• Privacy Policy

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 22 April 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE : Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Apr 24, 2024 10:51 AM
  • URL: https://libguides.usc.edu/writingguide

Grad Coach

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

type of research and research design

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

type of research and research design

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

type of research and research design

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

type of research and research design

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Survey Design 101: The Basics

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

The Four Types of Research Design — Everything You Need to Know

Jenny Romanchuk

Updated: December 11, 2023

Published: January 18, 2023

When you conduct research, you need to have a clear idea of what you want to achieve and how to accomplish it. A good research design enables you to collect accurate and reliable data to draw valid conclusions.

research design used to test different beauty products

In this blog post, we'll outline the key features of the four common types of research design with real-life examples from UnderArmor, Carmex, and more. Then, you can easily choose the right approach for your project.

Table of Contents

What is research design?

The four types of research design, research design examples.

Research design is the process of planning and executing a study to answer specific questions. This process allows you to test hypotheses in the business or scientific fields.

Research design involves choosing the right methodology, selecting the most appropriate data collection methods, and devising a plan (or framework) for analyzing the data. In short, a good research design helps us to structure our research.

Marketers use different types of research design when conducting research .

There are four common types of research design — descriptive, correlational, experimental, and diagnostic designs. Let’s take a look at each in more detail.

Researchers use different designs to accomplish different research objectives. Here, we'll discuss how to choose the right type, the benefits of each, and use cases.

Research can also be classified as quantitative or qualitative at a higher level. Some experiments exhibit both qualitative and quantitative characteristics.

type of research and research design

Free Market Research Kit

5 Research and Planning Templates + a Free Guide on How to Use Them in Your Market Research

  • SWOT Analysis Template
  • Survey Template
  • Focus Group Template

You're all set!

Click this link to access this resource at any time.

Experimental

An experimental design is used when the researcher wants to examine how variables interact with each other. The researcher manipulates one variable (the independent variable) and observes the effect on another variable (the dependent variable).

In other words, the researcher wants to test a causal relationship between two or more variables.

In marketing, an example of experimental research would be comparing the effects of a television commercial versus an online advertisement conducted in a controlled environment (e.g. a lab). The objective of the research is to test which advertisement gets more attention among people of different age groups, gender, etc.

Another example is a study of the effect of music on productivity. A researcher assigns participants to one of two groups — those who listen to music while working and those who don't — and measure their productivity.

The main benefit of an experimental design is that it allows the researcher to draw causal relationships between variables.

One limitation: This research requires a great deal of control over the environment and participants, making it difficult to replicate in the real world. In addition, it’s quite costly.

Best for: Testing a cause-and-effect relationship (i.e., the effect of an independent variable on a dependent variable).

Correlational

A correlational design examines the relationship between two or more variables without intervening in the process.

Correlational design allows the analyst to observe natural relationships between variables. This results in data being more reflective of real-world situations.

For example, marketers can use correlational design to examine the relationship between brand loyalty and customer satisfaction. In particular, the researcher would look for patterns or trends in the data to see if there is a relationship between these two entities.

Similarly, you can study the relationship between physical activity and mental health. The analyst here would ask participants to complete surveys about their physical activity levels and mental health status. Data would show how the two variables are related.

Best for: Understanding the extent to which two or more variables are associated with each other in the real world.

Descriptive

Descriptive research refers to a systematic process of observing and describing what a subject does without influencing them.

Methods include surveys, interviews, case studies, and observations. Descriptive research aims to gather an in-depth understanding of a phenomenon and answers when/what/where.

SaaS companies use descriptive design to understand how customers interact with specific features. Findings can be used to spot patterns and roadblocks.

For instance, product managers can use screen recordings by Hotjar to observe in-app user behavior. This way, the team can precisely understand what is happening at a certain stage of the user journey and act accordingly.

Brand24, a social listening tool, tripled its sign-up conversion rate from 2.56% to 7.42%, thanks to locating friction points in the sign-up form through screen recordings.

different types of research design: descriptive research example.

Carma Laboratories worked with research company MMR to measure customers’ reactions to the lip-care company’s packaging and product . The goal was to find the cause of low sales for a recently launched line extension in Europe.

The team moderated a live, online focus group. Participants were shown w product samples, while AI and NLP natural language processing identified key themes in customer feedback.

This helped uncover key reasons for poor performance and guided changes in packaging.

research design example, tweezerman

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

type of research and research design

Home Market Research Research Tools and Apps

Research Design: What it is, Elements & Types

Research Design

Can you imagine doing research without a plan? Probably not. When we discuss a strategy to collect, study, and evaluate data, we talk about research design. This design addresses problems and creates a consistent and logical model for data analysis. Let’s learn more about it.

What is Research Design?

Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success.

Creating a research topic explains the type of research (experimental,  survey research ,  correlational , semi-experimental, review) and its sub-type (experimental design, research problem , descriptive case-study). 

There are three main types of designs for research:

  • Data collection
  • Measurement
  • Data Analysis

The research problem an organization faces will determine the design, not vice-versa. The design phase of a study determines which tools to use and how they are used.

The Process of Research Design

The research design process is a systematic and structured approach to conducting research. The process is essential to ensure that the study is valid, reliable, and produces meaningful results.

  • Consider your aims and approaches: Determine the research questions and objectives, and identify the theoretical framework and methodology for the study.
  • Choose a type of Research Design: Select the appropriate research design, such as experimental, correlational, survey, case study, or ethnographic, based on the research questions and objectives.
  • Identify your population and sampling method: Determine the target population and sample size, and choose the sampling method, such as random , stratified random sampling , or convenience sampling.
  • Choose your data collection methods: Decide on the data collection methods , such as surveys, interviews, observations, or experiments, and select the appropriate instruments or tools for collecting data.
  • Plan your data collection procedures: Develop a plan for data collection, including the timeframe, location, and personnel involved, and ensure ethical considerations.
  • Decide on your data analysis strategies: Select the appropriate data analysis techniques, such as statistical analysis , content analysis, or discourse analysis, and plan how to interpret the results.

The process of research design is a critical step in conducting research. By following the steps of research design, researchers can ensure that their study is well-planned, ethical, and rigorous.

Research Design Elements

Impactful research usually creates a minimum bias in data and increases trust in the accuracy of collected data. A design that produces the slightest margin of error in experimental research is generally considered the desired outcome. The essential elements are:

  • Accurate purpose statement
  • Techniques to be implemented for collecting and analyzing research
  • The method applied for analyzing collected details
  • Type of research methodology
  • Probable objections to research
  • Settings for the research study
  • Measurement of analysis

Characteristics of Research Design

A proper design sets your study up for success. Successful research studies provide insights that are accurate and unbiased. You’ll need to create a survey that meets all of the main characteristics of a design. There are four key characteristics:

Characteristics of Research Design

  • Neutrality: When you set up your study, you may have to make assumptions about the data you expect to collect. The results projected in the research should be free from research bias and neutral. Understand opinions about the final evaluated scores and conclusions from multiple individuals and consider those who agree with the results.
  • Reliability: With regularly conducted research, the researcher expects similar results every time. You’ll only be able to reach the desired results if your design is reliable. Your plan should indicate how to form research questions to ensure the standard of results.
  • Validity: There are multiple measuring tools available. However, the only correct measuring tools are those which help a researcher in gauging results according to the objective of the research. The  questionnaire  developed from this design will then be valid.
  • Generalization:  The outcome of your design should apply to a population and not just a restricted sample . A generalized method implies that your survey can be conducted on any part of a population with similar accuracy.

The above factors affect how respondents answer the research questions, so they should balance all the above characteristics in a good design. If you want, you can also learn about Selection Bias through our blog.

Research Design Types

A researcher must clearly understand the various types to select which model to implement for a study. Like the research itself, the design of your analysis can be broadly classified into quantitative and qualitative.

Qualitative research

Qualitative research determines relationships between collected data and observations based on mathematical calculations. Statistical methods can prove or disprove theories related to a naturally existing phenomenon. Researchers rely on qualitative observation research methods that conclude “why” a particular theory exists and “what” respondents have to say about it.

Quantitative research

Quantitative research is for cases where statistical conclusions to collect actionable insights are essential. Numbers provide a better perspective for making critical business decisions. Quantitative research methods are necessary for the growth of any organization. Insights drawn from complex numerical data and analysis prove to be highly effective when making decisions about the business’s future.

Qualitative Research vs Quantitative Research

Here is a chart that highlights the major differences between qualitative and quantitative research:

In summary or analysis , the step of qualitative research is more exploratory and focuses on understanding the subjective experiences of individuals, while quantitative research is more focused on objective data and statistical analysis.

You can further break down the types of research design into five categories:

types of research design

1. Descriptive: In a descriptive composition, a researcher is solely interested in describing the situation or case under their research study. It is a theory-based design method created by gathering, analyzing, and presenting collected data. This allows a researcher to provide insights into the why and how of research. Descriptive design helps others better understand the need for the research. If the problem statement is not clear, you can conduct exploratory research. 

2. Experimental: Experimental research establishes a relationship between the cause and effect of a situation. It is a causal research design where one observes the impact caused by the independent variable on the dependent variable. For example, one monitors the influence of an independent variable such as a price on a dependent variable such as customer satisfaction or brand loyalty. It is an efficient research method as it contributes to solving a problem.

The independent variables are manipulated to monitor the change it has on the dependent variable. Social sciences often use it to observe human behavior by analyzing two groups. Researchers can have participants change their actions and study how the people around them react to understand social psychology better.

3. Correlational research: Correlational research  is a non-experimental research technique. It helps researchers establish a relationship between two closely connected variables. There is no assumption while evaluating a relationship between two other variables, and statistical analysis techniques calculate the relationship between them. This type of research requires two different groups.

A correlation coefficient determines the correlation between two variables whose values range between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables, and -1 means a negative relationship between the two variables. 

4. Diagnostic research: In diagnostic design, the researcher is looking to evaluate the underlying cause of a specific topic or phenomenon. This method helps one learn more about the factors that create troublesome situations. 

This design has three parts of the research:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

5. Explanatory research : Explanatory design uses a researcher’s ideas and thoughts on a subject to further explore their theories. The study explains unexplored aspects of a subject and details the research questions’ what, how, and why.

Benefits of Research Design

There are several benefits of having a well-designed research plan. Including:

  • Clarity of research objectives: Research design provides a clear understanding of the research objectives and the desired outcomes.
  • Increased validity and reliability: To ensure the validity and reliability of results, research design help to minimize the risk of bias and helps to control extraneous variables.
  • Improved data collection: Research design helps to ensure that the proper data is collected and data is collected systematically and consistently.
  • Better data analysis: Research design helps ensure that the collected data can be analyzed effectively, providing meaningful insights and conclusions.
  • Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders.
  • Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

A well-designed research plan is essential for successful research, providing clear and meaningful insights and ensuring that resources are practical.

QuestionPro offers a comprehensive solution for researchers looking to conduct research. With its user-friendly interface, robust data collection and analysis tools, and the ability to integrate results from multiple sources, QuestionPro provides a versatile platform for designing and executing research projects.

