Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 2: Getting Started in Research

Generating Good Research Questions

Learning Objectives

  • Describe some common sources of research ideas and generate research ideas using those sources.
  • Describe some techniques for turning research ideas into empirical research questions and use those techniques to generate questions.
  • Explain what makes a research question interesting and evaluate research questions in terms of their interestingness.

Good research must begin with a good research question. Yet coming up with good research questions is something that novice researchers often find difficult and stressful. One reason is that this is a creative process that can appear mysterious—even magical—with experienced researchers seeming to pull interesting research questions out of thin air. However, psychological research on creativity has shown that it is neither as mysterious nor as magical as it appears. It is largely the product of ordinary thinking strategies and persistence (Weisberg, 1993) [1] . This section covers some fairly simple strategies for finding general research ideas, turning those ideas into empirically testable research questions, and finally evaluating those questions in terms of how interesting they are and how feasible they would be to answer.

Finding Inspiration

Research questions often begin as more general research ideas—usually focusing on some behaviour or psychological characteristic: talkativeness, learning, depression, bungee jumping, and so on. Before looking at how to turn such ideas into empirically testable research questions, it is worth looking at where such ideas come from in the first place. Three of the most common sources of inspiration are informal observations, practical problems, and previous research.

Informal observations include direct observations of our own and others’ behaviour as well as secondhand observations from nonscientific sources such as newspapers, books, blogs, and so on. For example, you might notice that you always seem to be in the slowest moving line at the grocery store. Could it be that most people think the same thing? Or you might read in a local newspaper about people donating money and food to a local family whose house has burned down and begin to wonder about who makes such donations and why. Some of the most famous research in psychology has been inspired by informal observations. Stanley Milgram’s famous research on obedience to authority, for example, was inspired in part by journalistic reports of the trials of accused Nazi war criminals—many of whom claimed that they were only obeying orders. This led him to wonder about the extent to which ordinary people will commit immoral acts simply because they are ordered to do so by an authority figure (Milgram, 1963) [2] .

Practical problems can also inspire research ideas, leading directly to applied research in such domains as law, health, education, and sports. Does taking lecture notes by hand improve students’ exam performance? How effective is psychotherapy for depression compared to drug therapy? To what extent do cell phones impair people’s driving ability? How can we teach children to read more efficiently? What is the best mental preparation for running a marathon?

QR code that links to Research Topic video

Probably the most common inspiration for new research ideas, however, is previous research. Recall that science is a kind of large-scale collaboration in which many different researchers read and evaluate each other’s work and conduct new studies to build on it. Of course, experienced researchers are familiar with previous research in their area of expertise and probably have a long list of ideas. This suggests that novice researchers can find inspiration by consulting with a more experienced researcher (e.g., students can consult a faculty member). But they can also find inspiration by picking up a copy of almost any professional journal and reading the titles and abstracts. In one typical issue of  Psychological Science , for example, you can find articles on the perception of shapes, anti-Semitism, police lineups, the meaning of death, second-language learning, people who seek negative emotional experiences, and many other topics. If you can narrow your interests down to a particular topic (e.g., memory) or domain (e.g., health care), you can also look through more specific journals, such as  Memory & Cognition  or  Health Psychology .

Generating Empirically Testable Research Questions

Once you have a research idea, you need to use it to generate one or more empirically testable research questions, that is, questions expressed in terms of a single variable or relationship between variables. One way to do this is to look closely at the discussion section in a recent research article on the topic. This is the last major section of the article, in which the researchers summarize their results, interpret them in the context of past research, and suggest directions for future research. These suggestions often take the form of specific research questions, which you can then try to answer with additional research. This can be a good strategy because it is likely that the suggested questions have already been identified as interesting and important by experienced researchers.

But you may also want to generate your own research questions. How can you do this? First, if you have a particular behaviour or psychological characteristic in mind, you can simply conceptualize it as a variable and ask how frequent or intense it is. How many words on average do people speak per day? How accurate are our memories of traumatic events? What percentage of people have sought professional help for depression? If the question has never been studied scientifically—which is something that you will learn in your literature review—then it might be interesting and worth pursuing.

If scientific research has already answered the question of how frequent or intense the behaviour or characteristic is, then you should consider turning it into a question about a statistical relationship between that behaviour or characteristic and some other variable. One way to do this is to ask yourself the following series of more general questions and write down all the answers you can think of.

  • What are some possible causes of the behaviour or characteristic?
  • What are some possible effects of the behaviour or characteristic?
  • What types of people might exhibit more or less of the behaviour or characteristic?
  • What types of situations might elicit more or less of the behaviour or characteristic?

In general, each answer you write down can be conceptualized as a second variable, suggesting a question about a statistical relationship. If you were interested in talkativeness, for example, it might occur to you that a possible cause of this psychological characteristic is family size. Is there a statistical relationship between family size and talkativeness? Or it might occur to you that people seem to be more talkative in same-sex groups than mixed-sex groups. Is there a difference in the average level of talkativeness of people in same-sex groups and people in mixed-sex groups? This approach should allow you to generate many different empirically testable questions about almost any behaviour or psychological characteristic.

If through this process you generate a question that has never been studied scientifically—which again is something that you will learn in your literature review—then it might be interesting and worth pursuing. But what if you find that it has been studied scientifically? Although novice researchers often want to give up and move on to a new question at this point, this is not necessarily a good strategy. For one thing, the fact that the question has been studied scientifically and the research published suggests that it is of interest to the scientific community. For another, the question can almost certainly be refined so that its answer will still contribute something new to the research literature. Again, asking yourself a series of more general questions about the statistical relationship is a good strategy.

  • Are there other ways to operationally define the variables?
  • Are there types of people for whom the statistical relationship might be stronger or weaker?
  • Are there situations in which the statistical relationship might be stronger or weaker—including situations with practical importance?

For example, research has shown that women and men speak about the same number of words per day—but this was when talkativeness was measured in terms of the number of words spoken per day among university students in the United States and Mexico. We can still ask whether other ways of measuring talkativeness—perhaps the number of different people spoken to each day—produce the same result. Or we can ask whether studying elderly people or people from other cultures produces the same result. Again, this approach should help you generate many different research questions about almost any statistical relationship.

Evaluating Research Questions

Researchers usually generate many more research questions than they ever attempt to answer. This means they must have some way of evaluating the research questions they generate so that they can choose which ones to pursue. In this section, we consider two criteria for evaluating research questions: the interestingness of the question and the feasibility of answering it.

Interestingness

How often do people tie their shoes? Do people feel pain when you punch them in the jaw? Are women more likely to wear makeup than men? Do people prefer vanilla or chocolate ice cream? Although it would be a fairly simple matter to design a study and collect data to answer these questions, you probably would not want to because they are not interesting. We are not talking here about whether a research question is interesting to us personally but whether it is interesting to people more generally and, especially, to the scientific community. But what makes a research question interesting in this sense? Here we look at three factors that affect the  interestingness  of a research question: the answer is in doubt, the answer fills a gap in the research literature, and the answer has important practical implications.

First, a research question is interesting to the extent that its answer is in doubt. Obviously, questions that have been answered by scientific research are no longer interesting as the subject of new empirical research. But the fact that a question has not been answered by scientific research does not necessarily make it interesting. There has to be some reasonable chance that the answer to the question will be something that we did not already know. But how can you assess this before actually collecting data? One approach is to try to think of reasons to expect different answers to the question—especially ones that seem to conflict with common sense. If you can think of reasons to expect at least two different answers, then the question might be interesting. If you can think of reasons to expect only one answer, then it probably is not. The question of whether women are more talkative than men is interesting because there are reasons to expect both answers. The existence of the stereotype itself suggests the answer could be yes, but the fact that women’s and men’s verbal abilities are fairly similar suggests the answer could be no. The question of whether people feel pain when you punch them in the jaw is not interesting because there is absolutely no reason to think that the answer could be anything other than a resounding yes.

A second important factor to consider when deciding if a research question is interesting is whether answering it will fill a gap in the research literature. Again, this means in part that the question has not already been answered by scientific research. But it also means that the question is in some sense a natural one for people who are familiar with the research literature. For example, the question of whether taking lecture notes by hand can help improve students’ exam performance would be likely to occur to anyone who was familiar with research on notetaking and the ineffectiveness of shallow processing on learning.

A final factor to consider when deciding whether a research question is interesting is whether its answer has important practical implications. Again, the question of whether taking notes by hand improves learning has important implications for education, including classroom policies concerning technology use. The question of whether cell phone use impairs driving is interesting because it is relevant to the personal safety of everyone who travels by car and to the debate over whether cell phone use should be restricted by law.

Feasibility

A second important criterion for evaluating research questions is the feasibility  of successfully answering them. There are many factors that affect feasibility, including time, money, equipment and materials, technical knowledge and skill, and access to research participants. Clearly, researchers need to take these factors into account so that they do not waste time and effort pursuing research that they cannot complete successfully.

Looking through a sample of professional journals in psychology will reveal many studies that are complicated and difficult to carry out. These include longitudinal designs in which participants are tracked over many years, neuroimaging studies in which participants’ brain activity is measured while they carry out various mental tasks, and complex nonexperimental studies involving several variables and complicated statistical analyses. Keep in mind, though, that such research tends to be carried out by teams of highly trained researchers whose work is often supported in part by government and private grants. Keep in mind also that research does not have to be complicated or difficult to produce interesting and important results. Looking through a sample of professional journals will also reveal studies that are relatively simple and easy to carry out—perhaps involving a convenience sample of university students and a paper-and-pencil task.

A final point here is that it is generally good practice to use methods that have already been used successfully by other researchers. For example, if you want to manipulate people’s moods to make some of them happy, it would be a good idea to use one of the many approaches that have been used successfully by other researchers (e.g., paying them a compliment). This is good not only for the sake of feasibility—the approach is “tried and true”—but also because it provides greater continuity with previous research. This makes it easier to compare your results with those of other researchers and to understand the implications of their research for yours, and vice versa.

