Warren Berger

A Crash Course in Critical Thinking

What you need to know—and read—about one of the essential skills needed today..

Posted April 8, 2024 | Reviewed by Michelle Quirk

  • In research for "A More Beautiful Question," I did a deep dive into the current crisis in critical thinking.
  • Many people may think of themselves as critical thinkers, but they actually are not.
  • Here is a series of questions you can ask yourself to try to ensure that you are thinking critically.

Conspiracy theories. Inability to distinguish facts from falsehoods. Widespread confusion about who and what to believe.

These are some of the hallmarks of the current crisis in critical thinking—which just might be the issue of our times. Because if people aren’t willing or able to think critically as they choose potential leaders, they’re apt to choose bad ones. And if they can’t judge whether the information they’re receiving is sound, they may follow faulty advice while ignoring recommendations that are science-based and solid (and perhaps life-saving).

Moreover, as a society, if we can’t think critically about the many serious challenges we face, it becomes more difficult to agree on what those challenges are—much less solve them.

On a personal level, critical thinking can enable you to make better everyday decisions. It can help you make sense of an increasingly complex and confusing world.

In the new expanded edition of my book A More Beautiful Question ( AMBQ ), I took a deep dive into critical thinking. Here are a few key things I learned.

First off, before you can get better at critical thinking, you should understand what it is. It’s not just about being a skeptic. When thinking critically, we are thoughtfully reasoning, evaluating, and making decisions based on evidence and logic. And—perhaps most important—while doing this, a critical thinker always strives to be open-minded and fair-minded . That’s not easy: It demands that you constantly question your assumptions and biases and that you always remain open to considering opposing views.

In today’s polarized environment, many people think of themselves as critical thinkers simply because they ask skeptical questions—often directed at, say, certain government policies or ideas espoused by those on the “other side” of the political divide. The problem is, they may not be asking these questions with an open mind or a willingness to fairly consider opposing views.

When people do this, they’re engaging in “weak-sense critical thinking”—a term popularized by the late Richard Paul, a co-founder of The Foundation for Critical Thinking . “Weak-sense critical thinking” means applying the tools and practices of critical thinking—questioning, investigating, evaluating—but with the sole purpose of confirming one’s own bias or serving an agenda.

In AMBQ , I lay out a series of questions you can ask yourself to try to ensure that you’re thinking critically. Here are some of the questions to consider:

  • Why do I believe what I believe?
  • Are my views based on evidence?
  • Have I fairly and thoughtfully considered differing viewpoints?
  • Am I truly open to changing my mind?

Of course, becoming a better critical thinker is not as simple as just asking yourself a few questions. Critical thinking is a habit of mind that must be developed and strengthened over time. In effect, you must train yourself to think in a manner that is more effortful, aware, grounded, and balanced.

For those interested in giving themselves a crash course in critical thinking—something I did myself, as I was working on my book—I thought it might be helpful to share a list of some of the books that have shaped my own thinking on this subject. As a self-interested author, I naturally would suggest that you start with the new 10th-anniversary edition of A More Beautiful Question , but beyond that, here are the top eight critical-thinking books I’d recommend.

The Demon-Haunted World: Science as a Candle in the Dark , by Carl Sagan

This book simply must top the list, because the late scientist and author Carl Sagan continues to be such a bright shining light in the critical thinking universe. Chapter 12 includes the details on Sagan’s famous “baloney detection kit,” a collection of lessons and tips on how to deal with bogus arguments and logical fallacies.

critical thinking skills in psychology

Clear Thinking: Turning Ordinary Moments Into Extraordinary Results , by Shane Parrish

The creator of the Farnham Street website and host of the “Knowledge Project” podcast explains how to contend with biases and unconscious reactions so you can make better everyday decisions. It contains insights from many of the brilliant thinkers Shane has studied.

Good Thinking: Why Flawed Logic Puts Us All at Risk and How Critical Thinking Can Save the World , by David Robert Grimes

A brilliant, comprehensive 2021 book on critical thinking that, to my mind, hasn’t received nearly enough attention . The scientist Grimes dissects bad thinking, shows why it persists, and offers the tools to defeat it.

Think Again: The Power of Knowing What You Don't Know , by Adam Grant

Intellectual humility—being willing to admit that you might be wrong—is what this book is primarily about. But Adam, the renowned Wharton psychology professor and bestselling author, takes the reader on a mind-opening journey with colorful stories and characters.

Think Like a Detective: A Kid's Guide to Critical Thinking , by David Pakman

The popular YouTuber and podcast host Pakman—normally known for talking politics —has written a terrific primer on critical thinking for children. The illustrated book presents critical thinking as a “superpower” that enables kids to unlock mysteries and dig for truth. (I also recommend Pakman’s second kids’ book called Think Like a Scientist .)

Rationality: What It Is, Why It Seems Scarce, Why It Matters , by Steven Pinker

The Harvard psychology professor Pinker tackles conspiracy theories head-on but also explores concepts involving risk/reward, probability and randomness, and correlation/causation. And if that strikes you as daunting, be assured that Pinker makes it lively and accessible.

How Minds Change: The Surprising Science of Belief, Opinion and Persuasion , by David McRaney

David is a science writer who hosts the popular podcast “You Are Not So Smart” (and his ideas are featured in A More Beautiful Question ). His well-written book looks at ways you can actually get through to people who see the world very differently than you (hint: bludgeoning them with facts definitely won’t work).

A Healthy Democracy's Best Hope: Building the Critical Thinking Habit , by M Neil Browne and Chelsea Kulhanek

Neil Browne, author of the seminal Asking the Right Questions: A Guide to Critical Thinking, has been a pioneer in presenting critical thinking as a question-based approach to making sense of the world around us. His newest book, co-authored with Chelsea Kulhanek, breaks down critical thinking into “11 explosive questions”—including the “priors question” (which challenges us to question assumptions), the “evidence question” (focusing on how to evaluate and weigh evidence), and the “humility question” (which reminds us that a critical thinker must be humble enough to consider the possibility of being wrong).

Warren Berger

Warren Berger is a longtime journalist and author of A More Beautiful Question .

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

APS

  • Teaching Tips

A Brief Guide for Teaching and Assessing Critical Thinking in Psychology

In my first year of college teaching, a student approached me one day after class and politely asked, “What did you mean by the word ‘evidence’?” I tried to hide my shock at what I took to be a very naive question. Upon further reflection, however, I realized that this was actually a good question, for which the usual approaches to teaching psychology provided too few answers. During the next several years, I developed lessons and techniques to help psychology students learn how to evaluate the strengths and weaknesses of scientific and nonscientific kinds of evidence and to help them draw sound conclusions. It seemed to me that learning about the quality of evidence and drawing appropriate conclusions from scientific research were central to teaching critical thinking (CT) in psychology.

In this article, I have attempted to provide guidelines to psychol­ogy instructors on how to teach CT, describing techniques I devel­oped over 20 years of teaching. More importantly, the techniques and approach described below are ones that are supported by scientific research. Classroom examples illustrate the use of the guidelines and how assessment can be integrated into CT skill instruction.

Overview of the Guidelines

Confusion about the definition of CT has been a major obstacle to teaching and assessing it (Halonen, 1995; Williams, 1999). To deal with this problem, we have defined CT as reflective think­ing involved in the evaluation of evidence relevant to a claim so that a sound or good conclusion can be drawn from the evidence (Bensley, 1998). One virtue of this definition is it can be applied to many thinking tasks in psychology. The claims and conclusions psychological scientists make include hypotheses, theoretical state­ments, interpretation of research findings, or diagnoses of mental disorders. Evidence can be the results of an experiment, case study, naturalistic observation study, or psychological test. Less formally, evidence can be anecdotes, introspective reports, commonsense beliefs, or statements of authority. Evaluating evidence and drawing appropriate conclusions along with other skills, such as distin­guishing arguments from nonarguments and finding assumptions, are collectively called argument analysis skills. Many CT experts take argument analysis skills to be fundamental CT skills (e.g., Ennis, 1987; Halpern, 1998). Psychology students need argument analysis skills to evaluate psychological claims in their work and in everyday discourse.

Some instructors expect their students will improve CT skills like argument analysis skills by simply immersing them in challenging course work. Others expect improvement because they use a textbook with special CT questions or modules, give lectures that critically review the literature, or have students complete written assignments. While these and other traditional techniques may help, a growing body of research suggests they are not sufficient to efficiently produce measurable changes in CT skills. Our research on acquisition of argument analysis skills in psychology (Bensley, Crowe, Bernhardt, Buchner, & Allman, in press) and on critical reading skills (Bensley & Haynes, 1995; Spero & Bensley, 2009) suggests that more explicit, direct instruction of CT skills is necessary. These results concur with results of an earlier review of CT programs by Chance (1986) and a recent meta-analysis by Abrami et al., (2008).

Based on these and other findings, the following guidelines describe an approach to explicit instruction in which instructors can directly infuse CT skills and assessment into their courses. With infusion, instructors can use relevant content to teach CT rules and concepts along with the subject matter. Directly infus­ing CT skills into course work involves targeting specific CT skills, making CT rules, criteria, and methods explicit, providing guided practice in the form of exercises focused on assessing skills, and giving feedback on practice and assessments. These components are similar to ones found in effective, direct instruc­tion approaches (Walberg, 2006). They also resemble approaches to teaching CT proposed by Angelo (1995), Beyer (1997), and Halpern (1998). Importantly, this approach has been successful in teaching CT skills in psychology (e.g., Bensley, et al., in press; Bensley & Haynes, 1995; Nieto & Saiz, 2008; Penningroth, Despain, & Gray, 2007). Directly infusing CT skill instruction can also enrich content instruction without sacrificing learning of subject matter (Solon, 2003). The following seven guidelines, illustrated by CT lessons and assessments, explicate this process.

Seven Guidelines for Teaching and Assessing Critical Thinking

1. Motivate your students to think critically

Critical thinking takes effort. Without proper motivation, students are less inclined to engage in it. Therefore, it is good to arouse interest right away and foster commitment to improving CT throughout a course. One motivational strategy is to explain why CT is important to effective, professional behavior. Often, telling a compelling story that illustrates the consequences of failing to think critically can mo­tivate students. For example, the tragic death of 10-year-old Candace Newmaker at the hands of her therapists practicing attachment therapy illustrates the perils of using a therapy that has not been supported by good empirical evidence (Lilienfeld, 2007).

Instructors can also pique interest by taking a class poll posing an interesting question on which students are likely to have an opinion. For example, asking students how many think that the full moon can lead to increases in abnormal behavior can be used to introduce the difference between empirical fact and opinion or common sense belief. After asking students how psychologists answer such questions, instructors might go over the meta-analysis of Rotton and Kelly (1985). Their review found that almost all of the 37 studies they reviewed showed no association between the phase of the moon and abnormal behavior with only a few, usually poorly, controlled studies supporting it. Effect size over all stud­ies was very small (.01). Instructors can use this to illustrate how psychologists draw a conclusion based on the quality and quantity of research studies as opposed to what many people commonly believe. For other interesting thinking errors and misconceptions related to psychology, see Bensley (1998; 2002; 2008), Halpern (2003), Ruscio (2006), Stanovich (2007), and Sternberg (2007).

Attitudes and dispositions can also affect motivation to think critically. If students lack certain CT dispositions such as open-mindedness, fair-mindedness, and skepticism, they will be less likely to think critically even if they have CT skills (Halpern, 1998). Instructors might point out that even great scientists noted for their powers of reasoning sometimes fail to think critically when they are not disposed to use their skills. For example, Alfred Russel Wallace who used his considerable CT skills to help develop the concept of natural selection also believed in spiritualistic contact with the dead. Despite considerable evidence that mediums claiming to contact the dead were really faking such contact, Wallace continued to believe in it (Bensley, 2006). Likewise, the great American psychologist William James, whose reasoning skills helped him develop the seeds of important contemporary theories, believed in spiritualism despite evidence to the contrary.

2. Clearly state the CT goals and objectives for your class

Once students are motivated, the instructor should focus them on what skills they will work on during the course. The APA task force on learning goals and objectives for psychology listed CT as one of 10 major goals for students (Halonen et al., 2002). Under critical thinking they have further specified outcomes such as evaluating the quality of information, identifying and evaluating the source and credibility of information, recognizing and defending against think­ing errors and fallacies. Instructors should publish goals like these in their CT course objectives in their syllabi and more specifically as assignment objectives in their assignments. Given the pragmatic penchant of students for studying what is needed to succeed in a course, this should help motivate and focus them.

To make instruction efficient, course objectives and lesson ob­jectives should explicitly target CT skills to be improved. Objectives should specify the behavior that will change in a way that can be measured. A course objective might read, “After taking this course, you will be able to analyze arguments found in psychological and everyday discussions.” When the goal of a lesson is to practice and improve specific microskills that make up argument analysis, an assignment objective might read “After successfully completing this assignment, you will be able to identify different kinds of evidence in a psychological discussion.” Or another might read “After suc­cessfully completing this assignment, you will be able to distinguish arguments from nonarguments.” Students might demonstrate they have reached these objectives by showing the behavior of correctly labeling the kinds of evidence presented in a passage or by indicating whether an argument or merely a claim has been made. By stating objectives in the form of assessable behaviors, the instructor can test these as assessment hypotheses.

Sometimes when the goal is to teach students how to decide which CT skills are appropriate in a situation, the instructor may not want to identify specific skills. Instead, a lesson objective might read, “After successfully completing this assignment, you will be able to decide which skills and knowledge are appropriate for criti­cally analyzing a discussion in psychology.”

3. Find opportunities to infuse CT that fit content and skill requirements of your course

To improve their CT skills, students must be given opportunities to practice them. Different courses present different opportunities for infusion and practice. Stand-alone CT courses usually provide the most opportunities to infuse CT. For example, the Frostburg State University Psychology Department has a senior seminar called “Thinking like a Psychologist” in which students complete lessons giving them practice in argument analysis, critical reading, critically evaluating information on the Internet, distinguishing science from pseudoscience, applying their knowledge and CT skills in simula­tions of psychological practice, and other activities.

In more typical subject-oriented courses, instructors must find specific content and types of tasks conducive to explicit CT skill instruction. For example, research methods courses present several opportunities to teach argument analysis skills. Instructors can have students critically evaluate the quality of evidence provided by studies using different research methods and designs they find in PsycINFO and Internet sources. This, in turn, could help students write better critical evaluations of research for research reports.

