Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 25 March 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

  • How it works

How to Write a Research Design – Guide with Examples

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 3, 2023

A research design is a structure that combines different components of research. It involves the use of different data collection and data analysis techniques logically to answer the  research questions .

It would be best to make some decisions about addressing the research questions adequately before starting the research process, which is achieved with the help of the research design.

Below are the key aspects of the decision-making process:

  • Data type required for research
  • Research resources
  • Participants required for research
  • Hypothesis based upon research question(s)
  • Data analysis  methodologies
  • Variables (Independent, dependent, and confounding)
  • The location and timescale for conducting the data
  • The time period required for research

The research design provides the strategy of investigation for your project. Furthermore, it defines the parameters and criteria to compile the data to evaluate results and conclude.

Your project’s validity depends on the data collection and  interpretation techniques.  A strong research design reflects a strong  dissertation , scientific paper, or research proposal .

Steps of research design

Step 1: Establish Priorities for Research Design

Before conducting any research study, you must address an important question: “how to create a research design.”

The research design depends on the researcher’s priorities and choices because every research has different priorities. For a complex research study involving multiple methods, you may choose to have more than one research design.

Multimethodology or multimethod research includes using more than one data collection method or research in a research study or set of related studies.

If one research design is weak in one area, then another research design can cover that weakness. For instance, a  dissertation analyzing different situations or cases will have more than one research design.

For example:

  • Experimental research involves experimental investigation and laboratory experience, but it does not accurately investigate the real world.
  • Quantitative research is good for the  statistical part of the project, but it may not provide an in-depth understanding of the  topic .
  • Also, correlational research will not provide experimental results because it is a technique that assesses the statistical relationship between two variables.

While scientific considerations are a fundamental aspect of the research design, It is equally important that the researcher think practically before deciding on its structure. Here are some questions that you should think of;

  • Do you have enough time to gather data and complete the write-up?
  • Will you be able to collect the necessary data by interviewing a specific person or visiting a specific location?
  • Do you have in-depth knowledge about the  different statistical analysis and data collection techniques to address the research questions  or test the  hypothesis ?

If you think that the chosen research design cannot answer the research questions properly, you can refine your research questions to gain better insight.

Step 2: Data Type you Need for Research

Decide on the type of data you need for your research. The type of data you need to collect depends on your research questions or research hypothesis. Two types of research data can be used to answer the research questions:

Primary Data Vs. Secondary Data

Qualitative vs. quantitative data.

Also, see; Research methods, design, and analysis .

Need help with a thesis chapter?

  • Hire an expert from ResearchProspect today!
  • Statistical analysis, research methodology, discussion of the results or conclusion – our experts can help you no matter how complex the requirements are.

analysis image

Step 3: Data Collection Techniques

Once you have selected the type of research to answer your research question, you need to decide where and how to collect the data.

It is time to determine your research method to address the  research problem . Research methods involve procedures, techniques, materials, and tools used for the study.

For instance, a dissertation research design includes the different resources and data collection techniques and helps establish your  dissertation’s structure .

The following table shows the characteristics of the most popularly employed research methods.

Research Methods

Step 4: Procedure of Data Analysis

Use of the  correct data and statistical analysis technique is necessary for the validity of your research. Therefore, you need to be certain about the data type that would best address the research problem. Choosing an appropriate analysis method is the final step for the research design. It can be split into two main categories;

Quantitative Data Analysis

The quantitative data analysis technique involves analyzing the numerical data with the help of different applications such as; SPSS, STATA, Excel, origin lab, etc.

This data analysis strategy tests different variables such as spectrum, frequencies, averages, and more. The research question and the hypothesis must be established to identify the variables for testing.

Qualitative Data Analysis

Qualitative data analysis of figures, themes, and words allows for flexibility and the researcher’s subjective opinions. This means that the researcher’s primary focus will be interpreting patterns, tendencies, and accounts and understanding the implications and social framework.

You should be clear about your research objectives before starting to analyze the data. For example, you should ask yourself whether you need to explain respondents’ experiences and insights or do you also need to evaluate their responses with reference to a certain social framework.

Step 5: Write your Research Proposal

The research design is an important component of a research proposal because it plans the project’s execution. You can share it with the supervisor, who would evaluate the feasibility and capacity of the results  and  conclusion .

Read our guidelines to write a research proposal  if you have already formulated your research design. The research proposal is written in the future tense because you are writing your proposal before conducting research.

The  research methodology  or research design, on the other hand, is generally written in the past tense.

How to Write a Research Design – Conclusion

A research design is the plan, structure, strategy of investigation conceived to answer the research question and test the hypothesis. The dissertation research design can be classified based on the type of data and the type of analysis.

Above mentioned five steps are the answer to how to write a research design. So, follow these steps to  formulate the perfect research design for your dissertation .

ResearchProspect writers have years of experience creating research designs that align with the dissertation’s aim and objectives. If you are struggling with your dissertation methodology chapter, you might want to look at our dissertation part-writing service.

Our dissertation writers can also help you with the full dissertation paper . No matter how urgent or complex your need may be, ResearchProspect can help. We also offer PhD level research paper writing services.

Frequently Asked Questions

What is research design.

Research design is a systematic plan that guides the research process, outlining the methodology and procedures for collecting and analysing data. It determines the structure of the study, ensuring the research question is answered effectively, reliably, and validly. It serves as the blueprint for the entire research project.

How to write a research design?

To write a research design, define your research question, identify the research method (qualitative, quantitative, or mixed), choose data collection techniques (e.g., surveys, interviews), determine the sample size and sampling method, outline data analysis procedures, and highlight potential limitations and ethical considerations for the study.

How to write the design section of a research paper?

In the design section of a research paper, describe the research methodology chosen and justify its selection. Outline the data collection methods, participants or samples, instruments used, and procedures followed. Detail any experimental controls, if applicable. Ensure clarity and precision to enable replication of the study by other researchers.

How to write a research design in methodology?

To write a research design in methodology, clearly outline the research strategy (e.g., experimental, survey, case study). Describe the sampling technique, participants, and data collection methods. Detail the procedures for data collection and analysis. Justify choices by linking them to research objectives, addressing reliability and validity.

You May Also Like

Repository of ten perfect dissertation research question examples will provide you a better perspective about how to create dissertation research questions.

To help students organise their dissertation proposal paper correctly, we have put together detailed guidelines on how to structure a dissertation proposal.

Struggling to find relevant and up-to-date topics for your dissertation? Here is all you need to know if unsure about how to choose dissertation topic.

USEFUL LINKS

LEARNING RESOURCES

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

steps in writing research design

  • PhD Topic Selection
  • Problem Identification
  • Research Proposal
  • Pilot Study
  • PhD. Dissertation (Full)
  • Ph.D. Dissertation (Part)
  • Phd-Consultation
  • PhD Coursework Abstract Writing Help
  • Interim-Report
  • Synopsis Preparation
  • Power Point
  • References Collection
  • Conceptual Framework
  • Theoretical Framework
  • Annotated Bibliography
  • Theorem Development
  • Gap Identification
  • Research Design
  • Sample Size
  • Power Calculation
  • Qualitative Methodology
  • Quantitative Methodology
  • Primary Data Collection
  • Secondary Data Collection
  • Quantitative Statistics
  • Textual / Content Analysis
  • Biostatistics
  • Econometrics
  • Big Data Analytics
  • Software Programming
  • Computer Programming
  • Translation
  • Transcription
  • Plagiarism Correction
  • Formatting & Referencing
  • Manuscript Rewriting
  • Manuscript Copyediting
  • Manuscript Peer Reviewing
  • Manuscript Statistics
  • PhD Manuscript Formatting Referencing
  • Manuscript Plagiarism Correction
  • Manuscript Editorial Comment Help
  • Conference & Seminar Paper
  • Writing for a journal
  • Academic Statistics
  • Journal Manuscript Writing
  • Research Methodology
  • PhD Animation Services
  • Academic Law Writing
  • Business & Management
  • Engineering & Technology
  • Arts & Humanities
  • Economics & Finance Academic
  • Biological & Life Science
  • Medicine & Healthcare
  • Computer Science & Information
  • HIRE A RESEARCH ASSISTANT

How to Write a Research Design – A Step-by-Step Guide with Examples

How to select an effective title for your manuscript, how to develop a thesis into a manuscript paper.

A research design is a framework that incorporates many research components. It entails rationally applying various data collecting and statistical analysis methodologies to address the study questions. It is important to make some judgments on appropriately answering the research questions before beginning the research process, which is accomplished with the aid of the research design.

  • Check out our sample reflexivity in qualitative research example to see how Quantitative data analytics is obtained.

Writing a research design is a crucial step in the research process. A well-crafted research design outlines the methods and procedures you will use to answer your research questions or test your hypotheses. Below, I'll provide a guide on writing a research design , including examples for each section.

  • Title and Introduction:

Start with a clear and concise title that reflects the main focus of your research. In the introduction, provide context for your study, explain the importance of your research, and state your research questions or hypotheses. Example:

  • Title:"The Impact of Social Media Usage on Academic Performance among College Students"
  • Introduction:Begin by discussing the increasing prevalence of social media use among college students and the potential effects on their academic performance. State your research questions: "Does social media usage negatively impact college students' academic performance? If so, what are the specific mechanisms through which this impact occurs?"
  • Research Objectives:

Clearly define the objectives or goals of your research. What do you hope to achieve through your study? Example:

  • To assess the relationship between social media usage and academic performance among college students.
  • To identify the specific behaviours and patterns of social media usage that may affect academic performance.
  • Literature Review:

Summarize critical literature review to provide a theoretical foundation for your study. Discuss key concepts, theories, and findings related to your research topic. Example:

  • Literature Review: Provide an overview of studies that have examined the relationship between social media usage and academic performance. Discuss theories like the distraction hypothesis and the addiction hypothesis. Cite previous research findings that support or contradict these theories.
  • Research Design and Methodology:

Explain the research methods and procedures you plan to use to collect and analyze data. Include information about your sample, data collection instruments, and data analysis techniques. Example:

  • Research Approach: This study will employ quantitative data in a statistics research approach.
  • Sampling: A random sample of 500 college students will be selected from three regional universities.
  • Data Collection: Data will be collected through a self-administered survey that includes questions about social media usage habits, study habits, and academic performance.
  • Data Analysis: Statistical techniques such as correlation analysis and multiple regression analysis will be used to examine the relationships between variables.
  • Data Collection:

Provide details on how you plan to collect data, including information on the survey or data collection instrument, sampling procedures, and data collection timeline. Example:

  • Survey Instrument: A structured questionnaire consisting of closed-ended questions will be used.
  • Sampling Procedure: A random sampling method will select participants from each university.
  • Data Collection Timeline: Data collection will take place over two months during the fall semester.
  • Data Analysis:

Explain how you will analyze the collected data. Specify the statistical or analytical techniques you will use to test your hypotheses or answer your research questions. Example:

  • Hypothesis Testing: The relationship between social media usage and academic performance will be tested using correlation and multiple regression analyses.
  • Moderation Analysis: Moderation analysis will be conducted to explore whether variables like study habits and time management moderate the relationship between social media usage and academic performance.
  • Ethical Considerations:

Discuss any ethical considerations related to your research, such as informed consent, privacy, and data protection. Example:

  • Ethical Considerations: Informed consent will be obtained from all participants, and their data will be kept confidential. The study will adhere to the ethical guidelines set forth by the university's Institutional Review Board (IRB).
  • Expected Results:

Provide some insights into your research's expected results or outcomes based on your research design and hypotheses. Example:

  • Expected Results: We anticipate finding a negative correlation between social media usage and academic performance. Additionally, we expect to identify specific social media behaviours, such as excessive scrolling during study time, that are associated with lower academic performance.
  • Conclusion:

Summarize the key points of your data collection methods in research design and reiterate the significance of your study. Example:

  • Conclusion: This research design outlines the methods and procedures for investigating social media usage's impact on college students' academic performance. The findings from this study can provide valuable insights for educators and policymakers to develop strategies to help students manage their social media use effectively.
  • References:

Include a list of all the sources you referenced in your research design. Example:

  • References: List all relevant academic articles, books, and other sources cited in the literature review section.

Remember that the specifics of your research design will depend on your research topic, objectives, and the nature of your study (quantitative, qualitative, or mixed-methods). Adapt the above structure and examples to fit your research project's unique requirements.

  • Check out our blog to learn more about the Reflexivity in Quantitative Studies .

In conclusion, this research design provides a comprehensive plan for investigating the impact of social media on college students' academic performance. We aim to understand the relationship between social media usage and academic outcomes through rigorous methods. Our literature review has established a strong theoretical foundation. The chosen research approach, sampling, and data collection methods ensure validity. Ethical considerations, including informed consent and privacy, will be strictly followed. We anticipate discovering insights into how specific online behaviours affect academic performance. These findings can guide educators and institutions in helping students balance online and academic life. PhD Assistance research design addresses crucial challenges of the digital age, contributing to a better understanding of this complex relationship.

Get Assistance on your Research with our experts

Delivered on-time or your money back

  • PhD Dissertation Writing Service
  • PhD Research Methodology
  • PhD Literature Review
  • PhD Manuscript
  • PhD Editing Service
  • PhD Research Proposal
  • 24 x 7 Availability
  • Plagiarism Free
  • Trained and Certified Experts
  • Unlimited Revisions
  • Deadline Guaranteed
  • Assignment Guaranteed
  • Assignment Help Reward

A research design is a framework that incorporates many research components.

Phd Assistance

Phd Assistance

Comments are closed.

PhD Assistance

  • Privacy Overview
  • Strictly Necessary Cookies
  • 3rd Party Cookies

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!

insiTEQ | Market Research Company

cropped-insiTEQ-Logo-V2.png

Research Design Steps: Comprehensive Guide

Markets are constantly changing, and it’s important to have a sound research plan in place if you want your company or business’ product stand out from the competition. This article will help you understand the 11 steps that need to be followed to execute a sound market research study. This formal process can also be called “Research Design”. 

Table of Contents

11 steps of research design, comprehensive guide, 1. define the research problem or opportunity.

The first step in any research process is to clearly define the research problem or opportunity. This can be done through a number of different methods, including interviews, focus groups , and surveys.

While it may seem like a simple task, defining the research problem or opportunity is crucial to the success of any research project. Without a clear definition, it can be difficult to determine which research methods to use and how to interpret the results.

If you’re not sure where to start, there are a number of resources available to help you define the research problem or opportunity. The following articles offer some helpful tips:

  • How to Define a Research Problem or Opportunity
  • How to Identify a Research Problem or Opportunity
  • How to Write a Problem Statement for Your research Project
  • How to Develop a research Questionnaire

Once you’ve taken some time to define the research problem or opportunity, you can move on to the next step in the research process. 

2. Conduct a literature review

Define the research problem or opportunity

Once the research problem has been defined, the next step is to conduct a literature review. This helps to provide a foundation for the study and determine what has already been studied in this area.

A literature review is an important step in conducting research. It helps to define the problem and determine what has already been studied in this area. This process should be unbiased and objective. It should identify gaps in the literature and make suggestions for further research.

The process of reviewing  literature  can be a daunting task, but it is important to remember that it does not need to be exhaustive. The goal is to identify relevant literature and synthesize the information into a cohesive overview.

Tips to conduct a literature review

The following tips will help you conduct a literature review:

  • Define your research question before you begin your search. This will help you focus your search and save time.
  • Use keyword searching to find relevant articles. Try different combinations of keywords until you find what you are looking for.
  • Use databases such as Google Scholar, PubMed, and Web of Science. These databases will help you find peer-reviewed articles.
  • Read the abstracts of the articles to determine if they are relevant to your topic. If the abstract is not available, read the full text of the article.
  • Organize your literature review using a table or concept map. This will help you see the relationships between different concepts and ideas.
  • Write a summary of what you have found in each article. This will help you remember the main points of each article and synthesize the information into a cohesive overview.

Conducting a literature review can seem to be a tedious  task, though it is an important step in conducting research. By following these tips, you can make the literature review process easier and more efficient. Once you have completed your literature review, you will be one step closer to writing your research paper!

3. Develop research objectives (aka Hypothesis)

After conducting the literature review, it is important to develop clear research objectives. This will help guide the rest of the research process and ensure that all steps are aligned with the goals of the study.

There are a few different ways to go about developing research objectives. One approach is to start with the research question, and then develop hypotheses that can be tested through data collection and analysis. Another approach is to think about the overall goal of the research project and what needs to be accomplished in order to achieve that goal.

Whichever approach you choose, it is important to be clear and concise when writing your research objectives. They should be specific enough that they can be measured, but not so specific that they limit the scope of your study. Once you have developed your research objectives, you can use them to guide the rest of your research process.

If you’re stuck on where to start, try brainstorming a list of potential objectives and then narrowing down the list to the most important or relevant ones. You can also consult with your supervisor or other experts in your field to get their input on what objectives would be most appropriate for your research project.

Once you have your research objectives, you can begin thinking about how to operationalize them. This means determining how you will measure the variables that are mentioned in your objectives. For example, if one of your objectives is to examine the relationship between two variables, you will need to decide which type of data collection and analysis methods will be best suited for measuring that relationship.

Operationalizing your research objectives is an important step in ensuring that your study is well-designed and that all of its components are aligned with its overall goals. By taking the time to develop clear and concise research objectives, you can set your study up for success.

4. Formulate your research design

The fourth step is to identify the research design. This will determine the overall approach of the study and include information such as the type of study, the population, and the sampling method.

When formulating your research design, it is important to consider the type of study, the population, and the sampling method. The type of study will determine the overall approach of the research, while the population and sampling method will help to identify the target audience and how best to collect data. By taking all of these factors into consideration, you can develop a well-rounded research design that will be able to address your research question effectively.

There are a variety of different research designs that you can choose from, so it is important to select one that is best suited for your particular study. For example, if you are interested in investigating a specific phenomenon, you may want to choose a case study design. On the other hand, if you are interested in comparing two groups of people, you may want to choose a comparative research design. Once you have selected a research design, you will need to determine the population and sampling method. The population is the group of individuals that you are interested in studying, while the sampling method is the process by which you will select individuals from the population to participate in your study.

By formulating your research design before beginning your study, you can ensure that your data will be collected and analyzed effectively. This will ultimately help you to answer your research question and draw conclusions about your topic of interest. So, take some time to consider all of these factors before moving on to the next step in your research journey!

5. Select the research method

Once the research design has been selected, the next step is to select the research method. This will determine how data will be collected and can include methods such as interviews, focus groups, and surveys.

The research method should be selected based on the research design and the research question. As mentioned, some of the most common research methods are interviews, focus groups, and surveys. Each research method has its own advantages and disadvantages. For example, interviews are good for getting in-depth information from a small number of people, but they can be time-consuming and expensive. Focus groups are good for exploring ideas with a group of people, but they can be difficult to control. Surveys are good for collecting large amounts of data quickly, but they can be subject to bias.

Once the research method has been selected, the next step is to develop the research instruments . These will be used to collect data from participants in the study. The most common research instruments are questionnaires and interview protocols.

Questionnaires are a type of research instrument that is used to collect data from participants in a study. They can be used to collect both quantitative and qualitative data. Questionnaires can be administered in person, by mail, or online.

Interview protocols are another type of research instrument that is used to collect data from participants in a study. They are typically used to collect qualitative data. Interview protocols can be administered in person or by telephone.

6. Collect data

After selecting the research method, it is time to start collecting data. This can be done through a number of different methods, depending on the type of study and research objectives.

