polygenic risk scores, which combine the effects of all genetic variants together to predict blood pressure and risk for hypertension. For example, these risk scores show that individuals with highest genetic risk have mean systolic blood pressure levels which are ~17 mmHg higher than those with lowest genetic risk, and a 7-fold increased risk of hypertension. Therefore, these polygenic risk scores can discriminate between patients according to their hypertension risk, and reveal clinically meaningful differences in blood pressure.

"We have now revealed a much larger proportion of the genetic contribution of blood pressure than was previously known," says Helen Warren, Senior Lecturer in Statistical Genetics at Queen Mary University of London and senior last author of the study.

"We are making our polygenic risk scores data publicly available. There are many different potential applications of genetic risk scores, so it will be exciting to see how our blood pressure scores can be used to address more clinically relevant questions in the future."

"This large study builds on over 18 years of blood pressure GWAS research. Our results provide new resources for understanding biological mechanisms and importantly new polygenic risk scores for early identification and stratification of people at risk for cardiovascular diseases," says Patricia Munroe, Professor of Molecular Medicine at Queen Mary University of London, also a senior author of the paper.

Polygenic risk scores have potential to serve as a useful tool in precision medicine, but more diverse genomic data is needed for them to be applicable broadly in routine health care. While the collected data was mostly from people of European ancestry (due to limited availability of diverse datasets when the study was started), the researchers found that the polygenic risk scores were also applicable to people of African ancestry, who have previously been underrepresented in genetic studies.

This African ancestry result was confirmed through analyzing data from the National Institute of Health's (NIH) "All of Us" Research Program in the U.S., which aims to build one of the largest biomedical data resources and accelerate research to improve human health.

An estimated 30% of adults in the UK have high blood pressure, known as hypertension. High blood pressure often runs in families, meaning that there is a genetic component to developing the condition in addition to environmental contributions such as a high-salt diet, lack of exercise, smoking and stress.

When blood pressure is consistently too high, it can damage the heart and blood vessels throughout the body, increasing a person's risk for heart disease, kidney disease, stroke and other conditions.

The study combined previously published genetic data from the UK Biobank, a large-scale biomedical database and research resource containing genetic and health information from half a million UK participants (N~450,000 individuals); the International Consortium for Blood Pressure (N~300,000 individuals combined from 77 different cohort studies); and the U.S. Department of Veterans Affairs' Million Veteran Program (N~220,000 individuals), with new data from Vanderbilt University Medical Center's biorepository, BioVU (N~50,000 individuals).

Explore further

Feedback to editors

research topics for genetics

New study reveals how teens thrive online: Factors that shape digital success revealed

May 4, 2024

research topics for genetics

New approach for developing cancer vaccines could make immunotherapies more effective in acute myeloid leukemia

May 3, 2024

research topics for genetics

Drug targeting RNA modifications shows promise for treating neuroblastoma

research topics for genetics

Researchers discover compounds produced by gut bacteria that can treat inflammation

research topics for genetics

A common type of fiber may trigger bowel inflammation

research topics for genetics

People with gas and propane stoves breathe more unhealthy nitrogen dioxide, study finds

research topics for genetics

Newly discovered mechanism of T-cell control can interfere with cancer immunotherapies

research topics for genetics

Scientists discover new immunosuppressive mechanism in brain cancer

research topics for genetics

Birdwatching can help students improve mental health, reduce distress

research topics for genetics

Doctors describe Texas dairy farm worker's case of bird flu

Related stories.

research topics for genetics

New study finds genetic markers that explain up to 12% of the differences between two people's blood pressure

Apr 30, 2024

research topics for genetics

Researchers demonstrate how genetics play a role in the development of hypertension

Oct 30, 2023

research topics for genetics

Analysis identifies 50 new genomic regions associated with kidney cancer risk

Apr 26, 2024

research topics for genetics

Researchers optimize genetic tests for diverse populations to tackle health disparities

Feb 19, 2024

research topics for genetics

Genes affect your blood pressure from early childhood, data show

Feb 23, 2024

research topics for genetics

High blood pressure hurts the kidneys

Mar 27, 2024

Recommended for you

research topics for genetics

Genetics, not lack of oxygen, causes cerebral palsy in quarter of cases: Study

research topics for genetics

Scientists track 'doubling' in origin of cancer cells

May 2, 2024

research topics for genetics

Unknown risk factor linked to high rates of kidney cancer, DNA study finds

research topics for genetics

Malaria may shorten leukocyte telomeres among sub-Saharan Africans, study finds

research topics for genetics

Early genetic development of the brain mapped

research topics for genetics

Epigenomic analysis sheds light on risk factors for amyotrophic lateral sclerosis

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter


Editorial: the genetics and epigenetics of mental health.