Key Takeaways

  • Research ideas can come from a variety of sources, including informal observations, practical problems, and previous research.
  • Research questions expressed in terms of variables and relationships between variables can be suggested by other researchers or generated by asking a series of more general questions about the behaviour or psychological characteristic of interest.
  • It is important to evaluate how interesting a research question is before designing a study and collecting data to answer it. Factors that affect interestingness are the extent to which the answer is in doubt, whether it fills a gap in the research literature, and whether it has important practical implications.
  • It is also important to evaluate how feasible a research question will be to answer. Factors that affect feasibility include time, money, technical knowledge and skill, and access to special equipment and research participants.
  • Practice: Generate five research ideas based on each of the following: informal observations, practical problems, and topics discussed in recent issues of professional journals.
  • Practice: Generate five empirical research questions about each of the following behaviours or psychological characteristics: long-distance running, getting tattooed, social anxiety, bullying, and memory for early childhood events.
  • Practice: Evaluate each of the research questions you generated in Exercise 2 in terms of its interestingness based on the criteria discussed in this section.
  • Practice: Find an issue of a journal that publishes short empirical research reports (e.g.,  Psychological Science ,  Psychonomic Bulletin and Review , Personality and Social Psychology Bulletin ). Pick three studies, and rate each one in terms of how feasible it would be for you to replicate it with the resources available to you right now. Use the following rating scale: (1) You could replicate it essentially as reported. (2) You could replicate it with some simplifications. (3) You could not replicate it. Explain each rating.

Video Attributions

  • “ How to Develop a Good Research Topic ” by KStateLibraries . CC BY (Attribution)
  • Weisberg, R. W. (1993). Creativity: Beyond the myth of genius . New York, NY: Freeman. ↵
  • Milgram, S. (1963). Behavioural study of obedience. Journal of Abnormal and Social Psychology, 67 , 371–378. ↵

The level a research question is interesting to the scientific community and people in general.

the state or ability of being easily or conveniently completed.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

generating research questions and evaluating sources

Generating a research question

If you’re having trouble deciding on a topic or question to research, consider some of the strategies below. You can also email or schedule an appointment with your subject librarian  for help with finding a topic.

  • List things you’ve seen, experienced, or learned about in your classes that raise questions for you. Could researching these questions help you answer them? Is there anything you’ve learned about that seems incomplete? Have any of the topics in class been personally relevant to your life or experiences?
  • List problems you want to solve. What solutions make sense to you? You may be surprised to learn about other solutions people have used in the past, or how you can improve the feasibility of your ideas.
  • Identify areas that you are passionate about. What areas would you like to learn more about? Is there anything that irritates or angers you? Is there anything you just love to talk about? Research can help you better understand these areas and gain new perspective.

Once you have a topic, be sure to generate a thesis, or a question about the topic that you intend to solve in your research. Below are some strategies to help you think of potential questions. Keep in mind that a good research question should have a manageable scope: try not to be too broad or too specific.

Brainstorm questions about your topic. Think about the 5 Ws - who, what, when, where, and why. These questions are important because they cannot have a simple "yes" or "no" answer. This is how you can begin to think about keywords for your topic. For example, if you think about "when," are you referring to the past, the present, or the future?

For example, when researching the vegetarian food culture in the United States, you could ask:

  • Who are vegetarians in the United States? What populations are more likely to be vegetarian?
  • What foods are vegetarians more or less likely to buy or grow?
  • When did vegetarianism become popular in the United States?
  • Where do vegetarians tend to shop for groceries?
  • Why do people in the United States choose to become vegetarians?

Once you have a question in mind, think about what the answer might be (or do some background research to get a better idea). Then, think of how you are going to structure your paper and the types of evidence you will need to answer your research question. For example, if your thesis is “people in the United States choose to become vegetarians because they are concerned about the environmental impact of eating meat,” you can already get an idea that your paper will address 1) the environmental impact and 2) why people in the United States are concerned with it as opposed to other issues and 3) how vegetarianism relates to it.

Use reference sources

Another strategy for approaching your topic is to use reference sources, such as encyclopedias. By using reference sources, you will learn the scholarly language and background information that relates to your topic, in order to identify an interesting question and keywords. You can locate reference sources through Library Search using the “Reference Entries” resource type filter.

Screenshot of "Resource Type" filters available in Library Search. The "Reference Entries" filter is enclosed in a red rectangle to indicate its location on the page.

Create a concept map

A concept map involves taking a broad topic and visually breaking it down into smaller topics to find connections between concepts and create manageable areas of study for research questions. A concept map can also help you organize your ideas and generate search terms.

Watch this video by Appalachian State University to learn about using concept maps to help with research.

Watch Concept Mapping Video

Additional resources

For more help with your research, see our page on search tips , or our guide to generating keywords . You can also view our guide to getting started on your research assignment .  

2.3 Generating Good Research Questions

Learning objectives.

  • Describe some techniques for turning research ideas into empirical research questions and use those techniques to generate questions.
  • Explain what makes a research question interesting and evaluate research questions in terms of their interestingness.

Generating Empirically Testable Research Questions

Once you have a research idea, you need to use it to generate one or more empirically testable research questions, that is, questions expressed in terms of a single variable or relationship between variables. One way to do this is to look closely at the discussion section in a recent research article on the topic. This is the last major section of the article, in which the researchers summarize their results, interpret them in the context of past research, and suggest directions for future research. These suggestions often take the form of specific research questions, which you can then try to answer with additional research. This can be a good strategy because it is likely that the suggested questions have already been identified as interesting and important by experienced researchers.

But you may also want to generate your own research questions. How can you do this? First, if you have a particular behavior or psychological characteristic in mind, you can simply conceptualize it as a variable and ask how frequent or intense it is. How many words on average do people speak per day? How accurate are our memories of traumatic events? What percentage of people have sought professional help for depression? If the question has never been studied scientifically—which is something that you will learn in your literature review—then it might be interesting and worth pursuing.

If scientific research has already answered the question of how frequent or intense the behavior or characteristic is, then you should consider turning it into a question about a relationship between that behavior or characteristic and some other variable. One way to do this is to ask yourself the following series of more general questions and write down all the answers you can think of.

  • What are some possible causes of the behavior or characteristic?
  • What are some possible effects of the behavior or characteristic?
  • What types of people might exhibit more or less of the behavior or characteristic?
  • What types of situations might elicit more or less of the behavior or characteristic?

In general, each answer you write down can be conceptualized as a second variable, suggesting a question about a relationship. If you were interested in talkativeness, for example, it might occur to you that a possible cause of this psychological characteristic is family size. Is there a relationship between family size and talkativeness? Or it might occur to you that people seem to be more talkative in same-sex groups than mixed-sex groups. Is there a difference in the average level of talkativeness of people in same-sex groups and people in mixed-sex groups? This approach should allow you to generate many different empirically testable questions about almost any behavior or psychological characteristic.

If through this process you generate a question that has never been studied scientifically—which again is something that you will learn in your literature review—then it might be interesting and worth pursuing. But what if you find that it has been studied scientifically? Although novice researchers often want to give up and move on to a new question at this point, this is not necessarily a good strategy. For one thing, the fact that the question has been studied scientifically and the research published suggests that it is of interest to the scientific community. For another, the question can almost certainly be refined so that its answer will still contribute something new to the research literature. Again, asking yourself a series of more general questions about the relationship is a good strategy.

  • Are there other ways to define and measure the variables?
  • Are there types of people for whom the relationship might be stronger or weaker?
  • Are there situations in which the relationship might be stronger or weaker—including situations with practical importance?

For example, research has shown that women and men speak about the same number of words per day—but this was when talkativeness was measured in terms of the number of words spoken per day among university students in the United States and Mexico. We can still ask whether other ways of measuring talkativeness—perhaps the number of different people spoken to each day—produce the same result. Or we can ask whether studying elderly people or people from other cultures produces the same result. Again, this approach should help you generate many different research questions about almost any relationship.

Evaluating Research Questions

Researchers usually generate many more research questions than they ever attempt to answer. This means they must have some way of evaluating the research questions they generate so that they can choose which ones to pursue. In this section, we consider two criteria for evaluating research questions: the interestingness of the question and the feasibility of answering it.

Interestingness

How often do people tie their shoes? Do people feel pain when you punch them in the jaw? Are women more likely to wear makeup than men? Do people prefer vanilla or chocolate ice cream? Although it would be a fairly simple matter to design a study and collect data to answer these questions, you probably would not want to because they are not interesting. We are not talking here about whether a research question is interesting to us personally but whether it is interesting to people more generally and, especially, to the scientific community. But what makes a research question interesting in this sense? Here we look at three factors that affect the  interestingness  of a research question: the answer is in doubt, the answer fills a gap in the research literature, and the answer has important practical implications.

First, a research question is interesting to the extent that its answer is in doubt. Obviously, questions that have been answered by scientific research are no longer interesting as the subject of new empirical research. But the fact that a question has not been answered by scientific research does not necessarily make it interesting. There has to be some reasonable chance that the answer to the question will be something that we did not already know. But how can you assess this before actually collecting data? One approach is to try to think of reasons to expect different answers to the question—especially ones that seem to conflict with common sense. If you can think of reasons to expect at least two different answers, then the question might be interesting. If you can think of reasons to expect only one answer, then it probably is not. The question of whether women are more talkative than men is interesting because there are reasons to expect both answers. The existence of the stereotype itself suggests the answer could be yes, but the fact that women’s and men’s verbal abilities are fairly similar suggests the answer could be no. The question of whether people feel pain when you punch them in the jaw is not interesting because there is absolutely no reason to think that the answer could be anything other than a resounding yes.

A second important factor to consider when deciding if a research question is interesting is whether answering it will fill a gap in the research literature. Again, this means in part that the question has not already been answered by scientific research. But it also means that the question is in some sense a natural one for people who are familiar with the research literature. For example, the question of whether taking lecture notes by hand can help improve students’ exam performance would be likely to occur to anyone who was familiar with research on note taking and the ineffectiveness of shallow processing on learning.

A final factor to consider when deciding whether a research question is interesting is whether its answer has important practical implications. Again, the question of whether taking notes by hand improves learning has important implications for education, including classroom policies concerning technology use. The question of whether cell phone use impairs driving is interesting because it is relevant to the personal safety of everyone who travels by car and to the debate over whether cell phone use should be restricted by law.

Feasibility

A second important criterion for evaluating research questions is the feasibility  of successfully answering them. There are many factors that affect feasibility, including time, money, equipment and materials, technical knowledge and skill, and access to research participants. Clearly, researchers need to take these factors into account so that they do not waste time and effort pursuing research that they cannot complete successfully.