A cognitive psychology teacher might assign a critical evalu­ation of the evidence on an interesting question discussed in text­book literature reviews. For example, students might evaluate the evidence relevant to the question of whether people have flashbulb memories such as accurately remembering the 9-11 attack. This provides the opportunity to teach them that many of the studies, although informative, are quasi-experimental and cannot show causation. Or, students might analyze the arguments in a TV pro­gram such as the fascinating Nova program Kidnapped by Aliens on people who recall having been abducted by aliens.

4. Use guided practice, explicitly modeling and scaffolding CT.

Guided practice involves modeling and supporting the practice of target skills, and providing feedback on progress towards skill attainment. Research has shown that guided practice helps student more efficiently acquire thinking skills than unguided and discovery approaches (Meyer, 2004).

Instructors can model the use of CT rules, criteria, and proce­dures for evaluating evidence and drawing conclusions in many ways. They could provide worked examples of problems, writing samples displaying good CT, or real-world examples of good and bad thinking found in the media. They might also think out loud as they evaluate arguments in class to model the process of thinking.

To help students learn to use complex rules in thinking, instruc­tors should initially scaffold student thinking. Scaffolding involves providing product guidelines, rules, and other frameworks to support the process of thinking. Table 1 shows guidelines like those found in Bensley (1998) describing nonscientific kinds of evidence that can support student efforts to evaluate evidence in everyday psychologi­cal discussions. Likewise, Table 2 provides guidelines like those found in Bensley (1998) and Wade and Tavris (2005) describing various kinds of scientific research methods and designs that differ in the quality of evidence they provide for psychological arguments.

In the cognitive lesson on flashbulb memory described earlier, students use the framework in Table 2 to evaluate the kinds of evidence in the literature review. Table 1 can help them evaluate the kinds of evidence found in the Nova video Kidnapped by Aliens . Specifically, they could use it to contrast scientific authority with less credible authority. The video includes statements by scientific authorities like Elizabeth Loftus based on her extensive research contrasted with the nonscientific authority of Bud Hopkins, an artist turned hypnotherapist and author of popular books on alien abduction. Loftus argues that the memories of alien abduction in the children interviewed by Hopkins were reconstructed around the suggestive interview questions he posed. Therefore, his conclu­sion that the children and other people in the video were recalling actual abduction experiences was based on anecdotes, unreliable self-reports, and other weak evidence.

Modeling, scaffolding, and guided practice are especially useful in helping students first acquire CT skills. After sufficient practice, however, instructors should fade these and have students do more challenging assignments without these supports to promote transfer.

5. Align assessment with practice of specific CT skills

Test questions and other assessments of performance should be similar to practice questions and problems in the skills targeted but differ in content. For example, we have developed a series of practice and quiz questions about the kinds of evidence found in Table 1 used in everyday situations but which differ in subject matter from practice to quiz. Likewise, other questions employ research evidence examples corresponding to Table 2. Questions ask students to identify kinds of evidence, evaluate the quality of the evidence, distinguish arguments from nonarguments, and find assumptions in the examples with practice examples differing in content from assessment items.

6. Provide feedback and encourage students to reflect on it

Instructors should focus feedback on the degree of attainment of CT skill objectives in the lesson or assessment. The purpose of feedback is to help students learn how to correct faulty thinking so that in the future they monitor their thinking and avoid such problems. This should increase their metacognition or awareness and control of their thinking, an important goal of CT instruction (Halpern, 1998).

Students must use their feedback for it to improve their CT skills. In the CT exercises and critical reading assignments, students receive feedback in the form of corrected responses and written feedback on open-ended questions. They should be advised that paying attention to feedback on earlier work and assessments should improve their performance on later assessments.

7. Reflect on feedback and assessment results to improve CT instruction

Instructors should use the feedback they provide to students and the results of ongoing assessments to ‘close the loop,’ that is, use these outcomes to address deficiencies in performance and improve instruction. In actual practice, teaching and assessment strategies rarely work optimally the first time. Instructors must be willing to tinker with these to make needed improvements. Reflec­tion on reliable and valid assessment results provides a scientific means to systematically improve instruction and assessment.

Instructors may find the direct infusion approach as summarized in the seven guidelines to be efficient, especially in helping students acquire basic CT skills, as research has shown. They may especially appreciate how it allows them to take a scientific approach to the improvement of instruction. Although the direct infusion approach seems to efficiently promote acquisition of CT skills, more research is needed to find out if students transfer their skills outside of the class­room or whether this approach needs adjustment to promote transfer.

Table 1. Strengths and Weaknesses of Nonscientific Sources and Kinds of Evidence

Table 2. Strengths and Weaknesses of Scientific Research Methods/Designs Used as Sources of Evidence

Abrami, P. C., Bernard, R. M., Borokhovhovski, E., Wade, A., Surkes, M. A., Tamim, R., et al., (2008). Instructional interventions affecting critical thinking skills and dispositions: A stage 1 meta-analysis. Review of Educational Research, 4 , 1102–1134.

Angelo, T. A. (1995). Classroom assessment for critical thinking. Teaching of Psychology , 22(1), 6–7.

Bensley, D.A. (1998). Critical thinking in psychology: A unified skills approach. Pacific Grove, CA: Brooks/Cole.

Bensley, D.A. (2002). Science and pseudoscience: A critical thinking primer. In M. Shermer (Ed.), The Skeptic encyclopedia of pseudoscience. (pp. 195–203). Santa Barbara, CA: ABC–CLIO.

Bensley, D.A. (2006). Why great thinkers sometimes fail to think critically. Skeptical Inquirer, 30, 47–52.

Bensley, D.A. (2008). Can you learn to think more like a psychologist? The Psychologist, 21, 128–129.

Bensley, D.A., Crowe, D., Bernhardt, P., Buckner, C., & Allman, A. (in press). Teaching and assessing critical thinking skills for argument analysis in psychology. Teaching of Psychology .

Bensley, D.A. & Haynes, C. (1995). The acquisition of general purpose strategic knowledge for argumentation. Teaching of Psychology, 22 , 41–45.

Beyer, B.K. (1997). Improving student thinking: A comprehensive approach . Boston: Allyn & Bacon.

Chance, P. (1986) Thinking in the classroom: A review of programs . New York: Instructors College Press.

Ennis, R.H. (1987). A taxonomy of critical thinking dispositions and abilities. In J. B. Baron & R. F. Sternberg (Eds.). Teaching thinking skills: Theory and practice (pp. 9–26). New York: Freeman.

Halonen, J.S. (1995). Demystifying critical thinking. Teaching of Psychology, 22 , 75–81.

Halonen, J.S., Appleby, D.C., Brewer, C.L., Buskist, W., Gillem, A. R., Halpern, D. F., et al. (APA Task Force on Undergraduate Major Competencies). (2002) Undergraduate psychology major learning goals and outcomes: A report. Washington, DC: American Psychological Association. Retrieved August 27, 2008, from http://www.apa.org/ed/pcue/reports.html .

Halpern, D.F. (1998). Teaching critical thinking for transfer across domains: Dispositions, skills, structure training, and metacognitive monitoring. American Psychologist , 53 , 449–455.

Halpern, D.F. (2003). Thought and knowledge: An introduction to critical thinking . (3rd ed.). Mahwah, NJ: Erlbaum.

Lilienfeld, S.O. (2007). Psychological treatments that cause harm. Perspectives on Psychological Science , 2 , 53–70.

Meyer, R.E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist , 59 , 14–19.

Nieto, A.M., & Saiz, C. (2008). Evaluation of Halpern’s “structural component” for improving critical thinking. The Spanish Journal of Psychology , 11 ( 1 ), 266–274.

Penningroth, S.L., Despain, L.H., & Gray, M.J. (2007). A course designed to improve psychological critical thinking. Teaching of Psychology , 34 , 153–157.

Rotton, J., & Kelly, I. (1985). Much ado about the full moon: A meta-analysis of lunar-lunacy research. Psychological Bulletin , 97 , 286–306.

Ruscio, J. (2006). Critical thinking in psychology: Separating sense from nonsense. Belmont, CA: Wadsworth.

Solon, T. (2007). Generic critical thinking infusion and course content learning in introductory psychology. Journal of Instructional Psychology , 34(2), 972–987.

Stanovich, K.E. (2007). How to think straight about psychology . (8th ed.). Boston: Pearson.

Sternberg, R.J. (2007). Critical thinking in psychology: It really is critical. In R. J. Sternberg, H. L. Roediger, & D. F. Halpern (Eds.), Critical thinking in psychology. (pp. 289–296) . Cambridge, UK: Cambridge University Press.

Wade, C., & Tavris, C. (2005) Invitation to psychology. (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

Walberg, H.J. (2006). Improving educational productivity: A review of extant research. In R. F. Subotnik & H. J. Walberg (Eds.), The scientific basis of educational productivity (pp. 103–159). Greenwich, CT: Information Age.

Williams, R.L. (1999). Operational definitions and assessment of higher-order cognitive constructs. Educational Psychology Review , 11 , 411–427.

' src=

Excellent article.

' src=

Interesting and helpful!

APS regularly opens certain online articles for discussion on our website. Effective February 2021, you must be a logged-in APS member to post comments. By posting a comment, you agree to our Community Guidelines and the display of your profile information, including your name and affiliation. Any opinions, findings, conclusions, or recommendations present in article comments are those of the writers and do not necessarily reflect the views of APS or the article’s author. For more information, please see our Community Guidelines .

Please login with your APS account to comment.

About the Author

D. Alan Bensley is Professor of Psychology at Frostburg State University. He received his Master’s and PhD degrees in cognitive psychology from Rutgers University. His main teaching and research interests concern the improvement of critical thinking and other cognitive skills. He coordinates assessment for his department and is developing a battery of instruments to assess critical thinking in psychology. He can be reached by email at [email protected] Association for Psychological Science December 2010 — Vol. 23, No. 10

critical thinking skills in psychology

Student Notebook: Five Tips for Working with Teaching Assistants in Online Classes

Sarah C. Turner suggests it’s best to follow the golden rule: Treat your TA’s time as you would your own.

Teaching Current Directions in Psychological Science

Aimed at integrating cutting-edge psychological science into the classroom, Teaching Current Directions in Psychological Science offers advice and how-to guidance about teaching a particular area of research or topic in psychological science that has been

European Psychology Learning and Teaching Conference

The School of Education of the Paris Lodron University of Salzburg is hosting the next European Psychology Learning and Teaching (EUROPLAT) Conference on September 18–20, 2017 in Salzburg, Austria. The main theme of the conference

Privacy Overview

  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Critical Thinking

Introduction, general overviews.

  • Importance of Thinking Critically
  • Defining Critical Thinking
  • General Skills
  • Specific Skills
  • Metacognitive Monitoring Skills
  • Critical Thinking Dispositions
  • Teaching Specific Skills
  • Encouraging a Disposition toward Thinking Critically
  • Transfer to Other Domains
  • Metacognitive Monitoring
  • General or Comprehensive Assessments
  • Metacognition Assessments
  • Critical Thinking Disposition Assessments
  • Thinking Critically about Critical Thinking

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Artificial Intelligence, Machine Learning, and Psychology
  • Assessment of Thinking in Educational Settings
  • Human Memory
  • Learning Theory
  • Mindfulness
  • Problem Solving and Decision Making
  • Procrastination
  • Student Success in College
  • Teaching of Psychology
  • Thinking Skills in Educational Settings
  • Women and Science, Technology, Engineering, and Math (STEM)

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Data Visualization
  • Remote Work
  • Workforce Training Evaluation
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Critical Thinking by Heather Butler , Diane Halpern LAST REVIEWED: 26 August 2022 LAST MODIFIED: 29 November 2011 DOI: 10.1093/obo/9780199828340-0019

Critical thinking has been described in many ways, but researchers generally agree that critical thinking involves rational, purposeful, and goal-directed thinking (see Defining Critical Thinking ). Diane F. Halpern defined critical thinking as an attempt to increase the probability of a desired outcome (e.g., making a sound decision, successfully solving a problem) by using certain cognitive skills and strategies. Critical thinking is more than just a collection of skills and strategies: it is a disposition toward engaging with problems. Critical thinkers are flexible, open-minded, persistent, and willing to exert mental energy working on tough problems. Unlike poor thinkers, critical thinkers are willing to admit they have made an error in judgment if confronted with contradictory evidence, and they operate on autopilot much less than poor thinkers (see Critical Thinking Dispositions ). There is good evidence that critical thinking skills and dispositions can be taught (see Teaching Critical Thinking ). This guide includes (a) sources that extol the importance of critical thinking, (b) research that identifies specific critical thinking skills and conceptualizations of critical thinking dispositions, (c) a list of the best practices for teaching critical thinking skills and dispositions, and (d) a review of research into ways of assessing critical thinking skills and dispositions (see Assessments ).

The sources highlighted here include textbooks, literature reviews, and meta-analyses related to critical thinking. These contributions come from both psychological ( Halpern 2003 ; Nisbett 1993 ; Sternberg, et al. 2007 ) and philosophical ( Ennis 1962 , Facione 1990 ) perspectives. Many of these general overviews are textbooks ( Facione 2011b ; Halpern 2003 ; Nisbett 1993 ; Sternberg, et al. 2007 ), while the other sources are review articles or commentaries. Most resources were intended for a general audience, but Sternberg, et al. 2007 was written specifically to address critical thinking in psychology. Those interested in a historical reference are referred to Ennis 1962 , which is credited by some as renewing contemporary interest in critical thinking. Those interested in a more recent conceptualization of critical thinking are referred to Facione 2011a , which is a short introduction to the field of critical thinking that would be appropriate for those new to the field, or Facione 1990 , which summarizes a collaborative definition of critical thinking among philosophers using the Delphi method. Facione 2011b would be a valuable resource for philosophers teaching critical thinking or logic courses to general audiences. For psychologists teaching critical thinking courses to a general audience, Halpern 2003 , an empirically based textbook, covers a wide range of topics; a new edition is expected soon. Fisher 2001 is also intended for general audiences and teaches a wide variety of critical thinking skills. Nisbett 1993 tackles the question of whether critical thinking skills can be taught and provides ample empirical evidence to that end. Sternberg, et al. 2007 is a good resource for psychology students interested in learning how to improve their scientific reasoning skills, a specific set of thinking skills needed by psychology and other science students.

Ennis, Robert H. 1962. A concept of critical thinking: A proposed basis of research in the teaching and evaluation of critical thinking. Harvard Educational Review 32:81–111.

A discussion of how critical thinking is conceptualized from a philosopher’s perspective. Critical of psychology’s definition of critical thinking at the time. Emphasizes twelve aspects of critical thinking.

Facione, Peter A. 1990. Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction; Executive Summary of The Delphi Report . Millbrae, CA: California Academic Press.

Describes the critical thinking movement, definitions of critical thinking agreed upon by philosophers using the Delphi method, the assessment of critical thinking, and how critical thinking can be taught.