Gabriela Canalli Kretzschmar,,

  • 1 Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
  • 2 Faculdades Pequeno Príncipe, Curitiba, Brazil
  • 3 Department of Genetics, Federal University of Parana, Post-graduation Program in Genetics, Curitiba, Brazil
  • 4 Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
  • 5 CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain

Editorial on the Research Topic The genetics and epigenetics of mental health

Mental health conditions cover a broad spectrum of disturbances, including neurological and substance use disorders, suicide risk, and associated psychosocial, cognitive, and intellectual disabilities (WHO, 2022). Despite a substantial amount of evidence, the interaction of genetic variants, epigenetic mechanisms, and environmental risk factors involved in mental health is poorly understood. Through distinct perspectives and different experimental approaches, the genetics and epigenetics of mental health were addressed in seven relevant articles included in this Research Topic, briefly summarized below.

Stress has severe consequences on the epigenome, but the timing of its occurrence, as well as the intensity and number of events, are critical for the severity of mental health symptoms. In particular, Serpeloni et al. demonstrated that stress generated in the form of intimate partner violence (IPV) during and/or after pregnancy impacts the offspring’s epigenome, shaping its resilience. They observed that individuals exposed to maternal IPV after birth presented psychiatric issues similar to their mothers, with different outcomes if the exposure to maternal IPV occurred both prenatally and postnatally. Prenatal IPV was associated with differential methylation in CpG sites in the genes encoding the glucocorticoid receptor ( NR3C1 ) and its repressor FKBP51 ( FKBP5 ), associated with the ability to terminate hormonal stress responses. Also considering early-life experiences and data from 2008 to 2016 of the Health and Retirement Study, Shin et al. concluded that early life experiences and relationships have a significant influence, attenuating or exacerbating the risk of suffering from mental health problems among individuals with a higher polygenic risk score predisposing to autism.

Environmental and developmental factors are also strongly linked to obsessive-compulsive disorder (OCD). They may explain the apparent discrepancy between the relatively high heritability scores and the inconsistent results found in genetic association studies, owing to their impact on gene expression and regulation. Based on this, Deng et al. stratified OCD patients by the age of disease onset. The findings revealed associations between the early onset and variants of genes whose products play a role in neural development, corroborating the age-associated genetic heterogeneity of OCD.

Further exploring environmental and genetic etiological clues, Li et al. used genome-wide association study (GWAS) data to calculate polygenic risk scores for salivary and tongue dorsum microbiomes associated with anxiety and depression. Additionally, causal relationships between the oral microbiome, anxiety, and depression were detected through Mendelian randomization, unraveling potential pathogenic mechanisms and interventional targets. Constructing a similar line of evidence, Becerra et al. found associations between the epigenetic regulation of inflammatory processes, the composition of gut microbiome, and modified Rosenberg self-esteem scores in samples from the Native Hawaiian and other Pacific Islander (NHPI) populations, which present a high prevalence and mortality from chronic and immunometabolic diseases, as well as mental health problems. This warrants further investigation into the relationship of microbiota to brain activity and mental health.

There is a lot of debate regarding suicidal behavior and its relationship with psychiatric disorders, but the extent to which they share the same genetic architecture is unknown. This Research Topic was investigated by Kootbodien et al. through the use of genomic structural equation modeling and Mendelian randomization with a large genomic dataset. The authors observed a strong genetic correlation between suicidal ideation, attempts, and self-harm, as well as a moderate to strong genetic correlation between suicidal behavioral traits and a range of psychiatric disorders, most notably major depressive disorder, involving pathways related to developmental biology, signal transduction, and RNA degradation. In conclusion, the study provided evidence of a shared etiology between suicidal behavior and psychiatric disorders, with overlapping pathophysiological pathways.