Looking through a sample of professional journals in psychology will reveal many studies that are complicated and difficult to carry out. These include longitudinal designs in which participants are tracked over many years, neuroimaging studies in which participants’ brain activity is measured while they carry out various mental tasks, and complex non-experimental studies involving several variables and complicated statistical analyses. Keep in mind, though, that such research tends to be carried out by teams of highly trained researchers whose work is often supported in part by government and private grants. Also, keep in mind that research does not have to be complicated or difficult to produce interesting and important results. Looking through a sample of professional journals will also reveal studies that are relatively simple and easy to carry out—perhaps involving a convenience sample of university students and a paper-and-pencil task.

A final point here is that it is generally good practice to use methods that have already been used successfully by other researchers. For example, if you want to manipulate people’s moods to make some of them happy, it would be a good idea to use one of the many approaches that have been used successfully by other researchers (e.g., paying them a compliment). This is good not only for the sake of feasibility—the approach is “tried and true”—but also because it provides greater continuity with previous research. This makes it easier to compare your results with those of other researchers and to understand the implications of their research for yours, and vice versa.

Key Takeaways

  • Research questions expressed in terms of variables and relationships between variables can be suggested by other researchers or generated by asking a series of more general questions about the behavior or psychological characteristic of interest.
  • It is important to evaluate how interesting a research question is before designing a study and collecting data to answer it. Factors that affect interestingness are the extent to which the answer is in doubt, whether it fills a gap in the research literature, and whether it has important practical implications.
  • It is also important to evaluate how feasible a research question will be to answer. Factors that affect feasibility include time, money, technical knowledge and skill, and access to special equipment and research participants.
  • Practice: Generate three research ideas based on each of the following: informal observations, practical problems, and topics discussed in recent issues of professional journals.
  • Practice: Generate an empirical research question about each of the following behaviors or psychological characteristics: long-distance running, getting tattooed, social anxiety, bullying, and memory for early childhood events.
  • Practice: Evaluate each of the research questions you generated in Exercise 2 in terms of its interestingness based on the criteria discussed in this section.
  • Practice: Find an issue of a journal that publishes short empirical research reports (e.g.,  Psychological Science ,  Psychonomic Bulletin and Review , Personality and Social Psychology Bulletin ). Pick three studies, and rate each one in terms of how feasible it would be for you to replicate it with the resources available to you right now. Use the following rating scale: (1) You could replicate it essentially as reported. (2) You could replicate it with some simplifications. (3) You could not replicate it. Explain each rating.

Creative Commons License

Share This Book

  • Increase Font Size

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

Logo for Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Overview of the Scientific Method

Learning Objectives

  • Describe some techniques for turning research ideas into empirical research questions and use those techniques to generate questions.
  • Explain what makes a research question interesting and evaluate research questions in terms of their interestingness.

Generating Empirically Testable Research Questions

Once you have a research idea, you need to use it to generate one or more empirically testable research questions, that is, questions expressed in terms of a single variable or relationship between variables. One way to do this is to look closely at the discussion section in a recent research article on the topic. This is the last major section of the article, in which the researchers summarize their results, interpret them in the context of past research, and suggest directions for future research. These suggestions often take the form of specific research questions, which you can then try to answer with additional research. This can be a good strategy because it is likely that the suggested questions have already been identified as interesting and important by experienced researchers.

But you may also want to generate your own research questions. How can you do this? First, if you have a particular behavior or psychological characteristic in mind, you can simply conceptualize it as a variable and ask how frequent or intense it is. How many words on average do people speak per day? How accurate are our memories of traumatic events? What percentage of people have sought professional help for depression? If the question has never been studied scientifically—which is something that you will learn when you conduct your literature review—then it might be interesting and worth pursuing.

If scientific research has already answered the question of how frequent or intense the behavior or characteristic is, then you should consider turning it into a question about a relationship between that behavior or characteristic and some other variable. One way to do this is to ask yourself the following series of more general questions and write down all the answers you can think of.

  • What are some possible causes of the behavior or characteristic?
  • What are some possible effects of the behavior or characteristic?
  • What types of people might exhibit more or less of the behavior or characteristic?
  • What types of situations might elicit more or less of the behavior or characteristic?

In general, each answer you write down can be conceptualized as a second variable, suggesting a question about a relationship. If you were interested in talkativeness, for example, it might occur to you that a possible cause of this psychological characteristic is family size. Is there a relationship between family size and talkativeness? Or it might occur to you that people seem to be more talkative in same-sex groups than mixed-sex groups. Is there a difference in the average level of talkativeness of people in same-sex groups and people in mixed-sex groups? This approach should allow you to generate many different empirically testable questions about almost any behavior or psychological characteristic.

If through this process you generate a question that has never been studied scientifically—which again is something that you will learn in your literature review—then it might be interesting and worth pursuing. But what if you find that it has been studied scientifically? Although novice researchers often want to give up and move on to a new question at this point, this is not necessarily a good strategy. For one thing, the fact that the question has been studied scientifically and the research published suggests that it is of interest to the scientific community. For another, the question can almost certainly be refined so that its answer will still contribute something new to the research literature. Again, asking yourself a series of more general questions about the relationship is a good strategy.

  • Are there other ways to define and measure the variables?
  • Are there types of people for whom the relationship might be stronger or weaker?
  • Are there situations in which the relationship might be stronger or weaker—including situations with practical importance?

For example, research has shown that women and men speak about the same number of words per day—but this was when talkativeness was measured in terms of the number of words spoken per day among university students in the United States and Mexico. We can still ask whether other ways of measuring talkativeness—perhaps the number of different people spoken to each day—produce the same result. Or we can ask whether studying elderly people or people from other cultures produces the same result. Again, this approach should help you generate many different research questions about almost any relationship.

Evaluating Research Questions

Researchers usually generate many more research questions than they ever attempt to answer. This means they must have some way of evaluating the research questions they generate so that they can choose which ones to pursue. In this section, we consider two criteria for evaluating research questions: the interestingness of the question and the feasibility of answering it.

Interestingness

How often do people tie their shoes? Do people feel pain when you punch them in the jaw? Are women more likely to wear makeup than men? Do people prefer vanilla or chocolate ice cream? Although it would be a fairly simple matter to design a study and collect data to answer these questions, you probably would not want to because they are not interesting. We are not talking here about whether a research question is interesting to us personally but whether it is interesting to people more generally and, especially, to the scientific community. But what makes a research question interesting in this sense? Here we look at three factors that affect the  interestingness  of a research question: the answer is in doubt, the answer fills a gap in the research literature, and the answer has important practical implications.

First, a research question is interesting to the extent that its answer is in doubt. Obviously, questions that have been answered by scientific research are no longer interesting as the subject of new empirical research. But the fact that a question has not been answered by scientific research does not necessarily make it interesting. There has to be some reasonable chance that the answer to the question will be something that we did not already know. But how can you assess this before actually collecting data? One approach is to try to think of reasons to expect different answers to the question—especially ones that seem to conflict with common sense. If you can think of reasons to expect at least two different answers, then the question might be interesting. If you can think of reasons to expect only one answer, then it probably is not. The question of whether women are more talkative than men is interesting because there are reasons to expect both answers. The existence of the stereotype itself suggests the answer could be yes, but the fact that women’s and men’s verbal abilities are fairly similar suggests the answer could be no. The question of whether people feel pain when you punch them in the jaw is not interesting because there is absolutely no reason to think that the answer could be anything other than a resounding yes.

A second important factor to consider when deciding if a research question is interesting is whether answering it will fill a gap in the research literature. Again, this means in part that the question has not already been answered by scientific research. But it also means that the question is in some sense a natural one for people who are familiar with the research literature. For example, the question of whether taking lecture notes by hand can help improve students’ exam performance would be likely to occur to anyone who was familiar with research on note taking and the ineffectiveness of shallow processing on learning.

A final factor to consider when deciding whether a research question is interesting is whether its answer has important practical implications. Again, the question of whether taking notes by hand improves learning has important implications for education, including classroom policies concerning technology use. The question of whether cell phone use impairs driving is interesting because it is relevant to the personal safety of everyone who travels by car and to the debate over whether cell phone use should be restricted by law.

Feasibility

A second important criterion for evaluating research questions is the feasibility  of successfully answering them. There are many factors that affect feasibility, including time, money, equipment and materials, technical knowledge and skill, and access to research participants. Clearly, researchers need to take these factors into account so that they do not waste time and effort pursuing research that they cannot complete successfully.

Looking through a sample of professional journals in psychology will reveal many studies that are complicated and difficult to carry out. These include longitudinal designs in which participants are tracked over many years, neuroimaging studies in which participants’ brain activity is measured while they carry out various mental tasks, and complex non-experimental studies involving several variables and complicated statistical analyses. Keep in mind, though, that such research tends to be carried out by teams of highly trained researchers whose work is often supported in part by government and private grants. Also, keep in mind that research does not have to be complicated or difficult to produce interesting and important results. Looking through a sample of professional journals will also reveal studies that are relatively simple and easy to carry out—perhaps involving a convenience sample of university students and a paper-and-pencil task.

A final point here is that it is generally good practice to use methods that have already been used successfully by other researchers. For example, if you want to manipulate people’s moods to make some of them happy, it would be a good idea to use one of the many approaches that have been used successfully by other researchers (e.g., paying them a compliment). This is good not only for the sake of feasibility—the approach is “tried and true”—but also because it provides greater continuity with previous research. This makes it easier to compare your results with those of other researchers and to understand the implications of their research for yours, and vice versa.

How interesting the question is to people generally or the scientific community. Three things need to be considered: Is the answer in doubt, fills a gap in research literature, and has important practical implications.

How likely is the research question going to be successfully answered depending on the amount of time, money, equipment and materials, technical knowledge and skill, and access to research participants there will be.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Introduction to Research

  • 1.1 Topic Exploration
  • 1.2 Finding Background Information
  • 1.3 Narrowing and Refining Your Topic
  • 1.4 Generating Research Questions
  • 2.1 Types of Sources
  • 2.2 Evaluating Sources
  • 2.3 Search Strategies
  • 3.1 How to "Read" a Source
  • 3.2 Citing Your Sources
  • Library News and Updates
  • Course Guides

Now that we’ve discovered what types of sources we’re likely to encounter, it’s crucial to learn how to evaluate how trustworthy and appropriate a source would be for your research. 