Our robust suite of research tools provides you with all you need to derive research results. Our online survey platform includes custom point-and-click logic and advanced question types. Uncover the insights that matter the most.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

customer communication tool

Customer Communication Tool: Types, Methods, Uses, & Tools

Apr 23, 2024

sentiment analysis tools

Top 12 Sentiment Analysis Tools for Understanding Emotions

QuestionPro BI: From Research Data to Actionable Dashboards

QuestionPro BI: From Research Data to Actionable Dashboards

Apr 22, 2024

customer experience management software

21 Best Customer Experience Management Software in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

type of research and research design

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

Types of Research – Explained with Examples

DiscoverPhDs

  • By DiscoverPhDs
  • October 2, 2020

Types of Research Design

Types of Research

Research is about using established methods to investigate a problem or question in detail with the aim of generating new knowledge about it.

It is a vital tool for scientific advancement because it allows researchers to prove or refute hypotheses based on clearly defined parameters, environments and assumptions. Due to this, it enables us to confidently contribute to knowledge as it allows research to be verified and replicated.

Knowing the types of research and what each of them focuses on will allow you to better plan your project, utilises the most appropriate methodologies and techniques and better communicate your findings to other researchers and supervisors.

Classification of Types of Research

There are various types of research that are classified according to their objective, depth of study, analysed data, time required to study the phenomenon and other factors. It’s important to note that a research project will not be limited to one type of research, but will likely use several.

According to its Purpose

Theoretical research.

Theoretical research, also referred to as pure or basic research, focuses on generating knowledge , regardless of its practical application. Here, data collection is used to generate new general concepts for a better understanding of a particular field or to answer a theoretical research question.

Results of this kind are usually oriented towards the formulation of theories and are usually based on documentary analysis, the development of mathematical formulas and the reflection of high-level researchers.

Applied Research

Here, the goal is to find strategies that can be used to address a specific research problem. Applied research draws on theory to generate practical scientific knowledge, and its use is very common in STEM fields such as engineering, computer science and medicine.

This type of research is subdivided into two types:

  • Technological applied research : looks towards improving efficiency in a particular productive sector through the improvement of processes or machinery related to said productive processes.
  • Scientific applied research : has predictive purposes. Through this type of research design, we can measure certain variables to predict behaviours useful to the goods and services sector, such as consumption patterns and viability of commercial projects.

Methodology Research

According to your Depth of Scope

Exploratory research.

Exploratory research is used for the preliminary investigation of a subject that is not yet well understood or sufficiently researched. It serves to establish a frame of reference and a hypothesis from which an in-depth study can be developed that will enable conclusive results to be generated.

Because exploratory research is based on the study of little-studied phenomena, it relies less on theory and more on the collection of data to identify patterns that explain these phenomena.

Descriptive Research

The primary objective of descriptive research is to define the characteristics of a particular phenomenon without necessarily investigating the causes that produce it.

In this type of research, the researcher must take particular care not to intervene in the observed object or phenomenon, as its behaviour may change if an external factor is involved.

Explanatory Research

Explanatory research is the most common type of research method and is responsible for establishing cause-and-effect relationships that allow generalisations to be extended to similar realities. It is closely related to descriptive research, although it provides additional information about the observed object and its interactions with the environment.

Correlational Research

The purpose of this type of scientific research is to identify the relationship between two or more variables. A correlational study aims to determine whether a variable changes, how much the other elements of the observed system change.

According to the Type of Data Used

Qualitative research.

Qualitative methods are often used in the social sciences to collect, compare and interpret information, has a linguistic-semiotic basis and is used in techniques such as discourse analysis, interviews, surveys, records and participant observations.

In order to use statistical methods to validate their results, the observations collected must be evaluated numerically. Qualitative research, however, tends to be subjective, since not all data can be fully controlled. Therefore, this type of research design is better suited to extracting meaning from an event or phenomenon (the ‘why’) than its cause (the ‘how’).

Quantitative Research

Quantitative research study delves into a phenomena through quantitative data collection and using mathematical, statistical and computer-aided tools to measure them . This allows generalised conclusions to be projected over time.

Types of Research Methodology

According to the Degree of Manipulation of Variables

Experimental research.

It is about designing or replicating a phenomenon whose variables are manipulated under strictly controlled conditions in order to identify or discover its effect on another independent variable or object. The phenomenon to be studied is measured through study and control groups, and according to the guidelines of the scientific method.

Non-Experimental Research

Also known as an observational study, it focuses on the analysis of a phenomenon in its natural context. As such, the researcher does not intervene directly, but limits their involvement to measuring the variables required for the study. Due to its observational nature, it is often used in descriptive research.

Quasi-Experimental Research

It controls only some variables of the phenomenon under investigation and is therefore not entirely experimental. In this case, the study and the focus group cannot be randomly selected, but are chosen from existing groups or populations . This is to ensure the collected data is relevant and that the knowledge, perspectives and opinions of the population can be incorporated into the study.

According to the Type of Inference

Deductive investigation.

In this type of research, reality is explained by general laws that point to certain conclusions; conclusions are expected to be part of the premise of the research problem and considered correct if the premise is valid and the inductive method is applied correctly.

Inductive Research

In this type of research, knowledge is generated from an observation to achieve a generalisation. It is based on the collection of specific data to develop new theories.

Hypothetical-Deductive Investigation

It is based on observing reality to make a hypothesis, then use deduction to obtain a conclusion and finally verify or reject it through experience.

Descriptive Research Design

According to the Time in Which it is Carried Out

Longitudinal study (also referred to as diachronic research).

It is the monitoring of the same event, individual or group over a defined period of time. It aims to track changes in a number of variables and see how they evolve over time. It is often used in medical, psychological and social areas .

Cross-Sectional Study (also referred to as Synchronous Research)

Cross-sectional research design is used to observe phenomena, an individual or a group of research subjects at a given time.

According to The Sources of Information

Primary research.

This fundamental research type is defined by the fact that the data is collected directly from the source, that is, it consists of primary, first-hand information.

Secondary research

Unlike primary research, secondary research is developed with information from secondary sources, which are generally based on scientific literature and other documents compiled by another researcher.

Action Research Methods

According to How the Data is Obtained

Documentary (cabinet).

Documentary research, or secondary sources, is based on a systematic review of existing sources of information on a particular subject. This type of scientific research is commonly used when undertaking literature reviews or producing a case study.

Field research study involves the direct collection of information at the location where the observed phenomenon occurs.

From Laboratory

Laboratory research is carried out in a controlled environment in order to isolate a dependent variable and establish its relationship with other variables through scientific methods.

Mixed-Method: Documentary, Field and/or Laboratory

Mixed research methodologies combine results from both secondary (documentary) sources and primary sources through field or laboratory research.

Overcoming PhD Stress

PhD stress is real. Learn how to combat it with these 5 tips.

Body Language for PhD Interviews

You’ve impressed the supervisor with your PhD application, now it’s time to ace your interview with these powerful body language tips.

Preparing for your PhD Viva

If you’re about to sit your PhD viva, make sure you don’t miss out on these 5 great tips to help you prepare.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

type of research and research design

Browse PhDs Now

type of research and research design

Find out the different dissertation and thesis binding options, which is best, advantages and disadvantages, typical costs, popular services and more.

Tips for Applying to a PhD

Thinking about applying to a PhD? Then don’t miss out on these 4 tips on how to best prepare your application.

Debby Cotton_Profile

Prof Cotton gained her DPhil in the school of education at Oxford University. She is now the Director of Academic Practice and Professor of Higher Education at Plymouth Marjon University.

type of research and research design

Emma is a third year PhD student at the University of Rhode Island. Her research focuses on the physiological and genomic response to climate change stressors.

Join Thousands of Students

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Types of studies and research design

Mukul chandra kapoor.

Department of Anesthesiology, Max Smart Super Specialty Hospital, New Delhi, India

Medical research has evolved, from individual expert described opinions and techniques, to scientifically designed methodology-based studies. Evidence-based medicine (EBM) was established to re-evaluate medical facts and remove various myths in clinical practice. Research methodology is now protocol based with predefined steps. Studies were classified based on the method of collection and evaluation of data. Clinical study methodology now needs to comply to strict ethical, moral, truth, and transparency standards, ensuring that no conflict of interest is involved. A medical research pyramid has been designed to grade the quality of evidence and help physicians determine the value of the research. Randomised controlled trials (RCTs) have become gold standards for quality research. EBM now scales systemic reviews and meta-analyses at a level higher than RCTs to overcome deficiencies in the randomised trials due to errors in methodology and analyses.

INTRODUCTION

Expert opinion, experience, and authoritarian judgement were the norm in clinical medical practice. At scientific meetings, one often heard senior professionals emphatically expressing ‘In my experience,…… what I have said is correct!’ In 1981, articles published by Sackett et al . introduced ‘critical appraisal’ as they felt a need to teach methods of understanding scientific literature and its application at the bedside.[ 1 ] To improve clinical outcomes, clinical expertise must be complemented by the best external evidence.[ 2 ] Conversely, without clinical expertise, good external evidence may be used inappropriately [ Figure 1 ]. Practice gets outdated, if not updated with current evidence, depriving the clientele of the best available therapy.

An external file that holds a picture, illustration, etc.
Object name is IJA-60-626-g001.jpg

Triad of evidence-based medicine

EVIDENCE-BASED MEDICINE

In 1971, in his book ‘Effectiveness and Efficiency’, Archibald Cochrane highlighted the lack of reliable evidence behind many accepted health-care interventions.[ 3 ] This triggered re-evaluation of many established ‘supposed’ scientific facts and awakened physicians to the need for evidence in medicine. Evidence-based medicine (EBM) thus evolved, which was defined as ‘the conscientious, explicit and judicious use of the current best evidence in making decisions about the care of individual patients.’[ 2 ]

The goal of EBM was scientific endowment to achieve consistency, efficiency, effectiveness, quality, safety, reduction in dilemma and limitation of idiosyncrasies in clinical practice.[ 4 ] EBM required the physician to diligently assess the therapy, make clinical adjustments using the best available external evidence, ensure awareness of current research and discover clinical pathways to ensure best patient outcomes.[ 5 ]

With widespread internet use, phenomenally large number of publications, training and media resources are available but determining the quality of this literature is difficult for a busy physician. Abstracts are available freely on the internet, but full-text articles require a subscription. To complicate issues, contradictory studies are published making decision-making difficult.[ 6 ] Publication bias, especially against negative studies, makes matters worse.

In 1993, the Cochrane Collaboration was founded by Ian Chalmers and others to create and disseminate up-to-date review of randomised controlled trials (RCTs) to help health-care professionals make informed decisions.[ 7 ] In 1995, the American College of Physicians and the British Medical Journal Publishing Group collaborated to publish the journal ‘Evidence-based medicine’, leading to the evolution of EBM in all spheres of medicine.

MEDICAL RESEARCH

Medical research needs to be conducted to increase knowledge about the human species, its social/natural environment and to combat disease/infirmity in humans. Research should be conducted in a manner conducive to and consistent with dignity and well-being of the participant; in a professional and transparent manner; and ensuring minimal risk.[ 8 ] Research thus must be subjected to careful evaluation at all stages, i.e., research design/experimentation; results and their implications; the objective of the research sought; anticipated benefits/dangers; potential uses/abuses of the experiment and its results; and on ensuring the safety of human life. Table 1 lists the principles any research should follow.[ 8 ]

General principles of medical research

An external file that holds a picture, illustration, etc.
Object name is IJA-60-626-g002.jpg

Types of study design

Medical research is classified into primary and secondary research. Clinical/experimental studies are performed in primary research, whereas secondary research consolidates available studies as reviews, systematic reviews and meta-analyses. Three main areas in primary research are basic medical research, clinical research and epidemiological research [ Figure 2 ]. Basic research includes fundamental research in fields shown in Figure 2 . In almost all studies, at least one independent variable is varied, whereas the effects on the dependent variables are investigated. Clinical studies include observational studies and interventional studies and are subclassified as in Figure 2 .