Malekpour et al. , in their investigation of psychogenic non-epileptic seizures (PNES), also uncovered shared pathways with psychiatric conditions. PNES, the most prevalent non-epileptic disorder among patients referring to epilepsy centers, carries a mortality rate akin to drug-resistant epilepsy. Employing a systems biology approach, the authors pinpointed several key components influencing the disease pathogenesis network. These include brain-derived neurotrophic factor (BDNF), cortisol, norepinephrine, proopiomelanocortin (POMC), neuropeptide Y (NPY), the growth hormone receptor signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling, and the neurotrophin signaling pathway.

In general, these studies have some limitations: small sample sizes, leading to low statistical power in some cases, environmental confounding factors (such as diet and physical activity), which were not considered in the microbiome studies, incomplete phenotype descriptions, and partial coverages of human genetic diversity. Childhood adversities and adult comorbidities are among the variables that were not controlled for as possible causes of the investigated psychiatric and neurological disorders, and some results still claim for functional studies to be validated. Thus, the findings brought more elaborated questions, each of which shed some light on knowledge gaps that remain very difficult to fill. How do early-life epigenetic processes regulate our mental health resilience and disease resistance? What is the role of the microbiome in this process and how do genetic variants influence its composition? How does the impact of all these elements shape the resistance of human populations to psychiatric and neurological diseases and, most importantly, translate into public health measures in the future? We hope to engage more researchers in the pursuit of these answers.

Author contributions

GCK: Conceptualization, Data curation, Writing–original draft, Writing–review and editing. ABWB: Writing–original draft, Writing–review and editing. ADST: Conceptualization, Data curation, Writing–original draft, Writing–review and editing.

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Empresa Brasileira de Serviços Hospitalares (Ebserh) grant numbers 423317/2021-0 and 313741/2021-2 (8520137521584230), Research for the United Health SUS System (PPSUS-MS), CNPq, Fundação Araucária and SESA-PR, Protocol N°: SUS2020131000106. ABWB receives CNPq research productivity scholarships (protocols 313741/2021). ADST receives financial support from Instituto de Salud Carlos III (Miguel Servet, 2023: CP23/00095), co-funded by Fondo Social Europeo Plus (FSE+).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Keywords: methylation, GWAS-genome-wide association study, microbiome & dysbiosis, poligenic risk score, neurological conditions, epigenome, genome

Citation: Kretzschmar GC, Boldt ABW and Targa ADS (2024) Editorial: The genetics and epigenetics of mental health. Front. Genet. 15:1402495. doi: 10.3389/fgene.2024.1402495

Received: 17 March 2024; Accepted: 26 March 2024; Published: 09 April 2024.

Edited and reviewed by:

Copyright © 2024 Kretzschmar, Boldt and Targa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Gabriela Canalli Kretzschmar, [email protected] ; Angelica Beate Winter Boldt, [email protected] ; Adriano D. S. Targa, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

The cicada invasion has begun. Experts recommend greeting it with awe, curiosity and humor

research topics for genetics

Much of the middle and southern part of the country is bracing for a rare dual-emergence of two gigantic cicada broods, Brood XIX and Brood XIII, some which have already been spotted by people in Georgia, North Carolina, South Carolina, Alabama, Mississippi, Tennessee , Arkansas, Kentucky and Missouri.

While some fear or dread the insect invasion , scientists say it's a fascinating, spectacular occurrence that shows the great dance of nature at its most exceptional.

The two broods appear at different intervals: every 13 and every 17 years and overlap between them is rare. Cicadas are short-lived and will only be around for about six weeks. And they only emerge from underground when the surface temperatures reach 64 degrees , which is happening now.

Scientists are greeting the phenomenon with a mix of awe, curiosity and humor — and they hope Americans will too.

“They're sort of goofy. They’re not super great flyers and they’re kind of awkward when they land. They don’t bite, they’re not poisonous. If your pet eats one it’s not going to harm them. They’re totally harmless to humans and domestic animals,” said Floyd Shockley, co-lead of the entomology department at the Smithsonian Institution’s National Museum of Natural History.

Shockley said the next few weeks will be “a natural phenomenon that other people in the world would be jealous to see."

Here's a look at why scientists are so in awe of cicadas, and what you can do to enjoy this noisy natural phenomenon.

A mind-boggling number of bugs

The sheer volume of cicadas that will emerge will be enormous, experts say.

“The total number of cicadas that will emerge in the United States between the two broods will be in the many billions, said Gene Kritsky, an emeritus professor of biology at Mount St. Joseph University in Ohio and the author of “A Tale of Two Broods: The 2024 Emergence of Periodical Cicada Broods XIII and XIX.”