Types of Sources

It’s generally best not to think of specific types of sources as fundamentally “good” or “bad,” but rather appropriate or inappropriate for a given step in the research process. For example, while you might learn a lot of useful information via Google search during the Finding Background Information step, it’s usually not appropriate to cite them in your final draft.  

Become an Information Detective Through Lateral Reading:

You can learn a lot about a source and evaluate its credibility before you even read the first sentence or paragraph. In fact, it’s usually a good idea to engage in the process of lateral reading before you read a text. This will save you a lot of time and effort if the source turns out to be less reliable than you’d hoped. Lateral reading means searching for and analyzing information about a source and where it came from. You can use a Google search, Wikipedia, or other web-based tools to find information about your source. In particular, try to learn about:

  • Is an author or authors named? If not, proceed with caution!
  • Is the author qualified to serve as an authority on this topic? Learning about their academic and professional background should indicate their expertise (or lack thereof).
  • Does the author have any perceived conflicts of interest or biases? This could include financial interests, political agendas, or relationships with anyone who might benefit from their knowledge like friends or family.

The Organization

  • Who is the publisher or web site that hosts this source? What can you learn about their reputation?
  • Are they trying to sell you something? If it’s a web source, do you see lots of ads and pop-ups? This could be a major red flag.
  • Does the organization have any perceived conflicts of interest?
  • Is a publication date listed with the source, or does it say when it was last updated? Note: the copyright date at the bottom of a web page does not count.
  • If the source is more than fifteen years old, proceed with caution or find another more recent source. Our knowledge about the world is changing all the time, and outdated sources may contain inaccurate or non-relevant information.

A Few Pro Tips

  • Trust Your Instincts : If you ever feel like a source might not be reliable, it’s probably best to find another source. There should be lots of credible sources on any given topic that you can use instead.
  • Use Lateral Reading Strategically : You don’t have to exhaustively research every single information source you find. In fact, many of the sources you find in the Sprague Library catalog and databases have already been evaluated by experts. 
  • Ask a Librarian : Librarians are trained to help researchers find reliable information. If you’re ever feeling stuck or unsure about a given source, get in touch with a librarian at Sprague Library.  
  • << Previous: 2.1 Types of Sources
  • Next: 2.3 Search Strategies >>
  • Last Updated: Feb 15, 2024 12:17 PM
  • URL: https://montclair.libguides.com/IntroductionToResearch

Research Methods and Design

Module 1: introduction, generating research questions, diy research question.

You also can generate your own research questions. How can you do this? First, if you have a particular phenomenon in mind, you can simply conceptualize it as a variable and ask what causes may lead to it, or how it affects other things:

  • How many politicians are needed in a state to address its needs?
  • How does history curriculum in school affect the political behaviour of school graduates?
  • What percentage of people votes in different regimes?

If the question has never been studied scientifically — which is something that you will learn in your literature review — then it might be interesting and worth pursuing. If scientific research has already answered the question you came up with, then you can consider refining the question. Examples:

  • If the question was descriptive (“what is the ratio” or “what percentage”) , you can look into “why”. What are some of the causes which make that happen?
  • If the question was addressed in one culture, you can examine it in a different culture, and also compare the results.
  • If the question provided a description of some cause and effect, what other effects may be present? How do they differ across cultures? How do they depend on political context (such as war, terrorism, peace)?

If you generate a question that has never been studied scientifically through this process (again, use the literature review process to find out), then it may be interesting and worth pursuing.

activity

Re-use a research question

Let’s practice the re-use and refinement of already-answered research questions!

  • Find and article on a topic you are interested in on a journal of international studies (you can use this list if you like, or find others).
  • Identify the research question that guided the study
  • Refine it to something you could study.
  • Optional: Share your outcomes on Twitter!
  • Original question was … turned it into… #UOWResM
  • Article studied … My question will be … #UOWResM

key points

Research ideas and questions: key terms

  • Research ideas can come from a variety of sources, including informal observations, practical problems, and previous research.
  • Research questions expressed in terms of variables and relationships between variables can be suggested by other researchers or generated by asking a series of more general questions about the behaviour or characteristic of interest.
  • It is important to evaluate how interesting a research question is before designing a study and collecting data to answer it. Factors that affect interestingness are the extent to which the answer is in doubt, whether it fills a gap in the research literature, and whether it has important practical implications.
  • It is also important to evaluate how feasible a research question will be to answer . Factors that affect feasibility include time, money, technical knowledge and skill, and access to special equipment and research participants.

case study

Literature sources

You will need some resources to see what is already known about your topic. A grouped list of academic resources can be found here .

A word of warning: assumptions and definitions in international studies

As you go through literature, you will probably notice different ways of making sense of reality. Some research tells you how it is. Other research tells you how it should be. To work out what kind of research yours is (and what kind of researcher you are), let’s have a look at the different types of theory that international studies produces.

Practice generating research ideas

  • Practice: Generate five research ideas based on each of the following: informal observations, practical problems, and topics discussed in recent issues of professional journals.
  • Practice: Generate three empirical research questions about each of the following issues: civil wars, free elections, and dictatorship and individual wellbeing.

Paul Price, (2013, Updated version), Section 2.2 Generating good research questions

institution logo

Chapter 2: Getting Started in Research

2.2 generating good research questions, learning objectives.

  • Describe some common sources of research ideas and generate research ideas using those sources.
  • Describe some techniques for turning research ideas into empirical research questions and use those techniques to generate questions.
  • Explain what makes a research question interesting and evaluate research questions in terms of their interestingness.

Good research must begin with a good research question. Yet coming up with good research questions is something that novice researchers often find difficult and stressful. One reason is that this is a creative process that can appear mysterious—even magical—with experienced researchers seeming to pull interesting research questions out of thin air. However, psychological research on creativity has shown that it is neither as mysterious nor as magical as it appears. It is largely the product of ordinary thinking strategies and persistence (Weisberg, 1993). This section covers some fairly simple strategies for finding general research ideas, turning those ideas into empirically testable research questions, and finally evaluating those questions in terms of how interesting they are and how feasible they would be to answer.

Finding Inspiration

Research questions often begin as more general research ideas—usually focusing on some behavior or psychological characteristic: talkativeness, memory for touches, depression, bungee jumping, and so on. Before looking at how to turn such ideas into empirically testable research questions, it is worth looking at where such ideas come from in the first place. Three of the most common sources of inspiration are informal observations, practical problems, and previous research.

Informal observations include direct observations of our own and others’ behavior as well as secondhand observations from nonscientific sources such as newspapers, books, and so on. For example, you might notice that you always seem to be in the slowest moving line at the grocery store. Could it be that most people think the same thing? Or you might read in the local newspaper about people donating money and food to a local family whose house has burned down and begin to wonder about who makes such donations and why. Some of the most famous research in psychology has been inspired by informal observations. Stanley Milgram’s famous research on obedience, for example, was inspired in part by journalistic reports of the trials of accused Nazi war criminals—many of whom claimed that they were only obeying orders. This led him to wonder about the extent to which ordinary people will commit immoral acts simply because they are ordered to do so by an authority figure (Milgram, 1963).

Practical problems can also inspire research ideas, leading directly to applied research in such domains as law, health, education, and sports. Can human figure drawings help children remember details about being physically or sexually abused? How effective is psychotherapy for depression compared to drug therapy? To what extent do cell phones impair people’s driving ability? How can we teach children to read more efficiently? What is the best mental preparation for running a marathon?

Probably the most common inspiration for new research ideas, however, is previous research. Recall that science is a kind of large-scale collaboration in which many different researchers read and evaluate each other’s work and conduct new studies to build on it. Of course, experienced researchers are familiar with previous research in their area of expertise and probably have a long list of ideas. This suggests that novice researchers can find inspiration by consulting with a more experienced researcher (e.g., students can consult a faculty member). But they can also find inspiration by picking up a copy of almost any professional journal and reading the titles and abstracts. In one typical issue of Psychological Science , for example, you can find articles on the perception of shapes, anti-Semitism, police lineups, the meaning of death, second-language learning, people who seek negative emotional experiences, and many other topics. If you can narrow your interests down to a particular topic (e.g., memory) or domain (e.g., health care), you can also look through more specific journals, such as Memory & Cognition or Health Psychology .

Generating Empirically Testable Research Questions

Once you have a research idea, you need to use it to generate one or more empirically testable research questions, that is, questions expressed in terms of a single variable or relationship between variables. One way to do this is to look closely at the discussion section in a recent research article on the topic. This is the last major section of the article, in which the researchers summarize their results, interpret them in the context of past research, and suggest directions for future research. These suggestions often take the form of specific research questions, which you can then try to answer with additional research. This can be a good strategy because it is likely that the suggested questions have already been identified as interesting and important by experienced researchers.

But you may also want to generate your own research questions. How can you do this? First, if you have a particular behavior or psychological characteristic in mind, you can simply conceptualize it as a variable and ask how frequent or intense it is. How many words on average do people speak per day? How accurate are children’s memories of being touched? What percentage of people have sought professional help for depression? If the question has never been studied scientifically—which is something that you will learn in your literature review—then it might be interesting and worth pursuing.

If scientific research has already answered the question of how frequent or intense the behavior or characteristic is, then you should consider turning it into a question about a statistical relationship between that behavior or characteristic and some other variable. One way to do this is to ask yourself the following series of more general questions and write down all the answers you can think of.

  • What are some possible causes of the behavior or characteristic?
  • What are some possible effects of the behavior or characteristic?
  • What types of people might exhibit more or less of the behavior or characteristic?
  • What types of situations might elicit more or less of the behavior or characteristic?

In general, each answer you write down can be conceptualized as a second variable, suggesting a question about a statistical relationship. If you were interested in talkativeness, for example, it might occur to you that a possible cause of this psychological characteristic is family size. Is there a statistical relationship between family size and talkativeness? Or it might occur to you that people seem to be more talkative in same-sex groups than mixed-sex groups. Is there a difference in the average level of talkativeness of people in same-sex groups and people in mixed-sex groups? This approach should allow you to generate many different empirically testable questions about almost any behavior or psychological characteristic.