An external file that holds a picture, illustration, etc.
Object name is IJA-60-626-g003.jpg

Classification of types of medical research

Interventional clinical study is performed with the purpose of studying or demonstrating clinical or pharmacological properties of drugs/devices, their side effects and to establish their efficacy or safety. They also include studies in which surgical, physical or psychotherapeutic procedures are examined.[ 9 ] Studies on drugs/devices are subject to legal and ethical requirements including the Drug Controller General India (DCGI) directives. They require the approval of DCGI recognized Ethics Committee and must be performed in accordance with the rules of ‘Good Clinical Practice’.[ 10 ] Further details are available under ‘Methodology for research II’ section in this issue of IJA. In 2004, the World Health Organization advised registration of all clinical trials in a public registry. In India, the Clinical Trials Registry of India was launched in 2007 ( www.ctri.nic.in ). The International Committee of Medical Journal Editors (ICMJE) mandates its member journals to publish only registered trials.[ 11 ]

Observational clinical study is a study in which knowledge from treatment of persons with drugs is analysed using epidemiological methods. In these studies, the diagnosis, treatment and monitoring are performed exclusively according to medical practice and not according to a specified study protocol.[ 9 ] They are subclassified as per Figure 2 .

Epidemiological studies have two basic approaches, the interventional and observational. Clinicians are more familiar with interventional research, whereas epidemiologists usually perform observational research.

Interventional studies are experimental in character and are subdivided into field and group studies, for example, iodine supplementation of cooking salt to prevent hypothyroidism. Many interventions are unsuitable for RCTs, as the exposure may be harmful to the subjects.

Observational studies can be subdivided into cohort, case–control, cross-sectional and ecological studies.

  • Cohort studies are suited to detect connections between exposure and development of disease. They are normally prospective studies of two healthy groups of subjects observed over time, in which one group is exposed to a specific substance, whereas the other is not. The occurrence of the disease can be determined in the two groups. Cohort studies can also be retrospective
  • Case–control studies are retrospective analyses performed to establish the prevalence of a disease in two groups exposed to a factor or disease. The incidence rate cannot be calculated, and there is also a risk of selection bias and faulty recall.

Secondary research

Narrative review.

An expert senior author writes about a particular field, condition or treatment, including an overview, and this information is fortified by his experience. The article is in a narrative format. Its limitation is that one cannot tell whether recommendations are based on author's clinical experience, available literature and why some studies were given more emphasis. It can be biased, with selective citation of reports that reinforce the authors' views of a topic.[ 12 ]

Systematic review

Systematic reviews methodically and comprehensively identify studies focused on a specified topic, appraise their methodology, summate the results, identify key findings and reasons for differences across studies, and cite limitations of current knowledge.[ 13 ] They adhere to reproducible methods and recommended guidelines.[ 14 ] The methods used to compile data are explicit and transparent, allowing the reader to gauge the quality of the review and the potential for bias.[ 15 ]

A systematic review can be presented in text or graphic form. In graphic form, data of different trials can be plotted with the point estimate and 95% confidence interval for each study, presented on an individual line. A properly conducted systematic review presents the best available research evidence for a focused clinical question. The review team may obtain information, not available in the original reports, from the primary authors. This ensures that findings are consistent and generalisable across populations, environment, therapies and groups.[ 12 ] A systematic review attempts to reduce bias identification and studies selection for review, using a comprehensive search strategy and specifying inclusion criteria. The strength of a systematic review lies in the transparency of each phase and highlighting the merits of each decision made, while compiling information.

Meta-analysis

A review team compiles aggregate-level data in each primary study, and in some cases, data are solicited from each of the primary studies.[ 16 , 17 ] Although difficult to perform, individual patient meta-analyses offer advantages over aggregate-level analyses.[ 18 ] These mathematically pooled results are referred to as meta-analysis. Combining data from well-conducted primary studies provide a precise estimate of the “true effect.”[ 19 ] Pooling the samples of individual studies increases overall sample size, enhances statistical analysis power, reduces confidence interval and thereby improves statistical value.

The structured process of Cochrane Collaboration systematic reviews has contributed to the improvement of their quality. For the meta-analysis to be definitive, the primary RCTs should have been conducted methodically. When the existing studies have important scientific and methodological limitations, such as smaller sized samples, the systematic review may identify where gaps exist in the available literature.[ 20 ] RCTs and systematic review of several randomised trials are less likely to mislead us, and thereby help judge whether an intervention is better.[ 2 ] Practice guidelines supported by large RCTs and meta-analyses are considered as ‘gold standard’ in EBM. This issue of IJA is accompanied by an editorial on Importance of EBM on research and practice (Guyat and Sriganesh 471_16).[ 21 ] The EBM pyramid grading the value of different types of research studies is shown in Figure 3 .

An external file that holds a picture, illustration, etc.
Object name is IJA-60-626-g004.jpg

The evidence-based medicine pyramid

In the last decade, a number of studies and guidelines brought about path-breaking changes in anaesthesiology and critical care. Some guidelines such as the ‘Surviving Sepsis Guidelines-2004’[ 22 ] were later found to be flawed and biased. A number of large RCTs were rejected as their findings were erroneous. Another classic example is that of ENIGMA-I (Evaluation of Nitrous oxide In the Gas Mixture for Anaesthesia)[ 23 ] which implicated nitrous oxide for poor outcomes, but ENIGMA-II[ 24 , 25 ] conducted later, by the same investigators, declared it as safe. The rise and fall of the ‘tight glucose control’ regimen was similar.[ 26 ]

Although RCTs are considered ‘gold standard’ in research, their status is at crossroads today. RCTs have conflicting interests and thus must be evaluated with careful scrutiny. EBM can promote evidence reflected in RCTs and meta-analyses. However, it cannot promulgate evidence not reflected in RCTs. Flawed RCTs and meta-analyses may bring forth erroneous recommendations. EBM thus should not be restricted to RCTs and meta-analyses but must involve tracking down the best external evidence to answer our clinical questions.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

What are the different types of research design?

Last updated

7 February 2023

Reviewed by

Jean Kaluza

Research design is the strategy or plan you use to gather that data and make sense of it in a way that seems understandable, logical, and actionable.

Consider your research design the roadmap of data collection and measurement. Various types of design allow you to systematically gather and interpret data to be most beneficial to you. Let’s dive into the ins and outs of research design.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What are the elements of research design?

While there are many types of research design, some elements are essential to all types. For your research to be impactful, pay special attention to keeping the margin of error minimal.  

Here are the key elements:

A stated purpose

Method for collecting the data

Method for analyzing the data

Established type of research methodology

The number of participants necessary

To what capacity (time, data, permissions) you’ll require participants

The probable and expected goal for research (the questions you’ll answer)

Study setting

Established timeline for the entire study

Statistics of study (what you’re studying vs. statistically accurate sample representation)

Approved budget of study for compensation for participants and survey responses

  Characteristics of research design

Generally, four characteristics of research design will set your study up for success:

Neutrality : Keep your projected study results unbiased and neutral.

Reliability : Standardize your design to handle each research segment the same each time.

Validity : Use the correct measuring tools to gauge the results.

Generalization : Your research results should apply to a generalized segment, not just a small select sample.

Making sure your research is without bias means your survey must meet these four criteria. 

When planning your research design strategy, you need to consider two perspectives: Quantitative and qualitative . Understanding how these two work and how they pertain to your study will give you a better idea of how to implement your project in the research design.

Quantitative research design

In quantitative research design, you use numerous variables to analyze the findings, such as numbers and statistics. 

Quantitative research design is absolute and often uses graphs, charts, and statistics to demonstrate the findings. These findings typically answer “ what is happening? ”  

You can use online questionnaires, surveys, or polls to gather quantitative information.  Most surveys are multiple-choice, limiting open-ended questions. Researchers usually carry them out on a large statistically relevant group of respondents.  

Qualitative research design

Qualitative research determines the hows and the whys of how people think or respond to questions. This research design uses open-ended questions and conversational responses in virtual call conversations or face-to-face interviews.   

Qualitative research focuses on generating ideas and developing theories. You can do this with fewer but more in-depth sessions with respondents than with a quantitative research design.

  • What are the different types of research designs?

There are thirteen different types of research design. Researchers familiar with these types will find it easier to gather the data they need to complete their study. Each type differs in how you collect, analyze, or use data. 

Action research design

Action research can be quantitative, qualitative, or a combination. It addresses a specific issue and seeks to solve it. Because the action research design is cooperative and adaptive, it works well in employment and community situations. It can increase the chances of learning from the participant's overall experience.

Case study research design

A case study is a detailed study of a specific subject. Case study research design is usually qualitative but can also sometimes use quantitative methods.  

These studies are excellent for evaluating and understanding the different facets of a research problem. Case study research designs narrow down a significant problem into more easily researchable problems.  

Researchers sometimes use them to describe rare cases, and social scientists test situations with case study research. Sometimes, case studies use small samplings, which can call the research’s reliability and generality into question.

Causal research design

Causal research works to establish a cause-and-effect relationship between two or more variables. Many companies use this research design to determine the impact a change in a product or process will make. 

Sometimes called explanatory research or causal-comparative research, it can be challenging to perform, especially when the research deals with opinions or emotions. 

Companies often use causal research during the later stages of decision-making rather than initial research designs. That’s because it’s usually assessing the impact of a change in an existing product.

Cohort research design

Cohort design is an observational research design that sometimes follows participants over an extended period. The health and medical fields regularly use this research to evaluate the outcome of a particular drug or the occurrence of a reaction. The researcher selects participants that have things in common. 

Open or closed cohort research types depend on the size and scope of the study. Closed studies involve participants who enter the study at the same time and involve a specific population. Though cohort studies are flexible, they are often lengthy.

Cross-sectional research design

Biological or medical applications use cross-sectional research when they require data from a population or representative sample at a specific point in time. Surveys are the usual data collection method, so it is less expensive than other research designs. Sometimes participants are difficult to find, and a narrow timeframe sometimes makes information hard to get.

Descriptive research design

In descriptive research design, the intent is to describe a situation or case by systematically obtaining data to describe the phenomenon, population, or event.  

It can help others further understand the need for research by answering the what : Questions as to how, when, or why require further research.  

Experimental research design

You conduct experimental research in an objective and controlled manner to ensure precision. This also enables you to draw conclusions that establish one variable's effect on another. In other words, it uses a control group to compare with the experimental group. 

This type of research has numerous applications, and several industries use it. It can deliver a high level of evidence based on the research and determine cause and effect in many situations. You can manipulate the variables and monitor the effect of the changes.  