There are a few things to keep in mind when collecting data. First, you need to decide what type of data you need. Second, you need to choose the right methods for Collecting that data. And third, you need to make sure that the data you collect is high quality. let’s take a closer look at each of these points.

When deciding what type of data you need, it is important to consider what type of research questions you are trying to answer. If your research questions are qualitative in nature, then you will likely want to collect qualitative data. Qualitative data includes things like interviews, focus groups, and observations. If your research questions are quantitative in nature, then you will want to Collect quantitative data. Quantitative data includes things like surveys, experiments, and demographic information.

Once you have decided what type of data you need, you need to choose the right Collecting methods. There are many different Collecting methods, and the right method will depend on the type of data you are Collecting and your research goals. Some common Collecting methods include interviews, focus groups, online surveys, experiments, and observations.

When Collecting data, it is important to make sure that the data is high quality. This means that the data should be accurate, reliable, and valid. Data quality is important because it affects the validity of your research findings. If your data is not high quality, then your research findings might not be accurate. Collecting high quality data takes time and effort, but it is worth it to make sure that your research findings are accurate.

7. Clean and code data

steps in writing research design

After data has been collected, it must be cleaned and coded. This process helps to ensure that the data is ready for analysis. There are a few things to keep in mind when collecting data. 

  • First, make sure that the data is accurate and reliable. This means choosing a method that will produce valid results. 
  • Second, the data should be representative of the population being studied. 
  • Third, collect enough data to answer the research question(s).

There are a few different ways to collect data. Some common methods include surveys, interviews, focus groups, and observations. Collecting data can be a time-consuming process, so it is important to plan ahead and allow enough time to gather all the necessary information. Once the data has been collected, it is time to analyze it. This will be covered in the next section.

8. Analyze data

Once the data has been cleaned and coded, it is time to begin analyzing it. This can be done through a number of different methods, such as descriptive statistics, t-tests, and regression analysis.

The first step in analysis is to decide what type of analysis is best suited for the research question. Descriptive statistics can be used to summarize the data and give an overall picture of what is going on. T-tests can be used to compare means between two groups, and regression analysis can be used to examine the relationships between variables.

You can use tools like IMB SPSS Software to perform all sorts of statical tests and that way “bridge the gap between data science and data understanding”. We’ve found the bellow “SPSS Tutorial for data analysis | SPSS for Beginners” tutorial video quite useful and comprehensive. 

Once the appropriate analyses have been selected, they need to be conducted. This involves running the analyses and interpreting the results. Results should be reported in a clear and concise manner, with enough detail that someone else could replicate the analyses if they wanted to.

After the data has been analyzed, it is time to write up the results. This usually takes the form of a research paper or report. The results should be presented in a way that is easy to understand, and the implications of the findings should be discussed.

This is just a brief overview of data analysis; there are many resources available that can provide more detailed information. The important thing is to get started and to keep learning as you go. With practice, analyzing data will become easier and more enjoyable.

9. Interpret data and test hypotheses

After the data has been analyzed, it is important to interpret it. This includes understanding the results of the study and what they mean for the research problem or opportunity.

When interpreting data, it is important to consider the following:

  • The results of the study and what they mean for the research problem or opportunity
  • The reliability and validity of the data
  • The limitations of the study
  • The implications of the findings

Once the data has been interpreted, it is then time to test hypotheses. This involves using statistical techniques to test whether there is a significant relationship between two or more variables.

Testing hypotheses is an important part of any scientific research as it allows researchers to determine whether their results are statistically significant. If a hypothesis is found to be statistically significant, it means that there is a real relationship between the variables being tested. If a hypothesis is not statistically significant, it means that there is no real relationship between the variables being tested.

When testing hypotheses, it is important to consider the following:

  • The null hypothesis
  • The alternative hypothesis
  • The level of significance
  • The statistical test used

Once the hypotheses have been tested, it is then time to draw conclusions. This involves Interpret data and test hypotheses reviewing the findings of the study and determining what they mean for the research problem or opportunity. When drawing conclusions, it is important to consider the following:

  • The implications of the findings.

Interpret data and test hypotheses are two important steps in scientific research process. By understanding and applying these steps, researchers can ensure that their findings are accurate and reliable.

10. Write the report

After analyzing and interpreting the data, it is time to write the report. This should include a detailed description of the research process, findings, and conclusions of the study.

The research report should be written in a clear, concise, and easy-to-understand manner. It should be free of jargon and technical language, and should be accessible to a wide audience. The report should also be well-organized and well- structured.

When writing the research report, it is important to keep in mind the purpose of the research. The research report should answer the research question(s), and should address the objectives of the study. The findings of the research should be presented in a logical and coherent manner.

The conclusion of the research report should summarize the findings of the study, and should discuss their implications. The recommendations of the study should also be included in the conclusion section.

11. Present the findings

steps in writing research design

The final step is to present the findings of the study. This can be done through a number of different methods, such as presentations, posters, and reports.

The findings of the research should be presented in a way that is clear and concise. The presentation should be designed to engage the audience and encourage them to ask questions. The findings should be tailored to the specific audience, taking into account their background knowledge and understanding.

One method of presenting research findings is through a poster. Posters are a great way to summarise complex information and allow people to take away key points. They can also be used as a starting point for discussions. Another option is to give a presentation, which can be done either in person or online. Presentations offer the opportunity to go into more detail than a poster, and they can also be recorded so that they can be shared with people who were not able to attend.

Whatever method is used, it is important to remember that the research findings should be the focus of the presentation. The aim is to communicate the findings clearly and effectively, not to simply show off the work that has been done. With this in mind, it is often best to keep things simple and avoid using jargon or complex terminology.

Things to consider when presenting research findings

  • Keep the audience in mind
  • Present findings in a clear and concise manner
  • Engage the audience and encourage questions
  • Use simple language and avoid jargon whenever possible. Try explaining concepts in everyday terms.
  • Focus on the research findings themselves, not on other aspects of the project.

Remember that the goal is to communicate the findings effectively.

There are a number of different ways to present research findings. Some common methods include:

  • Presentations (in person or online)

Choose the method that best suits the audience and the message you want to communicate. And don’t forget – keep it simple!

Try explaining concepts in everyday terms. This will make it easier for your audience to understand your research findings.

Another important tip is to focus on the research findings themselves, not on other aspects of the project. The goal is to communicate the findings effectively, so avoid getting sidetracked by other details.

When presenting research findings, it is also important to use simple language and avoid jargon whenever possible. Try explaining concepts in everyday terms. This will make it easier for your audience to understand your research findings.

Remember that the goal is to communicate the findings effectively. With this in mind, it is often best to keep things simple and avoid using jargon or complex terminology.

One final tip: focus on the research findings themselves, not on other aspects of the project. The aim is to communicate the findings clearly and effectively, not to simply show off the work that has been done.

Keep these tips in mind when presenting research findings, and you’ll be sure to engage and inform your audience. 

steps in writing research design

Exploring How Market Research Companies Are Embracing Digital Technologies

Market research companies have long relied on traditional methods to get feedback from consumers, but with advances in technology, they are now using new and

steps in writing research design

The Complete Guide to Finding “Market Research Near Me”

Searching for the right market research company in your area can seem overwhelming, but it doesn’t have to be. With a few simple tips and

steps in writing research design

Unveiling Top Market Research Companies to Watch in 2023

The market research industry is undergoing major disruption. Top market research companies that leverage innovative technologies, such as AI and machine learning, will be at

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

Here's What You Need to Understand About Research Methodology

Deeptanshu D

Table of Contents

Research methodology involves a systematic and well-structured approach to conducting scholarly or scientific inquiries. Knowing the significance of research methodology and its different components is crucial as it serves as the basis for any study.

Typically, your research topic will start as a broad idea you want to investigate more thoroughly. Once you’ve identified a research problem and created research questions , you must choose the appropriate methodology and frameworks to address those questions effectively.

What is the definition of a research methodology?

Research methodology is the process or the way you intend to execute your study. The methodology section of a research paper outlines how you plan to conduct your study. It covers various steps such as collecting data, statistical analysis, observing participants, and other procedures involved in the research process

The methods section should give a description of the process that will convert your idea into a study. Additionally, the outcomes of your process must provide valid and reliable results resonant with the aims and objectives of your research. This thumb rule holds complete validity, no matter whether your paper has inclinations for qualitative or quantitative usage.

Studying research methods used in related studies can provide helpful insights and direction for your own research. Now easily discover papers related to your topic on SciSpace and utilize our AI research assistant, Copilot , to quickly review the methodologies applied in different papers.

Analyze and understand research methodologies faster with SciSpace Copilot

The need for a good research methodology

While deciding on your approach towards your research, the reason or factors you weighed in choosing a particular problem and formulating a research topic need to be validated and explained. A research methodology helps you do exactly that. Moreover, a good research methodology lets you build your argument to validate your research work performed through various data collection methods, analytical methods, and other essential points.

Just imagine it as a strategy documented to provide an overview of what you intend to do.

While undertaking any research writing or performing the research itself, you may get drifted in not something of much importance. In such a case, a research methodology helps you to get back to your outlined work methodology.

A research methodology helps in keeping you accountable for your work. Additionally, it can help you evaluate whether your work is in sync with your original aims and objectives or not. Besides, a good research methodology enables you to navigate your research process smoothly and swiftly while providing effective planning to achieve your desired results.

What is the basic structure of a research methodology?

Usually, you must ensure to include the following stated aspects while deciding over the basic structure of your research methodology:

1. Your research procedure

Explain what research methods you’re going to use. Whether you intend to proceed with quantitative or qualitative, or a composite of both approaches, you need to state that explicitly. The option among the three depends on your research’s aim, objectives, and scope.

2. Provide the rationality behind your chosen approach

Based on logic and reason, let your readers know why you have chosen said research methodologies. Additionally, you have to build strong arguments supporting why your chosen research method is the best way to achieve the desired outcome.

3. Explain your mechanism

The mechanism encompasses the research methods or instruments you will use to develop your research methodology. It usually refers to your data collection methods. You can use interviews, surveys, physical questionnaires, etc., of the many available mechanisms as research methodology instruments. The data collection method is determined by the type of research and whether the data is quantitative data(includes numerical data) or qualitative data (perception, morale, etc.) Moreover, you need to put logical reasoning behind choosing a particular instrument.

4. Significance of outcomes

The results will be available once you have finished experimenting. However, you should also explain how you plan to use the data to interpret the findings. This section also aids in understanding the problem from within, breaking it down into pieces, and viewing the research problem from various perspectives.

5. Reader’s advice

Anything that you feel must be explained to spread more awareness among readers and focus groups must be included and described in detail. You should not just specify your research methodology on the assumption that a reader is aware of the topic.  

All the relevant information that explains and simplifies your research paper must be included in the methodology section. If you are conducting your research in a non-traditional manner, give a logical justification and list its benefits.

6. Explain your sample space

Include information about the sample and sample space in the methodology section. The term "sample" refers to a smaller set of data that a researcher selects or chooses from a larger group of people or focus groups using a predetermined selection method. Let your readers know how you are going to distinguish between relevant and non-relevant samples. How you figured out those exact numbers to back your research methodology, i.e. the sample spacing of instruments, must be discussed thoroughly.

For example, if you are going to conduct a survey or interview, then by what procedure will you select the interviewees (or sample size in case of surveys), and how exactly will the interview or survey be conducted.

7. Challenges and limitations

This part, which is frequently assumed to be unnecessary, is actually very important. The challenges and limitations that your chosen strategy inherently possesses must be specified while you are conducting different types of research.

The importance of a good research methodology

You must have observed that all research papers, dissertations, or theses carry a chapter entirely dedicated to research methodology. This section helps maintain your credibility as a better interpreter of results rather than a manipulator.

A good research methodology always explains the procedure, data collection methods and techniques, aim, and scope of the research. In a research study, it leads to a well-organized, rationality-based approach, while the paper lacking it is often observed as messy or disorganized.

You should pay special attention to validating your chosen way towards the research methodology. This becomes extremely important in case you select an unconventional or a distinct method of execution.

Curating and developing a strong, effective research methodology can assist you in addressing a variety of situations, such as:

  • When someone tries to duplicate or expand upon your research after few years.
  • If a contradiction or conflict of facts occurs at a later time. This gives you the security you need to deal with these contradictions while still being able to defend your approach.
  • Gaining a tactical approach in getting your research completed in time. Just ensure you are using the right approach while drafting your research methodology, and it can help you achieve your desired outcomes. Additionally, it provides a better explanation and understanding of the research question itself.
  • Documenting the results so that the final outcome of the research stays as you intended it to be while starting.

Instruments you could use while writing a good research methodology

As a researcher, you must choose which tools or data collection methods that fit best in terms of the relevance of your research. This decision has to be wise.

There exists many research equipments or tools that you can use to carry out your research process. These are classified as:

a. Interviews (One-on-One or a Group)

An interview aimed to get your desired research outcomes can be undertaken in many different ways. For example, you can design your interview as structured, semi-structured, or unstructured. What sets them apart is the degree of formality in the questions. On the other hand, in a group interview, your aim should be to collect more opinions and group perceptions from the focus groups on a certain topic rather than looking out for some formal answers.

In surveys, you are in better control if you specifically draft the questions you seek the response for. For example, you may choose to include free-style questions that can be answered descriptively, or you may provide a multiple-choice type response for questions. Besides, you can also opt to choose both ways, deciding what suits your research process and purpose better.

c. Sample Groups

Similar to the group interviews, here, you can select a group of individuals and assign them a topic to discuss or freely express their opinions over that. You can simultaneously note down the answers and later draft them appropriately, deciding on the relevance of every response.

d. Observations

If your research domain is humanities or sociology, observations are the best-proven method to draw your research methodology. Of course, you can always include studying the spontaneous response of the participants towards a situation or conducting the same but in a more structured manner. A structured observation means putting the participants in a situation at a previously decided time and then studying their responses.

Of all the tools described above, it is you who should wisely choose the instruments and decide what’s the best fit for your research. You must not restrict yourself from multiple methods or a combination of a few instruments if appropriate in drafting a good research methodology.

Types of research methodology

A research methodology exists in various forms. Depending upon their approach, whether centered around words, numbers, or both, methodologies are distinguished as qualitative, quantitative, or an amalgamation of both.

1. Qualitative research methodology

When a research methodology primarily focuses on words and textual data, then it is generally referred to as qualitative research methodology. This type is usually preferred among researchers when the aim and scope of the research are mainly theoretical and explanatory.

The instruments used are observations, interviews, and sample groups. You can use this methodology if you are trying to study human behavior or response in some situations. Generally, qualitative research methodology is widely used in sociology, psychology, and other related domains.

2. Quantitative research methodology

If your research is majorly centered on data, figures, and stats, then analyzing these numerical data is often referred to as quantitative research methodology. You can use quantitative research methodology if your research requires you to validate or justify the obtained results.

In quantitative methods, surveys, tests, experiments, and evaluations of current databases can be advantageously used as instruments If your research involves testing some hypothesis, then use this methodology.

3. Amalgam methodology

As the name suggests, the amalgam methodology uses both quantitative and qualitative approaches. This methodology is used when a part of the research requires you to verify the facts and figures, whereas the other part demands you to discover the theoretical and explanatory nature of the research question.

The instruments for the amalgam methodology require you to conduct interviews and surveys, including tests and experiments. The outcome of this methodology can be insightful and valuable as it provides precise test results in line with theoretical explanations and reasoning.

The amalgam method, makes your work both factual and rational at the same time.

Final words: How to decide which is the best research methodology?

If you have kept your sincerity and awareness intact with the aims and scope of research well enough, you must have got an idea of which research methodology suits your work best.

Before deciding which research methodology answers your research question, you must invest significant time in reading and doing your homework for that. Taking references that yield relevant results should be your first approach to establishing a research methodology.

Moreover, you should never refrain from exploring other options. Before setting your work in stone, you must try all the available options as it explains why the choice of research methodology that you finally make is more appropriate than the other available options.

You should always go for a quantitative research methodology if your research requires gathering large amounts of data, figures, and statistics. This research methodology will provide you with results if your research paper involves the validation of some hypothesis.

Whereas, if  you are looking for more explanations, reasons, opinions, and public perceptions around a theory, you must use qualitative research methodology.The choice of an appropriate research methodology ultimately depends on what you want to achieve through your research.

Frequently Asked Questions (FAQs) about Research Methodology

1. how to write a research methodology.

You can always provide a separate section for research methodology where you should specify details about the methods and instruments used during the research, discussions on result analysis, including insights into the background information, and conveying the research limitations.

2. What are the types of research methodology?

There generally exists four types of research methodology i.e.

  • Observation
  • Experimental
  • Derivational

3. What is the true meaning of research methodology?

The set of techniques or procedures followed to discover and analyze the information gathered to validate or justify a research outcome is generally called Research Methodology.

4. Where lies the importance of research methodology?

Your research methodology directly reflects the validity of your research outcomes and how well-informed your research work is. Moreover, it can help future researchers cite or refer to your research if they plan to use a similar research methodology.

steps in writing research design

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Using AI for research: A beginner’s guide

Shubham Dogra

Grad Coach

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

steps in writing research design

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

steps in writing research design

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

steps in writing research design

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

steps in writing research design

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Survey Design 101: The Basics

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Logo for Open Educational Resources

Chapter 2. Research Design

Getting started.

When I teach undergraduates qualitative research methods, the final product of the course is a “research proposal” that incorporates all they have learned and enlists the knowledge they have learned about qualitative research methods in an original design that addresses a particular research question. I highly recommend you think about designing your own research study as you progress through this textbook. Even if you don’t have a study in mind yet, it can be a helpful exercise as you progress through the course. But how to start? How can one design a research study before they even know what research looks like? This chapter will serve as a brief overview of the research design process to orient you to what will be coming in later chapters. Think of it as a “skeleton” of what you will read in more detail in later chapters. Ideally, you will read this chapter both now (in sequence) and later during your reading of the remainder of the text. Do not worry if you have questions the first time you read this chapter. Many things will become clearer as the text advances and as you gain a deeper understanding of all the components of good qualitative research. This is just a preliminary map to get you on the right road.

Null

Research Design Steps

Before you even get started, you will need to have a broad topic of interest in mind. [1] . In my experience, students can confuse this broad topic with the actual research question, so it is important to clearly distinguish the two. And the place to start is the broad topic. It might be, as was the case with me, working-class college students. But what about working-class college students? What’s it like to be one? Why are there so few compared to others? How do colleges assist (or fail to assist) them? What interested me was something I could barely articulate at first and went something like this: “Why was it so difficult and lonely to be me?” And by extension, “Did others share this experience?”

Once you have a general topic, reflect on why this is important to you. Sometimes we connect with a topic and we don’t really know why. Even if you are not willing to share the real underlying reason you are interested in a topic, it is important that you know the deeper reasons that motivate you. Otherwise, it is quite possible that at some point during the research, you will find yourself turned around facing the wrong direction. I have seen it happen many times. The reason is that the research question is not the same thing as the general topic of interest, and if you don’t know the reasons for your interest, you are likely to design a study answering a research question that is beside the point—to you, at least. And this means you will be much less motivated to carry your research to completion.

Researcher Note

Why do you employ qualitative research methods in your area of study? What are the advantages of qualitative research methods for studying mentorship?