If through this process you generate a question that has never been studied scientifically—which again is something that you will learn in your literature review—then it might be interesting and worth pursuing. But what if you find that it has been studied scientifically? Although novice researchers often want to give up and move on to a new question at this point, this is not necessarily a good strategy. For one thing, the fact that the question has been studied scientifically and the research published suggests that it is of interest to the scientific community. For another, the question can almost certainly be refined so that its answer will still contribute something new to the research literature. Again, asking yourself a series of more general questions about the statistical relationship is a good strategy.

  • Are there other ways to operationally define the variables?
  • Are there types of people for whom the statistical relationship might be stronger or weaker?
  • Are there situations in which the statistical relationship might be stronger or weaker—including situations with practical importance?

For example, research has shown that women and men speak about the same number of words per day—but this was when talkativeness was measured in terms of the number of words spoken per day among college students in the United States and Mexico. We can still ask whether other ways of measuring talkativeness—perhaps the number of different people spoken to each day—produce the same result. Or we can ask whether studying elderly people or people from other cultures produces the same result. Again, this approach should help you generate many different research questions about almost any statistical relationship.

Evaluating Research Questions

Researchers usually generate many more research questions than they ever attempt to answer. This means they must have some way of evaluating the research questions they generate so that they can choose which ones to pursue. In this section, we consider two criteria for evaluating research questions: the interestingness of the question and the feasibility of answering it.

Interestingness

How often do people tie their shoes? Do people feel pain when you punch them in the jaw? Are women more likely to wear makeup than men? Do people prefer vanilla or chocolate ice cream? Although it would be a fairly simple matter to design a study and collect data to answer these questions, you probably would not want to because they are not interesting. We are not talking here about whether a research question is interesting to us personally but whether it is interesting to people more generally and, especially, to the scientific community. But what makes a research question interesting in this sense? Here we look at three factors that affect the interestingness of a research question: the answer is in doubt, the answer fills a gap in the research literature, and the answer has important practical implications.

First, a research question is interesting to the extent that its answer is in doubt. Obviously, questions that have been answered by scientific research are no longer interesting as the subject of new empirical research. But the fact that a question has not been answered by scientific research does not necessarily make it interesting. There has to be some reasonable chance that the answer to the question will be something that we did not already know. But how can you assess this before actually collecting data? One approach is to try to think of reasons to expect different answers to the question—especially ones that seem to conflict with common sense. If you can think of reasons to expect at least two different answers, then the question might be interesting. If you can think of reasons to expect only one answer, then it probably is not. The question of whether women are more talkative than men is interesting because there are reasons to expect both answers. The existence of the stereotype itself suggests the answer could be yes, but the fact that women’s and men’s verbal abilities are fairly similar suggests the answer could be no. The question of whether people feel pain when you punch them in the jaw is not interesting because there is absolutely no reason to think that the answer could be anything other than a resounding yes.

A second important factor to consider when deciding if a research question is interesting is whether answering it will fill a gap in the research literature. Again, this means in part that the question has not already been answered by scientific research. But it also means that the question is in some sense a natural one for people who are familiar with the research literature. For example, the question of whether human figure drawings can help children recall touch information would be likely to occur to anyone who was familiar with research on the unreliability of eyewitness memory (especially in children) and the ineffectiveness of some alternative interviewing techniques.

A final factor to consider when deciding whether a research question is interesting is whether its answer has important practical implications. Again, the question of whether human figure drawings help children recall information about being touched has important implications for how children are interviewed in physical and sexual abuse cases. The question of whether cell phone use impairs driving is interesting because it is relevant to the personal safety of everyone who travels by car and to the debate over whether cell phone use should be restricted by law.

Feasibility

A second important criterion for evaluating research questions is the feasibility of successfully answering them. There are many factors that affect feasibility, including time, money, equipment and materials, technical knowledge and skill, and access to research participants. Clearly, researchers need to take these factors into account so that they do not waste time and effort pursuing research that they cannot complete successfully.

Looking through a sample of professional journals in psychology will reveal many studies that are complicated and difficult to carry out. These include longitudinal designs in which participants are tracked over many years, neuroimaging studies in which participants’ brain activity is measured while they carry out various mental tasks, and complex nonexperimental studies involving several variables and complicated statistical analyses. Keep in mind, though, that such research tends to be carried out by teams of highly trained researchers whose work is often supported in part by government and private grants. Keep in mind also that research does not have to be complicated or difficult to produce interesting and important results. Looking through a sample of professional journals will also reveal studies that are relatively simple and easy to carry out—perhaps involving a convenience sample of college students and a paper-and-pencil task.

A final point here is that it is generally good practice to use methods that have already been used successfully by other researchers. For example, if you want to manipulate people’s moods to make some of them happy, it would be a good idea to use one of the many approaches that have been used successfully by other researchers (e.g., paying them a compliment). This is good not only for the sake of feasibility—the approach is “tried and true”—but also because it provides greater continuity with previous research. This makes it easier to compare your results with those of other researchers and to understand the implications of their research for yours, and vice versa.

Key Takeaways

  • Research ideas can come from a variety of sources, including informal observations, practical problems, and previous research.
  • Research questions expressed in terms of variables and relationships between variables can be suggested by other researchers or generated by asking a series of more general questions about the behavior or psychological characteristic of interest.
  • It is important to evaluate how interesting a research question is before designing a study and collecting data to answer it. Factors that affect interestingness are the extent to which the answer is in doubt, whether it fills a gap in the research literature, and whether it has important practical implications.
  • It is also important to evaluate how feasible a research question will be to answer. Factors that affect feasibility include time, money, technical knowledge and skill, and access to special equipment and research participants.
  • Practice: Generate five research ideas based on each of the following: informal observations, practical problems, and topics discussed in recent issues of professional journals.
  • Practice: Generate five empirical research questions about each of the following behaviors or psychological characteristics: long-distance running, getting tattooed, social anxiety, bullying, and memory for early childhood events.
  • Practice: Evaluate each of the research questions you generated in Exercise 2 in terms of its interestingness based on the criteria discussed in this section.
  • Practice: Find an issue of a journal that publishes short empirical research reports (e.g., Psychological Science , Psychonomic Bulletin and Review , Personality and Social Psychology Bulletin ). Pick three studies, and rate each one in terms of how feasible it would be for you to replicate it with the resources available to you right now. Use the following rating scale: (1) You could replicate it essentially as reported. (2) You could replicate it with some simplifications. (3) You could not replicate it. Explain each rating.

Milgram, S. (1963). Behavioral study of obedience. Journal of Abnormal and Social Psychology, 67 , 371–378.

Weisberg, R. W. (1993). Creativity: Beyond the myth of genius . New York, NY: Freeman.

  • Research Methods in Psychology. Provided by : University of Minnesota Libraries Publishing. Located at : http://open.lib.umn.edu/psychologyresearchmethods . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Footer Logo Lumen Candela

Privacy Policy

  • Developing a Research Question

Understanding Your Assignment

Selecting and narrowing a topic, exercises for generating topics, constructing your research question.

  • Finding Sources
  • Evaluating Sources
  • Writing Tips
  • Citing Sources
  • Accessing Our Collections
  • Foundational Texts
  • Reference Sources
  • Primary Sources and Archival Collections
  • Journals and Newspapers
  • Image, Stock Photo, & Audiovisual Resources
  • Open Access, Professionalization, and Additional Resources
  • Resources & Services for Scholars
  • Instructional Support
  • Asian American and Pacific Islander Philosophies
  • Indigenous Philosophies
  • Black Philosophy & Thought
  • Feminism & Feminist Philosophies
  • Introduction to Queer Theory
  • Environmental Ethics & Aesthetics
  • Metaphysics of Gender
  • Other Features
  • Women Philosophers
  • Islamic Philosophies

Before you select a topic or develop a research question, it is important to understand your assignment. Understanding your assignment from the outset will help you craft a re search question that you can adequately answer in the space and time allotted to you. In this section, we will look at some questions to ask when first decoding a prompt:  

  • What is the purpose of the assignment? Think about the goal of your assignment: Are you trying to persuade a reader? Explain an idea? Apply theories to a text? Tell a story? The purpose of your assignment will guide your research and writing.
  • What kind of writing am I doing? Look for words in the assignment that tell you about the type of writing you are being asked to produce. For example, there is a difference between being asked to summarize and being asked to analyze. Other verbs to look out for include, discuss, define, explain, evaluate, etc.
  • Who is my audience?  How will this affect the tone and content of my paper? What are the conventions of the discipline within which I am working?
  • What is the scope of the assignment? Determine what the purpose of the paper will be and how much ground you will need to cover. How many topics will you be looking at? How long should the paper be?
  • What is the topic of the assignment? Has the professor given you a specific topic? Will you need to find your own?
  • What are the requirements of the assignment? Familiarize yourself with the criteria of the prompt. It is easy to forget about details like number/types of sources, word counts, and formatting guidelines. Look at these early on so that you can better plan for the content and scope of your project.
  • Ask for clarification. Reach out to your professor, other instructors,  Writing Tutorial Services (WTS) , or the Learning Commons Research Desk , for assistance with understanding and getting started on an assignment.

Video: Understanding Assignments . UNC Writing Center (2018)

Adapted from: Swarthmore Writing Associates Program,  Understanding Your Assignment  (2023); Grinnell College,  Choosing A Research Topic ; The University of Arizona Global Campus Writing Center,  Understanding Your Assignment .

In some cases, an instructor may assign you a topic or a list of topics. In other cases, you might be asked to generate a topic on your own. An assignment may also fall somewhere between these two cases, asking you to pick a narrower topic from a broader one. In this section we will talk about strategies for selecting a topic that both interests you and helps you develop a research question. 

  • Think about the scope and content requirements of your assignment.
  • Consider topics or units which have come up in class.
  • Was there a reading you really enjoyed? A lecture that stuck with you? If you’re excited about your topic, others will be too! Plus, your research will be much more fun. 
  • Do you feel a personal or academic connection to any specific topic?
  • Generate a list of subtopics that relate to the broader topic.
  • Look at your class notes and syllabus for themes.
  • Find an interesting text on IUCAT , Indiana University's Library Catalog.
  • Scroll down on the catalog page to find the subject headings for this text, which may contain more specific topics of interest to you. Below is an example of subject headings for  Shadowlines: Women and Borders in Contemporary Asia :

Subject Headings: Women-Asian-Social Conditions-21st century; Women-Political activity-Asia; Sex role and globalization-Asia; Postcolonialism.