Facione, Peter A. 2011a. Critical thinking: What it is and why it counts . Millbrae, CA: Insight Assessment.

This accessible paper defines critical thinking, elaborates on specific critical thinking skills, and discusses what it means to have (or not have) a critical thinking disposition. A distinction is made between system 1 (shallow processing) and system 2 (deeper processing) thinking. Good resource for students new to the field.

Facione, Peter A. 2011b. THINK critically . Upper Saddle River, NJ: Prentice Hall.

Written from a philosophical perspective this critical thinking textbook emphasizes the application of critical thinking to the real world and offers positive examples of critical thinking. Chapters cover inductive, deductive, comparative, ideological, and empirical reasoning

Fisher, Alec. 2001. Critical thinking: An introduction . Cambridge, UK: Cambridge Univ. Press.

Textbook intended for college students discusses various types of reasoning, causality, argument analysis, and decision making. Includes exercises for students and teachers.

Halpern, Diane F. 2003. Thought & knowledge: An introduction to critical thinking . 4th ed. Mahwah, NJ: Lawrence Erlbaum.

This textbook, written by a cognitive psychologist, is grounded in theory and research from the learning sciences and offers practical examples. Chapters include an introduction to the topic and the correlates of critical thinking, memory, thought and language, reasoning, analyzing arguments, thinking as hypothesis testing, likelihood and uncertainty, decision making, development of problem-solving skills, and creative thinking.

Nisbett, Richard E. 1993. Rules for reasoning . Hillsdale, NJ: Lawrence Erlbaum.

This text is rich with empirical evidence that critical thinking skills can be taught to undergraduate and graduate students. Each chapter discusses research on an aspect of reasoning (e.g., statistical reasoning, heuristics, inductive reasoning) with special emphasis on teaching the application of these skills to everyday problems.

Sternberg, Robert J., Henry L. Roediger III, and Diane F. Halpern, eds. 2007. Critical thinking in psychology . New York: Cambridge Univ. Press.

This edited book explores several aspects of critical thinking that are needed to fully understand key topics in psychology such as experiment research, statistical inference, case studies, logical fallacies, and ethical judgments. Experts discuss the critical thinking strategies they engage in. Interesting discussion of historical breakthroughs due to critical thinking.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Psychology »
  • Meet the Editorial Board »
  • Abnormal Psychology
  • Academic Assessment
  • Acculturation and Health
  • Action Regulation Theory
  • Action Research
  • Addictive Behavior
  • Adolescence
  • Adoption, Social, Psychological, and Evolutionary Perspect...
  • Advanced Theory of Mind
  • Affective Forecasting
  • Affirmative Action
  • Ageism at Work
  • Allport, Gordon
  • Alzheimer’s Disease
  • Ambulatory Assessment in Behavioral Science
  • Analysis of Covariance (ANCOVA)
  • Animal Behavior
  • Animal Learning
  • Anxiety Disorders
  • Art and Aesthetics, Psychology of
  • Assessment and Clinical Applications of Individual Differe...
  • Attachment in Social and Emotional Development across the ...
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Adults
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Childre...
  • Attitudinal Ambivalence
  • Attraction in Close Relationships
  • Attribution Theory
  • Authoritarian Personality
  • Bayesian Statistical Methods in Psychology
  • Behavior Therapy, Rational Emotive
  • Behavioral Economics
  • Behavioral Genetics
  • Belief Perseverance
  • Bereavement and Grief
  • Biological Psychology
  • Birth Order
  • Body Image in Men and Women
  • Bystander Effect
  • Categorical Data Analysis in Psychology
  • Childhood and Adolescence, Peer Victimization and Bullying...
  • Clark, Mamie Phipps
  • Clinical Neuropsychology
  • Clinical Psychology
  • Cognitive Consistency Theories
  • Cognitive Dissonance Theory
  • Cognitive Neuroscience
  • Communication, Nonverbal Cues and
  • Comparative Psychology
  • Competence to Stand Trial: Restoration Services
  • Competency to Stand Trial
  • Computational Psychology
  • Conflict Management in the Workplace
  • Conformity, Compliance, and Obedience
  • Consciousness
  • Coping Processes
  • Correspondence Analysis in Psychology
  • Counseling Psychology
  • Creativity at Work
  • Critical Thinking
  • Cross-Cultural Psychology
  • Cultural Psychology
  • Daily Life, Research Methods for Studying
  • Data Science Methods for Psychology
  • Data Sharing in Psychology
  • Death and Dying
  • Deceiving and Detecting Deceit
  • Defensive Processes
  • Depressive Disorders
  • Development, Prenatal
  • Developmental Psychology (Cognitive)
  • Developmental Psychology (Social)
  • Diagnostic and Statistical Manual of Mental Disorders (DSM...
  • Discrimination
  • Dissociative Disorders
  • Drugs and Behavior
  • Eating Disorders
  • Ecological Psychology
  • Educational Settings, Assessment of Thinking in
  • Effect Size
  • Embodiment and Embodied Cognition
  • Emerging Adulthood
  • Emotional Intelligence
  • Empathy and Altruism
  • Employee Stress and Well-Being
  • Environmental Neuroscience and Environmental Psychology
  • Ethics in Psychological Practice
  • Event Perception
  • Evolutionary Psychology
  • Expansive Posture
  • Experimental Existential Psychology
  • Exploratory Data Analysis
  • Eyewitness Testimony
  • Eysenck, Hans
  • Factor Analysis
  • Festinger, Leon
  • Five-Factor Model of Personality
  • Flynn Effect, The
  • Forensic Psychology
  • Forgiveness
  • Friendships, Children's
  • Fundamental Attribution Error/Correspondence Bias
  • Gambler's Fallacy
  • Game Theory and Psychology
  • Geropsychology, Clinical
  • Global Mental Health
  • Habit Formation and Behavior Change
  • Health Psychology
  • Health Psychology Research and Practice, Measurement in
  • Heider, Fritz
  • Heuristics and Biases
  • History of Psychology
  • Human Factors
  • Humanistic Psychology
  • Implicit Association Test (IAT)
  • Industrial and Organizational Psychology
  • Inferential Statistics in Psychology
  • Insanity Defense, The
  • Intelligence
  • Intelligence, Crystallized and Fluid
  • Intercultural Psychology
  • Intergroup Conflict
  • International Classification of Diseases and Related Healt...
  • International Psychology
  • Interviewing in Forensic Settings
  • Intimate Partner Violence, Psychological Perspectives on
  • Introversion–Extraversion
  • Item Response Theory
  • Law, Psychology and
  • Lazarus, Richard
  • Learned Helplessness
  • Learning versus Performance
  • LGBTQ+ Romantic Relationships
  • Lie Detection in a Forensic Context
  • Life-Span Development
  • Locus of Control
  • Loneliness and Health
  • Mathematical Psychology
  • Meaning in Life
  • Mechanisms and Processes of Peer Contagion
  • Media Violence, Psychological Perspectives on
  • Mediation Analysis
  • Memories, Autobiographical
  • Memories, Flashbulb
  • Memories, Repressed and Recovered
  • Memory, False
  • Memory, Human
  • Memory, Implicit versus Explicit
  • Memory in Educational Settings
  • Memory, Semantic
  • Meta-Analysis
  • Metacognition
  • Metaphor, Psychological Perspectives on
  • Microaggressions
  • Military Psychology
  • Mindfulness and Education
  • Minnesota Multiphasic Personality Inventory (MMPI)
  • Money, Psychology of
  • Moral Conviction
  • Moral Development
  • Moral Psychology
  • Moral Reasoning
  • Nature versus Nurture Debate in Psychology
  • Neuroscience of Associative Learning
  • Nonergodicity in Psychology and Neuroscience
  • Nonparametric Statistical Analysis in Psychology
  • Observational (Non-Randomized) Studies
  • Obsessive-Complusive Disorder (OCD)
  • Occupational Health Psychology
  • Olfaction, Human
  • Operant Conditioning
  • Optimism and Pessimism
  • Organizational Justice
  • Parenting Stress
  • Parenting Styles
  • Parents' Beliefs about Children
  • Path Models
  • Peace Psychology
  • Perception, Person
  • Performance Appraisal
  • Personality and Health
  • Personality Disorders
  • Personality Psychology
  • Phenomenological Psychology
  • Placebo Effects in Psychology
  • Play Behavior
  • Positive Psychological Capital (PsyCap)
  • Positive Psychology
  • Posttraumatic Stress Disorder (PTSD)
  • Prejudice and Stereotyping
  • Pretrial Publicity
  • Prisoner's Dilemma
  • Prosocial Behavior
  • Prosocial Spending and Well-Being
  • Protocol Analysis
  • Psycholinguistics
  • Psychological Literacy
  • Psychological Perspectives on Food and Eating
  • Psychology, Political
  • Psychoneuroimmunology
  • Psychophysics, Visual
  • Psychotherapy
  • Psychotic Disorders
  • Publication Bias in Psychology
  • Reasoning, Counterfactual
  • Rehabilitation Psychology
  • Relationships
  • Reliability–Contemporary Psychometric Conceptions
  • Religion, Psychology and
  • Replication Initiatives in Psychology
  • Research Methods
  • Risk Taking
  • Role of the Expert Witness in Forensic Psychology, The
  • Sample Size Planning for Statistical Power and Accurate Es...
  • Schizophrenic Disorders
  • School Psychology
  • School Psychology, Counseling Services in
  • Self, Gender and
  • Self, Psychology of the
  • Self-Construal
  • Self-Control
  • Self-Deception
  • Self-Determination Theory
  • Self-Efficacy
  • Self-Esteem
  • Self-Monitoring
  • Self-Regulation in Educational Settings
  • Self-Report Tests, Measures, and Inventories in Clinical P...
  • Sensation Seeking
  • Sex and Gender
  • Sexual Minority Parenting
  • Sexual Orientation
  • Signal Detection Theory and its Applications
  • Simpson's Paradox in Psychology
  • Single People
  • Single-Case Experimental Designs
  • Skinner, B.F.
  • Sleep and Dreaming
  • Small Groups
  • Social Class and Social Status
  • Social Cognition
  • Social Neuroscience
  • Social Support
  • Social Touch and Massage Therapy Research
  • Somatoform Disorders
  • Spatial Attention
  • Sports Psychology
  • Stanford Prison Experiment (SPE): Icon and Controversy
  • Stereotype Threat
  • Stereotypes
  • Stress and Coping, Psychology of
  • Subjective Wellbeing Homeostasis
  • Taste, Psychological Perspectives on
  • Terror Management Theory
  • Testing and Assessment
  • The Concept of Validity in Psychological Assessment
  • The Neuroscience of Emotion Regulation
  • The Reasoned Action Approach and the Theories of Reasoned ...
  • The Weapon Focus Effect in Eyewitness Memory
  • Theory of Mind
  • Therapies, Person-Centered
  • Therapy, Cognitive-Behavioral
  • Time Perception
  • Trait Perspective
  • Trauma Psychology
  • Twin Studies
  • Type A Behavior Pattern (Coronary Prone Personality)
  • Unconscious Processes
  • Video Games and Violent Content
  • Virtues and Character Strengths
  • Women and Science, Technology, Engineering, and Math (STEM...
  • Women, Psychology of
  • Work Well-Being
  • Wundt, Wilhelm
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|195.158.225.230]
  • 195.158.225.230

41+ Critical Thinking Examples (Definition + Practices)

practical psychology logo

Critical thinking is an essential skill in our information-overloaded world, where figuring out what is fact and fiction has become increasingly challenging.

But why is critical thinking essential? Put, critical thinking empowers us to make better decisions, challenge and validate our beliefs and assumptions, and understand and interact with the world more effectively and meaningfully.

Critical thinking is like using your brain's "superpowers" to make smart choices. Whether it's picking the right insurance, deciding what to do in a job, or discussing topics in school, thinking deeply helps a lot. In the next parts, we'll share real-life examples of when this superpower comes in handy and give you some fun exercises to practice it.

Critical Thinking Process Outline

a woman thinking

Critical thinking means thinking clearly and fairly without letting personal feelings get in the way. It's like being a detective, trying to solve a mystery by using clues and thinking hard about them.

It isn't always easy to think critically, as it can take a pretty smart person to see some of the questions that aren't being answered in a certain situation. But, we can train our brains to think more like puzzle solvers, which can help develop our critical thinking skills.

Here's what it looks like step by step:

Spotting the Problem: It's like discovering a puzzle to solve. You see that there's something you need to figure out or decide.

Collecting Clues: Now, you need to gather information. Maybe you read about it, watch a video, talk to people, or do some research. It's like getting all the pieces to solve your puzzle.

Breaking It Down: This is where you look at all your clues and try to see how they fit together. You're asking questions like: Why did this happen? What could happen next?

Checking Your Clues: You want to make sure your information is good. This means seeing if what you found out is true and if you can trust where it came from.

Making a Guess: After looking at all your clues, you think about what they mean and come up with an answer. This answer is like your best guess based on what you know.

Explaining Your Thoughts: Now, you tell others how you solved the puzzle. You explain how you thought about it and how you answered. 

Checking Your Work: This is like looking back and seeing if you missed anything. Did you make any mistakes? Did you let any personal feelings get in the way? This step helps make sure your thinking is clear and fair.

And remember, you might sometimes need to go back and redo some steps if you discover something new. If you realize you missed an important clue, you might have to go back and collect more information.

Critical Thinking Methods

Just like doing push-ups or running helps our bodies get stronger, there are special exercises that help our brains think better. These brain workouts push us to think harder, look at things closely, and ask many questions.

It's not always about finding the "right" answer. Instead, it's about the journey of thinking and asking "why" or "how." Doing these exercises often helps us become better thinkers and makes us curious to know more about the world.

Now, let's look at some brain workouts to help us think better:

1. "What If" Scenarios

Imagine crazy things happening, like, "What if there was no internet for a month? What would we do?" These games help us think of new and different ideas.

Pick a hot topic. Argue one side of it and then try arguing the opposite. This makes us see different viewpoints and think deeply about a topic.

3. Analyze Visual Data

Check out charts or pictures with lots of numbers and info but no explanations. What story are they telling? This helps us get better at understanding information just by looking at it.

4. Mind Mapping

Write an idea in the center and then draw lines to related ideas. It's like making a map of your thoughts. This helps us see how everything is connected.

There's lots of mind-mapping software , but it's also nice to do this by hand.

5. Weekly Diary

Every week, write about what happened, the choices you made, and what you learned. Writing helps us think about our actions and how we can do better.