Qualitative research methods are a huge opportunity to increase access, equity, inclusion, and social justice. Qualitative research allows us to engage and examine the uniquenesses/nuances within minoritized and dominant identities and our experiences with these identities. Qualitative research allows us to explore a specific topic, and through that exploration, we can link history to experiences and look for patterns or offer up a unique phenomenon. There’s such beauty in being able to tell a particular story, and qualitative research is a great mode for that! For our work, we examined the relationships we typically use the term mentorship for but didn’t feel that was quite the right word. Qualitative research allowed us to pick apart what we did and how we engaged in our relationships, which then allowed us to more accurately describe what was unique about our mentorship relationships, which we ultimately named liberationships ( McAloney and Long 2021) . Qualitative research gave us the means to explore, process, and name our experiences; what a powerful tool!

How do you come up with ideas for what to study (and how to study it)? Where did you get the idea for studying mentorship?

Coming up with ideas for research, for me, is kind of like Googling a question I have, not finding enough information, and then deciding to dig a little deeper to get the answer. The idea to study mentorship actually came up in conversation with my mentorship triad. We were talking in one of our meetings about our relationship—kind of meta, huh? We discussed how we felt that mentorship was not quite the right term for the relationships we had built. One of us asked what was different about our relationships and mentorship. This all happened when I was taking an ethnography course. During the next session of class, we were discussing auto- and duoethnography, and it hit me—let’s explore our version of mentorship, which we later went on to name liberationships ( McAloney and Long 2021 ). The idea and questions came out of being curious and wanting to find an answer. As I continue to research, I see opportunities in questions I have about my work or during conversations that, in our search for answers, end up exposing gaps in the literature. If I can’t find the answer already out there, I can study it.

—Kim McAloney, PhD, College Student Services Administration Ecampus coordinator and instructor

When you have a better idea of why you are interested in what it is that interests you, you may be surprised to learn that the obvious approaches to the topic are not the only ones. For example, let’s say you think you are interested in preserving coastal wildlife. And as a social scientist, you are interested in policies and practices that affect the long-term viability of coastal wildlife, especially around fishing communities. It would be natural then to consider designing a research study around fishing communities and how they manage their ecosystems. But when you really think about it, you realize that what interests you the most is how people whose livelihoods depend on a particular resource act in ways that deplete that resource. Or, even deeper, you contemplate the puzzle, “How do people justify actions that damage their surroundings?” Now, there are many ways to design a study that gets at that broader question, and not all of them are about fishing communities, although that is certainly one way to go. Maybe you could design an interview-based study that includes and compares loggers, fishers, and desert golfers (those who golf in arid lands that require a great deal of wasteful irrigation). Or design a case study around one particular example where resources were completely used up by a community. Without knowing what it is you are really interested in, what motivates your interest in a surface phenomenon, you are unlikely to come up with the appropriate research design.

These first stages of research design are often the most difficult, but have patience . Taking the time to consider why you are going to go through a lot of trouble to get answers will prevent a lot of wasted energy in the future.

There are distinct reasons for pursuing particular research questions, and it is helpful to distinguish between them.  First, you may be personally motivated.  This is probably the most important and the most often overlooked.   What is it about the social world that sparks your curiosity? What bothers you? What answers do you need in order to keep living? For me, I knew I needed to get a handle on what higher education was for before I kept going at it. I needed to understand why I felt so different from my peers and whether this whole “higher education” thing was “for the likes of me” before I could complete my degree. That is the personal motivation question. Your personal motivation might also be political in nature, in that you want to change the world in a particular way. It’s all right to acknowledge this. In fact, it is better to acknowledge it than to hide it.

There are also academic and professional motivations for a particular study.  If you are an absolute beginner, these may be difficult to find. We’ll talk more about this when we discuss reviewing the literature. Simply put, you are probably not the only person in the world to have thought about this question or issue and those related to it. So how does your interest area fit into what others have studied? Perhaps there is a good study out there of fishing communities, but no one has quite asked the “justification” question. You are motivated to address this to “fill the gap” in our collective knowledge. And maybe you are really not at all sure of what interests you, but you do know that [insert your topic] interests a lot of people, so you would like to work in this area too. You want to be involved in the academic conversation. That is a professional motivation and a very important one to articulate.

Practical and strategic motivations are a third kind. Perhaps you want to encourage people to take better care of the natural resources around them. If this is also part of your motivation, you will want to design your research project in a way that might have an impact on how people behave in the future. There are many ways to do this, one of which is using qualitative research methods rather than quantitative research methods, as the findings of qualitative research are often easier to communicate to a broader audience than the results of quantitative research. You might even be able to engage the community you are studying in the collecting and analyzing of data, something taboo in quantitative research but actively embraced and encouraged by qualitative researchers. But there are other practical reasons, such as getting “done” with your research in a certain amount of time or having access (or no access) to certain information. There is nothing wrong with considering constraints and opportunities when designing your study. Or maybe one of the practical or strategic goals is about learning competence in this area so that you can demonstrate the ability to conduct interviews and focus groups with future employers. Keeping that in mind will help shape your study and prevent you from getting sidetracked using a technique that you are less invested in learning about.

STOP HERE for a moment

I recommend you write a paragraph (at least) explaining your aims and goals. Include a sentence about each of the following: personal/political goals, practical or professional/academic goals, and practical/strategic goals. Think through how all of the goals are related and can be achieved by this particular research study . If they can’t, have a rethink. Perhaps this is not the best way to go about it.

You will also want to be clear about the purpose of your study. “Wait, didn’t we just do this?” you might ask. No! Your goals are not the same as the purpose of the study, although they are related. You can think about purpose lying on a continuum from “ theory ” to “action” (figure 2.1). Sometimes you are doing research to discover new knowledge about the world, while other times you are doing a study because you want to measure an impact or make a difference in the world.

Purpose types: Basic Research, Applied Research, Summative Evaluation, Formative Evaluation, Action Research

Basic research involves research that is done for the sake of “pure” knowledge—that is, knowledge that, at least at this moment in time, may not have any apparent use or application. Often, and this is very important, knowledge of this kind is later found to be extremely helpful in solving problems. So one way of thinking about basic research is that it is knowledge for which no use is yet known but will probably one day prove to be extremely useful. If you are doing basic research, you do not need to argue its usefulness, as the whole point is that we just don’t know yet what this might be.

Researchers engaged in basic research want to understand how the world operates. They are interested in investigating a phenomenon to get at the nature of reality with regard to that phenomenon. The basic researcher’s purpose is to understand and explain ( Patton 2002:215 ).

Basic research is interested in generating and testing hypotheses about how the world works. Grounded Theory is one approach to qualitative research methods that exemplifies basic research (see chapter 4). Most academic journal articles publish basic research findings. If you are working in academia (e.g., writing your dissertation), the default expectation is that you are conducting basic research.

Applied research in the social sciences is research that addresses human and social problems. Unlike basic research, the researcher has expectations that the research will help contribute to resolving a problem, if only by identifying its contours, history, or context. From my experience, most students have this as their baseline assumption about research. Why do a study if not to make things better? But this is a common mistake. Students and their committee members are often working with default assumptions here—the former thinking about applied research as their purpose, the latter thinking about basic research: “The purpose of applied research is to contribute knowledge that will help people to understand the nature of a problem in order to intervene, thereby allowing human beings to more effectively control their environment. While in basic research the source of questions is the tradition within a scholarly discipline, in applied research the source of questions is in the problems and concerns experienced by people and by policymakers” ( Patton 2002:217 ).

Applied research is less geared toward theory in two ways. First, its questions do not derive from previous literature. For this reason, applied research studies have much more limited literature reviews than those found in basic research (although they make up for this by having much more “background” about the problem). Second, it does not generate theory in the same way as basic research does. The findings of an applied research project may not be generalizable beyond the boundaries of this particular problem or context. The findings are more limited. They are useful now but may be less useful later. This is why basic research remains the default “gold standard” of academic research.

Evaluation research is research that is designed to evaluate or test the effectiveness of specific solutions and programs addressing specific social problems. We already know the problems, and someone has already come up with solutions. There might be a program, say, for first-generation college students on your campus. Does this program work? Are first-generation students who participate in the program more likely to graduate than those who do not? These are the types of questions addressed by evaluation research. There are two types of research within this broader frame; however, one more action-oriented than the next. In summative evaluation , an overall judgment about the effectiveness of a program or policy is made. Should we continue our first-gen program? Is it a good model for other campuses? Because the purpose of such summative evaluation is to measure success and to determine whether this success is scalable (capable of being generalized beyond the specific case), quantitative data is more often used than qualitative data. In our example, we might have “outcomes” data for thousands of students, and we might run various tests to determine if the better outcomes of those in the program are statistically significant so that we can generalize the findings and recommend similar programs elsewhere. Qualitative data in the form of focus groups or interviews can then be used for illustrative purposes, providing more depth to the quantitative analyses. In contrast, formative evaluation attempts to improve a program or policy (to help “form” or shape its effectiveness). Formative evaluations rely more heavily on qualitative data—case studies, interviews, focus groups. The findings are meant not to generalize beyond the particular but to improve this program. If you are a student seeking to improve your qualitative research skills and you do not care about generating basic research, formative evaluation studies might be an attractive option for you to pursue, as there are always local programs that need evaluation and suggestions for improvement. Again, be very clear about your purpose when talking through your research proposal with your committee.

Action research takes a further step beyond evaluation, even formative evaluation, to being part of the solution itself. This is about as far from basic research as one could get and definitely falls beyond the scope of “science,” as conventionally defined. The distinction between action and research is blurry, the research methods are often in constant flux, and the only “findings” are specific to the problem or case at hand and often are findings about the process of intervention itself. Rather than evaluate a program as a whole, action research often seeks to change and improve some particular aspect that may not be working—maybe there is not enough diversity in an organization or maybe women’s voices are muted during meetings and the organization wonders why and would like to change this. In a further step, participatory action research , those women would become part of the research team, attempting to amplify their voices in the organization through participation in the action research. As action research employs methods that involve people in the process, focus groups are quite common.

If you are working on a thesis or dissertation, chances are your committee will expect you to be contributing to fundamental knowledge and theory ( basic research ). If your interests lie more toward the action end of the continuum, however, it is helpful to talk to your committee about this before you get started. Knowing your purpose in advance will help avoid misunderstandings during the later stages of the research process!

The Research Question

Once you have written your paragraph and clarified your purpose and truly know that this study is the best study for you to be doing right now , you are ready to write and refine your actual research question. Know that research questions are often moving targets in qualitative research, that they can be refined up to the very end of data collection and analysis. But you do have to have a working research question at all stages. This is your “anchor” when you get lost in the data. What are you addressing? What are you looking at and why? Your research question guides you through the thicket. It is common to have a whole host of questions about a phenomenon or case, both at the outset and throughout the study, but you should be able to pare it down to no more than two or three sentences when asked. These sentences should both clarify the intent of the research and explain why this is an important question to answer. More on refining your research question can be found in chapter 4.

Chances are, you will have already done some prior reading before coming up with your interest and your questions, but you may not have conducted a systematic literature review. This is the next crucial stage to be completed before venturing further. You don’t want to start collecting data and then realize that someone has already beaten you to the punch. A review of the literature that is already out there will let you know (1) if others have already done the study you are envisioning; (2) if others have done similar studies, which can help you out; and (3) what ideas or concepts are out there that can help you frame your study and make sense of your findings. More on literature reviews can be found in chapter 9.

In addition to reviewing the literature for similar studies to what you are proposing, it can be extremely helpful to find a study that inspires you. This may have absolutely nothing to do with the topic you are interested in but is written so beautifully or organized so interestingly or otherwise speaks to you in such a way that you want to post it somewhere to remind you of what you want to be doing. You might not understand this in the early stages—why would you find a study that has nothing to do with the one you are doing helpful? But trust me, when you are deep into analysis and writing, having an inspirational model in view can help you push through. If you are motivated to do something that might change the world, you probably have read something somewhere that inspired you. Go back to that original inspiration and read it carefully and see how they managed to convey the passion that you so appreciate.

At this stage, you are still just getting started. There are a lot of things to do before setting forth to collect data! You’ll want to consider and choose a research tradition and a set of data-collection techniques that both help you answer your research question and match all your aims and goals. For example, if you really want to help migrant workers speak for themselves, you might draw on feminist theory and participatory action research models. Chapters 3 and 4 will provide you with more information on epistemologies and approaches.

Next, you have to clarify your “units of analysis.” What is the level at which you are focusing your study? Often, the unit in qualitative research methods is individual people, or “human subjects.” But your units of analysis could just as well be organizations (colleges, hospitals) or programs or even whole nations. Think about what it is you want to be saying at the end of your study—are the insights you are hoping to make about people or about organizations or about something else entirely? A unit of analysis can even be a historical period! Every unit of analysis will call for a different kind of data collection and analysis and will produce different kinds of “findings” at the conclusion of your study. [2]

Regardless of what unit of analysis you select, you will probably have to consider the “human subjects” involved in your research. [3] Who are they? What interactions will you have with them—that is, what kind of data will you be collecting? Before answering these questions, define your population of interest and your research setting. Use your research question to help guide you.

Let’s use an example from a real study. In Geographies of Campus Inequality , Benson and Lee ( 2020 ) list three related research questions: “(1) What are the different ways that first-generation students organize their social, extracurricular, and academic activities at selective and highly selective colleges? (2) how do first-generation students sort themselves and get sorted into these different types of campus lives; and (3) how do these different patterns of campus engagement prepare first-generation students for their post-college lives?” (3).

Note that we are jumping into this a bit late, after Benson and Lee have described previous studies (the literature review) and what is known about first-generation college students and what is not known. They want to know about differences within this group, and they are interested in ones attending certain kinds of colleges because those colleges will be sites where academic and extracurricular pressures compete. That is the context for their three related research questions. What is the population of interest here? First-generation college students . What is the research setting? Selective and highly selective colleges . But a host of questions remain. Which students in the real world, which colleges? What about gender, race, and other identity markers? Will the students be asked questions? Are the students still in college, or will they be asked about what college was like for them? Will they be observed? Will they be shadowed? Will they be surveyed? Will they be asked to keep diaries of their time in college? How many students? How many colleges? For how long will they be observed?

Recommendation

Take a moment and write down suggestions for Benson and Lee before continuing on to what they actually did.

Have you written down your own suggestions? Good. Now let’s compare those with what they actually did. Benson and Lee drew on two sources of data: in-depth interviews with sixty-four first-generation students and survey data from a preexisting national survey of students at twenty-eight selective colleges. Let’s ignore the survey for our purposes here and focus on those interviews. The interviews were conducted between 2014 and 2016 at a single selective college, “Hilltop” (a pseudonym ). They employed a “purposive” sampling strategy to ensure an equal number of male-identifying and female-identifying students as well as equal numbers of White, Black, and Latinx students. Each student was interviewed once. Hilltop is a selective liberal arts college in the northeast that enrolls about three thousand students.

How did your suggestions match up to those actually used by the researchers in this study? It is possible your suggestions were too ambitious? Beginning qualitative researchers can often make that mistake. You want a research design that is both effective (it matches your question and goals) and doable. You will never be able to collect data from your entire population of interest (unless your research question is really so narrow to be relevant to very few people!), so you will need to come up with a good sample. Define the criteria for this sample, as Benson and Lee did when deciding to interview an equal number of students by gender and race categories. Define the criteria for your sample setting too. Hilltop is typical for selective colleges. That was a research choice made by Benson and Lee. For more on sampling and sampling choices, see chapter 5.

Benson and Lee chose to employ interviews. If you also would like to include interviews, you have to think about what will be asked in them. Most interview-based research involves an interview guide, a set of questions or question areas that will be asked of each participant. The research question helps you create a relevant interview guide. You want to ask questions whose answers will provide insight into your research question. Again, your research question is the anchor you will continually come back to as you plan for and conduct your study. It may be that once you begin interviewing, you find that people are telling you something totally unexpected, and this makes you rethink your research question. That is fine. Then you have a new anchor. But you always have an anchor. More on interviewing can be found in chapter 11.

Let’s imagine Benson and Lee also observed college students as they went about doing the things college students do, both in the classroom and in the clubs and social activities in which they participate. They would have needed a plan for this. Would they sit in on classes? Which ones and how many? Would they attend club meetings and sports events? Which ones and how many? Would they participate themselves? How would they record their observations? More on observation techniques can be found in both chapters 13 and 14.

At this point, the design is almost complete. You know why you are doing this study, you have a clear research question to guide you, you have identified your population of interest and research setting, and you have a reasonable sample of each. You also have put together a plan for data collection, which might include drafting an interview guide or making plans for observations. And so you know exactly what you will be doing for the next several months (or years!). To put the project into action, there are a few more things necessary before actually going into the field.

First, you will need to make sure you have any necessary supplies, including recording technology. These days, many researchers use their phones to record interviews. Second, you will need to draft a few documents for your participants. These include informed consent forms and recruiting materials, such as posters or email texts, that explain what this study is in clear language. Third, you will draft a research protocol to submit to your institutional review board (IRB) ; this research protocol will include the interview guide (if you are using one), the consent form template, and all examples of recruiting material. Depending on your institution and the details of your study design, it may take weeks or even, in some unfortunate cases, months before you secure IRB approval. Make sure you plan on this time in your project timeline. While you wait, you can continue to review the literature and possibly begin drafting a section on the literature review for your eventual presentation/publication. More on IRB procedures can be found in chapter 8 and more general ethical considerations in chapter 7.

Once you have approval, you can begin!

Research Design Checklist

Before data collection begins, do the following:

  • Write a paragraph explaining your aims and goals (personal/political, practical/strategic, professional/academic).
  • Define your research question; write two to three sentences that clarify the intent of the research and why this is an important question to answer.
  • Review the literature for similar studies that address your research question or similar research questions; think laterally about some literature that might be helpful or illuminating but is not exactly about the same topic.
  • Find a written study that inspires you—it may or may not be on the research question you have chosen.
  • Consider and choose a research tradition and set of data-collection techniques that (1) help answer your research question and (2) match your aims and goals.
  • Define your population of interest and your research setting.
  • Define the criteria for your sample (How many? Why these? How will you find them, gain access, and acquire consent?).
  • If you are conducting interviews, draft an interview guide.
  •  If you are making observations, create a plan for observations (sites, times, recording, access).
  • Acquire any necessary technology (recording devices/software).
  • Draft consent forms that clearly identify the research focus and selection process.
  • Create recruiting materials (posters, email, texts).
  • Apply for IRB approval (proposal plus consent form plus recruiting materials).
  • Block out time for collecting data.
  • At the end of the chapter, you will find a " Research Design Checklist " that summarizes the main recommendations made here ↵
  • For example, if your focus is society and culture , you might collect data through observation or a case study. If your focus is individual lived experience , you are probably going to be interviewing some people. And if your focus is language and communication , you will probably be analyzing text (written or visual). ( Marshall and Rossman 2016:16 ). ↵
  • You may not have any "live" human subjects. There are qualitative research methods that do not require interactions with live human beings - see chapter 16 , "Archival and Historical Sources." But for the most part, you are probably reading this textbook because you are interested in doing research with people. The rest of the chapter will assume this is the case. ↵

One of the primary methodological traditions of inquiry in qualitative research, ethnography is the study of a group or group culture, largely through observational fieldwork supplemented by interviews. It is a form of fieldwork that may include participant-observation data collection. See chapter 14 for a discussion of deep ethnography. 

A methodological tradition of inquiry and research design that focuses on an individual case (e.g., setting, institution, or sometimes an individual) in order to explore its complexity, history, and interactive parts.  As an approach, it is particularly useful for obtaining a deep appreciation of an issue, event, or phenomenon of interest in its particular context.