Video:   Picking a Topic is Research . University of Houston Libraries (2020).

Adapted from: Purdue Online Writing Lab, Choosing a Topic .

In this section we will discuss some exercises designed to help you generate topics for your paper:

  • Brainstorm with classmates, friends, and professors. This can help you develop ideas and explore topics you might not have considered on your own. 
  • Explore non-peer reviewed sources such as newspapers , blogs, and magazines. Looking at current events can help you identify topics that interest you and explore subtopics within those areas.
  • Free-write about the broader topic: Set a time limit and write about your topic. Even if you feel as though you have nothing else to say, keep writing! When you’re done, read over the text and look for patterns in your thoughts, ideas that stick out, and anything of interest that you want to explore some more.
  • Concept map : A concept map is a visual way to organize your thoughts and make connections between ideas. They can take the form of charts, graphic organizers, tables, flowcharts, Venn Diagrams, timelines, or T-charts. Concept mapping is similar to visual mapping, visual webbing, and mind mapping. You can draw a concept map on a piece of paper, reserve a space at the library to use a whiteboard, or use these websites to create concepts maps online: Miro , TheBrain , Lucidchart , Coggle . Below are concept maps for "Concept Mapping" and a "Personal Philosophy of Online Learning":

Chart :  Concept Mapping Concept Map . Teton Science Schools (TSS). This concept map depicts ideas related to the concept mapping technique.

Concept map of a personal philosophy for online learning.

Chart:  Personal philosophy concept map and rationale . Myles’ Blog (2016).

In the video below, English Literature PhD student Lucy Hargrave explains how graduate students in the humanities can use concept maps to help them organize their thoughts and notes:

Video:  How I Use MindMaps as a PhD Student: Organising my Research Notes . Lucy Hargrave (2021).

Now that you have narrowed down your topic, let's turn that topic into a research question. In this section we will talk about how to develop a question that sets you up for success. Keep in mind that your question may change as you gather more information and start writing—this is okay! Having a sense of your direction from the outset can help you evaluate sources and identify relevant information during the research process.

Explore your topic

  • Return to some of the articles/sources that you discussed in class or that you found when researching your topic—what questions do these sources raise? What are other researchers in this area writing about?
  • Ask open-ended “how” and “why” questions about your topic.
  • Consider the “so what?” of your topic. Why does this topic matter to you? Why should it matter to others?
  • What would you like to know more about? What do you think your audience would like to learn about?
  • Think about the value of focusing on a specific period of time, geographic location, organization, or group of people. Narrowing the scope of your paper can make it easier to find sources and develop a strong, concise argument.
  • What do you want to say in your assignment? What are the key points and arguments that you want to get across? Which subtopic, timeframe, or other limitation would allow you to make these points in the most effective way?
  • Try filling out a worksheet  to organize your thoughts.

Pick One Research Question

Evaluate the questions you’ve asked and pick one that speaks to you. If there are a few questions that interest you, focus and tailor their components into a singular research question which you can address in the space and time allotted for your paper. Consider the wording of the question and the scope of the assignment. A good research question is clear, focused, and has an appropriate level of complexity. Developing a strong question is a process, so you will likely refine your question as you continue to research and to develop your ideas. Use the following guidelines to evaluate whether or your question will be appropriate for your assignment:

Clarity. Is your question clear? Do you have a specific aspect of your general topic that you are going to explore further? 

Unclear: Why are social networking sites harmful sometimes? Clear: How are online users experiencing privacy issues on the social networking sites Facebook and TikTok?

Focus. Is your question focused? Will you be able to cover the topic adequately in the space available? 

Unfocused: How are Asian Americans represented in the media? Focused: How do television advertisements in the United States perpetuate the model minority stereotype?

Complexity. Is your question sufficiently complex? Can your question be answered with a simple yes/no response or does it requires research and analysis?

Too simple: Did COVID-19 affect parents? Appropriately Complex: How did the COVID-19 pandemic impact the mental health and work-life balance of teleworking parents with young children?

Video:   Developing a Research Question . Laurier Library (2017).

Adapted from: George Mason University Writing Center,  How to Write a Research Question  (2008); Monash University Library,  Developing research questions .

  • << Previous: Research: Getting Started
  • Next: Finding Sources >>
  • Last Updated: May 14, 2024 4:16 PM
  • URL: https://guides.libraries.indiana.edu/philosophyguide

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

2.4: Generating Good Research Questions

  • Last updated
  • Save as PDF
  • Page ID 19632

  • Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton
  • Kwantlen Polytechnic U., Washington State U., & Texas A&M U.—Texarkana

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Describe some techniques for turning research ideas into empirical research questions and use those techniques to generate questions.
  • Explain what makes a research question interesting and evaluate research questions in terms of their interestingness.

Generating Empirically Testable Research Questions

Once you have a research idea, you need to use it to generate one or more empirically testable research questions, that is, questions expressed in terms of a single variable or relationship between variables. One way to do this is to look closely at the discussion section in a recent research article on the topic. This is the last major section of the article, in which the researchers summarize their results, interpret them in the context of past research, and suggest directions for future research. These suggestions often take the form of specific research questions, which you can then try to answer with additional research. This can be a good strategy because it is likely that the suggested questions have already been identified as interesting and important by experienced researchers.

But you may also want to generate your own research questions. How can you do this? First, if you have a particular behavior or psychological characteristic in mind, you can simply conceptualize it as a variable and ask how frequent or intense it is. How many words on average do people speak per day? How accurate are our memories of traumatic events? What percentage of people have sought professional help for depression? If the question has never been studied scientifically—which is something that you will learn when you conduct your literature review—then it might be interesting and worth pursuing.

If scientific research has already answered the question of how frequent or intense the behavior or characteristic is, then you should consider turning it into a question about a relationship between that behavior or characteristic and some other variable. One way to do this is to ask yourself the following series of more general questions and write down all the answers you can think of.

  • What are some possible causes of the behavior or characteristic?
  • What are some possible effects of the behavior or characteristic?
  • What types of people might exhibit more or less of the behavior or characteristic?
  • What types of situations might elicit more or less of the behavior or characteristic?

In general, each answer you write down can be conceptualized as a second variable, suggesting a question about a relationship. If you were interested in talkativeness, for example, it might occur to you that a possible cause of this psychological characteristic is family size. Is there a relationship between family size and talkativeness? Or it might occur to you that people seem to be more talkative in same-sex groups than mixed-sex groups. Is there a difference in the average level of talkativeness of people in same-sex groups and people in mixed-sex groups? This approach should allow you to generate many different empirically testable questions about almost any behavior or psychological characteristic.

If through this process you generate a question that has never been studied scientifically—which again is something that you will learn in your literature review—then it might be interesting and worth pursuing. But what if you find that it has been studied scientifically? Although novice researchers often want to give up and move on to a new question at this point, this is not necessarily a good strategy. For one thing, the fact that the question has been studied scientifically and the research published suggests that it is of interest to the scientific community. For another, the question can almost certainly be refined so that its answer will still contribute something new to the research literature. Again, asking yourself a series of more general questions about the relationship is a good strategy.

  • Are there other ways to define and measure the variables?
  • Are there types of people for whom the relationship might be stronger or weaker?
  • Are there situations in which the relationship might be stronger or weaker—including situations with practical importance?

For example, research has shown that women and men speak about the same number of words per day—but this was when talkativeness was measured in terms of the number of words spoken per day among university students in the United States and Mexico. We can still ask whether other ways of measuring talkativeness—perhaps the number of different people spoken to each day—produce the same result. Or we can ask whether studying elderly people or people from other cultures produces the same result. Again, this approach should help you generate many different research questions about almost any relationship.

Evaluating Research Questions

Researchers usually generate many more research questions than they ever attempt to answer. This means they must have some way of evaluating the research questions they generate so that they can choose which ones to pursue. In this section, we consider two criteria for evaluating research questions: the interestingness of the question and the feasibility of answering it.

Interestingness

How often do people tie their shoes? Do people feel pain when you punch them in the jaw? Are women more likely to wear makeup than men? Do people prefer vanilla or chocolate ice cream? Although it would be a fairly simple matter to design a study and collect data to answer these questions, you probably would not want to because they are not interesting. We are not talking here about whether a research question is interesting to us personally but whether it is interesting to people more generally and, especially, to the scientific community. But what makes a research question interesting in this sense? Here we look at three factors that affect the interestingness of a research question: the answer is in doubt, the answer fills a gap in the research literature, and the answer has important practical implications.

First, a research question is interesting to the extent that its answer is in doubt. Obviously, questions that have been answered by scientific research are no longer interesting as the subject of new empirical research. But the fact that a question has not been answered by scientific research does not necessarily make it interesting. There has to be some reasonable chance that the answer to the question will be something that we did not already know. But how can you assess this before actually collecting data? One approach is to try to think of reasons to expect different answers to the question—especially ones that seem to conflict with common sense. If you can think of reasons to expect at least two different answers, then the question might be interesting. If you can think of reasons to expect only one answer, then it probably is not. The question of whether women are more talkative than men is interesting because there are reasons to expect both answers. The existence of the stereotype itself suggests the answer could be yes, but the fact that women’s and men’s verbal abilities are fairly similar suggests the answer could be no. The question of whether people feel pain when you punch them in the jaw is not interesting because there is absolutely no reason to think that the answer could be anything other than a resounding yes.

A second important factor to consider when deciding if a research question is interesting is whether answering it will fill a gap in the research literature. Again, this means in part that the question has not already been answered by scientific research. But it also means that the question is in some sense a natural one for people who are familiar with the research literature. For example, the question of whether taking lecture notes by hand can help improve students’ exam performance would be likely to occur to anyone who was familiar with research on note taking and the ineffectiveness of shallow processing on learning.

A final factor to consider when deciding whether a research question is interesting is whether its answer has important practical implications. Again, the question of whether taking notes by hand improves learning has important implications for education, including classroom policies concerning technology use. The question of whether cell phone use impairs driving is interesting because it is relevant to the personal safety of everyone who travels by car and to the debate over whether cell phone use should be restricted by law.