Exploratory research design

As it sounds, exploratory research design explores areas researchers have not studied before. Often, exploratory research determines if further research is necessary. Exploratory research attempts to answer the what, why, and how while setting up additional research needs. Usually qualitative by design, you could also set up larger studies as quantitative.  

Historical research design

Historical research design pulls historical data from past studies. You collect, evaluate, and present that data based on the outcomes. This usually requires you to combine data from several sources and present it as one research hypothesis.  

For example, you could pull information from timesheets, logs, news reports, maps, or other archived or current information. Many industries use it in trend analysis.  

Longitudinal research design

This type of research design makes multiple observations and experiments. Longitudinal research tends to interview the same group over an extended period. 

Behavioral and psychological research uses this type of study to track the behavior of specific groups and identify the variables that changed their behavior.  

This type of research takes a long time to complete, and sometimes the original sample changes over time. It is an observational study that we can also refer to as a panel study.

Observational research design

Observational research design is where you observe participants with or without their knowledge. You’ll usually perform it in natural settings to observe how the respondents make choices or respond to certain situations. They are reasonably flexible types of research, and you can correlate the results to reflect real-life events.   

Philosophical research design

Philosophical research design is a broader approach to researching a problem. You use this design to make assumptions in areas you’re researching.  

In essence, researchers use logic and information from models and theories to analyze and create a basis for:

Practical decision-making

Refining established concepts

Giving clarity and definition to ideas and concepts 

Sequential research design

Of course, this type of research design is sequential. This means you must finish one research stage before moving on to the next stage or sequence.  

These sequences continue until you’ve collected enough data to fulfill the research. Sequential research includes some elements from cross-sectional and longitudinal designs.

  • How to create a research design

To create a research design, you must be sure your chosen methods match your research intent. Not all types are suitable for all research analysis and data collection.

When creating your research design, consider your overall objectives, how you plan to sample, and how you intend to collect and analyze your data. Determine which methods are the most appropriate for the research you’ll be doing.

Keep the following steps in mind when creating your research design:

1. Consider your aims and approach

Before anything else, determine the question you want to answer. Without this information, it is hard to formulate the research you need, the length of time for your study, and the desired result. Sometimes, people get so wrapped up in the details that they can lose sight of the goal.  

Knowing what type of information you are collecting and why you need the data is important. Being concise and to the point can save your stakeholders time and money and prevent you from getting lost.

2.  Choose a type of research design

Look at the type of research designs above and decide on the design that best fits your needs. Each provides a framework for you to move forward with your research. Decide if your research should be quantitative, qualitative, or a mix of both.

Will you need online surveys to collect your data? Will you conduct in-person interviews, asking open-ended questions that give respondents a chance to voice their opinions? Or maybe a more scientific, quantitative approach is what you are looking for.  

3. Identify your population and sampling method

By now, you’ve determined who or what your research will focus on and how you will choose your respondents. Now you need to focus on your population.

In research talk, population is the whole group that you are aiming your research at. Samples are the ones you actually peg as your participants from that group. They will provide you with the relevant data to form accurate theories.  

Decide what makes up your population specifically. If you are researching all students who are attending college, you will identify that as your target population. You narrow the population if you want to target all students in a state university. You've defined the population further if you’re researching students studying literature at Arizona State University. The more precise your definition, the easier it will be to get a reliable sample.  

4. Choose your data collection methods

The way you gather your information is vital to your overall results. You need a method that’s manageable for your project. 

Several methods effectively collect data, and you can use some in combination for the best results:

Surveys are helpful in collecting information on opinions, behaviors, and characteristics. You can acquire the data through questionnaires with multiple-choice questions. It’s best to analyze this option as quantitative data.  

Observation

Observation lets you observe the participants, their reactions, choices, and interactions. You can do this with or without their knowledge. In addition to observing in real-time, you can collect some qualitative data through recordings and in-app behavior analytics.

Historical data

You can collect historical data from an assortment of sources if combining the data helps you get to your desired study results.  

5.  Plan your data collection procedures

Data collection procedures mean more than just writing up a survey and asking a few questions. You must ensure your data is accurate, unbiased, and the same data you use throughout your sample. It’s essential to be consistent in collecting the information.

It may be easy to ask your sample population the same questions on the same survey, but are there variables you must consider? If using observation, how do you maintain a neutral position if it’s impossible to observe every single detail?

This is where you should determine: 

The size of your sample

The length of the survey or interview

The resources (financial or human) needed to conduct your study

Is the location secured for your research to be conducted? 

Organizational skills are necessary regardless of which research design you use. Often, stakeholders will want to know upfront the costs and resources involved in a study. 

For the collected data to meet the requirements of neutrality, reliability, validity, and generalization, you must ensure your data collection is consistent, unbiased, and accurate. 

6.  Decide on your data analysis strategies

If you have decided on a quantitative research design, you may want to prepare your analysis using statistics and numbers. You may present your findings in pie charts, graphs, and other statistical visual methods.  

Qualitative research design relies on opinions and ideas and may be more challenging to represent. You will have to weed through your information, compile it to meet the objectives, and only extract relevant facts.

  • What makes a good research design?

A good research design fulfills the needs of the study. While that’s a broad definition, the research design that’s right for you should always have the end in sight.  

In summary, your research should always be: 

Within your budget

Appropriate

Packed with valid information from appropriate and trustworthy data collection

A large enough sample to represent the larger population you are researching

By applying these guidelines to your next research design, you’ll be able to craft a winning formula.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 25 November 2023

Last updated: 12 May 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 18 May 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

type of research and research design

25,000+ students realised their study abroad dream with us. Take the first step today

Here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

type of research and research design

Verification Code

An OTP has been sent to your registered mobile no. Please verify

type of research and research design

Thanks for your comment !

Our team will review it before it's shown to our readers.

type of research and research design

Types of Research Design: Process and Elements

' src=

  • Updated on  
  • Nov 25, 2023

Research Analyst

Types of Research Design : Be it science and technology , art and culture, media studies, geography , mathematics , and other subjects, research has always been the route towards finding the unknown. In the circumstances when Coronavirus shattered the world, a vast amount of research was being carried out to find vaccines for its treatment. In this blog, we will understand what are the various types of research design and their related components. 

This Blog Includes:

Descriptive research design, experimental research design, correlational research design, diagnostic research design, explanatory research design, process of research design, what is research design, elements of research design, quantitative research design, qualitative research design, quantitative vs. qualitative research design, fixed vs. flexible research design, how to write research design, cohort study, cross-sectional study, longitudinal study, cross-sequential study, types of research design pdf, research design ppt, benefits of research.

Also Read: Research Institutes in India

Types of Research Designs

Now that we know the broadly classified types of research, Quantitative and Qualitative Research can be divided into the following 4 major types of Research Designs:

✏️ Descriptive Research Design ✏️ Case Study ✏️ Correlational Research Design ✏️ Experimental Research Design ✏️ Diagnostic Research Design ✏️ Explanatory Research Design ✏️ Historical research design ✏️ Cohort research design ✏️ Sequential Research Design ✏️ Action Research Design ✏️ Survey

✏️ Phone System ✏️ Causal Research Design

These types of Research Designs mentioned below are considered the closest and exact to true experiments and are preferred in terms of accuracy, relevance as well as quality.

In Descriptive Research Design, the scholar explains/describes the situation or case in depth in their research materials. This type of research design is purely on a theoretical basis where the individual collects data, analyses, prepares and then presents it in an understandable manner. It is the most generalised form of research design. To explore one or more variables, a descriptive design might employ a wide range of research approaches. Unlike in experimental research, the researcher does not control or change any of the variables in a descriptive research design; instead, he or she just observes and measures them.  In other words, while qualitative research may also be utilised for descriptive reasons, a descriptive method of research design is typically regarded as a sort of quantitative research. To guarantee that the results are legitimate and dependable, the study design should be properly constructed. Here are some examples of the descriptive design of the research type:

  • How has the Delhi housing market changed over the past 20 years?
  • Do customers of Company A prefer Product C or Product D?
  • What are the main genetic, behavioural and morphological differences between Indian wild cows and hybrid cows?
  • How prevalent is disease 1 in population Z?

Experimental research is a type of research design in which the study is carried out utilising a scientific approach and two sets of variables. The first set serves as a constant against which the variations in the second set are measured. Experimentation is used in quantitative research methodologies, for example. If you lack sufficient evidence to back your conclusions, you must first establish the facts. Experimental research collects data to assist you in making better judgments. Experimentation is used in any research undertaken in scientifically appropriate settings. The effectiveness of experimental investigations is dependent on researchers verifying that a variable change is due only to modification of the constant variable. The study should identify a noticeable cause and effect. The traditional definition of experimental design is “the strategies employed to collect data in experimental investigations.” There are three types of experimental designs:

  • Pre-experimental research design
  • True experimental research design
  • Quasi-experimental research design

A correlational research design looks into correlations between variables without allowing the researcher to control or manipulate any of them. Correlational studies reveal the magnitude and/or direction of a link between two (or more) variables. Correlational studies or correlational study designs might have either a positive, negative or zero.

Correlational research design is great for swiftly collecting data from natural settings. This allows you to apply your results to real-world circumstances in an externally legitimate manner. Correlational studies research is a viable choice in a few scenarios like:

  • To investigate non-causal relationships
  • To explore causal relationships between variables
  • To test new measurement tools

Recommended Read: Scope of Operation Research

Diagnostic research design is a type of research design that tries to investigate the underlying cause of a certain condition or phenomenon. It can assist you in learning more about the elements that contribute to certain difficulties or challenges that your clients may be experiencing. This design typically consists of three research stages, which are as follows:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

Explanatory research is a method established to explore phenomena that have not before been researched or adequately explained. Its primary goal is to notify us about where we may get a modest bit of information. With this strategy, the researcher obtains a broad notion and uses research as a tool to direct them more quickly to concerns that may be addressed in the future. Its purpose is to discover the why and what of a subject under investigation. In short, it is a type of research design that is responsible for finding the  why  of the events through the establishment of cause-effect relationships. The most popular methods of explanatory research are:

  • Literature research
  • In-depth interview
  • Focus groups
  • Case studies

Is it possible to conduct research without a plan? Most likely not. Research design is a topic we cover while discussing a plan for gathering, analyzing, and interpreting data. This design solves issues and produces a coherent and consistent data analysis model. Let’s study up on it.

A methodical and planned technique for conducting research is the research design process. To make sure the study is legitimate, trustworthy, and yields insightful data, the procedure is crucial. One should keep the points in mind while preparing for research.

✅ Think about your goals and strategies : Establish the study’s theoretical framework, methods, and research questions and objectives. ✅ Select a kind of study design : Based on the research questions and objectives, choose the best research design, such as experimental, correlational, survey, case study, or ethnographic. ✅ Decide on your sample technique and population : Establish the sample size and target population before selecting a sampling strategy, such as convenience, stratified, or random sampling. ✅ Select the techniques you’ll use to collect data : Choose the right instruments or tools for data collection and decide on the methodologies, such as surveys, interviews, observations, or experiments. ✅ Arrange the steps you’ll take to collect data : Create a plan for gathering data that takes ethics into account and specifies the time, place, and people involved. ✅ Choose your data analysis techniques : Plan how to interpret the findings after choosing the relevant data analysis methods, such as statistical, content, or discourse analysis.