The controlling force in research; can be understood as lying on a continuum from basic research (knowledge production) to action research (effecting change).

In its most basic sense, a theory is a story we tell about how the world works that can be tested with empirical evidence.  In qualitative research, we use the term in a variety of ways, many of which are different from how they are used by quantitative researchers.  Although some qualitative research can be described as “testing theory,” it is more common to “build theory” from the data using inductive reasoning , as done in Grounded Theory .  There are so-called “grand theories” that seek to integrate a whole series of findings and stories into an overarching paradigm about how the world works, and much smaller theories or concepts about particular processes and relationships.  Theory can even be used to explain particular methodological perspectives or approaches, as in Institutional Ethnography , which is both a way of doing research and a theory about how the world works.

Research that is interested in generating and testing hypotheses about how the world works.

A methodological tradition of inquiry and approach to analyzing qualitative data in which theories emerge from a rigorous and systematic process of induction.  This approach was pioneered by the sociologists Glaser and Strauss (1967).  The elements of theory generated from comparative analysis of data are, first, conceptual categories and their properties and, second, hypotheses or generalized relations among the categories and their properties – “The constant comparing of many groups draws the [researcher’s] attention to their many similarities and differences.  Considering these leads [the researcher] to generate abstract categories and their properties, which, since they emerge from the data, will clearly be important to a theory explaining the kind of behavior under observation.” (36).

An approach to research that is “multimethod in focus, involving an interpretative, naturalistic approach to its subject matter.  This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them.  Qualitative research involves the studied use and collection of a variety of empirical materials – case study, personal experience, introspective, life story, interview, observational, historical, interactional, and visual texts – that describe routine and problematic moments and meanings in individuals’ lives." ( Denzin and Lincoln 2005:2 ). Contrast with quantitative research .

Research that contributes knowledge that will help people to understand the nature of a problem in order to intervene, thereby allowing human beings to more effectively control their environment.

Research that is designed to evaluate or test the effectiveness of specific solutions and programs addressing specific social problems.  There are two kinds: summative and formative .

Research in which an overall judgment about the effectiveness of a program or policy is made, often for the purpose of generalizing to other cases or programs.  Generally uses qualitative research as a supplement to primary quantitative data analyses.  Contrast formative evaluation research .

Research designed to improve a program or policy (to help “form” or shape its effectiveness); relies heavily on qualitative research methods.  Contrast summative evaluation research

Research carried out at a particular organizational or community site with the intention of affecting change; often involves research subjects as participants of the study.  See also participatory action research .

Research in which both researchers and participants work together to understand a problematic situation and change it for the better.

The level of the focus of analysis (e.g., individual people, organizations, programs, neighborhoods).

The large group of interest to the researcher.  Although it will likely be impossible to design a study that incorporates or reaches all members of the population of interest, this should be clearly defined at the outset of a study so that a reasonable sample of the population can be taken.  For example, if one is studying working-class college students, the sample may include twenty such students attending a particular college, while the population is “working-class college students.”  In quantitative research, clearly defining the general population of interest is a necessary step in generalizing results from a sample.  In qualitative research, defining the population is conceptually important for clarity.

A fictional name assigned to give anonymity to a person, group, or place.  Pseudonyms are important ways of protecting the identity of research participants while still providing a “human element” in the presentation of qualitative data.  There are ethical considerations to be made in selecting pseudonyms; some researchers allow research participants to choose their own.

A requirement for research involving human participants; the documentation of informed consent.  In some cases, oral consent or assent may be sufficient, but the default standard is a single-page easy-to-understand form that both the researcher and the participant sign and date.   Under federal guidelines, all researchers "shall seek such consent only under circumstances that provide the prospective subject or the representative sufficient opportunity to consider whether or not to participate and that minimize the possibility of coercion or undue influence. The information that is given to the subject or the representative shall be in language understandable to the subject or the representative.  No informed consent, whether oral or written, may include any exculpatory language through which the subject or the representative is made to waive or appear to waive any of the subject's rights or releases or appears to release the investigator, the sponsor, the institution, or its agents from liability for negligence" (21 CFR 50.20).  Your IRB office will be able to provide a template for use in your study .

An administrative body established to protect the rights and welfare of human research subjects recruited to participate in research activities conducted under the auspices of the institution with which it is affiliated. The IRB is charged with the responsibility of reviewing all research involving human participants. The IRB is concerned with protecting the welfare, rights, and privacy of human subjects. The IRB has the authority to approve, disapprove, monitor, and require modifications in all research activities that fall within its jurisdiction as specified by both the federal regulations and institutional policy.

Introduction to Qualitative Research Methods Copyright © 2023 by Allison Hurst is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE : Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Mar 21, 2024 9:59 AM
  • URL: https://libguides.usc.edu/writingguide
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Thesis Outline

Thesis Outline – Example, Template and Writing...

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Appendices

Appendices – Writing Guide, Types and Examples

Research Paper Citation

How to Cite Research Paper – All Formats and...

Research Report

Research Report – Example, Writing Guide and...

Delimitations

Delimitations in Research – Types, Examples and...

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Guide to Experimental Design | Overview, Steps, & Examples

Guide to Experimental Design | Overview, 5 steps & Examples

Published on December 3, 2019 by Rebecca Bevans . Revised on June 21, 2023.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design create a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying.

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead. This minimizes several types of research bias, particularly sampling bias , survivorship bias , and attrition bias as time passes.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, other interesting articles, frequently asked questions about experiments.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

steps in writing research design

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalized and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomized design vs a randomized block design .
  • A between-subjects design vs a within-subjects design .

Randomization

An experiment can be completely randomized or randomized within blocks (aka strata):

  • In a completely randomized design , every subject is assigned to a treatment group at random.
  • In a randomized block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.

Sometimes randomization isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs. within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomizing or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Prevent plagiarism. Run a free check.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimize research bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalized to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 21). Guide to Experimental Design | Overview, 5 steps & Examples. Scribbr. Retrieved March 25, 2024, from https://www.scribbr.com/methodology/experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, random assignment in experiments | introduction & examples, quasi-experimental design | definition, types & examples, how to write a lab report, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of springeropen

Language: English | German

How to Construct a Mixed Methods Research Design

Wie man ein mixed methods-forschungs-design konstruiert, judith schoonenboom.

1 Institut für Bildungswissenschaft, Universität Wien, Sensengasse 3a, 1090 Wien, Austria

R. Burke Johnson

2 Department of Professional Studies, University of South Alabama, UCOM 3700, 36688-0002 Mobile, AL USA

This article provides researchers with knowledge of how to design a high quality mixed methods research study. To design a mixed study, researchers must understand and carefully consider each of the dimensions of mixed methods design, and always keep an eye on the issue of validity. We explain the seven major design dimensions: purpose, theoretical drive, timing (simultaneity and dependency), point of integration, typological versus interactive design approaches, planned versus emergent design, and design complexity. There also are multiple secondary dimensions that need to be considered during the design process. We explain ten secondary dimensions of design to be considered for each research study. We also provide two case studies showing how the mixed designs were constructed.

Zusammenfassung

Der Beitrag gibt einen Überblick darüber, wie das Forschungsdesign bei Mixed Methods-Studien angelegt sein sollte. Um ein Mixed Methods-Forschungsdesign aufzustellen, müssen Forschende sorgfältig alle Dimensionen von Methodenkombinationen abwägen und von Anfang an auf die Güte und damit verbundene etwaige Probleme achten. Wir erklären und diskutieren die für Forschungsdesigns relevanten sieben Dimensionen von Methodenkombinationen: Untersuchungsziel, Rolle von Theorie im Forschungsprozess, Timing (Simultanität und Abhängigkeit), Schnittstellen, an denen Integration stattfindet, systematische vs. interaktive Design-Ansätze, geplante vs. emergente Designs und Komplexität des Designs. Es gibt außerdem zahlreiche sekundäre Dimensionen, die bei der Aufstellung des Forschungsdesigns berücksichtigt werden müssen, von denen wir zehn erklären. Der Beitrag schließt mit zwei Fallbeispielen ab, anhand derer konkret gezeigt wird, wie Mixed Methods-Forschungsdesigns aufgestellt werden können.

What is a mixed methods design?

This article addresses the process of selecting and constructing mixed methods research (MMR) designs. The word “design” has at least two distinct meanings in mixed methods research (Maxwell 2013 ). One meaning focuses on the process of design; in this meaning, design is often used as a verb. Someone can be engaged in designing a study (in German: “eine Studie konzipieren” or “eine Studie designen”). Another meaning is that of a product, namely the result of designing. The result of designing as a verb is a mixed methods design as a noun (in German: “das Forschungsdesign” or “Design”), as it has, for example, been described in a journal article. In mixed methods design, both meanings are relevant. To obtain a strong design as a product, one needs to carefully consider a number of rules for designing as an activity. Obeying these rules is not a guarantee of a strong design, but it does contribute to it. A mixed methods design is characterized by the combination of at least one qualitative and one quantitative research component. For the purpose of this article, we use the following definition of mixed methods research (Johnson et al. 2007 , p. 123):

Mixed methods research is the type of research in which a researcher or team of researchers combines elements of qualitative and quantitative research approaches (e. g., use of qualitative and quantitative viewpoints, data collection, analysis, inference techniques) for the broad purposes of breadth and depth of understanding and corroboration.

Mixed methods research (“Mixed Methods” or “MM”) is the sibling of multimethod research (“Methodenkombination”) in which either solely multiple qualitative approaches or solely multiple quantitative approaches are combined.

In a commonly used mixed methods notation system (Morse 1991 ), the components are indicated as qual and quan (or QUAL and QUAN to emphasize primacy), respectively, for qualitative and quantitative research. As discussed below, plus (+) signs refer to concurrent implementation of components (“gleichzeitige Durchführung der Teilstudien” or “paralleles Mixed Methods-Design”) and arrows (→) refer to sequential implementation (“Sequenzielle Durchführung der Teilstudien” or “sequenzielles Mixed Methods-Design”) of components. Note that each research tradition receives an equal number of letters (four) in its abbreviation for equity. In this article, this notation system is used in some depth.

A mixed methods design as a product has several primary characteristics that should be considered during the design process. As shown in Table  1 , the following primary design “dimensions” are emphasized in this article: purpose of mixing, theoretical drive, timing, point of integration, typological use, and degree of complexity. These characteristics are discussed below. We also provide some secondary dimensions to consider when constructing a mixed methods design (Johnson and Christensen 2017 ).

List of Primary and Secondary Design Dimensions

On the basis of these dimensions, mixed methods designs can be classified into a mixed methods typology or taxonomy. In the mixed methods literature, various typologies of mixed methods designs have been proposed (for an overview see Creswell and Plano Clark 2011 , p. 69–72).

The overall goal of mixed methods research, of combining qualitative and quantitative research components, is to expand and strengthen a study’s conclusions and, therefore, contribute to the published literature. In all studies, the use of mixed methods should contribute to answering one’s research questions.

Ultimately, mixed methods research is about heightened knowledge and validity. The design as a product should be of sufficient quality to achieve multiple validities legitimation (Johnson and Christensen 2017 ; Onwuegbuzie and Johnson 2006 ), which refers to the mixed methods research study meeting the relevant combination or set of quantitative, qualitative, and mixed methods validities in each research study.

Given this goal of answering the research question(s) with validity, a researcher can nevertheless have various reasons or purposes for wanting to strengthen the research study and its conclusions. Following is the first design dimension for one to consider when designing a study: Given the research question(s), what is the purpose of the mixed methods study?

A popular classification of purposes of mixed methods research was first introduced in 1989 by Greene, Caracelli, and Graham, based on an analysis of published mixed methods studies. This classification is still in use (Greene 2007 ). Greene et al. ( 1989 , p. 259) distinguished the following five purposes for mixing in mixed methods research:

1.  Triangulation seeks convergence, corroboration, correspondence of results from different methods; 2.  Complementarity seeks elaboration, enhancement, illustration, clarification of the results from one method with the results from the other method; 3.  Development seeks to use the results from one method to help develop or inform the other method, where development is broadly construed to include sampling and implementation, as well as measurement decisions; 4.  Initiation seeks the discovery of paradox and contradiction, new perspectives of frameworks, the recasting of questions or results from one method with questions or results from the other method; 5.  Expansion seeks to extend the breadth and range of inquiry by using different methods for different inquiry components.

In the past 28 years, this classification has been supplemented by several others. On the basis of a review of the reasons for combining qualitative and quantitative research mentioned by the authors of mixed methods studies, Bryman ( 2006 ) formulated a list of more concrete rationales for performing mixed methods research (see Appendix). Bryman’s classification breaks down Greene et al.’s ( 1989 ) categories into several aspects, and he adds a number of additional aspects, such as the following:

(a)  Credibility – refers to suggestions that employing both approaches enhances the integrity of findings. (b)  Context – refers to cases in which the combination is justified in terms of qualitative research providing contextual understanding coupled with either generalizable, externally valid findings or broad relationships among variables uncovered through a survey. (c)  Illustration – refers to the use of qualitative data to illustrate quantitative findings, often referred to as putting “meat on the bones” of “dry” quantitative findings. (d)  Utility or improving the usefulness of findings – refers to a suggestion, which is more likely to be prominent among articles with an applied focus, that combining the two approaches will be more useful to practitioners and others. (e)  Confirm and discover – this entails using qualitative data to generate hypotheses and using quantitative research to test them within a single project. (f)  Diversity of views – this includes two slightly different rationales – namely, combining researchers’ and participants’ perspectives through quantitative and qualitative research respectively, and uncovering relationships between variables through quantitative research while also revealing meanings among research participants through qualitative research. (Bryman, p. 106)

Views can be diverse (f) in various ways. Some examples of mixed methods design that include a diversity of views are:

  • Iteratively/sequentially connecting local/idiographic knowledge with national/general/nomothetic knowledge;
  • Learning from different perspectives on teams and in the field and literature;
  • Achieving multiple participation, social justice, and action;
  • Determining what works for whom and the relevance/importance of context;
  • Producing interdisciplinary substantive theory, including/comparing multiple perspectives and data regarding a phenomenon;
  • Juxtaposition-dialogue/comparison-synthesis;
  • Breaking down binaries/dualisms (some of both);
  • Explaining interaction between/among natural and human systems;
  • Explaining complexity.

The number of possible purposes for mixing is very large and is increasing; hence, it is not possible to provide an exhaustive list. Greene et al.’s ( 1989 ) purposes, Bryman’s ( 2006 ) rationales, and our examples of a diversity of views were formulated as classifications on the basis of examination of many existing research studies. They indicate how the qualitative and quantitative research components of a study relate to each other. These purposes can be used post hoc to classify research or a priori in the design of a new study. When designing a mixed methods study, it is sometimes helpful to list the purpose in the title of the study design.

The key point of this section is for the researcher to begin a study with at least one research question and then carefully consider what the purposes for mixing are. One can use mixed methods to examine different aspects of a single research question, or one can use separate but related qualitative and quantitative research questions. In all cases, the mixing of methods, methodologies, and/or paradigms will help answer the research questions and make improvements over a more basic study design. Fuller and richer information will be obtained in the mixed methods study.

Theoretical drive

In addition to a mixing purpose, a mixed methods research study might have an overall “theoretical drive” (Morse and Niehaus 2009 ). When designing a mixed methods study, it is occasionally helpful to list the theoretical drive in the title of the study design. An investigation, in Morse and Niehaus’s ( 2009 ) view, is focused primarily on either exploration-and-description or on testing-and-prediction. In the first case, the theoretical drive is called “inductive” or “qualitative”; in the second case, it is called “deductive” or “quantitative”. In the case of mixed methods, the component that corresponds to the theoretical drive is referred to as the “core” component (“Kernkomponente”), and the other component is called the “supplemental” component (“ergänzende Komponente”). In Morse’s notation system, the core component is written in capitals and the supplemental component is written in lowercase letters. For example, in a QUAL → quan design, more weight is attached to the data coming from the core qualitative component. Due to the decisive character of the core component, the core component must be able to stand on its own, and should be implemented rigorously. The supplemental component does not have to stand on its own.

Although this distinction is useful in some circumstances, we do not advise to apply it to every mixed methods design. First, Morse and Niehaus contend that the supplemental component can be done “less rigorously” but do not explain which aspects of rigor can be dropped. In addition, the idea of decreased rigor is in conflict with one key theme of the present article, namely that mixed methods designs should always meet the criterion of multiple validities legitimation (Onwuegbuzie and Johnson 2006 ).

The idea of theoretical drive as explicated by Morse and Niehaus has been criticized. For example, we view a theoretical drive as a feature not of a whole study, but of a research question, or, more precisely, of an interpretation of a research question. For example, if one study includes multiple research questions, it might include several theoretical drives (Schoonenboom 2016 ).

Another criticism of Morse and Niehaus’ conceptualization of theoretical drive is that it does not allow for equal-status mixed methods research (“Mixed Methods Forschung, bei der qualitative und quantitative Methoden die gleiche Bedeutung haben” or “gleichrangige Mixed Methods-Designs”), in which both the qualitative and quantitative component are of equal value and weight; this same criticism applies to Morgan’s ( 2014 ) set of designs. We agree with Greene ( 2015 ) that mixed methods research can be integrated at the levels of method, methodology, and paradigm. In this view, equal-status mixed methods research designs are possible, and they result when both the qualitative and the quantitative components, approaches, and thinking are of equal value, they take control over the research process in alternation, they are in constant interaction, and the outcomes they produce are integrated during and at the end of the research process. Therefore, equal-status mixed methods research (that we often advocate) is also called “interactive mixed methods research”.

Mixed methods research can have three different drives, as formulated by Johnson et al. ( 2007 , p. 123):

Qualitative dominant [or qualitatively driven] mixed methods research is the type of mixed research in which one relies on a qualitative, constructivist-poststructuralist-critical view of the research process, while concurrently recognizing that the addition of quantitative data and approaches are likely to benefit most research projects. Quantitative dominant [or quantitatively driven] mixed methods research is the type of mixed research in which one relies on a quantitative, postpositivist view of the research process, while concurrently recognizing that the addition of qualitative data and approaches are likely to benefit most research projects. (p. 124) The area around the center of the [qualitative-quantitative] continuum, equal status , is the home for the person that self-identifies as a mixed methods researcher. This researcher takes as his or her starting point the logic and philosophy of mixed methods research. These mixed methods researchers are likely to believe that qualitative and quantitative data and approaches will add insights as one considers most, if not all, research questions.

We leave it to the reader to decide if he or she desires to conduct a qualitatively driven study, a quantitatively driven study, or an equal-status/“interactive” study. According to the philosophies of pragmatism (Johnson and Onwuegbuzie 2004 ) and dialectical pluralism (Johnson 2017 ), interactive mixed methods research is very much a possibility. By successfully conducting an equal-status study, the pragmatist researcher shows that paradigms can be mixed or combined, and that the incompatibility thesis does not always apply to research practice. Equal status research is most easily conducted when a research team is composed of qualitative, quantitative, and mixed researchers, interacts continually, and conducts a study to address one superordinate goal.

Timing: simultaneity and dependence

Another important distinction when designing a mixed methods study relates to the timing of the two (or more) components. When designing a mixed methods study, it is usually helpful to include the word “concurrent” (“parallel”) or “sequential” (“sequenziell”) in the title of the study design; a complex design can be partially concurrent and partially sequential. Timing has two aspects: simultaneity and dependence (Guest 2013 ).