6. Evaluating Information Sources

Collect stories or articles about one topic from newspapers or blogs. Which ones are trustworthy? Which ones might be a little biased? This teaches us to be smart about where we get our info.

There are many resources to help you determine if information sources are factual or not.

7. Socratic Questioning

This way of thinking is called the Socrates Method, named after an old-time thinker from Greece. It's about asking lots of questions to understand a topic. You can do this by yourself or chat with a friend.

Start with a Big Question:

"What does 'success' mean?"

Dive Deeper with More Questions:

"Why do you think of success that way?" "Do TV shows, friends, or family make you think that?" "Does everyone think about success the same way?"

"Can someone be a winner even if they aren't rich or famous?" "Can someone feel like they didn't succeed, even if everyone else thinks they did?"

Look for Real-life Examples:

"Who is someone you think is successful? Why?" "Was there a time you felt like a winner? What happened?"

Think About Other People's Views:

"How might a person from another country think about success?" "Does the idea of success change as we grow up or as our life changes?"

Think About What It Means:

"How does your idea of success shape what you want in life?" "Are there problems with only wanting to be rich or famous?"

Look Back and Think:

"After talking about this, did your idea of success change? How?" "Did you learn something new about what success means?"

socratic dialogue statues

8. Six Thinking Hats 

Edward de Bono came up with a cool way to solve problems by thinking in six different ways, like wearing different colored hats. You can do this independently, but it might be more effective in a group so everyone can have a different hat color. Each color has its way of thinking:

White Hat (Facts): Just the facts! Ask, "What do we know? What do we need to find out?"

Red Hat (Feelings): Talk about feelings. Ask, "How do I feel about this?"

Black Hat (Careful Thinking): Be cautious. Ask, "What could go wrong?"

Yellow Hat (Positive Thinking): Look on the bright side. Ask, "What's good about this?"

Green Hat (Creative Thinking): Think of new ideas. Ask, "What's another way to look at this?"

Blue Hat (Planning): Organize the talk. Ask, "What should we do next?"

When using this method with a group:

  • Explain all the hats.
  • Decide which hat to wear first.
  • Make sure everyone switches hats at the same time.
  • Finish with the Blue Hat to plan the next steps.

9. SWOT Analysis

SWOT Analysis is like a game plan for businesses to know where they stand and where they should go. "SWOT" stands for Strengths, Weaknesses, Opportunities, and Threats.

There are a lot of SWOT templates out there for how to do this visually, but you can also think it through. It doesn't just apply to businesses but can be a good way to decide if a project you're working on is working.

Strengths: What's working well? Ask, "What are we good at?"

Weaknesses: Where can we do better? Ask, "Where can we improve?"

Opportunities: What good things might come our way? Ask, "What chances can we grab?"

Threats: What challenges might we face? Ask, "What might make things tough for us?"

Steps to do a SWOT Analysis:

  • Goal: Decide what you want to find out.
  • Research: Learn about your business and the world around it.
  • Brainstorm: Get a group and think together. Talk about strengths, weaknesses, opportunities, and threats.
  • Pick the Most Important Points: Some things might be more urgent or important than others.
  • Make a Plan: Decide what to do based on your SWOT list.
  • Check Again Later: Things change, so look at your SWOT again after a while to update it.

Now that you have a few tools for thinking critically, let’s get into some specific examples.

Everyday Examples

Life is a series of decisions. From the moment we wake up, we're faced with choices – some trivial, like choosing a breakfast cereal, and some more significant, like buying a home or confronting an ethical dilemma at work. While it might seem that these decisions are disparate, they all benefit from the application of critical thinking.

10. Deciding to buy something

Imagine you want a new phone. Don't just buy it because the ad looks cool. Think about what you need in a phone. Look up different phones and see what people say about them. Choose the one that's the best deal for what you want.

11. Deciding what is true

There's a lot of news everywhere. Don't believe everything right away. Think about why someone might be telling you this. Check if what you're reading or watching is true. Make up your mind after you've looked into it.

12. Deciding when you’re wrong

Sometimes, friends can have disagreements. Don't just get mad right away. Try to see where they're coming from. Talk about what's going on. Find a way to fix the problem that's fair for everyone.

13. Deciding what to eat

There's always a new diet or exercise that's popular. Don't just follow it because it's trendy. Find out if it's good for you. Ask someone who knows, like a doctor. Make choices that make you feel good and stay healthy.

14. Deciding what to do today

Everyone is busy with school, chores, and hobbies. Make a list of things you need to do. Decide which ones are most important. Plan your day so you can get things done and still have fun.

15. Making Tough Choices

Sometimes, it's hard to know what's right. Think about how each choice will affect you and others. Talk to people you trust about it. Choose what feels right in your heart and is fair to others.

16. Planning for the Future

Big decisions, like where to go to school, can be tricky. Think about what you want in the future. Look at the good and bad of each choice. Talk to people who know about it. Pick what feels best for your dreams and goals.

choosing a house

Job Examples

17. solving problems.

Workers brainstorm ways to fix a machine quickly without making things worse when a machine breaks at a factory.

18. Decision Making

A store manager decides which products to order more of based on what's selling best.

19. Setting Goals

A team leader helps their team decide what tasks are most important to finish this month and which can wait.

20. Evaluating Ideas

At a team meeting, everyone shares ideas for a new project. The group discusses each idea's pros and cons before picking one.

21. Handling Conflict

Two workers disagree on how to do a job. Instead of arguing, they talk calmly, listen to each other, and find a solution they both like.

22. Improving Processes

A cashier thinks of a faster way to ring up items so customers don't have to wait as long.

23. Asking Questions

Before starting a big task, an employee asks for clear instructions and checks if they have the necessary tools.

24. Checking Facts

Before presenting a report, someone double-checks all their information to make sure there are no mistakes.

25. Planning for the Future

A business owner thinks about what might happen in the next few years, like new competitors or changes in what customers want, and makes plans based on those thoughts.

26. Understanding Perspectives

A team is designing a new toy. They think about what kids and parents would both like instead of just what they think is fun.

School Examples

27. researching a topic.

For a history project, a student looks up different sources to understand an event from multiple viewpoints.

28. Debating an Issue

In a class discussion, students pick sides on a topic, like school uniforms, and share reasons to support their views.

29. Evaluating Sources

While writing an essay, a student checks if the information from a website is trustworthy or might be biased.

30. Problem Solving in Math

When stuck on a tricky math problem, a student tries different methods to find the answer instead of giving up.

31. Analyzing Literature

In English class, students discuss why a character in a book made certain choices and what those decisions reveal about them.

32. Testing a Hypothesis

For a science experiment, students guess what will happen and then conduct tests to see if they're right or wrong.

33. Giving Peer Feedback

After reading a classmate's essay, a student offers suggestions for improving it.

34. Questioning Assumptions

In a geography lesson, students consider why certain countries are called "developed" and what that label means.

35. Designing a Study

For a psychology project, students plan an experiment to understand how people's memories work and think of ways to ensure accurate results.

36. Interpreting Data

In a science class, students look at charts and graphs from a study, then discuss what the information tells them and if there are any patterns.

Critical Thinking Puzzles

critical thinking tree

Not all scenarios will have a single correct answer that can be figured out by thinking critically. Sometimes we have to think critically about ethical choices or moral behaviors. 

Here are some mind games and scenarios you can solve using critical thinking. You can see the solution(s) at the end of the post.

37. The Farmer, Fox, Chicken, and Grain Problem

A farmer is at a riverbank with a fox, a chicken, and a grain bag. He needs to get all three items across the river. However, his boat can only carry himself and one of the three items at a time. 

Here's the challenge:

  • If the fox is left alone with the chicken, the fox will eat the chicken.
  • If the chicken is left alone with the grain, the chicken will eat the grain.

How can the farmer get all three items across the river without any item being eaten? 

38. The Rope, Jar, and Pebbles Problem

You are in a room with two long ropes hanging from the ceiling. Each rope is just out of arm's reach from the other, so you can't hold onto one rope and reach the other simultaneously. 

Your task is to tie the two rope ends together, but you can't move the position where they hang from the ceiling.

You are given a jar full of pebbles. How do you complete the task?

39. The Two Guards Problem

Imagine there are two doors. One door leads to certain doom, and the other leads to freedom. You don't know which is which.

In front of each door stands a guard. One guard always tells the truth. The other guard always lies. You don't know which guard is which.

You can ask only one question to one of the guards. What question should you ask to find the door that leads to freedom?

40. The Hourglass Problem

You have two hourglasses. One measures 7 minutes when turned over, and the other measures 4 minutes. Using just these hourglasses, how can you time exactly 9 minutes?

41. The Lifeboat Dilemma

Imagine you're on a ship that's sinking. You get on a lifeboat, but it's already too full and might flip over. 

Nearby in the water, five people are struggling: a scientist close to finding a cure for a sickness, an old couple who've been together for a long time, a mom with three kids waiting at home, and a tired teenager who helped save others but is now in danger. 

You can only save one person without making the boat flip. Who would you choose?

42. The Tech Dilemma

You work at a tech company and help make a computer program to help small businesses. You're almost ready to share it with everyone, but you find out there might be a small chance it has a problem that could show users' private info. 

If you decide to fix it, you must wait two more months before sharing it. But your bosses want you to share it now. What would you do?

43. The History Mystery

Dr. Amelia is a history expert. She's studying where a group of people traveled long ago. She reads old letters and documents to learn about it. But she finds some letters that tell a different story than what most people believe. 

If she says this new story is true, it could change what people learn in school and what they think about history. What should she do?

The Role of Bias in Critical Thinking

Have you ever decided you don’t like someone before you even know them? Or maybe someone shared an idea with you that you immediately loved without even knowing all the details. 

This experience is called bias, which occurs when you like or dislike something or someone without a good reason or knowing why. It can also take shape in certain reactions to situations, like a habit or instinct. 

Bias comes from our own experiences, what friends or family tell us, or even things we are born believing. Sometimes, bias can help us stay safe, but other times it stops us from seeing the truth.

Not all bias is bad. Bias can be a mechanism for assessing our potential safety in a new situation. If we are biased to think that anything long, thin, and curled up is a snake, we might assume the rope is something to be afraid of before we know it is just a rope.

While bias might serve us in some situations (like jumping out of the way of an actual snake before we have time to process that we need to be jumping out of the way), it often harms our ability to think critically.

How Bias Gets in the Way of Good Thinking

Selective Perception: We only notice things that match our ideas and ignore the rest. 

It's like only picking red candies from a mixed bowl because you think they taste the best, but they taste the same as every other candy in the bowl. It could also be when we see all the signs that our partner is cheating on us but choose to ignore them because we are happy the way we are (or at least, we think we are).

Agreeing with Yourself: This is called “ confirmation bias ” when we only listen to ideas that match our own and seek, interpret, and remember information in a way that confirms what we already think we know or believe. 

An example is when someone wants to know if it is safe to vaccinate their children but already believes that vaccines are not safe, so they only look for information supporting the idea that vaccines are bad.

Thinking We Know It All: Similar to confirmation bias, this is called “overconfidence bias.” Sometimes we think our ideas are the best and don't listen to others. This can stop us from learning.

Have you ever met someone who you consider a “know it”? Probably, they have a lot of overconfidence bias because while they may know many things accurately, they can’t know everything. Still, if they act like they do, they show overconfidence bias.

There's a weird kind of bias similar to this called the Dunning Kruger Effect, and that is when someone is bad at what they do, but they believe and act like they are the best .

Following the Crowd: This is formally called “groupthink”. It's hard to speak up with a different idea if everyone agrees. But this can lead to mistakes.

An example of this we’ve all likely seen is the cool clique in primary school. There is usually one person that is the head of the group, the “coolest kid in school”, and everyone listens to them and does what they want, even if they don’t think it’s a good idea.

How to Overcome Biases

Here are a few ways to learn to think better, free from our biases (or at least aware of them!).

Know Your Biases: Realize that everyone has biases. If we know about them, we can think better.

Listen to Different People: Talking to different kinds of people can give us new ideas.

Ask Why: Always ask yourself why you believe something. Is it true, or is it just a bias?

Understand Others: Try to think about how others feel. It helps you see things in new ways.

Keep Learning: Always be curious and open to new information.

city in a globe connection

In today's world, everything changes fast, and there's so much information everywhere. This makes critical thinking super important. It helps us distinguish between what's real and what's made up. It also helps us make good choices. But thinking this way can be tough sometimes because of biases. These are like sneaky thoughts that can trick us. The good news is we can learn to see them and think better.

There are cool tools and ways we've talked about, like the "Socratic Questioning" method and the "Six Thinking Hats." These tools help us get better at thinking. These thinking skills can also help us in school, work, and everyday life.

We’ve also looked at specific scenarios where critical thinking would be helpful, such as deciding what diet to follow and checking facts.

Thinking isn't just a skill—it's a special talent we improve over time. Working on it lets us see things more clearly and understand the world better. So, keep practicing and asking questions! It'll make you a smarter thinker and help you see the world differently.

Critical Thinking Puzzles (Solutions)

The farmer, fox, chicken, and grain problem.

  • The farmer first takes the chicken across the river and leaves it on the other side.
  • He returns to the original side and takes the fox across the river.
  • After leaving the fox on the other side, he returns the chicken to the starting side.
  • He leaves the chicken on the starting side and takes the grain bag across the river.
  • He leaves the grain with the fox on the other side and returns to get the chicken.
  • The farmer takes the chicken across, and now all three items -- the fox, the chicken, and the grain -- are safely on the other side of the river.

The Rope, Jar, and Pebbles Problem

  • Take one rope and tie the jar of pebbles to its end.
  • Swing the rope with the jar in a pendulum motion.
  • While the rope is swinging, grab the other rope and wait.
  • As the swinging rope comes back within reach due to its pendulum motion, grab it.
  • With both ropes within reach, untie the jar and tie the rope ends together.

The Two Guards Problem

The question is, "What would the other guard say is the door to doom?" Then choose the opposite door.

The Hourglass Problem

  • Start both hourglasses. 
  • When the 4-minute hourglass runs out, turn it over.
  • When the 7-minute hourglass runs out, the 4-minute hourglass will have been running for 3 minutes. Turn the 7-minute hourglass over. 
  • When the 4-minute hourglass runs out for the second time (a total of 8 minutes have passed), the 7-minute hourglass will run for 1 minute. Turn the 7-minute hourglass again for 1 minute to empty the hourglass (a total of 9 minutes passed).

The Boat and Weights Problem

Take the cat over first and leave it on the other side. Then, return and take the fish across next. When you get there, take the cat back with you. Leave the cat on the starting side and take the cat food across. Lastly, return to get the cat and bring it to the other side.