It could go as high as a trillion, said Shockley.

When will cicadas come back? You're asking the wrong question. Their pee will 'rain' down

“It is certainly conceivable,” he said. “But remember that’s spread across about 19 states. In areas of local abundance, it will be millions to billions and then there will be other areas where there’s been habitat destruction from agriculture and urban spread it could be lower.”

For those who live in cicada-dense areas, it will be a lot of insects. “There could be thousands in your backyard,” Shockley said.

Evolution offers a fascinating reason for the hordes of cicadas

It's a survival tactic called "predator satiation." There are so many of them that even the hungriest predators can't eat them all.

“They’re eaten by mammals, birds, insects, and even a few people. But you’re never going to be able to impact the entire population because they come out in such large numbers,” said Shockley.

Sometimes a few cicadas in a brood hatch at the wrong time, known in the scientific literature as "stragglers" but they usually don't survive to reproduce.

A genetics experiment that will take a decade to unfold

Because the two broods exist on different timetables, every 13 and every 17 years, they don’t overlap very often — 221 years ago to be precise.

“It’s an exciting thing – the last was in 1803,” said Kritsky.

Will these different broods interbreed? Today's grad students are gearing up to study the answer, which probably won't come until at least 2037.

The area of overlap between the broods is very small, only a few counties in Illinois, so there won’t be a huge opportunity.

In general, broods don’t interbreed. While they can be forced to do so in the lab, in nature they don’t, mostly because they’re mating at different times. But with two broods emerging at the same time and with a small overlap, some interbreeding could possibly occur – scientists are curious to see what happens but resigned to waiting to find out.

“If you’ve got one 13-year cicada and one 17-year cicada and they mate, what are they going to be? We just won’t know until at least 13 years,” said Shockley.

“We’ve got the opportunity for either a new brood altogether, which is very rare, or they could join with an existing brood,” he said.

Two nearly identical species with real differences

To tell the difference between the two types of cicadas, you need a special tool called an oscilloscope.

Both 13- and 17-year cicadas look pretty much the same and to most people they sound the same, even producing the same volume of sound.

But the frequency, pitch and tone of the males' mating song (females do not sing) can be slightly different, something scientists who study them can often identify on recordings.

To really make an identification requires an oscilloscope, a scientific instrument that graphically shows the intensity of sound, measuring frequency, wavelength and amplitude.

"That’s the most accurate way to tell the species apart,” said Shockley.

Are humans harming cicadas?

Humans are definitely cutting into the areas where cicadas can live, said Kritsky.

“Their distribution becomes very patchy because of clear-cutting (of trees) for agriculture and urban development,” he said.

It's also not immediately visible because of their long time underground.

“A lot can change over 13 or 17 years in a particular area,” said Shockley. “Cicadas aren’t very good at digging through concrete – you lay a parking lot down and they’re not coming back.”

Kritsky started studying cicadas in the 1970s and has seen up close and personal what can happen when the trees the insects rely on disappear.

“I studied a development in the 1990s where they clear-cut all the trees. Then in 2004, when brood X emerged, not a single cicada emerged in that area,” he said.

Cicadas boost the ecosystem after they die (and won't harm your garden)

Cicadas offer a wonderful example of a beneficial ecological system. For 13 or 17 years the juvenile cicadas, called nymphs, live underground, feeding off the sap of tree roots. They can burrow as much as two feet underground to find a good place to eat and go through the majority of their life cycle.

“That's why they only emerge from under trees,” said Kritsky.

Once the cicadas die, about six weeks after emerging, there will be “a substantial amount of corpses laying around,” said Shockley. These decompose quickly, a natural process that's good for vegetation.

“The trees feed the cicadas when they’re nymphs and then when the cicadas break down they give back nutrients to nourish the next generation. It’s a really beautiful system,” said Shockley.

Beware the cicada killer: 2024 broods will need to watch out for this murderous wasp

Experts say your garden has nothing to fear from cicadas either.

The cicadas “prune” mature trees but don’t harm them. They don’t eat flowers or vegetables. Pretty much the only part of the yard that could possibly hurt would be young, new trees, said Kritsky.

For those with newly planted trees, garden stores sell mesh that can go over them to protect them.