Simultaneity (“Simultanität”) forms the basis of the distinction between concurrent and sequential designs. In a  sequential design , the quantitative component precedes the qualitative component, or vice versa. In a  concurrent design , both components are executed (almost) simultaneously. In the notation of Morse ( 1991 ), concurrence is indicated by a “+” between components (e. g., QUAL + quan), while sequentiality is indicated with a “→” (QUAL → quan). Note that the use of capital letters for one component and lower case letters for another component in the same design suggest that one component is primary and the other is secondary or supplemental.

Some designs are sequential by nature. For example, in a  conversion design, qualitative categories and themes might be first obtained by collection and analysis of qualitative data, and then subsequently quantitized (Teddlie and Tashakkori 2009 ). Likewise, with Greene et al.’s ( 1989 ) initiation purpose, the initiation strand follows the unexpected results that it is supposed to explain. In other cases, the researcher has a choice. It is possible, e. g., to collect interview data and survey data of one inquiry simultaneously; in that case, the research activities would be concurrent. It is also possible to conduct the interviews after the survey data have been collected (or vice versa); in that case, research activities are performed sequentially. Similarly, a study with the purpose of expansion can be designed in which data on an effect and the intervention process are collected simultaneously, or they can be collected sequentially.

A second aspect of timing is dependence (“Abhängigkeit”) . We call two research components dependent if the implementation of the second component depends on the results of data analysis in the first component. Two research components are independent , if their implementation does not depend on the results of data analysis in the other component. Often, a researcher has a choice to perform data analysis independently or not. A researcher could analyze interview data and questionnaire data of one inquiry independently; in that case, the research activities would be independent. It is also possible to let the interview questions depend upon the outcomes of the analysis of the questionnaire data (or vice versa); in that case, research activities are performed dependently. Similarly, the empirical outcome/effect and process in a study with the purpose of expansion might be investigated independently, or the process study might take the effect/outcome as given (dependent).

In the mixed methods literature, the distinction between sequential and concurrent usually refers to the combination of concurrent/independent and sequential/dependent, and to the combination of data collection and data analysis. It is said that in a concurrent design, the data collection and data analysis of both components occurs (almost) simultaneously and independently, while in a sequential design, the data collection and data analysis of one component take place after the data collection and data analysis of the other component and depends on the outcomes of the other component.

In our opinion, simultaneity and dependence are two separate dimensions. Simultaneity indicates whether data collection is done concurrent or sequentially. Dependence indicates whether the implementation of one component depends upon the results of data analysis of the other component. As we will see in the example case studies, a concurrent design could include dependent data analysis, and a sequential design could include independent data analysis. It is conceivable that one simultaneously conducts interviews and collects questionnaire data (concurrent), while allowing the analysis focus of the interviews to depend on what emerges from the survey data (dependence).

Dependent research activities include a redirection of subsequent research inquiry. Using the outcomes of the first research component, the researcher decides what to do in the second component. Depending on the outcomes of the first research component, the researcher will do something else in the second component. If this is so, the research activities involved are said to be sequential-dependent, and any component preceded by another component should appropriately build on the previous component (see sequential validity legitimation ; Johnson and Christensen 2017 ; Onwuegbuzie and Johnson 2006 ).

It is under the purposive discretion of the researcher to determine whether a concurrent-dependent design, a concurrent-independent design, a sequential-dependent design, or a sequential-dependent design is needed to answer a particular research question or set of research questions in a given situation.

Point of integration

Each true mixed methods study has at least one “point of integration” – called the “point of interface” by Morse and Niehaus ( 2009 ) and Guest ( 2013 ) –, at which the qualitative and quantitative components are brought together. Having one or more points of integration is the distinguishing feature of a design based on multiple components. It is at this point that the components are “mixed”, hence the label “mixed methods designs”. The term “mixing”, however, is misleading, as the components are not simply mixed, but have to be integrated very carefully.

Determining where the point of integration will be, and how the results will be integrated, is an important, if not the most important, decision in the design of mixed methods research. Morse and Niehaus ( 2009 ) identify two possible points of integration: the results point of integration and the analytical point of integration.

Most commonly, integration takes place in the results point of integration . At some point in writing down the results of the first component, the results of the second component are added and integrated. A  joint display (listing the qualitative and quantitative findings and an integrative statement) might be used to facilitate this process.

In the case of an analytical point of integration , a first analytical stage of a qualitative component is followed by a second analytical stage, in which the topics identified in the first analytical stage are quantitized. The results of the qualitative component ultimately, and before writing down the results of the analytical phase as a whole, become quantitative; qualitizing also is a possible strategy, which would be the converse of this.

Other authors assume more than two possible points of integration. Teddlie and Tashakkori ( 2009 ) distinguish four different stages of an investigation: the conceptualization stage, the methodological experimental stage (data collection), the analytical experimental stage (data analysis), and the inferential stage. According to these authors, in all four stages, mixing is possible, and thus all four stages are potential points or integration.

However, the four possible points of integration used by Teddlie and Tashakkori ( 2009 ) are still too coarse to distinguish some types of mixing. Mixing in the experiential stage can take many different forms, for example the use of cognitive interviews to improve a questionnaire (tool development), or selecting people for an interview on the basis of the results of a questionnaire (sampling). Extending the definition by Guest ( 2013 ), we define the point of integration as “any point in a study where two or more research components are mixed or connected in some way”. Then, the point of integration in the two examples of this paragraph can be defined more accurately as “instrument development”, and “development of the sample”.

It is at the point of integration that qualitative and quantitative components are integrated. Some primary ways that the components can be connected to each other are as follows:

(1) merging the two data sets, (2) connecting from the analysis of one set of data to the collection of a second set of data, (3) embedding of one form of data within a larger design or procedure, and (4) using a framework (theoretical or program) to bind together the data sets (Creswell and Plano Clark 2011 , p. 76).

More generally, one can consider mixing at any or all of the following research components: purposes, research questions, theoretical drive, methods, methodology, paradigm, data, analysis, and results. One can also include mixing views of different researchers, participants, or stakeholders. The creativity of the mixed methods researcher designing a study is extensive.

Substantively, it can be useful to think of integration or mixing as comparing and bringing together two (or more) components on the basis of one or more of the purposes set out in the first section of this article. For example, it is possible to use qualitative data to illustrate a quantitative effect, or to determine whether the qualitative and the quantitative component yield convergent results ( triangulation ). An integrated result could also consist of a combination of a quantitatively established effect and a qualitative description of the underlying process . In the case of development, integration consists of an adjustment of an, often quantitative, for example, instrument or model or interpretation, based on qualitative assessments by members of the target group.

A special case is the integration of divergent results. The power of mixed methods research is its ability to deal with diversity and divergence. In the literature, we find two kinds of strategies for dealing with divergent results. A first set of strategies takes the detected divergence as the starting point for further analysis, with the aim to resolve the divergence. One possibility is to carry out further research (Cook 1985 ; Greene and Hall 2010 ). Further research is not always necessary. One can also look for a more comprehensive theory, which is able to account for both the results of the first component and the deviating results of the second component. This is a form of abduction (Erzberger and Prein 1997 ).

A fruitful starting point in trying to resolve divergence through abduction is to determine which component has resulted in a finding that is somehow expected, logical, and/or in line with existing research. The results of this research component, called the “sense” (“Lesart”), are subsequently compared to the results of the other component, called the “anti-sense” (“alternative Lesart”), which are considered dissonant, unexpected, and/or contrary to what had been found in the literature. The aim is to develop an overall explanation that fits both the sense and the anti-sense (Bazeley and Kemp 2012 ; Mendlinger and Cwikel 2008 ). Finally, a reanalysis of the data can sometimes lead to resolving divergence (Creswell and Plano Clark 2011 ).

Alternatively, one can question the existence of the encountered divergence. In this regard, Mathison ( 1988 ) recommends determining whether deviating results shown by the data can be explained by knowledge about the research and/or knowledge of the social world. Differences between results from different data sources could also be the result of properties of the methods involved, rather than reflect differences in reality (Yanchar and Williams 2006 ). In general, the conclusions of the individual components can be subjected to an inference quality audit (Teddlie and Tashakkori 2009 ), in which the researcher investigates the strength of each of the divergent conclusions. We recommend that researchers first determine whether there is “real” divergence, according to the strategies mentioned in the last paragraph. Next, an attempt can be made to resolve cases of “true” divergence, using one or more of the methods mentioned in this paragraph.

Design typology utilization

As already mentioned in Sect. 1, mixed methods designs can be classified into a mixed methods typology or taxonomy. A typology serves several purposes, including the following: guiding practice, legitimizing the field, generating new possibilities, and serving as a useful pedagogical tool (Teddlie and Tashakkori 2009 ). Note, however, that not all types of typologies are equally suitable for all purposes. For generating new possibilities, one will need a more exhaustive typology, while a useful pedagogical tool might be better served by a non-exhaustive overview of the most common mixed methods designs. Although some of the current MM design typologies include more designs than others, none of the current typologies is fully exhaustive. When designing a mixed methods study, it is often useful to borrow its name from an existing typology, or to construct a superior and nuanced clear name when your design is based on a modification of one or more of the designs.

Various typologies of mixed methods designs have been proposed. Creswell and Plano Clark’s ( 2011 ) typology of some “commonly used designs” includes six “major mixed methods designs”. Our summary of these designs runs as follows:

  • Convergent parallel design (“paralleles Design”) (the quantitative and qualitative strands of the research are performed independently, and their results are brought together in the overall interpretation),
  • Explanatory sequential design (“explanatives Design”) (a first phase of quantitative data collection and analysis is followed by the collection of qualitative data, which are used to explain the initial quantitative results),
  • Exploratory sequential design (“exploratives Design”) (a first phase of qualitative data collection and analysis is followed by the collection of quantitative data to test or generalize the initial qualitative results),
  • Embedded design (“Einbettungs-Design”) (in a traditional qualitative or quantitative design, a strand of the other type is added to enhance the overall design),
  • Transformative design (“politisch-transformatives Design”) (a transformative theoretical framework, e. g. feminism or critical race theory, shapes the interaction, priority, timing and mixing of the qualitative and quantitative strand),
  • Multiphase design (“Mehrphasen-Design”) (more than two phases or both sequential and concurrent strands are combined over a period of time within a program of study addressing an overall program objective).

Most of their designs presuppose a specific juxtaposition of the qualitative and quantitative component. Note that the last design is a complex type that is required in many mixed methods studies.

The following are our adapted definitions of Teddlie and Tashakkori’s ( 2009 ) five sets of mixed methods research designs (adapted from Teddlie and Tashakkori 2009 , p. 151):

  • Parallel mixed designs (“paralleles Mixed-Methods-Design”) – In these designs, one has two or more parallel quantitative and qualitative strands, either with some minimal time lapse or simultaneously; the strand results are integrated into meta-inferences after separate analysis are conducted; related QUAN and QUAL research questions are answered or aspects of the same mixed research question is addressed.
  • Sequential mixed designs (“sequenzielles Mixed-Methods-Design”) – In these designs, QUAL and QUAN strands occur across chronological phases, and the procedures/questions from the later strand emerge/depend/build on on the previous strand; the research questions are interrelated and sometimes evolve during the study.
  • Conversion mixed designs (“Transfer-Design” or “Konversionsdesign”) – In these parallel designs, mixing occurs when one type of data is transformed to the other type and then analyzed, and the additional findings are added to the results; this design answers related aspects of the same research question,
  • Multilevel mixed designs (“Mehrebenen-Mixed-Methods-Design”) – In these parallel or sequential designs, mixing occurs across multiple levels of analysis, as QUAN and QUAL data are analyzed and integrated to answer related aspects of the same research question or related questions.
  • Fully integrated mixed designs (“voll integriertes Mixed-Methods-Design”) – In these designs, mixing occurs in an interactive manner at all stages of the study. At each stage, one approach affects the formulation of the other, and multiple types of implementation processes can occur. For example, rather than including integration only at the findings/results stage, or only across phases in a sequential design, mixing might occur at the conceptualization stage, the methodological stage, the analysis stage, and the inferential stage.

We recommend adding to Teddlie and Tashakkori’s typology a sixth design type, specifically, a  “hybrid” design type to include complex combinations of two or more of the other design types. We expect that many published MM designs will fall into the hybrid design type.

Morse and Niehaus ( 2009 ) listed eight mixed methods designs in their book (and suggested that authors create more complex combinations when needed). Our shorthand labels and descriptions (adapted from Morse and Niehaus 2009 , p. 25) run as follows:

  • QUAL + quan (inductive-simultaneous design where, the core component is qualitative and the supplemental component is quantitative)
  • QUAL → quan (inductive-sequential design, where the core component is qualitative and the supplemental component is quantitative)
  • QUAN + qual (deductive-simultaneous design where, the core component is quantitative and the supplemental component is qualitative)
  • QUAN → qual (deductive-sequential design, where the core component is quantitative and the supplemental component is qualitative)
  • QUAL + qual (inductive-simultaneous design, where both components are qualitative; this is a multimethod design rather than a mixed methods design)
  • QUAL → qual (inductive-sequential design, where both components are qualitative; this is a multimethod design rather than a mixed methods design)
  • QUAN + quan (deductive-simultaneous design, where both components are quantitative; this is a multimethod design rather than a mixed methods design)
  • QUAN → quan (deductive-sequential design, where both components are quantitative; this is a multimethod design rather than a mixed methods design).

Notice that Morse and Niehaus ( 2009 ) included four mixed methods designs (the first four designs shown above) and four multimethod designs (the second set of four designs shown above) in their typology. The reader can, therefore, see that the design notation also works quite well for multimethod research designs. Notably absent from Morse and Niehaus’s book are equal-status or interactive designs. In addition, they assume that the core component should always be performed either concurrent with or before the supplemental component.

Johnson, Christensen, and Onwuegbuzie constructed a set of mixed methods designs without these limitations. The resulting mixed methods design matrix (see Johnson and Christensen 2017 , p. 478) contains nine designs, which we can label as follows (adapted from Johnson and Christensen 2017 , p. 478):

  • QUAL + QUAN (equal-status concurrent design),
  • QUAL + quan (qualitatively driven concurrent design),
  • QUAN + qual (quantitatively driven concurrent design),
  • QUAL → QUAN (equal-status sequential design),
  • QUAN → QUAL (equal-status sequential design),
  • QUAL → quan (qualitatively driven sequential design),
  • qual → QUAN (quantitatively driven sequential design),
  • QUAN → qual (quantitatively driven sequential design), and
  • quan → QUAL (qualitatively driven sequential design).

The above set of nine designs assumed only one qualitative and one quantitative component. However, this simplistic assumption can be relaxed in practice, allowing the reader to construct more complex designs. The Morse notation system is very powerful. For example, here is a three-stage equal-status concurrent-sequential design:

The key point here is that the Morse notation provides researchers with a powerful language for depicting and communicating the design constructed for a specific research study.

When designing a mixed methods study, it is sometimes helpful to include the mixing purpose (or characteristic on one of the other dimensions shown in Table  1 ) in the title of the study design (e. g., an explanatory sequential MM design, an exploratory-confirmatory MM design, a developmental MM design). Much more important, however, than a design name is for the author to provide an accurate description of what was done in the research study, so the reader will know exactly how the study was conducted. A design classification label can never replace such a description.

The common complexity of mixed methods design poses a problem to the above typologies of mixed methods research. The typologies were designed to classify whole mixed methods studies, and they are basically based on a classification of simple designs. In practice, many/most designs are complex. Complex designs are sometimes labeled “complex design”, “multiphase design”, “fully integrated design”, “hybrid design” and the like. Because complex designs occur very often in practice, the above typologies are not able to classify a large part of existing mixed methods research any further than by labeling them “complex”, which in itself is not very informative about the particular design. This problem does not fully apply to Morse’s notation system, which can be used to symbolize some more complex designs.

Something similar applies to the classification of the purposes of mixed methods research. The classifications of purposes mentioned in the “Purpose”-section, again, are basically meant for the classification of whole mixed methods studies. In practice, however, one single study often serves more than one purpose (Schoonenboom et al. 2017 ). The more purposes that are included in one study, the more difficult it becomes to select a design on the basis of the purpose of the investigation, as advised by Greene ( 2007 ). Of all purposes involved, then, which one should be the primary basis for the design? Or should the design be based upon all purposes included? And if so, how? For more information on how to articulate design complexity based on multiple purposes of mixing, see Schoonenboom et al. ( 2017 ).

It should be clear to the reader that, although much progress has been made in the area of mixed methods design typologies, the problem remains in developing a single typology that is effective in comprehensively listing a set of designs for mixed methods research. This is why we emphasize in this article the importance of learning to build on simple designs and construct one’s own design for one’s research questions. This will often result in a combination or “hybrid” design that goes beyond basic designs found in typologies, and a methodology section that provides much more information than a design name.

Typological versus interactive approaches to design

In the introduction, we made a distinction between design as a product and design as a process. Related to this, two different approaches to design can be distinguished: typological/taxonomic approaches (“systematische Ansätze”), such as those in the previous section, and interactive approaches (“interaktive Ansätze”) (the latter were called “dynamic” approaches by Creswell and Plano Clark 2011 ). Whereas typological/taxonomic approaches view designs as a sort of mold, in which the inquiry can be fit, interactive approaches (Maxwell 2013 ) view design as a process, in which a certain design-as-a-product might be the outcome of the process, but not its input.

The most frequently mentioned interactive approach to mixed methods research is the approach by Maxwell and Loomis ( 2003 ). Maxwell and Loomis distinguish the following components of a design: goals, conceptual framework, research question, methods, and validity. They argue convincingly that the most important task of the researcher is to deliver as the end product of the design process a design in which these five components fit together properly. During the design process, the researcher works alternately on the individual components, and as a result, their initial fit, if it existed, tends to get lost. The researcher should therefore regularly check during the research and continuing design process whether the components still fit together, and, if not, should adapt one or the other component to restore the fit between them. In an interactive approach, unlike the typological approach, design is viewed as an interactive process in which the components are continually compared during the research study to each other and adapted to each other.

Typological and interactive approaches to mixed methods research have been presented as mutually exclusive alternatives. In our view, however, they are not mutually exclusive. The interactive approach of Maxwell is a very powerful tool for conducting research, yet this approach is not specific to mixed methods research. Maxwell’s interactive approach emphasizes that the researcher should keep and monitor a close fit between the five components of research design. However, it does not indicate how one should combine qualitative and quantitative subcomponents within one of Maxwell’s five components (e. g., how one should combine a qualitative and a quantitative method, or a qualitative and a quantitative research question). Essential elements of the design process, such as timing and the point of integration are not covered by Maxwell’s approach. This is not a shortcoming of Maxwell’s approach, but it indicates that to support the design of mixed methods research, more is needed than Maxwell’s model currently has to offer.

Some authors state that design typologies are particularly useful for beginning researchers and interactive approaches are suited for experienced researchers (Creswell and Plano Clark 2011 ). However, like an experienced researcher, a research novice needs to align the components of his or her design properly with each other, and, like a beginning researcher, an advanced researcher should indicate how qualitative and quantitative components are combined with each other. This makes an interactive approach desirable, also for beginning researchers.