The Lifeboat Dilemma

There isn’t one correct answer to this problem. Here are some elements to consider:

  • Moral Principles: What values guide your decision? Is it the potential greater good for humanity (the scientist)? What is the value of long-standing love and commitment (the elderly couple)? What is the future of young children who depend on their mothers? Or the selfless bravery of the teenager?
  • Future Implications: Consider the future consequences of each choice. Saving the scientist might benefit millions in the future, but what moral message does it send about the value of individual lives?
  • Emotional vs. Logical Thinking: While it's essential to engage empathy, it's also crucial not to let emotions cloud judgment entirely. For instance, while the teenager's bravery is commendable, does it make him more deserving of a spot on the boat than the others?
  • Acknowledging Uncertainty: The scientist claims to be close to a significant breakthrough, but there's no certainty. How does this uncertainty factor into your decision?
  • Personal Bias: Recognize and challenge any personal biases, such as biases towards age, profession, or familial status.

The Tech Dilemma

Again, there isn’t one correct answer to this problem. Here are some elements to consider:

  • Evaluate the Risk: How severe is the potential vulnerability? Can it be easily exploited, or would it require significant expertise? Even if the circumstances are rare, what would be the consequences if the vulnerability were exploited?
  • Stakeholder Considerations: Different stakeholders will have different priorities. Upper management might prioritize financial projections, the marketing team might be concerned about the product's reputation, and customers might prioritize the security of their data. How do you balance these competing interests?
  • Short-Term vs. Long-Term Implications: While launching on time could meet immediate financial goals, consider the potential long-term damage to the company's reputation if the vulnerability is exploited. Would the short-term gains be worth the potential long-term costs?
  • Ethical Implications : Beyond the financial and reputational aspects, there's an ethical dimension to consider. Is it right to release a product with a known vulnerability, even if the chances of it being exploited are low?
  • Seek External Input: Consulting with cybersecurity experts outside your company might be beneficial. They could provide a more objective risk assessment and potential mitigation strategies.
  • Communication: How will you communicate the decision, whatever it may be, both internally to your team and upper management and externally to your customers and potential users?

The History Mystery

Dr. Amelia should take the following steps:

  • Verify the Letters: Before making any claims, she should check if the letters are actual and not fake. She can do this by seeing when and where they were written and if they match with other things from that time.
  • Get a Second Opinion: It's always good to have someone else look at what you've found. Dr. Amelia could show the letters to other history experts and see their thoughts.
  • Research More: Maybe there are more documents or letters out there that support this new story. Dr. Amelia should keep looking to see if she can find more evidence.
  • Share the Findings: If Dr. Amelia believes the letters are true after all her checks, she should tell others. This can be through books, talks, or articles.
  • Stay Open to Feedback: Some people might agree with Dr. Amelia, and others might not. She should listen to everyone and be ready to learn more or change her mind if new information arises.

Ultimately, Dr. Amelia's job is to find out the truth about history and share it. It's okay if this new truth differs from what people used to believe. History is about learning from the past, no matter the story.

Related posts:

  • Experimenter Bias (Definition + Examples)
  • Hasty Generalization Fallacy (31 Examples + Similar Names)
  • Ad Hoc Fallacy (29 Examples + Other Names)
  • Confirmation Bias (Examples + Definition)
  • Equivocation Fallacy (26 Examples + Description)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Prevent plagiarism. Run a free check.

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

critical thinking skills in psychology

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved April 12, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

How Do Critical Thinking Ability and Critical Thinking Disposition Relate to the Mental Health of University Students?

Associated data.

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Theories of psychotherapy suggest that human mental problems associate with deficiencies in critical thinking. However, it currently remains unclear whether both critical thinking skill and critical thinking disposition relate to individual differences in mental health. This study explored whether and how the critical thinking ability and critical thinking disposition of university students associate with individual differences in mental health in considering impulsivity that has been revealed to be closely related to both critical thinking and mental health. Regression and structural equation modeling analyses based on a Chinese university student sample ( N = 314, 198 females, M age = 18.65) revealed that critical thinking skill and disposition explained a unique variance of mental health after controlling for impulsivity. Furthermore, the relationship between critical thinking and mental health was mediated by motor impulsivity (acting on the spur of the moment) and non-planning impulsivity (making decisions without careful forethought). These findings provide a preliminary account of how human critical thinking associate with mental health. Practically, developing mental health promotion programs for university students is suggested to pay special attention to cultivating their critical thinking dispositions and enhancing their control over impulsive behavior.

Introduction

Although there is no consistent definition of critical thinking (CT), it is usually described as “purposeful, self-regulatory judgment that results in interpretation, analysis, evaluation, and inference, as well as explanations of the evidential, conceptual, methodological, criteriological, or contextual considerations that judgment is based upon” (Facione, 1990 , p. 2). This suggests that CT is a combination of skills and dispositions. The skill aspect mainly refers to higher-order cognitive skills such as inference, analysis, and evaluation, while the disposition aspect represents one's consistent motivation and willingness to use CT skills (Dwyer, 2017 ). An increasing number of studies have indicated that CT plays crucial roles in the activities of university students such as their academic performance (e.g., Ghanizadeh, 2017 ; Ren et al., 2020 ), professional work (e.g., Barry et al., 2020 ), and even the ability to cope with life events (e.g., Butler et al., 2017 ). An area that has received less attention is how critical thinking relates to impulsivity and mental health. This study aimed to clarify the relationship between CT (which included both CT skill and CT disposition), impulsivity, and mental health among university students.

Relationship Between Critical Thinking and Mental Health

Associating critical thinking with mental health is not without reason, since theories of psychotherapy have long stressed a linkage between mental problems and dysfunctional thinking (Gilbert, 2003 ; Gambrill, 2005 ; Cuijpers, 2019 ). Proponents of cognitive behavioral therapy suggest that the interpretation by people of a situation affects their emotional, behavioral, and physiological reactions. Those with mental problems are inclined to bias or heuristic thinking and are more likely to misinterpret neutral or even positive situations (Hollon and Beck, 2013 ). Therefore, a main goal of cognitive behavioral therapy is to overcome biased thinking and change maladaptive beliefs via cognitive modification skills such as objective understanding of one's cognitive distortions, analyzing evidence for and against one's automatic thinking, or testing the effect of an alternative way of thinking. Achieving these therapeutic goals requires the involvement of critical thinking, such as the willingness and ability to critically analyze one's thoughts and evaluate evidence and arguments independently of one's prior beliefs. In addition to theoretical underpinnings, characteristics of university students also suggest a relationship between CT and mental health. University students are a risky population in terms of mental health. They face many normative transitions (e.g., social and romantic relationships, important exams, financial pressures), which are stressful (Duffy et al., 2019 ). In particular, the risk increases when students experience academic failure (Lee et al., 2008 ; Mamun et al., 2021 ). Hong et al. ( 2010 ) found that the stress in Chinese college students was primarily related to academic, personal, and negative life events. However, university students are also a population with many resources to work on. Critical thinking can be considered one of the important resources that students are able to use (Stupple et al., 2017 ). Both CT skills and CT disposition are valuable qualities for college students to possess (Facione, 1990 ). There is evidence showing that students with a higher level of CT are more successful in terms of academic performance (Ghanizadeh, 2017 ; Ren et al., 2020 ), and that they are better at coping with stressful events (Butler et al., 2017 ). This suggests that that students with higher CT are less likely to suffer from mental problems.

Empirical research has reported an association between CT and mental health among college students (Suliman and Halabi, 2007 ; Kargar et al., 2013 ; Yoshinori and Marcus, 2013 ; Chen and Hwang, 2020 ; Ugwuozor et al., 2021 ). Most of these studies focused on the relationship between CT disposition and mental health. For example, Suliman and Halabi ( 2007 ) reported that the CT disposition of nursing students was positively correlated with their self-esteem, but was negatively correlated with their state anxiety. There is also a research study demonstrating that CT disposition influenced the intensity of worry in college students either by increasing their responsibility to continue thinking or by enhancing the detached awareness of negative thoughts (Yoshinori and Marcus, 2013 ). Regarding the relationship between CT ability and mental health, although there has been no direct evidence, there were educational programs examining the effect of teaching CT skills on the mental health of adolescents (Kargar et al., 2013 ). The results showed that teaching CT skills decreased somatic symptoms, anxiety, depression, and insomnia in adolescents. Another recent CT skill intervention also found a significant reduction in mental stress among university students, suggesting an association between CT skills and mental health (Ugwuozor et al., 2021 ).

The above research provides preliminary evidence in favor of the relationship between CT and mental health, in line with theories of CT and psychotherapy. However, previous studies have focused solely on the disposition aspect of CT, and its link with mental health. The ability aspect of CT has been largely overlooked in examining its relationship with mental health. Moreover, although the link between CT and mental health has been reported, it remains unknown how CT (including skill and disposition) is associated with mental health.

Impulsivity as a Potential Mediator Between Critical Thinking and Mental Health

One important factor suggested by previous research in accounting for the relationship between CT and mental health is impulsivity. Impulsivity is recognized as a pattern of action without regard to consequences. Patton et al. ( 1995 ) proposed that impulsivity is a multi-faceted construct that consists of three behavioral factors, namely, non-planning impulsiveness, referring to making a decision without careful forethought; motor impulsiveness, referring to acting on the spur of the moment; and attentional impulsiveness, referring to one's inability to focus on the task at hand. Impulsivity is prominent in clinical problems associated with psychiatric disorders (Fortgang et al., 2016 ). A number of mental problems are associated with increased impulsivity that is likely to aggravate clinical illnesses (Leclair et al., 2020 ). Moreover, a lack of CT is correlated with poor impulse control (Franco et al., 2017 ). Applications of CT may reduce impulsive behaviors caused by heuristic and biased thinking when one makes a decision (West et al., 2008 ). For example, Gregory ( 1991 ) suggested that CT skills enhance the ability of children to anticipate the health or safety consequences of a decision. Given this, those with high levels of CT are expected to take a rigorous attitude about the consequences of actions and are less likely to engage in impulsive behaviors, which may place them at a low risk of suffering mental problems. To the knowledge of the authors, no study has empirically tested whether impulsivity accounts for the relationship between CT and mental health.

This study examined whether CT skill and disposition are related to the mental health of university students; and if yes, how the relationship works. First, we examined the simultaneous effects of CT ability and CT disposition on mental health. Second, we further tested whether impulsivity mediated the effects of CT on mental health. To achieve the goals, we collected data on CT ability, CT disposition, mental health, and impulsivity from a sample of university students. The results are expected to shed light on the mechanism of the association between CT and mental health.

Participants and Procedure

A total of 314 university students (116 men) with an average age of 18.65 years ( SD = 0.67) participated in this study. They were recruited by advertisements from a local university in central China and majoring in statistics and mathematical finance. The study protocol was approved by the Human Subjects Review Committee of the Huazhong University of Science and Technology. Each participant signed a written informed consent describing the study purpose, procedure, and right of free. All the measures were administered in a computer room. The participants were tested in groups of 20–30 by two research assistants. The researchers and research assistants had no formal connections with the participants. The testing included two sections with an interval of 10 min, so that the participants had an opportunity to take a break. In the first section, the participants completed the syllogistic reasoning problems with belief bias (SRPBB), the Chinese version of the California Critical Thinking Skills Test (CCSTS-CV), and the Chinese Critical Thinking Disposition Inventory (CCTDI), respectively. In the second session, they completed the Barrett Impulsivity Scale (BIS-11), Depression Anxiety Stress Scale-21 (DASS-21), and University Personality Inventory (UPI) in the given order.

Measures of Critical Thinking Ability

The Chinese version of the California Critical Thinking Skills Test was employed to measure CT skills (Lin, 2018 ). The CCTST is currently the most cited tool for measuring CT skills and includes analysis, assessment, deduction, inductive reasoning, and inference reasoning. The Chinese version included 34 multiple choice items. The dependent variable was the number of correctly answered items. The internal consistency (Cronbach's α) of the CCTST is 0.56 (Jacobs, 1995 ). The test–retest reliability of CCTST-CV is 0.63 ( p < 0.01) (Luo and Yang, 2002 ), and correlations between scores of the subscales and the total score are larger than 0.5 (Lin, 2018 ), supporting the construct validity of the scale. In this study among the university students, the internal consistency (Cronbach's α) of the CCTST-CV was 0.5.

The second critical thinking test employed in this study was adapted from the belief bias paradigm (Li et al., 2021 ). This task paradigm measures the ability to evaluate evidence and arguments independently of one's prior beliefs (West et al., 2008 ), which is a strongly emphasized skill in CT literature. The current test included 20 syllogistic reasoning problems in which the logical conclusion was inconsistent with one's prior knowledge (e.g., “Premise 1: All fruits are sweet. Premise 2: Bananas are not sweet. Conclusion: Bananas are not fruits.” valid conclusion). In addition, four non-conflict items were included as the neutral condition in order to avoid a habitual response from the participants. They were instructed to suppose that all the premises are true and to decide whether the conclusion logically follows from the given premises. The measure showed good internal consistency (Cronbach's α = 0.83) in a Chinese sample (Li et al., 2021 ). In this study, the internal consistency (Cronbach's α) of the SRPBB was 0.94.

Measures of Critical Thinking Disposition

The Chinese Critical Thinking Disposition Inventory was employed to measure CT disposition (Peng et al., 2004 ). This scale has been developed in line with the conceptual framework of the California critical thinking disposition inventory. We measured five CT dispositions: truth-seeking (one's objectivity with findings even if this requires changing one's preconceived opinions, e.g., a person inclined toward being truth-seeking might disagree with “I believe what I want to believe.”), inquisitiveness (one's intellectual curiosity. e.g., “No matter what the topic, I am eager to know more about it”), analyticity (the tendency to use reasoning and evidence to solve problems, e.g., “It bothers me when people rely on weak arguments to defend good ideas”), systematically (the disposition of being organized and orderly in inquiry, e.g., “I always focus on the question before I attempt to answer it”), and CT self-confidence (the trust one places in one's own reasoning processes, e.g., “I appreciate my ability to think precisely”). Each disposition aspect contained 10 items, which the participants rated on a 6-point Likert-type scale. This measure has shown high internal consistency (overall Cronbach's α = 0.9) (Peng et al., 2004 ). In this study, the CCTDI scale was assessed at Cronbach's α = 0.89, indicating good reliability.

Measure of Impulsivity

The well-known Barrett Impulsivity Scale (Patton et al., 1995 ) was employed to assess three facets of impulsivity: non-planning impulsivity (e.g., “I plan tasks carefully”); motor impulsivity (e.g., “I act on the spur of the moment”); attentional impulsivity (e.g., “I concentrate easily”). The scale includes 30 statements, and each statement is rated on a 5-point scale. The subscales of non-planning impulsivity and attentional impulsivity were reversely scored. The BIS-11 has good internal consistency (Cronbach's α = 0.81, Velotti et al., 2016 ). This study showed that the Cronbach's α of the BIS-11 was 0.83.