“As long as the cicadas can’t get their mouth parts over the surface of the stems, they can’t harm them,” said Shockley.

Experts say trying to poison cicadas will backfire

There’s no reason to be scared of cicadas and no need to overreact, say experts who spend lots of time with them.

Most importantly, don’t buy pesticides and spray your backyard to get rid of them.

“First because they’re harmless and second because it’s not going to work,” said Shockley. “You could spray every inch of your yard and it wouldn’t matter because they’ll be back the next day."

Not only that, but animals will eat the dead cicadas, so you’d be poisoning a lot more than just cicadas.

Studying cicadas links generations of researchers

You can’t have a short attention span if you research cicadas. “I‘ve waited as long as 17 years for an experiment to come to fruition,” said Kritsky.

Any researcher who studies them has to have patience. There's a reason many researchers work with fruit flies, because with a lifespan that can be as little as two weeks, it's possible to breed hundreds of generations over the course of an experiment.

Cicadas are an entirely different story.

“You get one or two cycles in and then you’re done with your career. It’s got to be intergenerational study,” Shockley said.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Cancer genetics articles from across Nature Portfolio

Cancer genetics is the study in humans and other animals of heritable gene variants that cause or confer altered risk of tumour or hematological malignancy. Individual cancer risk varies and is influenced by familial and sporadic oncogene or tumour suppressor gene mutations as well as rare and common constitutional variants present in the population.

Related Subjects

  • Cancer epigenetics

Latest Research and Reviews

research topics for genetics

Differential contribution for ERK1 and ERK2 kinases in BRAF V600E -triggered phenotypes in adult mouse models

  • Giuseppe Bosso
  • Ana Carolina Cintra Herpst
  • Maria A. Blasco

research topics for genetics

Phenotyping of cancer-associated somatic mutations in the BCL2 transmembrane domain

  • Diego Leiva
  • Estefanía Lucendo

research topics for genetics

Kataegis in clinical and molecular subgroups of primary breast cancer

  • Srinivas Veerla
  • Johan Staaf

research topics for genetics

Genome-wide CRISPR screens identify the YAP/TEAD axis as a driver of persister cells in EGFR mutant lung cancer

A genome-wide CRISPR/Cas9 screen in osimertinib-treated EGFR mutant cell lines identifies the Hippo pathway as an important non-genetic mechanism of cell survival in persister cells.

  • Matthias Pfeifer
  • Jonathan S. Brammeld
  • Ultan McDermott

research topics for genetics

Improving diagnostic accuracy of identifying gastric cancer patients with peritoneal metastases: tumor-guided cell-free DNA analysis of peritoneal fluid

  • Karen van der Sluis
  • Johanna W. van Sandick
  • Liudmila L. Kodach

research topics for genetics

Essentiality, protein–protein interactions and evolutionary properties are key predictors for identifying cancer-associated genes using machine learning

  • Amro Safadi
  • Simon C. Lovell
  • Andrew J. Doig


News and Comment

research topics for genetics

A comprehensive approach to evaluate genetic abnormalities in multiple myeloma using optical genome mapping

  • Ying S. Zou
  • Melanie Klausner
  • Guilin Tang

Treatment-emergent mutations in myelodysplastic syndrome with del(5q) – lenalidomide related or disease-intrinsic clonal evolution?

  • Mostafa Abdallah
  • Kaaren Reichard
  • Ayalew Tefferi

Workshop report: the clinical application of data from multiplex assays of variant effect (MAVEs), 12 July 2023

Clinical classification of genomic variants identified on sequencing is often challenging, with many variants classified as Variants of Uncertain Significance (VUS) on account of insufficient evidence. Advances in sequencing and gene synthesis has made feasible multiplexed assays of variant effect (MAVEs), which quantify the functional impact of many thousands of genomic variants in a single experiment. These assays and the functional evidence they generate have the potential to empower more accurate clinical variant classification. However, there are many outstanding challenges and opportunities that require joint resolution and specification, thus necessitating communication between the research scientists who have designed and performed MAVEs and the clinicians and diagnostic scientists who will apply their data to clinical variant classification. In the ‘Clinical Application of MAVE Data’ workshop, held on 12th July 2023 at the Wellcome Connecting Science Conference Centre in between two relevant research meetings, ‘Curating the Clinical Genome 2023’ and the ‘Mutational Scanning Symposium 2023’, 44 key scientific and/or clinical stakeholders were brought together to consider important questions relating to clinical application of MAVE data, such as quantitative validation, variant truth-sets, platforms and standards for dissemination of MAVE data. The outcomes and possible next steps that were discussed encompassed development of focused workshops to develop consensus recommendations, creating a MAVE evaluation working group, and collaboration of ClinVar and MaveDB to enact software changes that support enhanced functional data submission.