We see two merits of the typological/taxonomic approach . We agree with Greene ( 2007 ), who states that the value of the typological approach mainly lies in the different dimensions of mixed methods that result from its classifications. In this article, the primary dimensions include purpose, theoretical drive, timing, point of integration, typological vs. interactive approaches, planned vs. emergent designs, and complexity (also see secondary dimensions in Table  1 ). Unfortunately, all of these dimensions are not reflected in any single design typology reviewed here. A second merit of the typological approach is the provision of common mixed methods research designs, of common ways in which qualitative and quantitative research can be combined, as is done for example in the major designs of Creswell and Plano Clark ( 2011 ). Contrary to other authors, however, we do not consider these designs as a feature of a whole study, but rather, in line with Guest ( 2013 ), as a feature of one part of a design in which one qualitative and one quantitative component are combined. Although one study could have only one purpose, one point of integration, et cetera, we believe that combining “designs” is the rule and not the exception. Therefore, complex designs need to be constructed and modified as needed, and during the writing phase the design should be described in detail and perhaps given a creative and descriptive name.

Planned versus emergent designs

A mixed methods design can be thought out in advance, but can also arise during the course of the conduct of the study; the latter is called an “emergent” design (Creswell and Plano Clark 2011 ). Emergent designs arise, for example, when the researcher discovers during the study that one of the components is inadequate (Morse and Niehaus 2009 ). Addition of a component of the other type can sometimes remedy such an inadequacy. Some designs contain an emergent component by their nature. Initiation, for example, is the further exploration of unexpected outcomes. Unexpected outcomes are by definition not foreseen, and therefore cannot be included in the design in advance.

The question arises whether researchers should plan all these decisions beforehand, or whether they can make them during, and depending on the course of, the research process. The answer to this question is twofold. On the one hand, a researcher should decide beforehand which research components to include in the design, such that the conclusion that will be drawn will be robust. On the other hand, developments during research execution will sometimes prompt the researcher to decide to add additional components. In general, the advice is to be prepared for the unexpected. When one is able to plan for emergence, one should not refrain from doing so.

Dimension of complexity

Next, mixed methods designs are characterized by their complexity. In the literature, simple and complex designs are distinguished in various ways. A common distinction is between simple investigations with a single point of integration versus complex investigations with multiple points of integration (Guest 2013 ). When designing a mixed methods study, it can be useful to mention in the title whether the design of the study is simple or complex. The primary message of this section is as follows: It is the responsibility of the researcher to create more complex designs when needed to answer his or her research question(s) .

Teddlie and Tashakkori’s ( 2009 ) multilevel mixed designs and fully integrated mixed designs are both complex designs, but for different reasons. A multilevel mixed design is more complex ontologically, because it involves multiple levels of reality. For example, data might be collected both at the levels of schools and students, neighborhood and households, companies and employees, communities and inhabitants, or medical practices and patients (Yin 2013 ). Integration of these data does not only involve the integration of qualitative and quantitative data, but also the integration of data originating from different sources and existing at different levels. Little if any published research has discussed the possible ways of integrating data obtained in a multilevel mixed design (see Schoonenboom 2016 ). This is an area in need of additional research.

The fully-integrated mixed design is more complex because it contains multiple points of integration. As formulated by Teddlie and Tashakkori ( 2009 , p. 151):

In these designs, mixing occurs in an interactive manner at all stages of the study. At each stage, one approach affects the formulation of the other, and multiple types of implementation processes can occur.

Complexity, then, not only depends on the number of components, but also on the extent to which they depend on each other (e. g., “one approach affects the formulation of the other”).

Many of our design dimensions ultimately refer to different ways in which the qualitative and quantitative research components are interdependent. Different purposes of mixing ultimately differ in the way one component relates to, and depends upon, the other component. For example, these purposes include dependencies, such as “x illustrates y” and “x explains y”. Dependencies in the implementation of x and y occur to the extent that the design of y depends on the results of x (sequentiality). The theoretical drive creates dependencies, because the supplemental component y is performed and interpreted within the context and the theoretical drive of core component x. As a general rule in designing mixed methods research, one should examine and plan carefully the ways in which and the extent to which the various components depend on each other.

The dependence among components, which may or may not be present, has been summarized by Greene ( 2007 ). It is seen in the distinction between component designs (“Komponenten-Designs”), in which the components are independent of each other, and integrated designs (“integrierte Designs”), in which the components are interdependent. Of these two design categories, integrated designs are the more complex designs.

Secondary design considerations

The primary design dimensions explained above have been the focus of this article. There are a number of secondary considerations for researchers to also think about when they design their studies (Johnson and Christensen 2017 ). Now we list some secondary design issues and questions that should be thoughtfully considered during the construction of a strong mixed methods research design.

  • Phenomenon: Will the study be addressing (a) the same part or different parts of one phenomenon? (b) different phenomena?, or (c) the phenomenon/phenomena from different perspectives? Is the phenomenon (a) expected to be unique (e. g., historical event, particular group)?, (b) something expected to be part of a more regular and predictable phenomenon, or (c) a complex mixture of these?
  • Social scientific theory: Will the study generate a new substantive theory, test an already constructed theory, or achieve both in a sequential arrangement? Or is the researcher not interested in substantive theory based on empirical data?
  • Ideological drive: Will the study have an explicitly articulated ideological drive (e. g., feminism, critical race paradigm, transformative paradigm)?
  • Combination of sampling methods: What specific quantitative sampling method(s) will be used? What specific qualitative sampling methods(s) will be used? How will these be combined or related?
  • Degree to which the research participants will be similar or different: For example, participants or stakeholders with known differences of perspective would provide participants that are quite different.
  • Degree to which the researchers on the research team will be similar or different: For example, an experiment conducted by one researcher would be high on similarity, but the use of a heterogeneous and participatory research team would include many differences.
  • Implementation setting: Will the phenomenon be studied naturalistically, experimentally, or through a combination of these?
  • Degree to which the methods similar or different: For example, a structured interview and questionnaire are fairly similar but administration of a standardized test and participant observation in the field are quite different.
  • Validity criteria and strategies: What validity criteria and strategies will be used to address the defensibility of the study and the conclusions that will be drawn from it (see Chapter 11 in Johnson and Christensen 2017 )?
  • Full study: Will there be essentially one research study or more than one? How will the research report be structured?

Two case studies

The above design dimensions are now illustrated by examples. A nice collection of examples of mixed methods studies can be found in Hesse-Biber ( 2010 ), from which the following examples are taken. The description of the first case example is shown in Box 1.

Box 1

Summary of Roth ( 2006 ), research regarding the gender-wage gap within Wall Street securities firms. Adapted from Hesse-Biber ( 2010 , pp. 457–458)

Louise Marie Roth’s research, Selling Women Short: Gender and Money on Wall Street ( 2006 ), tackles gender inequality in the workplace. She was interested in understanding the gender-wage gap among highly performing Wall Street MBAs, who on the surface appeared to have the same “human capital” qualifications and were placed in high-ranking Wall Street securities firms as their first jobs. In addition, Roth wanted to understand the “structural factors” within the workplace setting that may contribute to the gender-wage gap and its persistence over time. […] Roth conducted semistructured interviews, nesting quantitative closed-ended questions into primarily qualitative in-depth interviews […] In analyzing the quantitative data from her sample, she statistically considered all those factors that might legitimately account for gendered differences such as number of hours worked, any human capital differences, and so on. Her analysis of the quantitative data revealed the presence of a significant gender gap in wages that remained unexplained after controlling for any legitimate factors that might otherwise make a difference. […] Quantitative findings showed the extent of the wage gap while providing numerical understanding of the disparity but did not provide her with an understanding of the specific processes within the workplace that might have contributed to the gender gap in wages. […] Her respondents’ lived experiences over time revealed the hidden inner structures of the workplace that consist of discriminatory organizational practices with regard to decision making in performance evaluations that are tightly tied to wage increases and promotion.

This example nicely illustrates the distinction we made between simultaneity and dependency. On the two aspects of the timing dimension, this study was a concurrent-dependent design answering a set of related research questions. The data collection in this example was conducted simultaneously, and was thus concurrent – the quantitative closed-ended questions were embedded into the qualitative in-depth interviews. In contrast, the analysis was dependent, as explained in the next paragraph.

One of the purposes of this study was explanation: The qualitative data were used to understand the processes underlying the quantitative outcomes. It is therefore an explanatory design, and might be labelled an “explanatory concurrent design”. Conceptually, explanatory designs are often dependent: The qualitative component is used to explain and clarify the outcomes of the quantitative component. In that sense, the qualitative analysis in the case study took the outcomes of the quantitative component (“the existence of the gender-wage gap” and “numerical understanding of the disparity”), and aimed at providing an explanation for that result of the quantitative data analysis , by relating it to the contextual circumstances in which the quantitative outcomes were produced. This purpose of mixing in the example corresponds to Bryman’s ( 2006 ) “contextual understanding”. On the other primary dimensions, (a) the design was ongoing over a three-year period but was not emergent, (b) the point of integration was results, and (c) the design was not complex with respect to the point of integration, as it had only one point of integration. Yet, it was complex in the sense of involving multiple levels; both the level of the individual and the organization were included. According to the approach of Johnson and Christensen ( 2017 ), this was a QUAL + quan design (that was qualitatively driven, explanatory, and concurrent). If we give this study design a name, perhaps it should focus on what was done in the study: “explaining an effect from the process by which it is produced”. Having said this, the name “explanatory concurrent design” could also be used.

The description of the second case example is shown in Box 2.

Box 2

Summary of McMahon’s ( 2007 ) explorative study of the meaning, role, and salience of rape myths within the subculture of college student athletes. Adapted from Hesse-Biber ( 2010 , pp. 461–462)

Sarah McMahon ( 2007 ) wanted to explore the subculture of college student athletes and specifically the meaning, role, and salience of rape myths within that culture. […] While she was looking for confirmation between the quantitative ([structured] survey) and qualitative (focus groups and individual interviews) findings, she entered this study skeptical of whether or not her quantitative and qualitative findings would mesh with one another. McMahon […] first administered a survey [instrument] to 205 sophomore and junior student athletes at one Northeast public university. […] The quantitative data revealed a very low acceptance of rape myths among this student population but revealed a higher acceptance of violence among men and individuals who did not know a survivor of sexual assault. In the second qualitative (QUAL) phase, “focus groups were conducted as semi-structured interviews” and facilitated by someone of the same gender as the participants (p. 360). […] She followed this up with a third qualitative component (QUAL), individual interviews, which were conducted to elaborate on themes discovered in the focus groups and determine any differences in students’ responses between situations (i. e., group setting vs. individual). The interview guide was designed specifically to address focus group topics that needed “more in-depth exploration” or clarification (p. 361). The qualitative findings from the focus groups and individual qualitative interviews revealed “subtle yet pervasive rape myths” that fell into four major themes: “the misunderstanding of consent, the belief in ‘accidental’ and fabricated rape, the contention that some women provoke rape, and the invulnerability of female athletes” (p. 363). She found that the survey’s finding of a “low acceptance of rape myths … was contradicted by the findings of the focus groups and individual interviews, which indicated the presence of subtle rape myths” (p. 362).

On the timing dimension, this is an example of a sequential-independent design. It is sequential, because the qualitative focus groups were conducted after the survey was administered. The analysis of the quantitative and qualitative data was independent: Both were analyzed independently, to see whether they yielded the same results (which they did not). This purpose, therefore, was triangulation. On the other primary dimensions, (a) the design was planned, (b) the point of integration was results, and (c) the design was not complex as it had only one point of integration, and involved only the level of the individual. The author called this a “sequential explanatory” design. We doubt, however, whether this is the most appropriate label, because the qualitative component did not provide an explanation for quantitative results that were taken as given. On the contrary, the qualitative results contradicted the quantitative results. Thus, a “sequential-independent” design, or a “sequential-triangulation” design or a “sequential-comparative” design would probably be a better name.

Notice further that the second case study had the same point of integration as the first case study. The two components were brought together in the results. Thus, although the case studies are very dissimilar in many respects, this does not become visible in their point of integration. It can therefore be helpful to determine whether their point of extension is different. A  point of extension is the point in the research process at which the second (or later) component comes into play. In the first case study, two related, but different research questions were answered, namely the quantitative question “How large is the gender-wage gap among highly performing Wall Street MBAs after controlling for any legitimate factors that might otherwise make a difference?”, and the qualitative research question “How do structural factors within the workplace setting contribute to the gender-wage gap and its persistence over time?” This case study contains one qualitative research question and one quantitative research question. Therefore, the point of extension is the research question. In the second case study, both components answered the same research question. They differed in their data collection (and subsequently in their data analysis): qualitative focus groups and individual interviews versus a quantitative questionnaire. In this case study, the point of extension was data collection. Thus, the point of extension can be used to distinguish between the two case studies.

Summary and conclusions

The purpose of this article is to help researchers to understand how to design a mixed methods research study. Perhaps the simplest approach is to design is to look at a single book and select one from the few designs included in that book. We believe that is only useful as a starting point. Here we have shown that one often needs to construct a research design to fit one’s unique research situation and questions.

First, we showed that there are there are many purposes for which qualitative and quantitative methods, methodologies, and paradigms can be mixed. This must be determined in interaction with the research questions. Inclusion of a purpose in the design name can sometimes provide readers with useful information about the study design, as in, e. g., an “explanatory sequential design” or an “exploratory-confirmatory design”.

The second dimension is theoretical drive in the sense that Morse and Niehaus ( 2009 ) use this term. That is, will the study have an inductive or a deductive drive, or, we added, a combination of these. Related to this idea is whether one will conduct a qualitatively driven, a quantitatively driven, or an equal-status mixed methods study. This language is sometimes included in the design name to communicate this characteristic of the study design (e. g., a “quantitatively driven sequential mixed methods design”).

The third dimension is timing , which has two aspects: simultaneity and dependence. Simultaneity refers to whether the components are to be implemented concurrently, sequentially, or a combination of these in a multiphase design. Simultaneity is commonly used in the naming of a mixed methods design because it communicates key information. The second aspect of timing, dependence , refers to whether a later component depends on the results of an earlier component, e. g., Did phase two specifically build on phase one in the research study? The fourth design dimension is the point of integration, which is where the qualitative and quantitative components are brought together and integrated. This is an essential dimension, but it usually does not need to be incorporated into the design name.

The fifth design dimension is that of typological vs. interactive design approaches . That is, will one select a design from a typology or use a more interactive approach to construct one’s own design? There are many typologies of designs currently in the literature. Our recommendation is that readers examine multiple design typologies to better understand the design process in mixed methods research and to understand what designs have been identified as popular in the field. However, when a design that would follow from one’s research questions is not available, the researcher can and should (a) combine designs into new designs or (b) simply construct a new and unique design. One can go a long way in depicting a complex design with Morse’s ( 1991 ) notation when used to its full potential. We also recommend that researchers understand the process approach to design from Maxwell and Loomis ( 2003 ), and realize that research design is a process and it needs, oftentimes, to be flexible and interactive.

The sixth design dimension or consideration is whether a design will be fully specified during the planning of the research study or if the design (or part of the design) will be allowed to emerge during the research process, or a combination of these. The seventh design dimension is called complexity . One sort of complexity mentioned was multilevel designs, but there are many complexities that can enter designs. The key point is that good research often requires the use of complex designs to answer one’s research questions. This is not something to avoid. It is the responsibility of the researcher to learn how to construct and describe and name mixed methods research designs. Always remember that designs should follow from one’s research questions and purposes, rather than questions and purposes following from a few currently named designs.

In addition to the six primary design dimensions or considerations, we provided a set of additional or secondary dimensions/considerations or questions to ask when constructing a mixed methods study design. Our purpose throughout this article has been to show what factors must be considered to design a high quality mixed methods research study. The more one knows and thinks about the primary and secondary dimensions of mixed methods design the better equipped one will be to pursue mixed methods research.

Acknowledgments

Open access funding provided by University of Vienna.

Biographies

1965, Dr., Professor of Empirical Pedagogy at University of Vienna, Austria. Research Areas: Mixed Methods Design, Philosophy of Mixed Methods Research, Innovation in Higher Education, Design and Evaluation of Intervention Studies, Educational Technology. Publications: Mixed methods in early childhood education. In: M. Fleer & B. v. Oers (Eds.), International handbook on early childhood education (Vol. 1). Dordrecht, The Netherlands: Springer 2017; The multilevel mixed intact group analysis: A mixed method to seek, detect, describe and explain differences between intact groups. Journal of Mixed Methods Research 10, 2016; The realist survey: How respondents’ voices can be used to test and revise correlational models. Journal of Mixed Methods Research 2015. Advance online publication.

1957, PhD, Professor of Professional Studies at University of South Alabama, Mobile, Alabama USA. Research Areas: Methods of Social Research, Program Evaluation, Quantitative, Qualitative and Mixed Methods, Philosophy of Social Science. Publications: Research methods, design and analysis. Boston, MA 2014 (with L. Christensen and L. Turner); Educational research: Quantitative, qualitative and mixed approaches. Los Angeles, CA 2017 (with L. Christensen); The Oxford handbook of multimethod and mixed methods research inquiry. New York, NY 2015 (with S. Hesse-Biber).

Bryman’s ( 2006 ) scheme of rationales for combining quantitative and qualitative research 1

  • Triangulation or greater validity – refers to the traditional view that quantitative and qualitative research might be combined to triangulate findings in order that they may be mutually corroborated. If the term was used as a synonym for integrating quantitative and qualitative research, it was not coded as triangulation.
  • Offset – refers to the suggestion that the research methods associated with both quantitative and qualitative research have their own strengths and weaknesses so that combining them allows the researcher to offset their weaknesses to draw on the strengths of both.
  • Completeness – refers to the notion that the researcher can bring together a more comprehensive account of the area of enquiry in which he or she is interested if both quantitative and qualitative research are employed.
  • Process – quantitative research provides an account of structures in social life but qualitative research provides sense of process.
  • Different research questions – this is the argument that quantitative and qualitative research can each answer different research questions but this item was coded only if authors explicitly stated that they were doing this.
  • Explanation – one is used to help explain findings generated by the other.
  • Unexpected results – refers to the suggestion that quantitative and qualitative research can be fruitfully combined when one generates surprising results that can be understood by employing the other.
  • Instrument development – refers to contexts in which qualitative research is employed to develop questionnaire and scale items – for example, so that better wording or more comprehensive closed answers can be generated.
  • Sampling – refers to situations in which one approach is used to facilitate the sampling of respondents or cases.
  • Credibility – refer s to suggestions that employing both approaches enhances the integrity of findings.
  • Context – refers to cases in which the combination is rationalized in terms of qualitative research providing contextual understanding coupled with either generalizable, externally valid findings or broad relationships among variables uncovered through a survey.
  • Illustration – refers to the use of qualitative data to illustrate quantitative findings, often referred to as putting “meat on the bones” of “dry” quantitative findings.
  • Utility or improving the usefulness of findings – refers to a suggestion, which is more likely to be prominent among articles with an applied focus, that combining the two approaches will be more useful to practitioners and others.
  • Confirm and discover – this entails using qualitative data to generate hypotheses and using quantitative research to test them within a single project.
  • Diversity of views – this includes two slightly different rationales – namely, combining researchers’ and participants’ perspectives through quantitative and qualitative research respectively, and uncovering relationships between variables through quantitative research while also revealing meanings among research participants through qualitative research.
  • Enhancement or building upon quantitative/qualitative findings – this entails a reference to making more of or augmenting either quantitative or qualitative findings by gathering data using a qualitative or quantitative research approach.
  • Other/unclear.
  • Not stated.

1 Reprinted with permission from “Integrating quantitative and qualitative research: How is it done?” by Alan Bryman ( 2006 ), Qualitative Research, 6, pp. 105–107.

Contributor Information

Judith Schoonenboom, Email: [email protected] .