Also Read: 10 Types of Qualitative Research Methods & Examples

By the term ‘ research ‘, we can understand that it’s a collection of data that includes critical information by taking research methodologies into consideration. In other words, it is a compilation of information or data explored by setting a hypothesis and consequently coming up with substantive findings in an organised way. Research can be done on an academic as well as a scientific basis as well. Let’s first understand what a research design actually means.

A Research Design is simply a structural framework of various research methods as well as techniques that are utilised by a researcher.

The research design helps a researcher to pursue their journey into the unknown but with a systematic approach by their side. The way an engineer or architect frames a design for a structure, likewise the researcher picks the design from various approaches in order to check which type of research to be carried out. 

Here are the most important elements of a research design- 

➡️ The method applied for analyzing collected details ➡️ Type of research methodology ➡️ Accurate purpose statement ➡️ Probable objections to research ➡️ Techniques to be implemented for collecting and analyzing research ➡️ Timeline ➡️ Measurement of analysis ➡️ Settings for the research study

Must Read: What does a Research Assistant do?

Get to know about the characteristics of Research Design through the infographic given below.

type of research and research design

2 Major Types of Research Design 

Keeping its dynamics into consideration, the research design is categorised into two different perspectives, i.e. Quantitative Research Design and Qualitative Research Design . Further, there are four main characteristics of research design which include Reliability, Neutrality, Validity as well as Generalization. Further, a researcher should have a clear understanding of how their project can be implemented in the research design. Let’s explore what Quantitative and Qualitative Research Designs mean:

In Quantitative Research Design, a researcher examines the various variables while including numbers as well as statistics in a project to analyze its findings. The use of graphics, figures, and pie charts is the main form of data collection measurement and meta-analysis (it is information about the data by the data).

This type of research is quite contrary to the quantitative research design. It is explanatory in nature and always seeks answers to “What’s” and “How’s”. It mainly focuses on why a specific theory exists and what would be the respondent’s answer to it. This allows a researcher to draw a conclusion with proper findings. Case studies are mainly used in Qualitative Research Design in order to understand various social complexities. 

Know All About Business Research!

Following is the difference between Quantitative vs. Qualitative Research Design

A contrast between fixed and flexible research design can also be drawn. Quantitative (fixed design) and qualitative (flexible design) data gathering are frequently associated with these two study design categories. The research design is pre-determined and understood with a set study design even before you begin collecting data. Flexible designs, on the other hand, provide for more flexibility in data collection — for example, you don’t provide fixed answer alternatives, so respondents must put in their own responses.

Let’s learn how to create and write a research design!

Research Design Types by Grouping

Another classification of study design types is based on how participants are categorized. In most situations, grouping is determined by the research premise and the method used to sample individuals. There is generally at least one experimental and one control group in a typical study based on experimental research design.

In medical research, for example, one group can be given therapy while the other receives none. You get my drift. We can differentiate four types of study designs based on participant grouping:

A cohort study is a sort of longitudinal research that takes a cross-section of a cohort (a group of people who have a common trait) at predetermined time intervals. It’s a form of panel research in which all of the people in the group have something in common.

In social science, medical research, and biology, a cross-sectional study is prevalent. This study approach examines data from a population or a representative sample of the population at a specific point in time.

A longitudinal study is a type of study in which the same variables are observed repeatedly over a short or long period of time. It’s usually observational research, although it can also take the form of a long-term randomized experiment.

Cross-sequential research design combines longitudinal and cross-sectional research methods, with the goal of compensating for some of the flaws inherent in both.

Since we are dealing with the types of research design, it is imperative to understand how beneficial the practice of doing research is and some of its major advantages are:

  • Research helps in getting a deeper understanding of the subject.
  • You will learn about its varied aspects as well as its different sources like primary and secondary.
  • It helps to resolve complex problems in any field through critical analysis and measurement of unsolved problems. 
  • You will also get to know how a hypothesis is created by weighing preserved assumptions.

Also Read: How to Make a Career in Research?  

Research designs can be classified into four main categories: descriptive, correlational, experimental, and diagnostic designs.

The five primary types of study design approaches utilized in research disciplines are explanatory, diagnostic, correlational, experimental, and descriptive research.

Quasi-experimental design is a research design in which the researcher does not have complete control over the independent variable, and therefore cannot establish a cause-and-effect relationship. However, they can still examine the relationship between variables.

Correlational design is a research design in which the researcher examines the relationship between two or more variables, without manipulating any of them.

Certainly, research is the fuel that can potentially drive the solutions to redress all the world’s problems. In order to help to gain a deeper understanding of any subject matter, knowing types of research design plays a critical role in carrying out your thesis. If you are aspiring to pursue your career in the field of research and aim to pursue a PhD , call us at 1800572000 for a free 30-minute career counselling session with our Leverage Edu experts and we will help you find a suitable program and university that fit your aspirations, interests and preferences and can guide you towards a fulfilling career in this domain.

' src=

Team Leverage Edu

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

12 comments

I was able to made very good understanding on research design types

Hey Maurice!

We are really glad to hear that. Do subscribe to our newsletter to get the latest updates! Thank you.

CLEAR AND HELPFULL 😍

would like more lessons

Thanks you have being of help to me janees

absolutely good notes thanks

I need for thesis work

Hi Jiregna,

We have a few blogs on thesis work that may help you further- https://leverageedu.com/blog/phd-thesis/ https://leverageedu.com/blog/dphil/

browse success stories

Leaving already?

8 Universities with higher ROI than IITs and IIMs

Grab this one-time opportunity to download this ebook

Connect With Us

25,000+ students realised their study abroad dream with us. take the first step today..

type of research and research design

Resend OTP in

type of research and research design

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

September 2024

January 2025

What is your budget to study abroad?

type of research and research design

How would you describe this article ?

Please rate this article

We would like to hear more.

Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

type of research and research design

Enago Academy's Most Popular Articles

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

ResearchSummary

  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Journals Combat Image Manipulation with AI

Science under Surveillance: Journals adopt advanced AI to uncover image manipulation

Journals are increasingly turning to cutting-edge AI tools to uncover deceitful images published in manuscripts.…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

type of research and research design

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

type of research and research design

What should universities' stance be on AI tools in research and academic writing?

This paper is in the following e-collection/theme issue:

Published on 23.4.2024 in Vol 12 (2024)

A Scalable Pseudonymization Tool for Rapid Deployment in Large Biomedical Research Networks: Development and Evaluation Study

Authors of this article:

Author Orcid Image

  • Hammam Abu Attieh 1 , MSc ; 
  • Diogo Telmo Neves 1 , BSc ; 
  • Mariana Guedes 2, 3, 4 , MSc, MD ; 
  • Massimo Mirandola 5 , PhD ; 
  • Chiara Dellacasa 6 , MSc ; 
  • Elisa Rossi 6 , MSc ; 
  • Fabian Prasser 1 , Prof Dr

1 Medical Informatics Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, , Berlin, , Germany

2 Infection and Antimicrobial Resistance Control and Prevention Unit, Centro Hospitalar Universitário São João, , Porto, , Portugal

3 Infectious Diseases and Microbiology Division, Hospital Universitario Virgen Macarena, , Sevilla, , Spain

4 Department of Medicine, University of Sevilla/Instituto de Biomedicina de Sevilla (IBiS)/Consejo Superior de Investigaciones Científicas (CSIC), , Sevilla, , Spain

5 Infectious Diseases Division, Diagnostic and Public Health Department, University of Verona, , Verona, , Italy

6 High Performance Computing (HPC) Department, CINECA - Consorzio Interuniversitario, , Bologna, , Italy

Corresponding Author:

Hammam Abu Attieh, MSc

Background: The SARS-CoV-2 pandemic has demonstrated once again that rapid collaborative research is essential for the future of biomedicine. Large research networks are needed to collect, share, and reuse data and biosamples to generate collaborative evidence. However, setting up such networks is often complex and time-consuming, as common tools and policies are needed to ensure interoperability and the required flows of data and samples, especially for handling personal data and the associated data protection issues. In biomedical research, pseudonymization detaches directly identifying details from biomedical data and biosamples and connects them using secure identifiers, the so-called pseudonyms. This protects privacy by design but allows the necessary linkage and reidentification.

Objective: Although pseudonymization is used in almost every biomedical study, there are currently no pseudonymization tools that can be rapidly deployed across many institutions. Moreover, using centralized services is often not possible, for example, when data are reused and consent for this type of data processing is lacking. We present the ORCHESTRA Pseudonymization Tool (OPT), developed under the umbrella of the ORCHESTRA consortium, which faced exactly these challenges when it came to rapidly establishing a large-scale research network in the context of the rapid pandemic response in Europe.

Methods: To overcome challenges caused by the heterogeneity of IT infrastructures across institutions, the OPT was developed based on programmable runtime environments available at practically every institution: office suites. The software is highly configurable and provides many features, from subject and biosample registration to record linkage and the printing of machine-readable codes for labeling biosample tubes. Special care has been taken to ensure that the algorithms implemented are efficient so that the OPT can be used to pseudonymize large data sets, which we demonstrate through a comprehensive evaluation.

Results: The OPT is available for Microsoft Office and LibreOffice, so it can be deployed on Windows, Linux, and MacOS. It provides multiuser support and is configurable to meet the needs of different types of research projects. Within the ORCHESTRA research network, the OPT has been successfully deployed at 13 institutions in 11 countries in Europe and beyond. As of June 2023, the software manages data about more than 30,000 subjects and 15,000 biosamples. Over 10,000 labels have been printed. The results of our experimental evaluation show that the OPT offers practical response times for all major functionalities, pseudonymizing 100,000 subjects in 10 seconds using Microsoft Excel and in 54 seconds using LibreOffice.

Conclusions: Innovative solutions are needed to make the process of establishing large research networks more efficient. The OPT, which leverages the runtime environment of common office suites, can be used to rapidly deploy pseudonymization and biosample management capabilities across research networks. The tool is highly configurable and available as open-source software.

Introduction

As a response to the SARS-CoV-2 pandemic, many research projects have been rapidly set up to study the virus, its impact, and possible interventions [ 1 , 2 ]. This accelerated the general trend toward large collaborative networks in biomedical research [ 3 , 4 ]. These are motivated by the need to generate sufficiently large data sets and collections of biosamples, which are essential for developing new methods of personalized medicine and generating real-world evidence [ 5 ]. However, setting up such networks usually takes quite some time, as common tools and policies are needed to achieve interoperability and enable the required flows of data and biosamples [ 6 , 7 ]. One area in which this challenge is frequently encountered is the handling of personal data and the related data protection issues, which can arise in all processing steps, from collection [ 8 ] to sharing [ 9 ] and even analysis and visualization [ 10 ].

Laws and regulations, such as the European Union General Data Protection Regulation (GDPR) [ 11 ] or the US Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule [ 12 ], advocate for various strategies for the protection of personal data. In general terms, the GDPR prohibits the processing of sensitive categories of personal data, including medical data, unless consent is given. However, under certain conditions, processing is also possible without consent if technical and organizational safeguards are implemented [ 13 ]. Although there is no consensus on which protection methods are best suited for use in biomedical research [ 14 ], pseudonymization (also called coding or pseudo-anonymization) [ 15 ] is a common strategy, which can also be used to deidentify data under the HIPAA Privacy Rule. Pseudonymization is an essential aspect of the GDPR, as it is mentioned in multiple articles, in particular as a data minimization measure [ 16 ]. In this privacy-by-design approach, directly identifying data about study subjects are stored separately from biomedical data and biosamples, which are needed for scientific analyses [ 17 ]. The link between the different types of data and assets is established through secure identifiers, the so-called pseudonyms [ 18 ], which enable data linkage and allow the reidentification of subjects only if strictly necessary, for example, for follow-up data collection.