Measures of Mental Health

The Depression Anxiety Stress Scale-21 was used to assess mental health problems such as depression (e.g., “I feel that life is meaningless”), anxiety (e.g., “I find myself getting agitated”), and stress (e.g., “I find it difficult to relax”). Each dimension included seven items, which the participants were asked to rate on a 4-point scale. The Chinese version of the DASS-21 has displayed a satisfactory factor structure and internal consistency (Cronbach's α = 0.92, Wang et al., 2016 ). In this study, the internal consistency (Cronbach's α) of the DASS-21 was 0.94.

The University Personality Inventory that has been commonly used to screen for mental problems of college students (Yoshida et al., 1998 ) was also used for measuring mental health. The 56 symptom-items assessed whether an individual has experienced the described symptom during the past year (e.g., “a lack of interest in anything”). The UPI showed good internal consistency (Cronbach's α = 0.92) in a Chinese sample (Zhang et al., 2015 ). This study showed that the Cronbach's α of the UPI was 0.85.

Statistical Analyses

We first performed analyses to detect outliers. Any observation exceeding three standard deviations from the means was replaced with a value that was three standard deviations. This procedure affected no more than 5‰ of observations. Hierarchical regression analysis was conducted to determine the extent to which facets of critical thinking were related to mental health. In addition, structural equation modeling with Amos 22.0 was performed to assess the latent relationship between CT, impulsivity, and mental health.

Descriptive Statistics and Bivariate Correlations

Table 1 presents descriptive statistics and bivariate correlations of all the variables. CT disposition such as truth-seeking, systematicity, self-confidence, and inquisitiveness was significantly correlated with DASS-21 and UPI, but neither CCTST-CV nor SRPBB was related to DASS-21 and UPI. Subscales of BIS-11 were positively correlated with DASS-21 and UPI, but were negatively associated with CT dispositions.

Descriptive results and correlations between all measured variables ( N = 314).

Regression Analyses

Hierarchical regression analyses were conducted to examine the effects of CT skill and disposition on mental health. Before conducting the analyses, scores in DASS-21 and UPI were reversed so that high scores reflected high levels of mental health. Table 2 presents the results of hierarchical regression. In model 1, the sum of the Z-score of DASS-21 and UPI served as the dependent variable. Scores in the CT ability tests and scores in the five dimensions of CCTDI served as predictors. CT skill and disposition explained 13% of the variance in mental health. CT skills did not significantly predict mental health. Two dimensions of dispositions (truth seeking and systematicity) exerted significantly positive effects on mental health. Model 2 examined whether CT predicted mental health after controlling for impulsivity. The model containing only impulsivity scores (see model-2 step 1 in Table 2 ) explained 15% of the variance in mental health. Non-planning impulsivity and motor impulsivity showed significantly negative effects on mental health. The CT variables on the second step explained a significantly unique variance (6%) of CT (see model-2 step 2). This suggests that CT skill and disposition together explained the unique variance in mental health after controlling for impulsivity. 1

Hierarchical regression models predicting mental health from critical thinking skills, critical thinking dispositions, and impulsivity ( N = 314).

CCTST-CV, The Chinese version of the California Critical Thinking Skills Test; SRPBB, Syllogistic Reasoning Problems with Belief Bias .

Structural equation modeling was performed to examine whether impulsivity mediated the relationship between CT disposition (CT ability was not included since it did not significantly predict mental health) and mental health. Since the regression results showed that only motor impulsivity and non-planning impulsivity significantly predicted mental health, we examined two mediation models with either motor impulsivity or non-planning impulsivity as the hypothesized mediator. The item scores in the motor impulsivity subscale were randomly divided into two indicators of motor impulsivity, as were the scores in the non-planning subscale. Scores of DASS-21 and UPI served as indicators of mental health and dimensions of CCTDI as indicators of CT disposition. In addition, a bootstrapping procedure with 5,000 resamples was established to test for direct and indirect effects. Amos 22.0 was used for the above analyses.

The mediation model that included motor impulsivity (see Figure 1 ) showed an acceptable fit, χ ( 23 ) 2 = 64.71, RMSEA = 0.076, CFI = 0.96, GFI = 0.96, NNFI = 0.93, SRMR = 0.073. Mediation analyses indicated that the 95% boot confidence intervals of the indirect effect and the direct effect were (0.07, 0.26) and (−0.08, 0.32), respectively. As Hayes ( 2009 ) indicates, an effect is significant if zero is not between the lower and upper bounds in the 95% confidence interval. Accordingly, the indirect effect between CT disposition and mental health was significant, while the direct effect was not significant. Thus, motor impulsivity completely mediated the relationship between CT disposition and mental health.

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-704229-g0001.jpg

Illustration of the mediation model: Motor impulsivity as mediator variable between critical thinking dispositions and mental health. CTD-l = Truth seeking; CTD-2 = Analyticity; CTD-3 = Systematically; CTD-4 = Self-confidence; CTD-5 = Inquisitiveness. MI-I and MI-2 were sub-scores of motor impulsivity. Solid line represents significant links and dotted line non-significant links. ** p < 0.01.

The mediation model, which included non-planning impulsivity (see Figure 2 ), also showed an acceptable fit to the data, χ ( 23 ) 2 = 52.75, RMSEA = 0.064, CFI = 0.97, GFI = 0.97, NNFI = 0.95, SRMR = 0.06. The 95% boot confidence intervals of the indirect effect and the direct effect were (0.05, 0.33) and (−0.04, 0.38), respectively, indicating that non-planning impulsivity completely mediated the relationship between CT disposition and mental health.

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-704229-g0002.jpg

Illustration of the mediation model: Non-planning impulsivity asmediator variable between critical thinking dispositions and mental health. CTD-l = Truth seeking; CTD-2 = Analyticity; CTD-3 = Systematically; CTD-4 = Self-confidence; CTD-5 = Inquisitiveness. NI-I and NI-2 were sub-scores of Non-planning impulsivity. Solid line represents significant links and dotted line non-significant links. ** p < 0.01.

This study examined how critical thinking skill and disposition are related to mental health. Theories of psychotherapy suggest that human mental problems are in part due to a lack of CT. However, empirical evidence for the hypothesized relationship between CT and mental health is relatively scarce. This study explored whether and how CT ability and disposition are associated with mental health. The results, based on a university student sample, indicated that CT skill and disposition explained a unique variance in mental health. Furthermore, the effect of CT disposition on mental health was mediated by motor impulsivity and non-planning impulsivity. The finding that CT exerted a significant effect on mental health was in accordance with previous studies reporting negative correlations between CT disposition and mental disorders such as anxiety (Suliman and Halabi, 2007 ). One reason lies in the assumption that CT disposition is usually referred to as personality traits or habits of mind that are a remarkable predictor of mental health (e.g., Benzi et al., 2019 ). This study further found that of the five CT dispositions, only truth-seeking and systematicity were associated with individual differences in mental health. This was not surprising, since the truth-seeking items mainly assess one's inclination to crave for the best knowledge in a given context and to reflect more about additional facts, reasons, or opinions, even if this requires changing one's mind about certain issues. The systematicity items target one's disposition to approach problems in an orderly and focused way. Individuals with high levels of truth-seeking and systematicity are more likely to adopt a comprehensive, reflective, and controlled way of thinking, which is what cognitive therapy aims to achieve by shifting from an automatic mode of processing to a more reflective and controlled mode.

Another important finding was that motor impulsivity and non-planning impulsivity mediated the effect of CT disposition on mental health. The reason may be that people lacking CT have less willingness to enter into a systematically analyzing process or deliberative decision-making process, resulting in more frequently rash behaviors or unplanned actions without regard for consequences (Billieux et al., 2010 ; Franco et al., 2017 ). Such responses can potentially have tangible negative consequences (e.g., conflict, aggression, addiction) that may lead to social maladjustment that is regarded as a symptom of mental illness. On the contrary, critical thinkers have a sense of deliberativeness and consider alternate consequences before acting, and this thinking-before-acting mode would logically lead to a decrease in impulsivity, which then decreases the likelihood of problematic behaviors and negative moods.

It should be noted that although the raw correlation between attentional impulsivity and mental health was significant, regression analyses with the three dimensions of impulsivity as predictors showed that attentional impulsivity no longer exerted a significant effect on mental effect after controlling for the other impulsivity dimensions. The insignificance of this effect suggests that the significant raw correlation between attentional impulsivity and mental health was due to the variance it shared with the other impulsivity dimensions (especially with the non-planning dimension, which showed a moderately high correlation with attentional impulsivity, r = 0.67).

Some limitations of this study need to be mentioned. First, the sample involved in this study is considered as a limited sample pool, since all the participants are university students enrolled in statistics and mathematical finance, limiting the generalization of the findings. Future studies are recommended to recruit a more representative sample of university students. A study on generalization to a clinical sample is also recommended. Second, as this study was cross-sectional in nature, caution must be taken in interpreting the findings as causal. Further studies using longitudinal, controlled designs are needed to assess the effectiveness of CT intervention on mental health.

In spite of the limitations mentioned above, the findings of this study have some implications for research and practice intervention. The result that CT contributed to individual differences in mental health provides empirical support for the theory of cognitive behavioral therapy, which focuses on changing irrational thoughts. The mediating role of impulsivity between CT and mental health gives a preliminary account of the mechanism of how CT is associated with mental health. Practically, although there is evidence that CT disposition of students improves because of teaching or training interventions (e.g., Profetto-Mcgrath, 2005 ; Sanja and Krstivoje, 2015 ; Chan, 2019 ), the results showing that two CT disposition dimensions, namely, truth-seeking and systematicity, are related to mental health further suggest that special attention should be paid to cultivating these specific CT dispositions so as to enhance the control of students over impulsive behaviors in their mental health promotions.

Conclusions

This study revealed that two CT dispositions, truth-seeking and systematicity, were associated with individual differences in mental health. Furthermore, the relationship between critical thinking and mental health was mediated by motor impulsivity and non-planning impulsivity. These findings provide a preliminary account of how human critical thinking is associated with mental health. Practically, developing mental health promotion programs for university students is suggested to pay special attention to cultivating their critical thinking dispositions (especially truth-seeking and systematicity) and enhancing the control of individuals over impulsive behaviors.

Data Availability Statement

Ethics statement.

The studies involving human participants were reviewed and approved by HUST Critical Thinking Research Center (Grant No. 2018CT012). The patients/participants provided their written informed consent to participate in this study.

Author Contributions

XR designed the study and revised the manuscript. ZL collected data and wrote the manuscript. SL assisted in analyzing the data. SS assisted in re-drafting and editing the manuscript. All the authors contributed to the article and approved the submitted version.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

1 We re-analyzed the data by controlling for age and gender of the participants in the regression analyses. The results were virtually the same as those reported in the study.

Funding. This work was supported by the Social Science Foundation of China (grant number: BBA200034).