R. Burke Johnson, Email: ude.amabalahtuos@nosnhojb .

  • Bazeley, Pat, Lynn Kemp Mosaics, triangles, and DNA: Metaphors for integrated analysis in mixed methods research. Journal of Mixed Methods Research. 2012; 6 :55–72. doi: 10.1177/1558689811419514. [ CrossRef ] [ Google Scholar ]
  • Bryman A. Integrating quantitative and qualitative research: how is it done? Qualitative Research. 2006; 6 :97–113. doi: 10.1177/1468794106058877. [ CrossRef ] [ Google Scholar ]
  • Cook TD. Postpositivist critical multiplism. In: Shotland RL, Mark MM, editors. Social science and social policy. Beverly Hills: SAGE; 1985. pp. 21–62. [ Google Scholar ]
  • Creswell JW, Plano Clark VL. Designing and conducting mixed methods research. 2. Los Angeles: SAGE; 2011. [ Google Scholar ]
  • Erzberger C, Prein G. Triangulation: Validity and empirically-based hypothesis construction. Quality and Quantity. 1997; 31 :141–154. doi: 10.1023/A:1004249313062. [ CrossRef ] [ Google Scholar ]
  • Greene JC. Mixed methods in social inquiry. San Francisco: Jossey-Bass; 2007. [ Google Scholar ]
  • Greene JC. Preserving distinctions within the multimethod and mixed methods research merger. Sharlene Hesse-Biber and R. Burke Johnson. New York: Oxford University Press; 2015. [ Google Scholar ]
  • Greene JC, Valerie J, Caracelli, Graham WF. Toward a conceptual framework for mixed-method evaluation designs. Educational Evaluation and Policy Analysis. 1989; 11 :255–274. doi: 10.3102/01623737011003255. [ CrossRef ] [ Google Scholar ]
  • Greene JC, Hall JN. Dialectics and pragmatism. In: Tashakkori A, Teddlie C, editors. SAGE handbook of mixed methods in social & behavioral research. 2. Los Angeles: SAGE; 2010. pp. 119–167. [ Google Scholar ]
  • Guest, Greg Describing mixed methods research: An alternative to typologies. Journal of Mixed Methods Research. 2013; 7 :141–151. doi: 10.1177/1558689812461179. [ CrossRef ] [ Google Scholar ]
  • Hesse-Biber S. Qualitative approaches to mixed methods practice. Qualitative Inquiry. 2010; 16 :455–468. doi: 10.1177/1077800410364611. [ CrossRef ] [ Google Scholar ]
  • Johnson BR. Dialectical pluralism: A metaparadigm whose time has come. Journal of Mixed Methods Research. 2017; 11 :156–173. doi: 10.1177/1558689815607692. [ CrossRef ] [ Google Scholar ]
  • Johnson BR, Christensen LB. Educational research: Quantitative, qualitative, and mixed approaches. 6. Los Angeles: SAGE; 2017. [ Google Scholar ]
  • Johnson BR, Onwuegbuzie AJ. Mixed methods research: a research paradigm whose time has come. Educational Researcher. 2004; 33 (7):14–26. doi: 10.3102/0013189X033007014. [ CrossRef ] [ Google Scholar ]
  • Johnson BR, Onwuegbuzie AJ, Turner LA. Toward a definition of mixed methods research. Journal of Mixed Methods Research. 2007; 1 :112–133. doi: 10.1177/1558689806298224. [ CrossRef ] [ Google Scholar ]
  • Mathison S. Why triangulate? Educational Researcher. 1988; 17 :13–17. doi: 10.3102/0013189X017002013. [ CrossRef ] [ Google Scholar ]
  • Maxwell JA. Qualitative research design: An interactive approach. 3. Los Angeles: SAGE; 2013. [ Google Scholar ]
  • Maxwell, Joseph A., and Diane M. Loomis. 2003. Mixed methods design: An alternative approach. In Handbook of mixed methods in social & behavioral research , Eds. Abbas Tashakkori and Charles Teddlie, 241–271. Thousand Oaks: Sage.
  • McMahon S. Understanding community-specific rape myths: Exploring student athlete culture. Affilia. 2007; 22 :357–370. doi: 10.1177/0886109907306331. [ CrossRef ] [ Google Scholar ]
  • Mendlinger S, Cwikel J. Spiraling between qualitative and quantitative data on women’s health behaviors: A double helix model for mixed methods. Qualitative Health Research. 2008; 18 :280–293. doi: 10.1177/1049732307312392. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morgan DL. Integrating qualitative and quantitative methods: a pragmatic approach. Los Angeles: Sage; 2014. [ Google Scholar ]
  • Morse JM. Approaches to qualitative-quantitative methodological triangulation. Nursing Research. 1991; 40 :120–123. doi: 10.1097/00006199-199103000-00014. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morse JM, Niehaus L. Mixed method design: Principles and procedures. Walnut Creek: Left Coast Press; 2009. [ Google Scholar ]
  • Onwuegbuzie AJ, Burke Johnson R. The “validity” issue in mixed research. Research in the Schools. 2006; 13 :48–63. [ Google Scholar ]
  • Roth LM. Selling women short: Gender and money on Wall Street. Princeton: Princeton University Press; 2006. [ Google Scholar ]
  • Schoonenboom J. The multilevel mixed intact group analysis: a mixed method to seek, detect, describe and explain differences between intact groups. Journal of Mixed Methods Research. 2016; 10 :129–146. doi: 10.1177/1558689814536283. [ CrossRef ] [ Google Scholar ]
  • Schoonenboom, Judith, R. Burke Johnson, and Dominik E. Froehlich. 2017, in press. Combining multiple purposes of mixing within a mixed methods research design. International Journal of Multiple Research Approaches .
  • Teddlie CB, Tashakkori A. Foundations of mixed methods research: Integrating quantitative and qualitative approaches in the social and behavioral sciences. Los Angeles: Sage; 2009. [ Google Scholar ]
  • Yanchar SC, Williams DD. Reconsidering the compatibility thesis and eclecticism: Five proposed guidelines for method use. Educational Researcher. 2006; 35 (9):3–12. doi: 10.3102/0013189X035009003. [ CrossRef ] [ Google Scholar ]
  • Yin RK. Case study research: design and methods. 5. Los Angeles: SAGE; 2013. [ Google Scholar ]

Book cover

Writing about Quantitative Research in Applied Linguistics pp 11–24 Cite as

Writing about Research Design

  • Lindy Woodrow 2  

1630 Accesses

The focus of this chapter is on writing about research design. This includes identifying the variables of the study, the research approach, research questions and methods of collecting data. The research design of a project is very important. This is one of the primary concerns of a reader when evaluating a research text. In writing about quantitative research, there needs to be evidence and often justification of the design of the research project. This chapter includes the following sections:

Technical information

Research purpose

Methods and methodology

Research questions and hypotheses

Types of design

Purpose statement

Writing about methodology

Research questions

Research design

  • Research Design
  • Journal Article
  • Quantitative Research
  • Purpose Statement
  • Mixed Method Research

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Unable to display preview.  Download preview PDF.

Further reading

Dörnyei, Z., & Taguchi, T. (2010). Questionnaires in second language research: Construction, administration and processing (2nd ed.). London: Routledge.

Google Scholar  

Field, A., & Hole, G. (2003). How to design and report experiments . London: Sage.

Sunderland, J. (2010). Research questions on linguistics. In L. Litosseliti (Ed.), Research methods in linguistics , pp. 9–28. London: Continuum.

Sources of examples

Levine, G. S. (2003). Student and instructor beliefs and attitudes about target language use, first language use and anxiety: Report of a questionnaire study. Modern Language Journal , 87(3), 343–364.

Article   Google Scholar  

Peng, J. E., & Woodrow, L. J. (2010). Willingness to communicate in English: A model in Chinese EFL classroom context. Language Learning , 60(4), 834–876.

Ryan, S. (2008). The ideal L2 selves of Japanese learners of English . PhD, University of Nottingham.

Sachs, G. T., Candlin, C. N., Rose, K. R., & Shum, S. (2003). Developing cooperative learning in the EFL/ESL secondary classroom. RELC Journal , 34(3), 338–369.

Schoonen, R., van Gelderen, A., Stoel, R., Hulstijn, J., & de Glopper, K. (2011). Modeling the development of L1 and EFL writing proficiency of secondary school students. Language Learning , 61(1), 31–79.

Serrano, R. (2011). The time factor in EFL classroom practice. Language Learning , 61(1), 117–145.

Tode, T. (2003). From unanalyzed chunks to rules: The learning of English copula be by beginning Japanese learners of English. International Review of Applied Linguistics , 41(1), 23–53.

Zhong, H. (2008a). Vocabulary size development : Research proposal. Faculty of Education and Social Work, University of Sydney.

Zhong, H. (2008b). Vocabulary size development: A study on Chinese high school students . MEd dissertation, University of Sydney, Sydney.

Download references

Author information

Authors and affiliations.

University of Sydney, Australia

Lindy Woodrow

You can also search for this author in PubMed   Google Scholar

Copyright information

© 2014 Lindy Woodrow

About this chapter

Cite this chapter.

Woodrow, L. (2014). Writing about Research Design. In: Writing about Quantitative Research in Applied Linguistics. Palgrave Macmillan, London. https://doi.org/10.1057/9780230369955_2

Download citation

DOI : https://doi.org/10.1057/9780230369955_2

Publisher Name : Palgrave Macmillan, London

Print ISBN : 978-0-230-36997-9

Online ISBN : 978-0-230-36995-5

eBook Packages : Palgrave Language & Linguistics Collection Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Marketing91

The 11 Important Steps in Research Design

June 12, 2023 | By Hitesh Bhasin | Filed Under: Marketing

Research design is critical to the Market Research Process . In a previous article, we have discussed in detail about Research design and the 12 types of Research Design .

In this article, We discuss the 11 steps to make up your Market research process. These steps can also be called as the steps of Research Design. Without further ado, let us check the steps required to conduct a market research study or to design our research.

Table of Contents

11 Steps of Research Design

1) formulation of the research problem.

Necessity is the mother of all inventions, and accordingly, it is a problem which necessitates research. A general area of interest is selected by the researcher initially to indicate the problem.

The problem is evaluated by the program, which helps to shed new light on the facts and collecting of useful fact to plan social or even policy-making purposes. Social scientists involved their values as well as the social conditions which are prevalent in order to select the problem for the research.

It is suggested that this influence should be avoided as much as possible. The use of variation and topics of research because scientists also differ in their values and their preferences. This is the reason why the topics of the research very wide with different scientists.

The need for a specific problem is always fat by the scientist’s sensor general topic fails twin sure that the ability to examine the data resides and the methods that are needed to adapt and organize them along with the formulation of the specific problem is always there.

This helps the researcher to sharpen his goal and to make it clear cut. The purpose of this is not only to guide the researcher but also to sharpen for narrow is questions like a pinpoint.

For example, if a general topic of any industry or domain is compared with a pyramid base and the specific topic is exactly opposite to it which resembles the apex of the pyramid.

It is not an easy task to formulate a problem which has arisen out of a practical or theoretical situation. Even if it appears easy to do so, it is not the case, and in fact, it is more of a herculean task. Significant people by Charles Darwin have said that ‘looking back it seems that seeing and understanding the problem is more difficult than solving them. ‘

since the problem itself poses a lot of difficulties and the same is experienced by the researchers, one should ensure that the formulation of the problem is done in such a way that it should be explained and put in an efficient way so that it justifies the saying that a problem well put is half solved.

There are three general questions which are considered as three important components that are involved in the process of problem formulation

  • What does one want to know?
  • What could be the probable answers to the originating questions?

There should be a rational base for the problems of the solution that is provided itself has a more rational base. The answers that are provided justify the concerns of the problem, which are theoretical or practical in nature.

The answers that are provided by the theoretical rationale in terms of enlargement or propagation of the existing ideas or theory . It helps to shed light on the consistency is which are observed in the existing theories and ensures them to examine those inconsistencies and determine their nature in terms of reality.

On the other hand, to bring desired values, the practical rationale should be able to justify the answers to the questions of the researcher. It is very crucial that the formation of the problem is done in an efficient way so that the solution is found in the same manner.

If there is a flaw in the problem, the solution itself will be full of flaws, and it won’t be good research.

2) Literature review

Literature review

The research is based on pastor knowledge, and the researcher should always make sure to take advantage of the north, which is already available or preserved earlier.

This not only helps the investigator to avoid replicating the hypothesis of earlier research but also enables him and provides evidence that he knows the current research which has already been done and can work on the untested and unknown field.

The literature review also means that the summary of writings how the earlier researchers and recognize the authority is in the particular area have been analyzed and summarised.

Books and libraries are the best places to find all human knowledge which is accumulated in the past. The published literature provides dear approaches which have been selected and helps the current researcher to study those approaches and take the baton from thereon.

The primary function of the literature review is that the research is given direction and information update related to the problem and the multiple ways that have already been tried to solve the problem and probably failed. This also helps the researcher to find his own hypothesis and save time doing what the earlier researchers had done.

The primary objectives of literature reviews are

  • To avoid the studies which are overlapping with each other
  • How to provide explanations ideas of the theory is which will be helpful in writing and defining the nature of the research problem.
  • To formulate hypothesis by being a fertile source for it.
  • To find out and suggest different methods in order to collect data and to explore different sources of data and techniques which are appropriate for the problem.
  • To study and analyze what the earlier researchers had done.
  • To ensure that the researcher is kept known of the current developments with regards to his area of activity.

Following are a few of the principles that the researcher has to follow for the review of the literature:

  • The researcher should ensure that he has obtained an overall view from a source which is general and which has materials which are likely to provide the nature along with the meaning of concept and variables.
  • After that, the researcher should also ensure that the reviewing that is conducted in the concerned field should review empirical researches.
  • A systematic manner is approached in order to review the library materials, and also it should be thorough in nature.
  • If at all he has mentioned any references, the researcher should ensure that it is mentioned in the bibliographic data.

3) Formation of Hypothesis in Research Design

The next step in the research is to formulate a hypothesis which will be tentative with nature and which would explain the nature of the problem. This explanation is tentative in nature refers to the statement of relation and relates two or more variables.

In order to formulate a hypothesis, the researcher collects information from multiple sources such as previous reports, existing theories, and literature which have worked with you on a similar problem.

Some of the studies test the hypothesis while others are formulating the hypothesis. The hypothesis for marketing studies are the ones which are exploratory studies since these end up with the formulation of hypothesis.

On the other hand, researches, which are hypothesis testing, start with a clearly defined and formulated hypothesis. The researcher has to state the definitions of concept so that they translate to the official and formal definitions and convey the nature of the problem into observables references.

In order to develop a hypothesis, it is essential to explain the nature of the relationship between two or more variables.

If one of the variable influences the other in the first variable is called as independent while the second is termed as the dependent variable. A correlation exists when one variable changes and influences another variable. It is very crucial that the researcher separates the dependent and independent variables from each other.

4) Formulating a Research Design

Once the problem has been defined, and the literature review is completed after formatting of the hypothesis, the researcher then starts to work on the design of the research. The design of research must be a blueprint for the general collection.

It acts as a standard guidepost by providing answers to multiple questions. It also helps in carrying out research accurately, objective, the economically and validity and is therefore fail-proof.

The research designs vary according to their need and the purpose of the research as well as the point of view working procedure.

There are basically four categories of research design:

  • Exploration
  • Description
  • Diagnosis and
  • Experimentation

There are four parts of Research design according to the realizable working procedure.

  • Sampling design which is used to physically for sampling and selection of the units for the research purposes.
  • The observational design describes the method in which observations are to be collected.
  • The statistical design which describes the techniques statistically which are used in the analysis of data along with its interpretation.
  • The operational design which deals with the techniques by which entire research can be carried out. The handset has all the three designs which are mentioned above, such as observational statistical and sampling designs.

5) Defining the nature of the study

The nature of the study as the cause of the individual items which are under consideration in the field of study. Nature refers to the sum of units for individuals from which a sample is another east in order to find out results, and that analysis is applied to it.

The researcher also separates the target and server population in order to define the scope of the study. Target units are the one which is applied to the results of the research. On the other hand, survey units are the ones which are included in sampling and all the ones from which the sample is taken.

In most of the purposes, this distinction is not significant, and the entire population must be defined in clear terms.

6) Sample design

It is not possible under different circumstances to enumerate all of the atoms included in the universe because it requires the result of resources like Mani time and energy which is why the researcher decides to select a representative from the population known as a sample and the process is known as simple design.

It is useful how to predetermine a sample before going for the entire research.

There are different types of samples which are as follows:

  • Probability samples
  • Purposive or judgment or subjective sampling
  • Mixed sampling.

The probability samples are the ones which are drawn from the universe which is according to the laws of chance and are based on on the proper scientific technique in which every sample in the unit has a predefined probability of being selected.

In case of Subjective or Purposive or judgment sampling, the units are purposefully our desperately drawn depending on the investigation objectives, and these include only the important ones which represent it the population completely.

These units are selected in mixed sampling according to fixed sampling rule for according to fixed sampling rule, which does not depend on chance.

Simple random sampling, stratified random sampling, complex random sampling, haphazard or convenience sampling , cluster and area sampling, judgment sampling, and quota sampling a few of the important types of sampling.

7) Administration of the tools of Data collection in Research Design

Data collection in Research Design

Appropriate data is required for any research work. Along with appropriateness, the data should also be adequate. Considering the financial and time and other resources which are available, the data may differ considerably.

Things like nature of the investigation, scope of the inquiry, objective and financial resources along with the desired degree of accuracy and the time which is available after of the things that the researcher has to take into consideration.

Apart from this, the ability and experience of the researcher also have very much importance in the data collection that is required.

Journals newspapers reports published earlier and books are of the sources from which secondary data can be collected, and the primary data can be collected by survey or experimentation. In order to conduct a survey, the data is gathered by personal interviews observations making of the questionnaire on telephonic interviews and nowadays via the Internet.

8) Data analysis

After the collection of data is completed the investigator then has to analyze the collected data which involves operations like segregating the data into different categories and application of coding for deposition to the raw data that is collected.

Statistical conclusions were drawn after that. These operations are supervised very closely, and at the beginning, it is the researchers who have to classify some of the raw data into different categories based on similar purposes.

The coding is done in order to change the categories of data and make them tabulated and countable. After that, during the postcoding stage, the data which is collected is put into tabulated form, and this is done in the technical your manually with the devices such as computers.

If the data is very is ours than computers are used wisely in case of small data, manual mode is used. Standard statistical formulas and methods are applied in order to test the validity of the data by the researchers so that he arrives at some definite conclusion.

9) Hypothesis testing in Research Design

The studies do not always confirm the original hypothesis, and in many cases, the hypothesis may be refused, and the researcher in such cases mastery for a visit there results and conclusions. It is not possible in case of behavioral sciences to test multiple hypotheses.

The scientist can test the research hypothesis by making a sample for direct observation. On this observable basis, they determine if the hypothesis is consistent or not with the logical consequences, and that is why the indirect test of this hypothesis can be made.

The research hypothesis that is derived from the theory helps to provide an inconclusive test. A much stronger logical test is formed if the rejection of the null hypothesis. It is defined as a hypothesis of no difference, which is why the rejection of it results in the acceptance of the alternative hypothesis.

Various tests have been developed by statisticians like t-test, F-test, chi-square test in order to test the hypothesis. If there is no hypothesis, to begin with, then the generalizations are the only way to serve as the basis of hypothesis.