Although pseudonymization is done in almost any biomedical study, there are currently no pseudonymization tools that can rapidly be rolled out across many institutions. Existing tools, such as the Generic Pseudonym Administration Service (gPAS) [ 19 ] and Mainzelliste [ 20 ], are client-server applications, requiring server components to be deployed to and integrated into the institutions’ IT infrastructures. Although this can have some important advantages (see the Limitations and Future Work section), it is usually time-consuming, for example, due to a lack of resources or efforts required to ensure compliance with local security policies. Moreover, using central services, such as the European Unified Patient Identity Management (EUPID) [ 21 ], is often not an option, for example, when data should be reused and consent is missing for this type of processing [ 22 ].

In this paper, we present the ORCHESTRA Pseudonymization Tool (OPT) that has been developed under the umbrella of the ORCHESTRA consortium. This project faced the challenges described in the previous paragraph when quickly establishing a large-scale research network as part of Europe’s rapid pandemic response [ 23 ]. Hence, the OPT has been developed with the aim of supporting (1) the registration, pseudonymization, and management of study subject identities as well as biosamples; (2) rapid rollout across research network partners; and (3) scalability and simple configurability. The objective of this paper is to describe the design and implementation of the OPT and to offer insights into its usability and scalability, as evidenced by its deployment in the ORCHESTRA research network.

Ethical Considerations

The work described in this article covers the design and implementation of a generic research tool, which did not involve research on humans or human specimens and no epidemiological research with personal data. Therefore, no approval was required according to the statutes of the Ethics Committee of the Faculty of Medicine at Charité - Universitätsmedizin Berlin. However, the individual studies which use the tool usually have to apply for ethics approval. For example, the COVID HOME study within the ORCHESTRA project was approved by the Medical Ethical Review Committee of the University Medical Center Groningen (UMCG) under vote number METc 2020/158.

General Approach

The OPT has been designed to support general pseudonymization workflows that are needed in most biomedical research projects, as illustrated in Figure 1 .

When a subject is admitted to the hospital, visits a study center, or has a follow-up visit, they are enrolled in the study. In this setting, the physicians or study nurses collect directly identifying and medical data and, according to the study protocol, the appropriate biosamples. The identifying attributes are entered into the OPT to create a unique pseudonym: the OPT Subject ID. During the follow-up visits, the study staff can use the OPT to retrieve an existing pseudonym from a subject that was already enrolled in the study. In all downstream data collection or processing, the OPT Subject ID can be used instead of identifying data so that the medical data are protected but still linked to the study subject and across visits. In addition, biosample data can also be entered into the OPT and linked to the appropriate subject to generate 1 or more additional pseudonyms: the OPT Biosample IDs. A label can then be generated for each biosample vial, containing the OPT Biosample ID, the OPT Subject ID, a DataMatrix Code, a QR code, or a barcode (containing the OPT Biosample ID) for tracking the biosample via scanners commonly used in laboratories. Study-specific information, for example, the exact information to capture for each study subject and biosample, the number and schedule of visits, and the types and schedules of biosample collections, can all be configured in the OPT. Moreover, in addition to its applicability in prospective studies, as described above, the software also supports importing existing data about subjects and biosamples that can be used in retrospective study designs.

type of research and research design

Implementation Details

To overcome challenges caused by the heterogeneity of IT infrastructures across different institutions and a potential lack of support by IT departments due to resource constraints, the OPT has been implemented based on programmable runtime environments that are available at practically any institution: office suites. These suites, especially the one by Microsoft, are among the most important and widely used applications around the world and still play a key role in many sectors today. The OPT is available for Microsoft Office as an Excel application and for LibreOffice as a Calc application. The application logic has been implemented in the embedded Basic scripting language using efficient algorithms for data management. Although Visual Basic for Applications is supported by Microsoft Office and LibreOffice Basic is supported by LibreOffice, they share similarities but are not fully compatible with each other. In the development process of the OPT, the Excel version serves as the primary implementation, and changes as well as additions are regularly ported to the LibreOffice version to achieve feature parity.

For generating the labels for the biosample vials, the OPT is delivered together with a single-page label printing application that takes pseudonyms and metadata (eg, visit labels) as input and generates printable labels. Although this application is implemented using web technologies such as HTML, CSS, and JavaScript, it is delivered as files and can be executed locally without access to the internet. The label printing application works in any common web browser and can be called via the OPT. Properties of the labels to be printed can either be automatically transmitted via the URL for a single label or manually copied into the application via an input field for bulk printing of a larger number of labels. It is also possible to host the application on a web server. However, in this case, the URL function will be deactivated in the OPT to ensure that no data are sent to the server that hosts the application. It is important to note that the application still runs completely locally in the browser of the user, and no data ever leave the devices used to print labels. The pseudonyms and biosample metadata will be temporarily managed in the browser of the device.

Specific Functionalities

In addition to study subject and biosample management, the OPT also provides import and export functionalities, statistics, and a range of configuration options. In this section, we will briefly introduce each function, whereas a structured overview can be found in Multimedia Appendix 1 . Regarding the subject-related functions, the OPT supports individual or bulk registration and a search function for finding pseudonyms for already registered subjects. An important feature of the software is a search function, required for any new patient or sample registration, which prevents multiple registrations of the same study participant. The search, to be performed as the first step of the registration, is linked to several data quality checks as well as a fuzzy record linkage process that prevents duplicate registrations. The bulk registration functionality enables the use of the OPT for retrospective pseudonymization of existing data sets. The search function supports wildcards and fuzzy matching across a configured set of master data attributes. Additional properties for the registered individuals can be documented to account for site-specific requirements.

Biosample-related functions are designed analogously to those for study subject management. In addition, labels can be generated and printed through the service described in the previous section.

Import and export functionalities are provided to enable the creation of backups (see the next section) and the migration from old versions of the OPT as part of update processes.

Finally, separate worksheets display statistical information about the data captured, such as the number of subjects registered or pseudonyms created for different study visits. Extensive configuration options are also available through a separate worksheet.

All functionalities of the OPT are described briefly in an integrated Quick User Guide and in detail in a comprehensive user manual [ 24 ].

Security Considerations and Features

The data collected during study subject and biosample registration, as well as the pseudonyms generated, are sensitive and a critical part of the data managed in any study. Hence, the confidentiality, integrity, and availability [ 25 ] of the data managed in the OPT must be ensured. In this context, the approach taken by the OPT clearly trades off some of the guarantees that could be provided by a client-server application against the possibility of rapid deployment and rollout. However, as described in the user manual, care has been taken to provide robust guarantees by specifying requirements on how the OPT should be deployed and used [ 24 ]. First, the OPT should not be placed on a local drive but on a network share that is integrated with the institution’s Authentication and Authorization Infrastructure and, hence, provides means for controlling who is able to access the software in read or write mode and from which devices. Second, it is highly recommended that this share be backed up regularly so that data can be restored in case of problems. This should be complemented by regular, for example, daily, manual backups through the export functionality provided by the OPT and according to reminders that are displayed by the software. Finally, the office suites used as runtime environments do not provide multiuser support, and the application can only be opened by 1 user with write permission at any point in time. To enable parallel read access, the OPT comes with a script that opens a temporary read-only copy of the software. This allows, for example, laboratory technicians to use the OPT for generating biosample labels in parallel with ongoing registration processes. The measures described in this section have proven to be effective, and no problems have been encountered to date during extensive use of the software at many institutions (see the Results section).

Overview of the Application

The graphical user interface of the OPT is divided into 10 different perspectives that provide access to the functionalities described in the previous sections. One of those sheets, the configuration sheet, is hidden from the users. All other sheets have write protection using the integrated protection functions of the spreadsheet software, except the input fields and the buttons, to ensure that data management is only performed through the specific functionalities provided by the software. A password is set by default for the write protection, which can be changed by the administrator at any time. However, it is important to keep the password safe. Figure 2 provides an overview of 4 important perspectives.

type of research and research design

Figure 2A shows the configuration sheet, in which the specifics of the algorithm for generating pseudonyms, the study schedule, and the data fields to be documented can be specified. Figure 2B shows the interface provided for searching and registering subjects, with a search form on the left side of the sheet and a results list on the right side. All study subject data stored in the OPT are listed in the sheet shown in Figure 2C . This sheet also allows users to document any additional data that a site may require. Finally, Figure 2D shows a sheet providing statistical information on the number of subjects and biosamples registered, as well as insights into how these numbers have developed over time.

An overview of the label printing application is provided in Figure 3 . As shown in the figure, the data that are to be printed on the labels are listed, and the number of rows and columns can be configured to support printing in bulk or for individual labels. The figure also shows an example of a sheet that can be printed and a detailed image of a single label. The data that are printed on those labels include the biosample and study subject IDs, the associated visit of the study schedule, and the biosample type.

type of research and research design

Use of the OPT in the ORCHESTRA Project

ORCHESTRA is a 3-year international research project about the COVID-19 pandemic that was established in December 2020, involving 26 partners from 15 countries. The aim of ORCHESTRA is to share and analyze data from several retrospective and prospective studies to provide rigorous evidence for improving the prevention and treatment of COVID-19 and to better prepare for future pandemics [ 26 , 27 ].

The data management architecture in ORCHESTRA consists of 3 layers that build upon each other. The first layer is formed by “National Data Providers,” which consist of the participating partners (universities, hospitals, and research networks). These provide the subject data and samples for joint analyses. On the second layer, “National Hubs” pool pseudonymized data in national instances of the Research Electronic Data Capture (REDCap) system [ 28 ]. Finally, the “ORCHESTRA Data Portal” forms the third layer, in which access to aggregated data and results is provided through a central repository.

In ORCHESTRA, the OPT was used for implementing pseudonymization at the data providers’ sites. Each participating site named 1 or 2 persons responsible for technical aspects, such as setting up the required network share and installing updates, as well as several study nurses or clinicians, who would use the OPT. With these users, we performed regular training sessions and provided contact details in case of questions. As of June 2023, 19 instances of the OPT have been rolled out to 13 sites in 11 countries, including Germany, France, Italy, and Slovakia in Europe; Congo in Africa; and Argentina in South America. A world map highlighting all the countries in which the OPT has been rolled out can be found in Multimedia Appendix 2 .

On average, each instance of the OPT was used by up to 4 staff members. The OPT has been successfully rolled out, used, and maintained at large sites with committed IT departments, as well as at smaller, resource-constrained institutions. Overall, it has been in constant production use for more than 2 years. In the majority of the sites (10/13, 77%), the OPT Microsoft Excel version was used, whereas the remaining sites (3/13, 23%) used the LibreOffice release. In total, more than 10,000 study subjects and 15,000 samples have been registered in the OPT across all sites, and more than 10,000 labels have been printed. To evaluate the usability of the OPT, we conducted a survey among all active users, leveraging the widespread System Usability Scale [ 29 ] questionnaire, which includes 10 Likert-scale questions. During this survey, our system was designed to prevent multiple responses from individual participants and the submission of incomplete responses. We received 6 responses from 9 invited users, resulting in a score of 75 on a scale from 0 to 100, which adjectively translates to “good” [ 30 ].