Feasibility

A second important criterion for evaluating research questions is the feasibility of successfully answering them. There are many factors that affect feasibility, including time, money, equipment and materials, technical knowledge and skill, and access to research participants. Clearly, researchers need to take these factors into account so that they do not waste time and effort pursuing research that they cannot complete successfully.

Looking through a sample of professional journals in psychology will reveal many studies that are complicated and difficult to carry out. These include longitudinal designs in which participants are tracked over many years, neuroimaging studies in which participants’ brain activity is measured while they carry out various mental tasks, and complex non-experimental studies involving several variables and complicated statistical analyses. Keep in mind, though, that such research tends to be carried out by teams of highly trained researchers whose work is often supported in part by government and private grants. Also, keep in mind that research does not have to be complicated or difficult to produce interesting and important results. Looking through a sample of professional journals will also reveal studies that are relatively simple and easy to carry out—perhaps involving a convenience sample of university students and a paper-and-pencil task.

A final point here is that it is generally good practice to use methods that have already been used successfully by other researchers. For example, if you want to manipulate people’s moods to make some of them happy, it would be a good idea to use one of the many approaches that have been used successfully by other researchers (e.g., paying them a compliment). This is good not only for the sake of feasibility—the approach is “tried and true”—but also because it provides greater continuity with previous research. This makes it easier to compare your results with those of other researchers and to understand the implications of their research for yours, and vice versa.

Roboflow

GPT-4o: The Comprehensive Guide and Explanation

generating research questions and evaluating sources

GPT-4o is OpenAI’s third major iteration of their popular large multimodal model , GPT-4, which expands on the capabilities of GPT-4 with Vision . The newly released model is able to talk, see, and interact with the user in an integrated and seamless way, more so than previous versions when using the ChatGPT interface.

In the GPT-4o announcement , OpenAI focused the model’s ability for "much more natural human-computer interaction". In this article, we will discuss what GPT-4o is, how it differs from previous models, evaluate its performance, and use cases for GPT-4o.

What is GPT-4o?

OpenAI’s GPT-4o, the “o” stands for omni (meaning ‘all’ or ‘universally’), was released during a live-streamed announcement and demo on May 13, 2024. It is a multimodal model with text, visual and audio input and output capabilities, building on the previous iteration of OpenAI’s GPT-4 with Vision model , GPT-4 Turbo. The power and speed of GPT-4o comes from being a single model handling multiple modalities. Previous GPT-4 versions used multiple single purpose models (voice to text, text to voice, text to image) and created a fragmented experience of switching between models for different tasks.

Compared to GPT-4T, OpenAI claims it is twice as fast, 50% cheaper across both input tokens ($5 per million) and output tokens ($15 per million), and has five times the rate limit (up to 10 million tokens per minute). GPT-4o has a 128K context window and has a knowledge cut-off date of October 2023. Some of the new abilities are currently available online through ChatGPT, through the ChatGPT app on desktop and mobile devices, through the OpenAI API ( see API release notes ), and through Microsoft Azure . 

What’s New in GPT-4o?

While the release demo only showed GPT-4o’s visual and audio capabilities, the release blog contains examples that extend far beyond the previous capabilities of GPT-4 releases. Like its predecessors, it has text and vision capabilities, but GPT-4o also has native understanding and generation capabilities across all its supported modalities, including video.

As Sam Altman points out in his personal blog , the most exciting advancement is the speed of the model, especially when the model is communicating with voice. This is the first time there is nearly zero delay in response and you can engage with GPT-4o similarly to how you interact in daily conversations with people.

Less than a year after releasing GPT-4 with Vision (see our analysis of GPT-4 from September 2023), OpenAI has made meaningful advances in performance and speed which you don’t want to miss.

Let’s get started!

Text Evaluation of GPT-4o

For text, GPT-4o features slightly improved or similar scores compared to other LMMs like previous GPT-4 iterations, Anthropic's Claude 3 Opus, Google's Gemini and Meta's Llama3, according to self-released benchmark results by OpenAI. 

Note that in the text evaluation benchmark results provided, OpenAI compares the 400b variant of Meta’s Llama3. At the time of publication of the results, Meta has not finished training its 400b variant model.

generating research questions and evaluating sources

Video Capabilities of GPT-4o

Important note from the API release notes regarding use with video: “GPT-4o in the API supports understanding video (without audio) via vision capabilities. Specifically, videos need to be converted to frames (2-4 frames per second, either sampled uniformly or via a keyframe selection algorithm) to input into the model.” Use the OpenAI cookbook for vision to better understand how to use video as an input and the limitations of the release.

GPT-4o is demonstrated having both the ability to view and understand video and audio from an uploaded video file, as well as the ability to generate short videos. 

Within the initial demo, there were many occurrences of GPT-4o being asked to comment on or respond to visual elements. Similar to our initial observations of Gemini , the demo didn’t make it clear if the model was receiving video or triggering an image capture whenever it needed to “see” real-time information. There was a moment in the initial demo where GPT-4o may have not triggered an image capture and therefore saw the previously captured image. 

In this demo video on YouTube , GPT-4o “notices” a person coming up behind Greg Brockman to make bunny ears. On the visible phone screen, a “blink” animation occurs in addition to a sound effect. This means GPT-4o might use a similar approach to video as Gemini, where audio is processed alongside extracted image frames of a video. 

generating research questions and evaluating sources

The only demonstrated example of video generation is a 3D model video reconstruction, though it is speculated to possibly have the ability to generate more complex videos.

generating research questions and evaluating sources

An exchange between GPT-4o where a user requests and receives a 3D video reconstruction of a spinning logo based on several reference images

Audio Capabilities of GPT-4o

Similar to video and images, GPT-4o also possesses the ability to ingest and generate audio files. 

GPT-4o shows an impressive level of granular control over the generated voice, being able to change speed of communication, alter tones when requested, and even sing on demand. Not only could GPT-4o control its own output, it has the ability to understand the sound of input audio as additional context to any request. Demos show GPT-4o giving tone feedback to someone attempting to speak Chinese as well as feedback on the speed of someone’s breath during a breathing exercise. 

According to self-released benchmarks, GPT-4o outperforms OpenAI’s own Whisper-v3, the previous state-of-the-art in automatic speech recognition (ASR) and outperforms audio translation by other models from Meta and Google.

generating research questions and evaluating sources

Image Generation with GPT-4o

GPT-4o has powerful image generation abilities, with demonstrations of one-shot reference-based image generation and accurate text depictions.

generating research questions and evaluating sources

User/GPT-4o exchanges generating images (Image Credit: OpenAI)

The images below are especially impressive considering the request to maintain specific words and transform them into alternative visual designs. This skill is along the lines of GPT-4o’s ability to create custom fonts.

Example GPT-4o outputs from various prompts (Image Credit: OpenAI)

Visual Understanding of GPT-4o

Although state-of-the-art capability that existed in previous iterations, visual understanding is improved, achieving state of the art across several visual understanding benchmarks against GPT-4T, Gemini, and Claude. Roboflow maintains a less formal set of visual understanding evaluations, see results of real world vision use cases for open source large multimodal models .

generating research questions and evaluating sources

Although the OCR capability of GPT-4o was not published by OpenAI, we will evaluate it later in this article.

Evaluating GPT-4o for Vision Use Cases

Next, we use both the OpenAI API and the ChatGPT UI to evaluate different aspects of GPT-4o, including optical character recognition (OCR), document OCR, document understanding, visual question answering (VQA) and object detection .

generating research questions and evaluating sources

Optical Character Recognition (OCR) with GPT-4o

OCR is a common computer vision task to return the visible text from an image in text format. Here, we prompt GPT-4o to “Read the serial number.” and “Read the text from the picture”, both of which it answers correctly.

GPT-4o prompted with OCR questions

Next, we evaluated GPT-4o on the same dataset used to test other OCR models on real-world datasets. 

Here we find a 94.12% average accuracy (+10.8% more than GPT-4V), a median accuracy of 60.76% (+4.78% more than GPT-4V) and an average inference time of 1.45 seconds. 

The 58.47% speed increase over GPT-4V makes GPT-4o the leader in the category of speed efficiency (a metric of accuracy given time, calculated by accuracy divided by elapsed time).

Median speed efficiency compared against other OCR-capable models

Document Understanding with GPT4-o

Next, we evaluate GPT-4o’s ability to extract key information from an image with dense text. Prompting GPT-4o with “How much tax did I pay?” referring to a receipt, and “What is the price of Pastrami Pizza” in reference to a pizza menu, GPT-4o answers both of these questions correctly. 

generating research questions and evaluating sources

This is an improvement from GPT-4 with Vision, where it failed the tax extraction from the receipt.

Visual Question Answering with GPT-4o

Next is a series of visual question and answer prompts. First, we ask how many coins GPT-4o counts in an image with four coins.

GPT-4o the answer of five coins. However, when retried, it did answer correctly. This change in response is a reason a site call GPT Checkup exists – closed-source LMM performance changes overtime and it’s important to monitor how it performs so you can confidently use an LMM in your application.

generating research questions and evaluating sources

This suggests that GPT-4o suffers from the same inconsistent ability to count as we saw in GPT-4 with Vision. 

Further, GPT-4o correctly identifies an image from a scene of Home Alone. 

generating research questions and evaluating sources

Object Detection with GPT-4o

Finally, we test object detection, which has proven to be a difficult task for multimodal models. Where Gemini, GPT-4 with Vision, and Claude 3 Opus failed, GPT-4o also fails to generate an accurate bounding box.

generating research questions and evaluating sources

GPT-4o Use Cases

As OpenAI continues to expand the capabilities of GPT-4, and eventual release of GPT-5, use cases will expand exponentially. The release of GPT-4 made image classification and tagging extremely easy, although OpenAI’s open source CLIP model performs similarly for much cheaper. Adding vision capabilities made it possible to combine GPT-4 with other models in computer vision pipelines which creates the opportunity to augment open source models with GPT-4 for a more fully featured custom application using vision.

A few key elements of GPT-4o opens up another set of use cases that were previously not possible and none of these use cases have anything to do with better model performance on benchmarks. Sam Altman’s personal blog states they have a clear intention to “Create AI and then other people will use it to create all sorts of amazing things that we all benefit from“. If OpenAI’s goal is to keep driving cost down and improve performance, where does that take things?

Let’s consider a few new use cases.