10) Interpretation and generalization

After the test of hypothesis is completed in Research Design, and the validity is confirmed, the researcher has reached a stage of generalization, which is generally seen as a real value to the research.

Only in case of hypothesis testing studies is this possible but thing hypothesis formulating studies where there is an absence of hypothesis the researcher has to you interpret his findings.

In other words, the theoretical framework may be used by the researcher in order to explain the findings of his research, which may raise new questions.

11) Preparing the report of the Research

Data collection in Research Design

The final product of all the research activity is the report which gives a written account of the entire journey along with the path to find new knowledge. This type requires a technical task, which is why writing research is not only but also tests patients and efforts on the part of the researcher.

The overall approach to the problem along with the analysis of the data and superior grasp over language all of it has to be used in case of preparing the report. The report has a foreword or the title page along with Preface, and list of tables and contents.

It may also contain a list of charts or illustrations. in the second section of the report; there will be an introduction to the research report along with the purpose of the study and statement of the problem.

Then the researcher will write about the hypothesis and the definitions along with the methodology by which the research is conducted. A section for secondary data analysis and primary data analysis is kept.

The final part of the research has conclusions and results. The end of the research will be filled with the bibliography and appendix and glossary.

Learn More – Research design and the 12 Types of Research Design

Liked this post? Check out the complete series on Market research

Related posts:

  • What is Research Design? Type of Research Designs
  • What is Experimental Research? Definition, Design Types & Examples
  • What is a Design Brief and How to Write it in 9 Easy Steps?
  • Sampling and Sample Design – Types and Steps Involved
  • What are Research Skills? And Why are they Important?
  • The 7 Important Steps Retail Planning Process you Should know
  • Brand Strategy – Steps, Components and Why it is Important for Business
  • 7 Key Differences between Research Method and Research Methodology
  • Qualitative Research: Meaning, and Features of Qualitative Research
  • Research Ethics – Importance and Principles of Ethics in Research

' src=

About Hitesh Bhasin

Hitesh Bhasin is the CEO of Marketing91 and has over a decade of experience in the marketing field. He is an accomplished author of thousands of insightful articles, including in-depth analyses of brands and companies. Holding an MBA in Marketing, Hitesh manages several offline ventures, where he applies all the concepts of Marketing that he writes about.

All Knowledge Banks (Hub Pages)

  • Marketing Hub
  • Management Hub
  • Marketing Strategy
  • Advertising Hub
  • Branding Hub
  • Market Research
  • Small Business Marketing
  • Sales and Selling
  • Marketing Careers
  • Internet Marketing
  • Business Model of Brands
  • Marketing Mix of Brands
  • Brand Competitors
  • Strategy of Brands
  • SWOT of Brands
  • Customer Management
  • Top 10 Lists

' src=

plz send me a topic social research with main headings and sub headinds

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Marketing91

  • About Marketing91
  • Marketing91 Team
  • Privacy Policy
  • Cookie Policy
  • Terms of Use
  • Editorial Policy

WE WRITE ON

  • Digital Marketing
  • Human Resources
  • Operations Management
  • Marketing News
  • Marketing mix's
  • Competitors

Enago Academy

How to Optimize Your Research Process: A step-by-step guide

' src=

For researchers across disciplines, the path to uncovering novel findings and insights is often filled with uncertainties. From conceptualizing a viable research question to navigating through the vortex of data and information available today, the research process can be a bit daunting.

However, through these challenges lies a path of unparalleled intellectual growth and self-discovery. This path of research process, when approached with diligence and systematic thinking can refine your logical reasoning, organizational abilities, and capacity for critical analysis. Each correct step on this road makes you one step closer to your discovery.

Understanding the Research Process

The research process is a structured approach to acquiring knowledge and generating new insights. It is a methodical journey that begins with identifying a research problem or question and leads to dissemination of findings that contribute to the existing body of knowledge.

The research process serves multiple purposes, including advancing understanding, solving real-world problems, fostering critical thinking, and establishing credibility.

steps in writing research design

The skills acquired during the research process such as critical thinking, problem-solving, and effective communication become invaluable assets that further propels the growth of a researcher.

Steps of a Research Process

The research process unfolds in a meticulous, step-by-step manner, with each stage informed by the preceding one. Ensuring the efficacy of your research demands unwavering attention to detail, diligent execution at each stage, and a commitment to learning, irrespective of the challenges that may arise.

1. Identify and Define the Research Question

The foundation of any successful research endeavor lies in the formulation of a compelling research question. Starting strong at this important stage will set the tone for your entire project’s journey.

It involves:

i. Identifying a specific area of interest that pique your curiosity or align with your research goals.

ii. Refining it into a focused and researchable query. Remember, that a well-crafted research question should be clear, concise, and answerable within the constraints of your resources and timeline.

2. Literature Review

The next step is to immerse yourself in the existing body of knowledge. Conducting a comprehensive literature review is an indispensable component of the research process, as it provides a solid theoretical foundation. By examining previous research, theories, and methodologies, you gain a deeper understanding of the current state of knowledge within your area of interest.

It further reveals gaps and inconsistencies that have been overlooked or insufficiently explored, highlighting opportunities for new insights.

In today’s digital age, AI-powered tools like Enago Read can be used for research summarization . Such tools help streamline this process, enabling you to efficiently summarize vast literature sources to find relevant information.

3. Design a Robust Research Plan

This step is like laying the blueprint for your intellectual journey. Without a plan you would be lost. Crafting a robust research plan ensures that your research is built on a solid foundation of sound methodology and rigorous inquiry. It encompasses determining your research methodology, identifying the appropriate data collection techniques, and laying down a clear analytical framework.

4. Streamlining Data Collection and Analysis

This phase lies at the heart of your research endeavor, where you transform your theoretical constructs into tangible findings.

i. Meticulously gathering data from various sources depending on your research design. Regardless of the source employed for data collection, it is essential to adhere to strict protocols and maintain rigorous standards throughout this process. This will ensure the validity and reliability of your data.

ii. Subjecting the gathered data to rigorous analytical techniques that aligns with your research design and objectives.

iii. Leveraging advanced data analysis tools and statistical software to enhance the accuracy and efficiency of your analyses. These powerful resources can streamline complex calculations, visualize patterns, and uncover insights that may be difficult to discern through manual processes alone.

Throughout this phase, it is essential to maintain meticulous documentation and adherence to ethical guidelines, ensuring that your research practices are transparent, replicable, and respectful of human subjects or other considerations.

5. Interpreting Results and Drawing Conclusions

You can now embark on the exciting task of interpreting your results and drawing meaningful conclusions. This step requires a delicate balance of critical thinking, objectivity, and a keen ability to synthesize your findings within the broader context of your research question and existing literature.

i. Approach your results with a critical mindset. Challenge your assumptions and consider alternative explanations or interpretations.

ii. Identify how your findings corroborate, contradict, or expand upon previous research, and explore the implications for your field.

iii. If your research involved the formulation of hypotheses, this is the stage where you assess whether your data supports or refutes them. Be prepared to embrace unexpected or counterintuitive findings, as they often pave the way for groundbreaking discoveries.

iv. Remember, no research is perfect, and it is crucial to acknowledge the limitations of your study. It will pave the way for future investigations to build upon your findings.

6. Writing the Research Paper

The culmination of your research journey is the writing of the research paper . This step demands a delicate balance of precision, clarity, and adherence to established academic conventions.

i. Your research paper should effectively convey the essence of your study, articulating your research question, methodology, results, and conclusions in a logical and compelling manner.

ii. Each discipline has its own set of writing conventions, including specific formatting guidelines, citation styles , and structural expectations. Familiarize yourself with these conventions and ensure that your paper adheres to them rigorously.

iii. A well-crafted research paper should seamlessly weave together the various components of your study, creating a cohesive narrative that guides the reader through your intellectual journey.

Follow the tips given below to write an effective research paper:

Evaluate the Domain

Throughout the writing process, seek feedback from peers, mentors, or professional editing services to ensure that your work is polished, well-reasoned, and accessible to your intended audience.

7. Proofreading and Editing

Before submitting your research paper for publication or evaluation, it is crucial to meticulously proofread and edit your work. This step ensures that your research is presented in the most professional and polished manner possible, free from errors or inconsistencies that could detract from the clarity and impact of your message.

Carefully review your paper for any typos, spelling mistakes, or deviations from the prescribed formatting guidelines. These seemingly minor errors can undermine the credibility of your work.

Ensure that your writing is concise, unambiguous, and effectively conveys the nuances of your research. Avoid jargon or convoluted language that could obscure your findings.

Tools like Trinka can proofread and check your entered text for grammatical errors , thus enhancing the accuracy and efficiency of this process. These advanced algorithms can identify and correct a wide range of errors, allowing you to polish your work to perfection.

Maintaining a spirit of curiosity, perseverance, and adherence to ethical practices is key throughout this journey. By embracing these steps and leveraging the power of AI-assisted tools, you can navigate the research process with confidence, ultimately contributing to the advancement of knowledge within your field of study.

Sharing your research findings in a journal marks a notable achievement in your academic journey. Yet, enhancing your visibility as a researcher can be achieved by communicating your work through simplified summaries. Consider submitting your plain language research summary to our Open Platform , allowing your work to reach a wide and diverse audience within the academic community.

Frequently Asked Questions

The purpose of the research process is to advance understanding, solve real-world problems, foster critical thinking, and establish credibility of the research findings.

Optimizing your research process enhances efficiency, improves research quality, increases the likelihood of producing meaningful insights, and enhances your credibility as a researcher

Assessing the reliability of a source for research involves several factors. These include looking for peer-reviewed publications from reputable journals or academic publishers, checking the credentials of the author or organization to gauge their expertise and credibility, and evaluating the relevance of the information to ensure it aligns with your research goals. Furthermore, cross-reference the source with other reputable sources to verify its accuracy and validity.

Staying organized during the research process is essential for efficiency and effectiveness. Start by clearly defining your research question and objectives. Furthermore, create a detailed timeline, maintain thorough records, use citation managers and databases, establish a filing system, and regularly review progress to stay organized and address challenges promptly.

Rate this article Cancel Reply

Your email address will not be published.

steps in writing research design

Enago Academy's Most Popular Articles

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

ResearchSummary

  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Journals Combat Image Manipulation with AI

Science under Surveillance: Journals adopt advanced AI to uncover image manipulation

Journals are increasingly turning to cutting-edge AI tools to uncover deceitful images published in manuscripts.…

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Research Recommendations – Guiding policy-makers for evidence-based decision making

Demystifying the Role of Confounding Variables in Research

8 Effective Strategies to Write Argumentative Essays

steps in writing research design

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

steps in writing research design

What should universities' stance be on AI tools in research and academic writing?

The New School News

  • In the Headlines

Madlener writes for a variety of leading design publications and brands, including Wallpaper* Magazine, Dwell, Metropolis, Rizzoli, Puiforcat, and more

Adrian Madlener, History of Design and Curatorial Studies ’18, Explores Design Through Writing and Research

Since Adrian Madlener began his writing career, he’s seen the publishing and news industry change drastically. His first role, as the web editor for Amsterdam-based Frame Magazine , was considered an internship, highlighting the discrepancy between print journalism and digital content.

Now, Madlener writes for a variety of leading design publications and brands, including Wallpaper* Magazine , Dwell , Metropolis , Rizzoli, Puiforcat, and more. Although he initially went to the Design Academy Eindhoven in The Netherlands for industrial design, he realized his passion lay in writing and research, which led him to the History of Design and Curatorial Studies MA at Parsons School of Design.

“I decided to pursue a master’s in the Parsons/Cooper Hewitt History of Design program in order to get a better foundation for what I was writing about,” explains Madlener. “For very long, this domain focus never really looked back or tried to contextualize what was coming next. With a growing appreciation for antiques (heirloom pieces), material culture nostalgia, and architectural history as a means of consuming less, the focus on traditional trend cycles has shifted and stratified.”

As a journalist, Madlener is most interested in long-form profiles that highlight a designer’s process, as well as deeply researched think pieces that allow him to go in-depth on a specific cultural trend. 

“I’m most interested in experimentation and adjacency, the notion of bringing two seemingly disparate practices or trades together to forge something new and truly innovative,” he shares. “As traditional media continues to go through seismic changes, these types of assignments have been harder and harder to come by. However, a new crop of brand-sponsored publications that avoid blatant self promotion are providing space again for this type of writing.” 

Studying at Parsons provided a foundation for Madlener to pursue writing that’s been focused on collectible and craft-led design. In his work for leading design publications, he’s profiled the designer Kelly Behun, explored the burgeoning design scene in Mexico City, and highlighted standout pieces from design fairs around the world, among a variety of topics. He’s also consulted on curatorial projects, and collaborated with brands on copywriting assignments.

“During my time at Parsons, making certain contacts and establishing professional relationships with certain mentors that continue to offer support was an even greater benefit.”

Next up, Madlener is working on a feature about a San Francisco design duo’s live/work space, where he’s focused on how they strike a balance within the space to accommodate living, working, and more.

Featured Events

Take the next step.

  • Request Info

Submit your application

Undergraduate.

To apply to any of our Bachelor's programs (Except the Bachelor's Program for Adult Transfer Students) complete and submit the Common App online.

Graduates and Adult Learners

To apply to any of our Master's, Doctural, Professional Studies Diploma, Graduates Certificate, or Associate's programs, or to apply to the Bachelor's Program for Adult and Transfer Students, complete and submit the New School Online Application.

IMAGES

  1. Infographic: Steps in the Research Process

    steps in writing research design

  2. How to Write a Research Design

    steps in writing research design

  3. Tips For How To Write A Scientific Research Paper

    steps in writing research design

  4. Research papers Writing Steps And process of writing a paper

    steps in writing research design

  5. What Is Research Design In Research Methodology Pdf

    steps in writing research design

  6. The Research Process

    steps in writing research design

VIDEO

  1. TAGLISH VERSION: How to Choose a Topic and Research design: Several examples

  2. WRITING THE CHAPTER 3|| Research Methodology (Research Design and Method)

  3. Steps of writing research paper #research #metaanalysis #pubmed

  4. English|LetterWriting| Informal Letter/FamilyLetter Steps

  5. Research Methodolgy

  6. Steps of Research Proposal [ Researchers & Scholars]

COMMENTS

  1. What Is a Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Other interesting articles.

  2. Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Frequently asked questions.

  3. How to Write a Research Design

    Step 2: Data Type you Need for Research. Decide on the type of data you need for your research. The type of data you need to collect depends on your research questions or research hypothesis. Two types of research data can be used to answer the research questions: Primary Data Vs. Secondary Data.

  4. Research Design

    How to Write Research Design. Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design: Define the research question or hypothesis: Before beginning your research design, you should clearly define ...

  5. How to Write a Research Design

    Writing a research design is a crucial step in the research process. A well-crafted research design outlines the methods and procedures you will use to answer your research questions or test your hypotheses. Below, I'll provide a guide on writing a research design, including examples for each section. Title and Introduction:

  6. Research Design Steps: Comprehensive Guide

    1. Define the research problem or opportunity. The first step in any research process is to clearly define the research problem or opportunity. This can be done through a number of different methods, including interviews, focus groups, and surveys. While it may seem like a simple task, defining the research problem or opportunity is crucial to ...

  7. Your Step-by-Step Guide to Writing a Good Research Methodology

    Provide the rationality behind your chosen approach. Based on logic and reason, let your readers know why you have chosen said research methodologies. Additionally, you have to build strong arguments supporting why your chosen research method is the best way to achieve the desired outcome. 3. Explain your mechanism.

  8. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  9. A Beginner's Guide to Starting the Research Process

    To learn how to use these tools responsibly, see our AI writing resources page. Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of ...

  10. How to Create a Strong Research Design: 2-minute Summary

    A strong research design is crucial to a successful research proposal, scientific paper, or dissertation. In this video, you'll get an idea of the series of ...

  11. Research Design Steps

    Research Design Steps. Before you even get started, you will need to have a broad topic of interest in mind. [1]. In my experience, students can confuse this broad topic with the actual research question, so it is important to clearly distinguish the two. ... Define your research question; write two to three sentences that clarify the intent of ...

  12. Organizing Your Social Sciences Research Paper

    Before beginning your paper, you need to decide how you plan to design the study.. The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection ...

  13. What Is a Research Methodology?

    Step 1: Explain your methodological approach. Step 2: Describe your data collection methods. Step 3: Describe your analysis method. Step 4: Evaluate and justify the methodological choices you made. Tips for writing a strong methodology chapter. Other interesting articles.

  14. Research design

    A research design is a clear plan outlining how the research will be carried out. Research steps, or the Scientific Method, outline the research plan while a research design specifies how each step will be completed. A research design is planned ahead of time and determines various methods used at each stage of a study.

  15. Research Methodology

    Here are the steps to write a research methodology: Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it's important. This helps readers understand the purpose of your research and the rationale behind your methods. Describe your research design: Explain the ...

  16. A Practical Guide to Writing Quantitative and Qualitative Research

    Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. ... How to write a research question: Types, steps, and examples. [Updated 2021]. [Accessed January 2, 2022].

  17. A Phenomenological Research Design Illustrated

    Abstract. This article distills the core principles of a phenomenological research design and, by means of a specific study, illustrates the phenomenological methodology. After a brief overview of the developments of phenomenology, the research paradigm of the specific study follows. Thereafter the location of the data, the data-gathering the ...

  18. Research Design

    Abstract. This chapter introduces methods to design the research. Research design is the blueprint of how to conduct research from conception to completion. It requires careful crafts to ensure success. The initial step of research design is to theorize key concepts of the research questions, operationalize the variables used to measure the key ...

  19. Guide to Experimental Design

    Table of contents. Step 1: Define your variables. Step 2: Write your hypothesis. Step 3: Design your experimental treatments. Step 4: Assign your subjects to treatment groups. Step 5: Measure your dependent variable. Other interesting articles. Frequently asked questions about experiments.

  20. (PDF) Basics of Research Design: A Guide to selecting appropriate

    sequential steps necessary for writing a research plan and then successfully ex ... The choice of the research design is influenced by the type of evidence needed to answer the research question ...

  21. How to Construct a Mixed Methods Research Design

    The purpose of this article is to help researchers to understand how to design a mixed methods research study. Perhaps the simplest approach is to design is to look at a single book and select one from the few designs included in that book. We believe that is only useful as a starting point.

  22. Writing about Research Design

    The research design of a project is very important. This is one of the primary concerns of a reader when evaluating a research text. In writing about quantitative research, there needs to be evidence and often justification of the design of the research project. This chapter includes the following sections: Technical information. Research purpose.

  23. The 11 Important Steps in Research Design

    1) Formulation of the research problem. Necessity is the mother of all inventions, and accordingly, it is a problem which necessitates research. A general area of interest is selected by the researcher initially to indicate the problem. The problem is evaluated by the program, which helps to shed new light on the facts and collecting of useful ...

  24. 7 Step Guide for Optimizing Impactful Research Process

    Throughout the writing process, seek feedback from peers, mentors, or professional editing services to ensure that your work is polished, well-reasoned, and accessible to your intended audience.. 7. Proofreading and Editing. Before submitting your research paper for publication or evaluation, it is crucial to meticulously proofread and edit your work. . This step ensures that your research is ...

  25. Adrian Madlener, History of Design and Curatorial Studies '18, Explores

    Studying at Parsons provided a foundation for Madlener to pursue writing that's been focused on collectible and craft-led design. In his work for leading design publications, he's profiled the designer Kelly Behun, explored the burgeoning design scene in Mexico City, and highlighted standout pieces from design fairs around the world, among ...