Performance Evaluation

As mentioned, the OPT has been carefully designed to provide acceptable performance, even when large data sets are being processed or a large number of subjects or samples are being managed. In this section, we present the results of a brief performance evaluation. Our test environment consisted of an average office laptop, which was equipped with a quad-core 1.8 GHz Intel Core i7 CPU and a 64-bit Microsoft Windows 10 operating system. On top of it, Microsoft Excel 2016 (x32) and LibreOffice 7.0 (x64) were installed. Figure 4 provides an overview of the execution times of the most important functionalities of the OPT for different cohort sizes.

The numbers clearly show that the OPT works well and provides excellent performance for small or medium-sized data sets and acceptable performance for large data sets.

type of research and research design

Figure 4A shows the average execution times for importing data about study subjects and samples. Data about subjects were imported into a completely empty OPT, whereas data about samples were imported into an OPT that already had the corresponding study subjects registered, so that each biosample was assigned to exactly 1 subject. For example, importing the data of 100,000 subjects took about 10 seconds in the Excel version and 54 seconds in the LibreOffice version. During the registration, the existence of the associated study subject in the OPT is checked, which makes the registration of samples slower compared to the registration of subjects. This is also noticeable in Figure 4B , which shows the average execution times for registering a single study subject or sample. As can be seen, using an OPT data set in which 100,000 entities were already registered, this took between 2 and 4 seconds in the Excel version and between 4 and 6 seconds in the LibreOffice version. Figure 4C shows the average execution times for searching for entities and obtaining their pseudonym, which is roughly twice as fast as the registration operation.

As performance is associated linearly with the number of entities already managed, subsecond response times can be expected for instances in which around 15,000 or fewer subjects or samples have been registered. This is consistent with our experiences from the deployments in the ORCHESTRA research network.

Principal Findings

In this paper, we presented the OPT, a comprehensive, scalable, and pragmatic pseudonymization tool that can be rapidly rolled out across large research networks. To achieve this, the software has been implemented based on runtime environments that are available at practically any institution: office suites. The software supports a broad range of functionalities, from registering and pseudonymizing subject and biosample identities to search and depseudonymization functions, statistics about the data managed, as well as import and export features. We have described measures that are recommended to ensure the security of the data managed by the OPT and reported on our experiences gained after 2 years of successful operation in a large research network on COVID-19. Finally, we have also presented the results of a performance evaluation showing that the software provides excellent performance for small or medium-sized data sets and acceptable performance for large data sets. The OPT is available as open-source software [ 31 ] and can be configured to meet the needs of a wide range of biomedical research projects.

Limitations and Future Work

To achieve the design goals of the OPT, some compromises had to be made regarding data management. Compared to using client-server applications that use database management systems to store data, it is more difficult to ensure the confidentiality, integrity, and availability of the data managed with the OPT. There is also limited support for multiuser scenarios. However, we have developed and documented a set of measures that, if taken, help to still ensure a high level of data security. For this to work, it is important that users adhere to those recommendations. Therefore, all users of the OPT should familiarize themselves with the manual [ 24 ], and ideally, they should also be trained in the use and operation of the software. Despite these limitations, we strongly believe that our approach offers an innovative take on pseudonymization tools that can rapidly be rolled out across large research networks. Of course, it would be even more desirable if global standards for pseudonymization functions could be developed and agreed upon. Such global standards would ensure that solutions already existing at many research institutions are interoperable and can readily be used in joint research activities.

Comparison With Related Work

A range of pseudonymization tools has been described in the literature and are available as open-source software. However, they are either based on a client-server architecture and hence require quite some effort to be rolled out across sites, based on central services and hence not usable if consent is lacking for this type of processing, or offered as command-line utilities or programming libraries for IT experts.

Examples of client-server approaches include the work by Lablans et al [ 20 ] to provide a RESTful interface to pseudonymization services in modern web applications, which is based on a concept suggested by Pommerening et al [ 6 ] in 2006. Moreover, researchers from the University of Greifswald in Germany have designed and developed several client-server tools that can be used to manage subjects, samples, and other aspects of biomedical studies [ 32 , 33 ].

Examples of central services for pseudonymization include the EUPID, which was developed in 2014 by the Austrian Institute of Technology for the European Network for Cancer Research in Children and Adolescents project [ 21 ]. Another example is the Secure Privacy-preserving Identity management in Distributed Environments for Research (SPIDER) service, which was launched in May 2022 by the Joint Research Centre [ 34 ]. Both services support linking and transferring subject data across registries without revealing their identities. However, biosample data management is not possible with them. Further centralized concepts include the one described by Angelow et al [ 35 ].

Examples of command-line utilities, application programming interfaces, and programming libraries include the generic solution for record linkage of special categories of personal data developed by Fischer et al [ 36 ]; that by Preciado-Marquez et al [ 37 ]; and the PID (patient ID) generator developed by the TMF (Technologies, Methods and Infrastructure for Networked Medical Research e.V.), the German umbrella association for networked medical research [ 6 ].

Widely available office suites provide runtime environments that offer opportunities to rapidly roll out software components for biomedical studies across a wide range of large and resource-constrained research institutions. We have demonstrated this through the development, practical use, and evaluation of the OPT, which offers pseudonymization functionalities for study subjects and biosamples. As we believe that the software is of interest to the larger research community, it has been made available under a permissive open-source license [ 31 ].

Acknowledgments

This work has been funded by the European Union’s Horizon 2020 research and innovation programme under the project ORCHESTRA (grant agreement 101016167).

Conflicts of Interest

None declared.

Overview of the ORCHESTRA Pseudonymization Tool functions.

Map of countries in which the ORCHESTRA Pseudonymization Tool has been rolled out.

  • Dron L, Dillman A, Zoratti MJ, Haggstrom J, Mills EJ, Park JJH. Clinical trial data sharing for COVID-19-related research. J Med Internet Res. Mar 12, 2021;23(3):e26718. [ CrossRef ] [ Medline ]
  • R&D Blueprint. A coordinated global research roadmap: 2019 novel coronavirus. World Health Organization; Mar 12, 2020. URL: https://www.who.int/publications/m/item/a-coordinated-global-research-roadmap [Accessed 2024-04-12]
  • Guinney J, Saez-Rodriguez J. Alternative models for sharing confidential biomedical data. Nat Biotechnol. May 9, 2018;36(5):391-392. [ CrossRef ] [ Medline ]
  • Walport M, Brest P. Sharing research data to improve public health. Lancet. Feb 12, 2011;377(9765):537-539. [ CrossRef ] [ Medline ]
  • Mahmoud A, Ahlborn B, Mansmann U, Reinhardt I. Clientside pseudonymization with trusted third-party using modern web technology. Stud Health Technol Inform. May 27, 2021;281:496-497. [ CrossRef ] [ Medline ]
  • Pommerening K, Schröder M, Petrov D, Schlösser-Faßbender M, Semler SC, Drepper J. Pseudonymization service and data custodians in medical research networks and biobanks. In: INFORMATIK 2006 – INFORMATIK für Menschen. Vol 1. Gesellschaft für Informatik e.V; 2006;715-721. ISBN: 978-3-88579-187-4
  • Tacconelli E, Gorska A, Carrara E, et al. Challenges of data sharing in European COVID-19 projects: a learning opportunity for advancing pandemic preparedness and response. Lancet Reg Health Eur. Oct 2022;21:100467. [ CrossRef ] [ Medline ]
  • Rumbold J, Pierscionek B. Contextual anonymization for secondary use of big data in biomedical research: proposal for an anonymization matrix. JMIR Med Inform. Nov 22, 2018;6(4):e47. [ CrossRef ] [ Medline ]
  • Aamot H, Kohl CD, Richter D, Knaup-Gregori P. Pseudonymization of patient identifiers for translational research. BMC Med Inform Decis Mak. Jul 24, 2013;13:75. [ CrossRef ] [ Medline ]
  • Wu X, Wang H, Zhang Y, Li R. A secure visual framework for multi-index protection evaluation in networks. Digit Commun Netw. Apr 2023;9(2):327-336. [ CrossRef ]
  • Regulation (EU) 2016/679 of the European Parliament and of the Council. Official Journal of the European Union. Apr 27, 2016. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679 [Accessed 2024-04-12]
  • U.S. Department of Health and Human Services, Office for Civil Rights. HIPAA administrative simplification: regulation text: 45 CFR parts 160, 162, and 164 (unofficial version, as amended through March 26, 2013). U.S. Department of Health and Human Services. Mar 26, 2013. URL: https://www.hhs.gov/sites/default/files/hipaa-simplification-201303.pdf [Accessed 2024-04-12]
  • Quinn P. Research under the GDPR - a level playing field for public and private sector research? Life Sci Soc Policy. Mar 1, 2021;17(1):4. [ CrossRef ] [ Medline ]
  • Rodriguez A, Tuck C, Dozier MF, et al. Current recommendations/practices for anonymising data from clinical trials in order to make it available for sharing: a scoping review. Clin Trials. Aug 2022;19(4):452-463. [ CrossRef ] [ Medline ]
  • Kohlmayer F, Lautenschläger R, Prasser F. Pseudonymization for research data collection: is the juice worth the squeeze? BMC Med Inform Decis Mak. Sep 4, 2019;19(1):178. [ CrossRef ] [ Medline ]
  • Gruschka N, Mavroeidis V, Vishi K, Jensen M. Privacy issues and data protection in big data: a case study analysis under GDPR. Presented at: 2018 IEEE International Conference on Big Data (Big Data); Dec 10 to 13, 2018;5027-5033; Seattle, WA. [ CrossRef ]
  • Lautenschläger R, Kohlmayer F, Prasser F, Kuhn KA. A generic solution for web-based management of pseudonymized data. BMC Med Inform Decis Mak. Nov 30, 2015;15:100. [ CrossRef ] [ Medline ]
  • European Union Agency for Cybersecurity, Drogkaris P, Bourka A. Recommendations on shaping technology according to GDPR provisions - an overview on data pseudonymisation. European Network and Information Security Agency; 2018. [ CrossRef ]
  • Bialke M, Bahls T, Havemann C, et al. MOSAIC--a modular approach to data management in epidemiological studies. Methods Inf Med. 2015;54(4):364-371. [ CrossRef ] [ Medline ]
  • Lablans M, Borg A, Ückert F. A RESTful interface to pseudonymization services in modern web applications. BMC Med Inform Decis Mak. Feb 7, 2015;15:2. [ CrossRef ] [ Medline ]
  • Nitzlnader M, Schreier G. Patient identity management for secondary use of biomedical research data in a distributed computing environment. Stud Health Technol Inform. 2014;198:211-218. [ Medline ]
  • El Emam K, Rodgers S, Malin B. Anonymising and sharing individual patient data. BMJ. Mar 20, 2015;350:h1139. [ CrossRef ] [ Medline ]
  • Connecting European cohorts to increase common and effective response to SARS-CoV-2 pandemic: ORCHESTRA. European Commission. Apr 21, 2022. URL: https://cordis.europa.eu/project/id/101016167/de [Accessed 2023-06-02]
  • BIH-MI/opt: ORCHESTRA pseudonymization tool - user manual. GitHub. Sep 24, 2023. URL: https://github.com/BIH-MI/opt/blob/main/development/documentation/user-manual.pdf [Accessed 2023-09-26]
  • ISO/IEC 27001:2022 information security, cybersecurity and privacy protection - information security management systems - requirements. International Organization for Standardization; 2022. URL: https://www.iso.org/standard/27001 [Accessed 2024-04-12]
  • Azzini AM, Canziani LM, Davis RJ, et al. How European research projects can support vaccination strategies: the case of the ORCHESTRA project for SARS-CoV-2. Vaccines (Basel). Aug 14, 2023;11(8):1361. [ CrossRef ] [ Medline ]
  • ORCHESTRA - EU horizon 2020 cohort to tackle COVID-19 internationally. ORCHESTRA. Sep 19, 2022. URL: https://orchestra-cohort.eu/ [Accessed 2023-04-12]
  • Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCAP)--a metadata-driven methodology and workflow process for providing translational research Informatics support. J Biomed Inform. Apr 2009;42(2):377-381. [ CrossRef ] [ Medline ]
  • Brooke J. SUS: a quick and dirty usability scale. In: Usability Evaluation in Industry. CRC Press; 1996;189-194.
  • Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: adding an adjective rating scale. J Usability Stud. May 2009;4(3):114-123. URL: https://uxpajournal.org/wp-content/uploads/sites/7/pdf/JUS_Bangor_May2009.pdf [Accessed 2024-04-12]
  • BIH-MI/opt: ORCHESTRA pseudonymization tool. GitHub. Jun 2, 2023. URL: https://github.com/BIH-MI/opt [Accessed 2023-06-02]
  • Bialke M. Werkzeuggestützte Verfahren für die Realisierung einer Treuhandstelle im Rahmen des zentralen Datenmanagements in der epidemiologischen Forschung [Dissertation]. Universitätsmedizin der Ernst-Moritz-Arndt-Universität Greifswald; 2016. URL: https://d-nb.info/1124566945/34 [Accessed 2024-04-12]
  • Bialke M, Penndorf P, Wegner T, et al. A workflow-driven approach to integrate generic software modules in a trusted third party. J Transl Med. Jun 4, 2015;13:176. [ CrossRef ] [ Medline ]
  • SPIDER pseudonymisation tool. European Commission. May 4, 2023. URL: https://eu-rd-platform.jrc.ec.europa.eu/spider/ [Accessed 2023-06-02]
  • Angelow A, Schmidt M, Weitmann K, et al. Methods and implementation of a central biosample and data management in a three-centre clinical study. Comput Methods Programs Biomed. Jul 2008;91(1):82-90. [ CrossRef ] [ Medline ]
  • Fischer H, Röhrig R, Thiemann VS. Simple Batch Record Linkage System (SimBa) – a generic tool for record linkage of special categories of personal data in small networked research projects with distributed data sources: lessons learned from the Inno_RD project. In: Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. 64. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS). German Medical Science GMS Publishing House; 2019. [ CrossRef ]
  • Preciado-Marquez D, Becker L, Storck M, Greulich L, Dugas M, Brix TJ. MainzelHandler: a library for a simple integration and usage of the Mainzelliste. Stud Health Technol Inform. May 27, 2021;281:233-237. [ CrossRef ] [ Medline ]