  • Barry A., Parvan K., Sarbakhsh P., Safa B., Allahbakhshian A. (2020). Critical thinking in nursing students and its relationship with professional self-concept and relevant factors . Res. Dev. Med. Educ. 9 , 7–7. 10.34172/rdme.2020.007 [ CrossRef ] [ Google Scholar ]
  • Benzi I. M. A., Emanuele P., Rossella D. P., Clarkin J. F., Fabio M. (2019). Maladaptive personality traits and psychological distress in adolescence: the moderating role of personality functioning . Pers. Indiv. Diff. 140 , 33–40. 10.1016/j.paid.2018.06.026 [ CrossRef ] [ Google Scholar ]
  • Billieux J., Gay P., Rochat L., Van der Linden M. (2010). The role of urgency and its underlying psychological mechanisms in problematic behaviours . Behav. Res. Ther. 48 , 1085–1096. 10.1016/j.brat.2010.07.008 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Butler H. A., Pentoney C., Bong M. P. (2017). Predicting real-world outcomes: Critical thinking ability is a better predictor of life decisions than intelligence . Think. Skills Creat. 25 , 38–46. 10.1016/j.tsc.2017.06.005 [ CrossRef ] [ Google Scholar ]
  • Chan C. (2019). Using digital storytelling to facilitate critical thinking disposition in youth civic engagement: a randomized control trial . Child. Youth Serv. Rev. 107 :104522. 10.1016/j.childyouth.2019.104522 [ CrossRef ] [ Google Scholar ]
  • Chen M. R. A., Hwang G. J. (2020). Effects of a concept mapping-based flipped learning approach on EFL students' English speaking performance, critical thinking awareness and speaking anxiety . Br. J. Educ. Technol. 51 , 817–834. 10.1111/bjet.12887 [ CrossRef ] [ Google Scholar ]
  • Cuijpers P. (2019). Targets and outcomes of psychotherapies for mental disorders: anoverview . World Psychiatry. 18 , 276–285. 10.1002/wps.20661 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Duffy M. E., Twenge J. M., Joiner T. E. (2019). Trends in mood and anxiety symptoms and suicide-related outcomes among u.s. undergraduates, 2007–2018: evidence from two national surveys . J. Adolesc. Health. 65 , 590–598. 10.1016/j.jadohealth.2019.04.033 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dwyer C. P. (2017). Critical Thinking: Conceptual Perspectives and Practical Guidelines . Cambridge: Cambridge University Press. [ Google Scholar ]
  • Facione P. A. (1990). Critical Thinking: Astatement of Expert Consensus for Purposes of Educational Assessment and Instruction . Millibrae, CA: The California Academic Press. [ Google Scholar ]
  • Fortgang R. G., Hultman C. M., van Erp T. G. M., Cannon T. D. (2016). Multidimensional assessment of impulsivity in schizophrenia, bipolar disorder, and major depressive disorder: testing for shared endophenotypes . Psychol. Med. 46 , 1497–1507. 10.1017/S0033291716000131 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Franco A. R., Costa P. S., Butler H. A., Almeida L. S. (2017). Assessment of undergraduates' real-world outcomes of critical thinking in everyday situations . Psychol. Rep. 120 , 707–720. 10.1177/0033294117701906 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gambrill E. (2005). Critical thinking, evidence-based practice, and mental health, in Mental Disorders in the Social Environment: Critical Perspectives , ed Kirk S. A. (New York, NY: Columbia University Press; ), 247–269. [ Google Scholar ]
  • Ghanizadeh A. (2017). The interplay between reflective thinking, critical thinking, self-monitoring, and academic achievement in higher education . Higher Educ. 74 . 101–114. 10.1007/s10734-016-0031-y [ CrossRef ] [ Google Scholar ]
  • Gilbert T. (2003). Some reflections on critical thinking and mental health . Teach. Phil. 24 , 333–339. 10.5840/teachphil200326446 [ CrossRef ] [ Google Scholar ]
  • Gregory R. (1991). Critical thinking for environmental health risk education . Health Educ. Q. 18 , 273–284. 10.1177/109019819101800302 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hayes A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the newmillennium . Commun. Monogr. 76 , 408–420. 10.1080/03637750903310360 [ CrossRef ] [ Google Scholar ]
  • Hollon S. D., Beck A. T. (2013). Cognitive and cognitive-behavioral therapies, in Bergin and Garfield's Handbook of Psychotherapy and Behavior Change, Vol. 6 . ed Lambert M. J. (Hoboken, NJ: Wiley; ), 393–442. [ Google Scholar ]
  • Hong L., Lin C. D., Bray M. A., Kehle T. J. (2010). The measurement of stressful events in chinese college students . Psychol. Sch. 42 , 315–323. 10.1002/pits.20082 [ CrossRef ] [ Google Scholar ]
  • Jacobs S. S. (1995). Technical characteristics and some correlates of the california critical thinking skills test, forms a and b . Res. Higher Educ. 36 , 89–108. [ Google Scholar ]
  • Kargar F. R., Ajilchi B., Goreyshi M. K., Noohi S. (2013). Effect of creative and critical thinking skills teaching on identity styles and general health in adolescents . Proc. Soc. Behav. Sci. 84 , 464–469. 10.1016/j.sbspro.2013.06.585 [ CrossRef ] [ Google Scholar ]
  • Leclair M. C., Lemieux A. J., Roy L., Martin M. S., Latimer E. A., Crocker A. G. (2020). Pathways to recovery among homeless people with mental illness: Is impulsiveness getting in the way? Can. J. Psychiatry. 65 , 473–483. 10.1177/0706743719885477 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lee H. S., Kim S., Choi I., Lee K. U. (2008). Prevalence and risk factors associated with suicide ideation and attempts in korean college students . Psychiatry Investig. 5 , 86–93. 10.4306/pi.2008.5.2.86 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Li S., Ren X., Schweizer K., Brinthaupt T. M., Wang T. (2021). Executive functions as predictors of critical thinking: behavioral and neural evidence . Learn. Instruct. 71 :101376. 10.1016/j.learninstruc.2020.101376 [ CrossRef ] [ Google Scholar ]
  • Lin Y. (2018). Developing Critical Thinking in EFL Classes: An Infusion Approach . Singapore: Springer Publications. [ Google Scholar ]
  • Luo Q. X., Yang X. H. (2002). Revising on Chinese version of California critical thinkingskillstest . Psychol. Sci. (Chinese). 25 , 740–741. [ Google Scholar ]
  • Mamun M. A., Misti J. M., Hosen I., Mamun F. A. (2021). Suicidal behaviors and university entrance test-related factors: a bangladeshi exploratory study . Persp. Psychiatric Care. 4 , 1–10. 10.1111/ppc.12783 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Patton J. H., Stanford M. S., Barratt E. S. (1995). Factor structure of the Barratt impulsiveness scale . J Clin. Psychol. 51 , 768–774. 10.1002/1097-4679(199511)5 1 :63.0.CO;2-1 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Peng M. C., Wang G. C., Chen J. L., Chen M. H., Bai H. H., Li S. G., et al.. (2004). Validity and reliability of the Chinese critical thinking disposition inventory . J. Nurs. China (Zhong Hua Hu Li Za Zhi). 39 , 644–647. [ Google Scholar ]
  • Profetto-Mcgrath J. (2005). Critical thinking and evidence-based practice . J. Prof. Nurs. 21 , 364–371. 10.1016/j.profnurs.2005.10.002 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ren X., Tong Y., Peng P., Wang T. (2020). Critical thinking predicts academic performance beyond general cognitive ability: evidence from adults and children . Intelligence 82 :101487. 10.1016/j.intell.2020.101487 [ CrossRef ] [ Google Scholar ]
  • Sanja M., Krstivoje S. (2015). Developing critical thinking in elementary mathematics education through a suitable selection of content and overall student performance . Proc. Soc. Behav. Sci. 180 , 653–659. 10.1016/j.sbspro.2015.02.174 [ CrossRef ] [ Google Scholar ]
  • Stupple E., Maratos F. A., Elander J., Hunt T. E., Aubeeluck A. V. (2017). Development of the critical thinking toolkit (critt): a measure of student attitudes and beliefs about critical thinking . Think. Skills Creat. 23 , 91–100. 10.1016/j.tsc.2016.11.007 [ CrossRef ] [ Google Scholar ]
  • Suliman W. A., Halabi J. (2007). Critical thinking, self-esteem, and state anxiety of nursing students . Nurse Educ. Today. 27 , 162–168. 10.1016/j.nedt.2006.04.008 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ugwuozor F. O., Otu M. S., Mbaji I. N. (2021). Critical thinking intervention for stress reduction among undergraduates in the Nigerian Universities . Medicine 100 :25030. 10.1097/MD.0000000000025030 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Velotti P., Garofalo C., Petrocchi C., Cavallo F., Popolo R., Dimaggio G. (2016). Alexithymia, emotion dysregulation, impulsivity and aggression: a multiple mediation model . Psychiatry Res. 237 , 296–303. 10.1016/j.psychres.2016.01.025 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wang K., Shi H. S., Geng F. L., Zou L. Q., Tan S. P., Wang Y., et al.. (2016). Cross-cultural validation of the depression anxiety stress scale−21 in China . Psychol. Assess. 28 :e88. 10.1037/pas0000207 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • West R. F., Toplak M. E., Stanovich K. E. (2008). Heuristics and biases as measures of critical thinking: associations with cognitive ability and thinking dispositions . J. Educ. Psychol. 100 , 930–941. 10.1037/a0012842 [ CrossRef ] [ Google Scholar ]
  • Yoshida T., Ichikawa T., Ishikawa T., Hori M. (1998). Mental health of visually and hearing impaired students from the viewpoint of the University Personality Inventory . Psychiatry Clin. Neurosci. 52 , 413–418. [ PubMed ] [ Google Scholar ]
  • Yoshinori S., Marcus G. (2013). The dual effects of critical thinking disposition on worry. PLoS ONE 8 :e79714. 10.1371/journal.pone.007971 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhang J., Lanza S., Zhang M., Su B. (2015). Structure of the University personality inventory for chinese college students . Psychol. Rep. 116 , 821–839. 10.2466/08.02.PR0.116k26w3 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

BRIEF RESEARCH REPORT article

Relation between metacognitive strategies, motivation to think, and critical thinking skills.

Carlos J. Ossa

  • 1 Educations Science Department, University of the Bío Bío, Concepción, Chile
  • 2 Psychology Faculty, University of Salamanca, Salamanca, Spain

Critical thinking is a complex reasoning skill, and even though it is hard to reach a consensus on its definition, there is agreement on it being an eminently cognitive skill. It is strongly related with reflective and metacognitive skills, as well as attitudinal or motivational aspects, although no model has yet been able to integrate these three elements. We present herein the preliminary results of a study seeking to establish these relations, in a sample of Chilean university students. 435 students from three universities participated, of which 88 were men, 333 were women, and 14 did not indicate their gender. Their ages ranges between 18 and 51 years old ( M  = 21, SD = 3.09). Three instruments were applied, one to measure metacognitive strategies, one to measure motivation to critical thinking, and a third to measure critical thinking skills. The relation was analyzed via structural equations. The results show a positive, strong, and significant relation between metacognition and motivation to think. However, only a weak significant relation was observed between motivation to think and critical thinking, and no direct relation was found between metacognition and critical thinking. We hypothesize a significant but moderate relation between the variables, where metacognition influences motivation to think, which in turn influences critical thinking skills. Factors are discussed which could negatively affect the studied relations, as well as the importance of generating integrated models between the three variables, as they would show a theoretical and empirical link.

Introduction

Critical thinking is a relevant topic for the 21st century, highlighted by Unesco as one of the skills to develop among students to properly face the challenges of this century ( Scott, 2015 ). Despite its importance for human development, its implementation in educational curricula has been difficult to carry out, both at the level of school systems and in higher education systems ( Ossa et al., 2018 ; Silva Pacheco, 2019 ).

This difficulty of incorporating critical thinking into the educational process may be related with the complexity of the task. On one side, there is discussion as to whether the process can be taught as a skill, or whether it is more of a facet of thinking which can only be stimulated in a concrete way ( Saiz, 2017 ). Building on this factor, the complexity of the matter is also expressed in the attempts at defining the process, since there are various definitions of critical thinking. These definitions present different natures, ranging from only cognitive reasoning processes; cognitive and metacognitive processes; cognitive, metacognitive and attitudinal processes; and finally, cognitive, metacognitive, attitudinal, and social agency processes ( Montero, 2010 ; Rivas and Saiz, 2012 ; Ossa and Díaz, 2017 ; Saiz, 2017 ).

As society and socio-cultural challenges have become more complex, it is necessary to adopt more complex perspectives on human processes. Critical thinking perspectives which help integrate diverse processes could be more pertinent for the effective development of this skill among people ( Paul and Elder, 2003 ).

Critical thinking has been linked to different skills, both cognitive and non-cognitive, for example, problem solving, scientific reasoning, motivation, metacognition, and now ultimately creativity ( Saiz and Rivas, 2008 ; Tamayo-Alzate et al., 2019 ; Halpern and Dunn, 2021 ; Muñoz and Ruiz, 2022 ; Santana et al., 2022 ). Of these skills, problem solving has been incorporated as a constituent element of critical thinking in some models; Likewise, motivation and metacognition are closely related factors and it has been proposed that they are satellite skills for critical thinking processes ( Valenzuela and Nieto, 2008 ; Rivas and Saiz, 2011 ; García, 2022 ), although no empirical information has been shown to clearly demonstrate this. The objective of this paper is precisely to show the relationship between motivation to think and metacognition with critical thinking, in order to contribute to what is proposed.

Critical thinking, motivation, and metacognition

Even when critical thinking is a broadly used concept in the academic and educational world, with a wide range of studies in the last decade, it continues to be a difficult phenomenon to conceptualize and to create little consensus ( Ossa et al., 2016 ; Saiz, 2017 ; Díaz et al., 2019 ).

It is conceptualized as a cognitive mechanism which filters information about the ideological intentions accompanying said information, via continual questioning of knowledge production practices, and the recognition of its different perspectives ( Yang and Chung, 2009 ; Montero, 2010 ).

It is a type of thinking oriented toward data and action, in a context of solving problems and interacting with other people ( Daniel and Auriac, 2012 ; López, 2012 ). Critical thinking is self-directed, self-disciplined, self-regulated and self-corrected. It involves undergoing rigorous standards of excellence and a conscious dominion of its use. It also implies effective communication and the development of problem solving skills ( Saiz and Rivas, 2008 , 2012 , 2016 ).

Critical thinking is characterized by generating higher-level cognitive processing in people, centered on the skills of reflecting, comprehension, evaluation and creation. It therefore requires high intellectual development. However, it is also a skill which can be developed, since there are no important differences between people with average and high intellectual levels with regards to developing critical thinking ( Sierra et al., 2010 ).

Since critical thinking is a high-level cognitive process, and the ability to generate an elaborated thought, a close relation has been proposed with elements which are not considered merely cognitive, including metacognition ( Rivas et al., 2022 ). Metacognition is a reflective process which helps deepen thought, regulate, and generate consciousness about thought ( Tamayo-Alzate et al., 2019 ; Drigas and Mitsea, 2020 ). It has been worked on as both a reflective process of self-knowledge, and as a skill which helps develop other cognitive processes including memory, learning, or even intelligence, since different levels of application can be established in its use ( Drigas and Mitsea, 2021 ).

There is evidence that metacognitive strategies can influence critical thinking and its components. For one, it improves the use of metacognitive strategies due to intervention in critical thinking. It also improves the use of critical thinking with metacognitive strategies in interventions done with psychology students at universities ( Ossa et al., 2016 ; Rivas et al., 2022 ). Significant and positive relations have also been found between critical thinking and metacognitive consciousness among medical students, although not for regulation and knowledge tasks ( de la Portilla Maya et al., 2022 ).

In this way, we can observe a relative influence on the way that people think about thinking, since metacognition supports decision making and final evaluation about strategies to resolve problems ( Rivas et al., 2022 ).

Some authors also indicate the presence of another non-cognitive component in critical thinking, which is disposition or motivation ( Facione et al., 2000 ; Saiz and Rivas, 2008 ; Marin and Halpern, 2011 ; Valenzuela et al., 2014 ; Halpern and Dunn, 2023 ). This component is fundamental to achieve this skill, since even when the indicated cognitive functions are available, if people either lack the desire to apply critical thinking or deem it inconvenient to do so, critical thinking will not be adequately manifested ( Valenzuela and Nieto, 2008 ; Valenzuela et al., 2014 ).

This non-cognitive element is based on human attitudes or motivations which complement the use of critical thinking, allowing it to be better developed, since they drive personal improvement ( Boonsathirakul and Kerdsomboon, 2021 ). The factors presented as facets of a disposition toward critical thinking include seeking truth, open-mindedness, being analytical, systematicity, curiosity, self-confidence and maturity (Facione, in Boonsathirakul and Kerdsomboon, 2021 ).

However, considering these non-cognitive elements as dispositions of a being also involves assuming certain personality traits or dimensions of values which cannot always be adequately measured. They should thus be considered more as motivational aspects, since they could be better defined and with a greater possibility of modification, given that they are more related with behavioral and perceptual elements ( Valenzuela et al., 2014 , 2023 ). From this perspective, we understand that non-cognitive components are based on the expectations and value given to the task. In this way, we establish a direct and causal relation between motivation and critical thinking, where the former explains critical thinking development by between 8 and 17%, according to the instrument used to measure it ( Valenzuela et al., 2023 ).

In this way, promoting motivational aspects is a relevant factor for developing cognitive and metacognitive processes, since complex processes are exhausting and require a high and constant investment of cognitive and emotional factors ( Valenzuela and Nieto, 2008 ; Valenzuela and Saiz, 2010 ; Gaviria, 2019 ; Nieto-Márquez et al., 2021 ).

Finally, a relative relation has been noted between motivational processes and metacognitive strategies. Correa et al. (2019) performed an evaluation among Chilean high school students about the use of metacognitive strategies and motivation to critical thinking in bias recognition. They found a positive, significant, and medium-intensity correlation ( r  = 0.50, p  < 0.001) between both variables, which indicates that cognitive and non-cognitive factors have a relevant link for human thought.