  • Sophie Allen
  • Alice Garrett
  • Clare Turnbull

research topics for genetics

A guardian turned rogue: TP53 promoter translocations rewire stress responses to oncogenic effectors in osteosarcoma

  • Nikolas Herold

research topics for genetics

Mitochondrial DNA mutation enhances sensitivity to immunotherapy in melanoma

Mitochondrial DNA mutations are present in over 50% of all cancers, and truncating mutations in several genes encoding components of complex I of the respiratory chain are most recurrent. We found that these mutations are a source of Warburg-like metabolic shifts that promote a pro-inflammatory immunological state, enhancing sensitivity to checkpoint blockade.

research topics for genetics

Genetics and pathologic landscape of lineage switch of acute leukemia during therapy

  • Choladda V. Curry

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research topics for genetics


  1. 31 Top Genetic Research Paper Topics

    research topics for genetics

  2. 150 In Depth Genetics Research Topics That Will Score High

    research topics for genetics

  3. 120+ Genetics Research Topics for Your Projects

    research topics for genetics

  4. Modern Genetics Poster Modern genetics poster:Education Supplies

    research topics for genetics

  5. 101 Genetics Research Topics And Writing Prompts

    research topics for genetics

  6. Advances in Genetics Research. Volume 21

    research topics for genetics



  2. Your Genetics Matter More Than You Think

  3. Genetics Important Topics || Genetics Concepts || Biodotcom || #DBT-JRF #CSIR

  4. Class12 Biology Most Important Topics

  5. Human reproduction NEET MCQ 32

  6. Webinar: "Genetics and Parkinson’s: Understanding the Role of Gene Therapy in a Cure" July 2023


  1. 120+ Genetics Research Topics for Your Projects

    122 The Best Genetics Research Topics For Projects. The study of genetics takes place across different levels of the education system in academic facilities all around the world. It is an academic discipline that seeks to explain the mechanism of heredity and genes in living organisms. First discovered back in the 1850s, the study of genetics ...

  2. Genetics

    Genetics is the branch of science concerned with genes, heredity, and variation in living organisms. It seeks to understand the process of trait inheritance from parents to offspring, including ...

  3. 119 Impressive Genetics Research Topics For College Students

    Also, choosing interesting topics in genetics is a flex that can help you during the writing process. Identify Sources The next step after choosing genetics research paper topics is to identify relevant sources that will back your research. For Genetics, the sources you use become even more crucial, as the field is sensitive and detail-oriented.

  4. Genetics research

    Genetics research articles from across Nature Portfolio. Genetics research is the scientific discipline concerned with the study of the role of genes in traits such as the development of disease ...

  5. Genetics

    Geneticist Krystal Tsosie advocates for Indigenous data sovereignty. A member of the Navajo Nation, she believes Indigenous geneticists have a big role to play in protecting and studying their own ...

  6. Human Molecular Genetics and Genomics

    Genomic research has evolved from seeking to understand the fundamentals of the human genetic code to examining the ways in which this code varies among people, and then applying this knowledge to ...

  7. Frontiers in Genetics

    Epigenetic Modulation in Periodontal Disease and Resolution. Juhi R Uttamani. Afsar Raza Naqvi. 208 views. The most cited genetics and heredity journal, which advances our understanding of genes from humans to plants and other model organisms. It highlights developments in the function and variability o...

  8. Medical genetics

    Medical genetics involves the application of genetics to medical care, including research on the causes and inheritance of genetic disorders, and their diagnosis and management. Related Subjects ...

  9. Genetics

    The following Research Topics are led by experts in their field and contribute to the scientific understanding of genetics. These Research topics are published in the peer-reviewed journal Frontiers in Genetics, as open access articles.

  10. Genetics

    Case 12-2024: A 58-Year-Old Woman with Confusion, Aphasia, and Abnormal Head Imaging. J.J. Linnoila and OthersN Engl J Med 2024;390:1421-1430. A 58-year-old woman was transferred to the hospital ...