Real-time Computer Vision Use Cases

The new speed improvements matched with visual and audio finally open up real-time use cases for GPT-4, which is especially exciting for computer vision use cases. Using a real-time view of the world around you and being able to speak to a GPT-4o model means you can quickly gather intelligence and make decisions. This is useful for everything from navigation to translation to guided instructions to understanding complex visual data.

Interacting with GPT-4o at the speed you’d interact with an extremely capable human means less time typing text to us AI and more time interacting with the world around you as AI augments your needs.

One-device Multimodal Use Cases

Enabling GPT-4o to run on-device for desktop and mobile (and if the trend continues, wearables like Apple VisionPro ) lets you use one interface to troubleshoot many tasks. Rather than typing in text to prompt your way into an answer, you can show your desktop screen. Instead of copying and pasting content into the ChatGPT window, you pass the visual information while simultaneously asking questions. This decreases switching between various screens and models and prompting requirements to create an integrated experience.

GPT4-o’s single multimodal model removes friction, increases speed, and streamlines connecting your device inputs to decrease the difficulty of interacting with the model.

General Enterprise Applications

With additional modalities integrating into one model and improved performance, GPT-4o is suitable for certain aspects of an enterprise application pipeline that do not require fine-tuning on custom data. Although considerably more expensive than running open source models, faster performance brings GPT-4o closer to being useful when building custom vision applications. 

You can use GPT-4o where open source models or fine-tuned models aren’t yet available, and then use your custom models for other steps in your application to augment GPT-4o’s knowledge or decrease costs. This means you can quickly start prototyping complex workflows and not be blocked by model capabilities for many use cases.

GPT-4o’s newest improvements are twice as fast, 50% cheaper, 5x rate limit, 128K context window, and a single multimodal model are exciting advancements for people building AI applications. More and more use cases are suitable to be solved with AI and the multiple inputs allow for a seamless interface.

Faster performance and image/video inputs means GPT-4o can be used in a computer vision workflow alongside custom fine-tuned models and pre-trained open-source models to create enterprise applications. 

Cite this Post

Use the following entry to cite this post in your research:

Leo Ueno , Trevor Lynn . (May 14, 2024). GPT-4o: The Comprehensive Guide and Explanation. Roboflow Blog: https://blog.roboflow.com/gpt-4o-vision-use-cases/

Discuss this Post

If you have any questions about this blog post, start a discussion on the Roboflow Forum .

ML Growth Associate @ Roboflow | Sharing the magic of computer vision | leoueno.com

Table of Contents

How to fine-tune paligemma for object detection tasks, finetuning moondream2 for computer vision tasks, paligemma: an open multimodal model by google, ultimate guide to using clip with intel gaudi2, launch: yolo-world support in roboflow, best ocr models for text recognition in images.

IMAGES

  1. How to Develop a Strong Research Question

    generating research questions and evaluating sources

  2. Evaluating Sources

    generating research questions and evaluating sources

  3. Evaluating Sources

    generating research questions and evaluating sources

  4. Research Question Generator for Students

    generating research questions and evaluating sources

  5. Research Question: Definition, Types, Examples, Quick Tips

    generating research questions and evaluating sources

  6. Research Question: Definition, Types, Examples, Quick Tips

    generating research questions and evaluating sources

VIDEO

  1. Your Research Journey Unveiled. Chapter# 2

  2. Generating research topics

  3. Mastering Information Evaluation_ The Ultimate Guide

  4. What is the Importance of Critical Thinking in Evaluating Sources?

  5. The Art of Generating Research Ideas

  6. A Global Impact

COMMENTS

  1. Generating Good Research Questions

    Describe some common sources of research ideas and generate research ideas using those sources. Describe some techniques for turning research ideas into empirical research questions and use those techniques to generate questions. Explain what makes a research question interesting and evaluate research questions in terms of their interestingness.

  2. Generating a research question

    Generating a research question. If you're having trouble deciding on a topic or question to research, consider some of the strategies below. You can also email or schedule an appointment with your subject librarian for help with finding a topic. List things you've seen, experienced, or learned about in your classes that raise questions for you.

  3. Evaluating Sources

    Lateral reading. Lateral reading is the act of evaluating the credibility of a source by comparing it to other sources. This allows you to: Verify evidence. Contextualize information. Find potential weaknesses. If a source is using methods or drawing conclusions that are incompatible with other research in its field, it may not be reliable.

  4. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  5. 2.3 Generating Good Research Questions

    A second important criterion for evaluating research questions is the feasibility of successfully answering them. There are many factors that affect feasibility, including time, money, equipment and materials, technical knowledge and skill, and access to research participants. Clearly, researchers need to take these factors into account so that ...

  6. Research: Articulating Questions, Generating Hypotheses, and Choosing

    Articulating a clear and concise research question is fundamental to conducting a robust and useful research study. Although "getting stuck into" the data collection is the exciting part of research, this preparation stage is crucial. Clear and concise research questions are needed for a number of reasons. Initially, they are needed to ...

  7. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  8. Generating Good Research Questions

    A second important criterion for evaluating research questions is the feasibility of successfully answering them. There are many factors that affect feasibility, including time, money, equipment and materials, technical knowledge and skill, and access to research participants. Clearly, researchers need to take these factors into account so that ...

  9. 2.3: Generating Good Research Questions

    Practice: Generate an empirical research question about each of the following behaviors or psychological characteristics: long-distance running, getting tattooed, social anxiety, bullying, and memory for early childhood events. Practice: Evaluate each of the research questions you generated in Exercise 2 in terms of its interestingness based on ...

  10. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  11. 1.4 Generating Research Questions

    1.4 Generating Research Questions ; 2. ... 2.2 Evaluating Sources ; 2.3 Search Strategies ; 3. Using Sources Toggle Dropdown. 3.1 How to "Read" a Source ; 3.2 Citing Your Sources ; Library News and Updates; ... Even if your assignment doesn't require formal research questions, it's always a good idea to jot down a few questions to help ...

  12. Research Guides: Introduction to Research: 2.2 Evaluating Sources

    1.4 Generating Research Questions ; 2. Gathering Sources. 2.1 Types of Sources ; 2.2 Evaluating Sources ; 2.3 Search Strategies ; 3. Using Sources Toggle Dropdown. ... You can learn a lot about a source and evaluate its credibility before you even read the first sentence or paragraph. In fact, it's usually a good idea to engage in the process ...

  13. Generating research questions

    Research ideas can come from a variety of sources, including informal observations, practical problems, and previous research.; Research questions expressed in terms of variables and relationships between variables can be suggested by other researchers or generated by asking a series of more general questions about the behaviour or characteristic of interest.

  14. Research Workshop: Generating Research Questions and Evaluating Sources

    He is using both the speeches themselves and reporters' analysis of the speeches as sources. The reporters' articles are best described as. secondary source responses, because they contain commentary on a primary source. Julia is writing research paper about vegetarianism, and she has several potential research questions.

  15. Research Workshop: Generating Research Questions and Evaluating Sources

    Study with Quizlet and memorize flashcards containing terms like Shauna has collected a variety of sources for her research about Charlie Chaplin's impact on American cinema. In performing her preliminary evaluation of each source, Shauna should thoroughly review and examine the content. perform a quick search to determine the author's reliability. check whether the author agrees with experts ...

  16. 2.2 Generating Good Research Questions

    Describe some common sources of research ideas and generate research ideas using those sources. Describe some techniques for turning research ideas into empirical research questions and use those techniques to generate questions. Explain what makes a research question interesting and evaluate research questions in terms of their interestingness.

  17. Developing a Research Question

    Consider the wording of the question and the scope of the assignment. A good research question is clear, focused, and has an appropriate level of complexity. Developing a strong question is a process, so you will likely refine your question as you continue to research and to develop your ideas. Use the following guidelines to evaluate whether ...

  18. 2.4: Generating Good Research Questions

    Generating Empirically Testable Research Questions. Once you have a research idea, you need to use it to generate one or more empirically testable research questions, that is, questions expressed in terms of a single variable or relationship between variables. One way to do this is to look closely at the discussion section in a recent research ...

  19. Research Workshop: Generating Research Questions and Evaluating Sources

    He is using both the speeches themselves and reporters' analysis of the speeches as sources. The reporters' articles are best described as. secondary source responses, because they contain commentary on a primary source. When formulating research question, a researcher should. write a question that has an undetermined answer.

  20. Research workshop: Generating Research questions and evaluating sources

    Evaluating sources involves checking the source's credibility, accuracy, relevance, neutrality, and currency. Explanation: In a research workshop, the generation of research questions and the evaluation of sources is a critical part. Firstly, for generating research questions, you have to identify a topic that intrigues your interest and about ...

  21. Research Workshop: Generating Research Questions and Evaluating Sources

    Kali is researching the evolution of the American fashion industry. She has found an online article that may be a helpful source. In performing her secondary evaluation of this source, Kali should determine. Study with Quizlet and memorize flashcards containing terms like perform a quick search to determine the author's reliability., the issue ...

  22. Hello GPT-4o

    Prior to GPT-4o, you could use Voice Mode to talk to ChatGPT with latencies of 2.8 seconds (GPT-3.5) and 5.4 seconds (GPT-4) on average. To achieve this, Voice Mode is a pipeline of three separate models: one simple model transcribes audio to text, GPT-3.5 or GPT-4 takes in text and outputs text, and a third simple model converts that text back to audio.

  23. Research Workshop: Generating Research Questions and Evaluating Sources

    Shauna has collected a variety of sources for her research about Charlie Chaplin's impact on American cinema. In performing her preliminary evaluation of each source, Shauna should. a. thoroughly review and examine the content. b. perform a quick search to determine the author's reliability.

  24. GPT-4o: The Comprehensive Guide and Explanation

    Roboflow maintains a less formal set of visual understanding evaluations, see results of real world vision use cases for open source large multimodal models. Image Credit: OpenAI. Although the OCR capability of GPT-4o was not published by OpenAI, we will evaluate it later in this article. Evaluating GPT-4o for Vision Use Cases

  25. ELA 11 // Research Workshop: Generating Research Questions ...

    Shauna has collected a variety of sources for her research about Charlie Chaplin's impact on American cinema. In performing her preliminary evaluation of each source, Shauna should perform a quick search to determine the author's reliability.