Abbreviations

Edited by Christian Lovis; submitted 06.06.23; peer-reviewed by James Scheibner, Xiang Wu; final revised version received 03.10.23; accepted 07.03.24; published 23.04.24.

© Hammam Abu Attieh, Diogo Telmo Neves, Mariana Guedes, Massimo Mirandola, Chiara Dellacasa, Elisa Rossi, Fabian Prasser. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 23.4.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/ , as well as this copyright and license information must be included.

IMAGES

  1. Research

    type of research and research design

  2. Types of Research

    type of research and research design

  3. 25 Types of Research Designs (2024)

    type of research and research design

  4. Quantitative Research Design Types

    type of research and research design

  5. Types of Research Methodology: Uses, Types & Benefits

    type of research and research design

  6. Types of Research Design

    type of research and research design

VIDEO

  1. Different types of Research Designs|Quantitative|Qualitative|English| part 1|

  2. Research Designs: Part 2 of 3: Qualitative Research Designs (ሪሰርች ዲዛይን

  3. Quantitative Research Designs 📊🔍: Know Your Options #shorts #research

  4. QUANTITATIVE METHODOLOGY (Part 2 of 3):

  5. Research Designs: Part 3 of 3: Mixed Research Designs (ሪሰርች ዲዛይን

  6. What is research design? #how to design a research advantages of research design

COMMENTS

  1. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  2. Research Design

    This type of research design is used when it is not feasible or ethical to conduct a true experiment. Case Study Research Design. Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The ...

  3. Research Design

    Step 2: Choose a type of research design. Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research. Types of quantitative research designs. Quantitative designs can be split into four main types.

  4. 5 Types of Research Design

    This type of research design tries to solve the problems in a structured form divided into three phases- the issue's inception, diagnosis of the issue, and solution for the issue. Explanatory design. In this research design, the researcher explores concepts and ideas on a subject to explore more theories. The main aim of the research is to ...

  5. Research Design: What is Research Design, Types, Methods, and Examples

    Types of Research Design. • Quantitative Research: Focuses on numerical data and statistical analysis to quantify relationships and patterns. Common methods include surveys, experiments, and observational studies. • Qualitative Research: Emphasizes understanding phenomena through in-depth exploration and interpretation of non-numerical data ...

  6. Types of Research Designs

    This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where ...

  7. What Is Research Design? 8 Types + Examples

    Experimental Research Design. Experimental research design is used to determine if there is a causal relationship between two or more variables.With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions ...

  8. What is Research Design? Types, Elements and Examples

    Research design elements include the following: Clear purpose: The research question or hypothesis must be clearly defined and focused. Sampling: This includes decisions about sample size, sampling method, and criteria for inclusion or exclusion. The approach varies for different research design types.

  9. The Four Types of Research Design

    In short, a good research design helps us to structure our research. Marketers use different types of research design when conducting research. There are four common types of research design — descriptive, correlational, experimental, and diagnostic designs. Let's take a look at each in more detail.

  10. What is a Research Design? Definition, Types, Methods and Examples

    Research design methods refer to the systematic approaches and techniques used to plan, structure, and conduct a research study. The choice of research design method depends on the research questions, objectives, and the nature of the study. Here are some key research design methods commonly used in various fields: 1.

  11. Research Design: What it is, Elements & Types

    Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success. Creating a research topic explains the type of research (experimental,survey research,correlational ...

  12. Types of Research Design in 2024: Perspective and Methodological

    Yin (2014) has a succinct way of differentiating the two: design is logical, while method is logistical. In other words, the design is the plan, the method is how to realize that plan. There are important factors at play when creating a methodology in research. These include ethics, the validity of data, and reliability.

  13. Study designs: Part 1

    Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem. Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the ...

  14. Types of Research

    This type of research is subdivided into two types: Technological applied research: looks towards improving efficiency in a particular productive sector through the improvement of processes or machinery related to said productive processes. Scientific applied research: has predictive purposes. Through this type of research design, we can ...

  15. Types of studies and research design

    Types of study design. Medical research is classified into primary and secondary research. Clinical/experimental studies are performed in primary research, whereas secondary research consolidates available studies as reviews, systematic reviews and meta-analyses. Three main areas in primary research are basic medical research, clinical research ...

  16. What are the different types of research design?

    Research design is the strategy or plan you use to gather that data and make sense of it in a way that seems understandable, logical, and actionable. Consider your research design the roadmap of data collection and measurement. Various types of design allow you to systematically gather and interpret data to be most beneficial to you.

  17. (PDF) 6. Type of Research and Type Research Design

    of ans wering the research ques tion or testing from hypothesis. This type of research d esign. includes descriptive design, exploratory design, experimental design, longitudinal design, cross ...

  18. Types of Research Designs

    The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data. ... This type of research design draws a ...

  19. Types of Research Design: Process and Elements

    Types of Research Design: Be it science and technology, art and culture, media studies, geography, mathematics, and other subjects, research has always been the route towards finding the unknown. In the circumstances when Coronavirus shattered the world, a vast amount of research was being carried out to find vaccines for its treatment. In this ...

  20. Types of Research Designs

    The type of question dictates the type of study design. Primary research is research which seeks to obtain new data about the phenomena studied, while secondary research is the research which analyses the data and results of studies already done. The types of research can be classified as quantitative (correlational, comparative, experimental ...

  21. Experimental Research Designs: Types, Examples & Advantages

    There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design. 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2.

  22. U.S. Surveys

    Pew Research Center has deep roots in U.S. public opinion research. Launched initially as a project focused primarily on U.S. policy and politics in the early 1990s, the Center has grown over time to study a wide range of topics vital to explaining America to itself and to the world.Our hallmarks: a rigorous approach to methodological quality, complete transparency as to our methods, and a ...

  23. Design of the COMEBACK and BACKHOME Studies, Longitudinal ...

    Objective: The University of California, San Francisco (UCSF) Core Center for Patient-centric, Mechanistic Phenotyping in Chronic Low Back Pain (REACH) is one of the three NIH Back Pain Consortium (BACPAC) Research Programs Mechanistic Research Centers (MRCs). The goal of UCSF REACH is to define cLBP phenotypes and pain mechanisms that can lead to effective, personalized treatments for ...

  24. JMIR Medical Informatics

    Background: The SARS-CoV-2 pandemic has demonstrated once again that rapid collaborative research is essential for the future of biomedicine. Large research networks are needed to collect, share, and reuse data and biosamples to generate collaborative evidence. However, setting up such networks is often complex and time-consuming, as common tools and policies are needed to ensure ...

  25. Journal of Medical Internet Research

    The results were independently screened by 2 reviewers. Sources were included if they reported a completed primary research study in which a behavior change approach could be identified within a physical stroke rehabilitation intervention that included a DHT. Data, including the study design, DHT used, and behavior change approaches, were charted.

  26. Understanding Relations Between Product Icon Type, Feature Type, and

    However, the intricate relationship between product icon types, feature types, and abstraction in cognitive contexts has yet to be clarified. ... His research interests include human-computer interaction, ergonomic research, aging design, and medical equipment design. Lulu Gan. Lulu Gan received her Bachelor's degree in Mechanical ...

  27. Macrostructural Design Approach of the Monolithic Catalyst and Its

    In multiphase reactions, the monolithic catalyst can effectively reduce the pressure drop and improve catalyst utilization efficiency. The additive manufacturing technology has given us the ability to prepare innovative three-dimensional structural monolithic catalysts. However, there is currently a lack of an approach to guide the macroscopic structure design of monolithic catalysts. In this ...

  28. Actuators

    Ocean wave energy is a new type of clean energy. To improve the power generation and wave energy conversion efficiency of the direct-drive wave power generation system, by addressing the issue of large output errors and poor system stability commonly associated with the currently used PID (proportional, integral, and derivative) control methods, this paper proposes a maximum power control ...