  11. Frontiers in Genetics

    See all (1,565) Learn more about Research Topics. The most cited genetics and heredity journal, which advances our understanding of genes from humans to plants and other model organisms. It highlights developments in the function and variability o...

  12. Genetics

    Genetics coverage from Scientific American, featuring news and articles about advances in the field. ... New research examines the molecular machinery behind a beetle's strange biological cycle ...


    FOCUSED RESEARCH TOPICS ; 1. Behavioural genetics: Twin and family studies: Measured genetic variants: Quasi-experimental designs: Genetic influences on behaviour: Nature of environmental influence: Nature of genetic influence: Psychiatric genetics: 2. Cytogenetics:

  14. Recent developments in genetic/genomic medicine

    One of the most exciting recent developments in genetics and genomics is the prospect of treatment for an increasing number of genetic conditions. However this topic has to be treated with caution as the practical reality for many patients and families is that though promising research is ongoing, meaningful treatment is not possible in many cases.

  15. Advanced Topics in Genetics and Genomics Program

    The Advanced Topics in Genetics and Genomics track allows you to dive deeper into the topics you care about and provides you with up-to-date information on cutting-edge research and technologies in the health and medicine industries today. This is the second Certificate Program in our two-part Genetics and Genomics series.

  16. Genomics

    Genomics is the study of the full genetic complement of an organism (the genome). It employs recombinant DNA, DNA sequencing methods, and bioinformatics to sequence, assemble, and analyse the ...

  17. Research Topics: Center for Genetic Medicine: Feinberg School of Medicine

    Research Topics. The Center for Genetic Medicine's faculty members represent 33 departments or programs across three Northwestern University schools and three Feinberg-affiliated healthcare institutions. Faculty use genetics and molecular genetic approaches to understand biological processes for a diverse range of practical and clinical ...

  18. Genetics News

    PTSD's Genetic Roots: 43 Genes and 95 Loci Identified. A monumental genetic study involving over 1.2 million people has identified 95 genomic loci associated with PTSD, revealing 80 previously undiscovered loci. This study, the largest of its kind, highlights the significant genetic underpinnings of PTSD and suggests new avenues for treatment ...

  19. Biotech & Genetic Engineering Research Topics (+ Free Webinar

    Biotech & GE Research Topic Ideas (Continued) The use of genetic engineering in enhancing the efficiency of photosynthesis in plants. Biotechnological innovations in creating sustainable aquaculture practices. The role of biotechnology in developing non-invasive prenatal genetic testing methods.

  20. Research Topics

    Managed and made available on the open access platform of Genetics and Molecular Research, these article collections stimulate reader interest and citations for your research. All Research Topic articles are available in the Research Topics section ( LINK) and in the normal online journal issues. The number of article views for each publication ...

  21. The road ahead in genetics and genomics

    In celebration of the 20th anniversary of Nature Reviews Genetics, we asked 12 leading researchers to reflect on the key challenges and opportunities faced by the field of genetics and genomics.

  22. Unlocking the genetic mysteries behind plant adaptation: New insights

    Researchers have achieved a breakthrough in understanding how genetic drivers influence the evolution of a specific photosynthesis mechanism in Tillandsia (air plants). This sheds light on the ...

  23. Researchers identify over 2,000 genetic signals linked to blood

    The study combined previously published genetic data from the UK Biobank, a large-scale biomedical database and research resource containing genetic and health information from half a million UK ...

  24. Editorial: The genetics and epigenetics of mental health

    Through distinct perspectives and different experimental approaches, the genetics and epigenetics of mental health were addressed in seven relevant articles included in this Research Topic, briefly summarized below. Stress has severe consequences on the epigenome, but the timing of its occurrence, as well as the intensity and number of events ...

  25. Hot topics in human genetics : Journal of Human Genetics

    The Journal of Human Genetics is proud to feature "Hot topics in human genetics" - a limited-time web focus bringing together research spanning three highly talked about topics, including ...

  26. Fascinating cicada facts prompt awe, research from scientists

    The two broods appear at different intervals: every 13 and every 17 years and overlap between them is rare. Cicadas are short-lived and will only be around for about six weeks. And they only ...

  27. Cancer genetics

    Cancer genetics is the study in humans and other animals of heritable gene variants that cause or confer altered risk of tumour or hematological malignancy. Individual cancer risk varies and is ...