With the aforementioned background, we can hypothesize the existence of a significant and positive relation between critical thinking, metacognitive strategies, and motivation to think critically; that motivation to think directly affects critical thinking; and those metacognitive strategies are related with both variables.

In this article it will be showed preliminary results from this relation, presenting a relational model based on structural equations which would allow for establishing direct and mediated relations between said variables.

A correlational study was done via structural equations.

Participants

435 students from pedagogy majors at three Chilean universities participated in the study. Of these, 88 were male (20.2%), 333 were female (76.6%), 7 were students of unidentified gender (1.6%), and 7 did not respond (1.6%). Students’ ages fell between 18 and 51 years ( M  = 21, SD = 3.09). The careers to which the students belong are in the area of pedagogy, in specialties of mathematics (22%), history (8%), science (15%), special education (15%), and early childhood education (40%).

Instruments

For this study, a battery with three instruments was applied:

1. Metacognitive strategy questionnaire from O’Neil and Abedi, adapted into Spanish by Martínez (2007) . This measure metacognitive strategies applied to different academic tasks. There are 20 items organized into three dimensions: self-knowledge (referring to metacognitive consciousness), self-regulation (referring to metacognitive control), and evaluation (referring to global task evaluation). Results are recorded with a Likert-type scale of 5 choices (0 to 4 points). This instrument has been applied to Chilean university students and shown adequate reliability indicators. The global Cronbach’s α was 0.87, and for the dimensions it was between 0.62 and 0.65 ( Correa et al., 2019 ).

2. Critical thinking motivation questionnaire from Valenzuela, measuring the intention of applying thinking to knowledge tasks, based on personal expectations and the value of the task. It contains 19 items organized into 5 dimensions: Expectation ( α  = 0.774), Importance ( α  = 0.770), Cost ( α  = 0.775), Utility ( α  = 0.790) and Interest ( α  = 0.724). Its results are recorded based on a Likert-type scale with 5 alternatives (0–4 points). It has been applied to Chilean university students with strong reliability indicators. The global Cronbach’s α was 0.92, and the values for its dimensions ranged from 0.69 to 0.83 ( Valenzuela and Nieto, 2008 ; Correa et al., 2019 ).

3. Critical thinking task test from Miranda, adapted by Palma Luengo et al. (2021) . This measured the capacity to apply cognitive critical thinking processes to socio-scientific topics. It contains 15 items organized into three dimensions: inquiry (referring to identifying useful information), analysis (referring to the decision to use pertinent and reliable data), and arguing (referring to providing arguments with useful and reliable data). Its results are recorded with a sequence of scores ranging from 0 to 3 points, based on a performance rubric. It has been applied to a sample of Chilean university students with moderately adequate reliability indicators. The overall Cronbach’s α was 0.67, with moderately low values in its dimensions ranging from 0.47 to 0.60 ( Palma Luengo et al., 2021 ).

Three metacognition questions were incorporated into this instrument to reflect on the tasks being done, one for each dimension (e.g., How are you so confident about knowing how to do the activity? ). Two questions about motivation to thinking were also included, in the middle and at the end of the test, seeking to analyze whether there was a disposition to answer a question in a more voluntary form (e.g., Do you want to finish the test here or do you want to continue to delve deeper into the topic? ). The overall Cronbach’s α was 0.78 (five dimensions), and the values were moderately adequate within these dimensions (0.54 for metacognition and 0.73 for motivation).

We made contact with the directors of the pedagogy majors at three different universities, coordinating the process and determining the courses to consider. After this, a talk was carried out in each course, inviting students to participate in the study. Written informed consent was incorporated into the survey, indicating the study objectives and describing the anonymous and voluntary nature of participation. Open consultations were made about participation in applying the surveys, applying the battery of instruments only to those who wished to participate.

After answering the instruments, the data was emptied into a digital database and analyzed with SPSS v.27 and RStudio software. For data analysis, we used inferential and multivariate statistics. For all inference effects, a 5% significance threshold has been considered. In the structural models, we applied formats from Partial Least Squares (SEM-PLS).

We present an application of structural equations based on partial least squares (PLS), designed to model behavioral situations and social sciences. According to Wold (1980) it is fairly flexible, since it is useful for small sample sizes and also does not require distributional assumptions for the variables, along with being useful for predictive analysis as well as theoretical confirmation. With the PLS format, there are three methodological considerations which are relevant for application: (i) choosing variable with items that effectively belong, (ii) valuing items’ reliability and validity, and (iii) properly interpreting the coefficients.

As indicated in this type of modeling, there are two sections. The first is the measurement model, where each dimension is formatively related with its items: i.e., the item contributes to the variable with a certain coefficient called weight ( w ). This factorial weight represents the weighting of the dimension regarding the latent variable which it intends to measure, so that we can expect it to have sufficient magnitude to be statistically significant.

To begin, for the Metacognition variable, the scores for Self-Knowledge ( w  = 0.67, p  < 0.001, 95% IC: 0.41; 0.97) and Evaluation ( w  = 0.34, p  < 0.01, 95% IC: 0.12; 0.56) are relevant for generating the latent indicator. For the Motivation variable, the scores for Expectations ( w  = 0.21, p  < 0.05, 95% IC: 0.25; 0.62), Importance ( w  = 0.43, p  < 0.001, 95% IC: 0.14; 0.60), and Usefulness ( w  = 0.39, p  < 0.001, 95% IC: 0.19; 0.25) are representative when generating this indicator. For Critical Thinking, only the Metacognition indicator ( w  = 0.71, p  < 0.05, 95% IC: 0.56; 0.86) turned out to be appropriate.

The second section of this type of models is called the structural model. It shows the causality relations between the latent variables. Schematically, we consider that a variable X is the cause of another variable Y, and an arrow will go from X to Y. For this study, the relational schematic between variables is given by the following hypothesis set:

H1 : There is a positive effect of the Metacognition Strategy (ME) on Critical Thinking Motivation (MO). H2 : There is a positive effect of Metacognition Strategy (ME) on Critical Thinking (PC). H3 : There is a positive effect of Critical Thinking Motivation (MO) on Critical Thinking (PC).

Figure 1 shows the hypotheses combined with their respective variables, indicating the measurement and structural models.

www.frontiersin.org

Figure 1 . Schematic of hypothesis and effects expected. Structural equation model. Source: authors.

The empirical results from the model appear in Table 1 with their significance level.

www.frontiersin.org

Table 1 . Structural equation model results.

Finally, in the structural model ( Figure 2 ), we can see the fulfillment of hypothesis H1 ( B  = 0.56, p  < 0.001, 95% IC: 0.49; 0.63) where a greater perception of Metacognition leads to a greater level of Critical Thinking Motivation. There is also fulfillment for hypothesis H3 ( B  = 0.21, p  < 0.01, 95% IC: 0.06; 0.34) indicating that greater levels of Critical Thinking Motivation lead to a greater level of Critical Thinking.

www.frontiersin.org

Figure 2 . Results schematic. Structural equations model. Source: authors.

Our preliminary study results show ties between the three variables, as indicated both in theory ( Facione et al., 2000 ; Valenzuela and Nieto, 2008 ; Tamayo-Alzate et al., 2019 ) and in other studies ( Correa et al., 2019 ; Rivas et al., 2022 ; Valenzuela et al., 2023 ). However, we found some disparate data with regards to the latter points.

For the structural models, hypotheses H1 and H3 have been fulfilled, reporting statistically significant evidence that greater perceived Metacognition explains a greater level of Critical Thinking Motivation, a greater level of Critical Thinking Motivation implies a higher level of Critical Thinking.

One important aspect here is that a significant relation was found between motivation and critical thinking skills, which is supported by Valenzuela et al. (2023) . While the value of the relation is moderate, it can be related, as presented in the aforementioned study, and may be due to the type of instrument used to measure critical thinking. One notable aspect is that the motivation question incorporated into the critical thinking task instrument had little weight within this instrument. However, this could be explained because the questions sought to consider effort for the task. Reviewing the components of the critical thinking motivation survey, the dimensions with the strongest ties were those oriented towards expectations, usefulness and importance, not effort or energy costs.

It is possible that the relationship between metacognition and motivation to think is established because, from the theoretical model used ( Valenzuela and Nieto, 2008 ; Valenzuela et al., 2014 ), the expectation of the task, and its assessment of usefulness (aspects motivation), require an evaluation process (metacognitive aspect); However, this idea must be deepened and reviewed in more detail.

Considering metacognition, no direct relation was observed between the instrument used in this study to measure the metacognitive strategies of self-knowledge, self-regulation and evaluation on one hand, and critical thinking on the other. This situation goes against other studies’ findings ( de la Portilla Maya et al., 2022 ; Rivas et al., 2022 ), and may be explained by the type of instrument used, which may not be sensitive to the critical thinking tasks measured by the test from Palma Luengo et al. (2021) .

The relation discovered about metacognition supporting critical thinking motivation, in order to thus achieve better critical thinking, is one of the key relevant findings in this study. It implies that reflecting on oneself and tasks can generate greater expectations and evaluation for the task, which can drive better performance. These results still need more breadth and depth from further research.

This study is only a preliminary report of results, to account for the relationship between the aforementioned variables and propose that critical thinking benefits from metacognitive and motivational work. Its limitations are the fact that its objective was only empirical, in order to account for the relationship raised in studies ( Valenzuela and Nieto, 2008 ), so the theoretical depth was less. On the other hand, there was a limited number of participating students, and only from some university majors. Likewise, it is considered that the critical thinking test that was used presents adequate reliability values overall, but with less powerful values in some of its dimensions (specifically, inquiry and motivation). It is considered necessary to replicate the study with another instrument and a larger sample to more fully support the results found.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Pedro Labraña Research Unit of Bio-Bio University. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.

Author contributions

CO: Conceptualization, Methodology, Project administration, Writing – original draft. SR: Investigation, Supervision, Writing – review & editing. CS: Conceptualization, Methodology, Writing – review & editing.

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This article was developed in part with funding from FONDECYT Project 11220056, from the Chilean National Research and Development Agency (ANID).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Boonsathirakul, J., and Kerdsomboon, C. (2021). The investigation of critical thinking disposition among Kasetsart University students. High. Educ. Stud. 11, 224–232. doi: 10.5539/hes.v11n2p224

CrossRef Full Text | Google Scholar

Correa, J., Ossa, C., and Sanhueza, P. (2019). Sesgo en razonamiento, metacognicion y motivación al pensamiento crítico en estudiantes de primer año medio de un establecimiento de Chillán. Rev. Estud. Exp. Educ. 18, 61–77. doi: 10.21703/rexe.20191837correa8

Daniel, M., and Auriac, E. (2012). Philosophy, critical thinking and philosophy for children. Educ. Philos. Theory 43, 415–435. doi: 10.1111/j.14695812.2008.00483.x

de la Portilla Maya, S. R., Duque Dussán, A. M., Landínez Martínez, D. A., Montoya Londoño, D. M., and Gutiérrez De Blume, A. P. (2022). Pensamiento crítico y conciencia metacognitiva en una muestra de estudiantes de Medicina. Latinoamericana de Estudios Educativos 18, 145–168. doi: 10.17151/rlee.2022.18.1.8

Díaz, C., Ossa, C., Palma, M., Lagos, N., and Boudon, J. (2019). El concepto de pensamiento crítico según estudiantes chilenos de pedagogía. Sophia 26, 267–288.

Google Scholar

Drigas, A., and Mitsea, E. (2020). The 8 pillars of metacognition. Int. J. Emerg. Technol. Learn. 15, 162–178. doi: 10.3991/ijet.v15i21.14907

Drigas, A., and Mitsea, E. (2021). 8 pillars X 8 layers model of metacognition: educational strategies, exercises and trainings. Int. J. Online Biomed. Eng. 17, 115–134. doi: 10.3991/ijoe.v17i08.23563

Facione, P. A., Facione, N. C., and Giancarlo, C. A. (2000). The disposition toward critical thinking: its character, measurement, and relationship to critical thinking. Informal Logic 20, 61–84. doi: 10.22329/il.v20i1.2254

García, E. J. A. (2022). Motivación, pensamiento crítico y metacognición:¿ esenciales para aprender? Reflexiones sobre calidad educativa. Rev. Dialog. 7, 79–88. doi: 10.37594/dialogus.v1i7.527

Gaviria, C. (2019). Pensar la Historia con el Deseo: Metacognición, Motivación y Comprensión Histórica. Rev. Colomb. Psicol. 28, 147–164. doi: 10.15446/rcp.v28n1.70763

Halpern, D. F., and Dunn, D. (2021). Critical thinking: a model of intelligence for solving real-world problems. J. Intelligence 9:22. doi: 10.3390/jintelligence9020022

PubMed Abstract | CrossRef Full Text | Google Scholar

Halpern, D. F., and Dunn, D. (2023). Thought and knowledge. An introduction to critical thinking . 6ª Edn. New york: Taylor and Francis.

López, G. (2012). Pensamiento crítico en el aula. Docencia e Investigación XXXVII, 41–60.

Marin, L., and Halpern, D. (2011). Pedagogy for developing critical thinking in adolescents: explicit instruction produces greatest gains. Think. Skills Creat. 6, 1–13. doi: 10.1016/j.tsc.2010.08.002

Martínez, J. (2007). Concepción de aprendizaje y estrategias metacognitivas en estudiantes universitarios de psicología. Anal. Psicol. 23, 7–16.

Montero, M. (2010). Crítica, autocrítica y construcción de teoría en la psicología social latinoamericana. Rev. Colomb. Psicol. 19, 177–191.

Muñoz, C., and Ruiz, A. (2022). Programa estratégico lector para desarrollar el pensamiento crítico-creativo en estudiantes de secundaria. Revista Innova Educación 4, 159–175. doi: 10.35622/j.rie.2022.02.010.es

Nieto-Márquez, N., García-Sinausía, S., and Pérez Nieto, M. (2021). Relaciones de la motivación con la metacognición y el desempeño en el rendimiento cognitivo en estudiantes de educación primaria. Anales de psicología 37, 51–60. doi: 10.6018/analesps.383941

Ossa, C., and Díaz, A. (2017). Enfoques intraindividual e interindividual en programas de pensamiento crítico. Psicol. Esc. Educ. 21, 593–600. doi: 10.1590/2175-353920170213111121

Ossa, C., Lepe, N., Díaz, A., Merino, J., and Larraín, A. (2018). Programas de pensamiento crítico en la formación de docentes Iberoamericanos. Profesorado 22, 443–462. doi: 10.30827/profesorado.v22i4.8432

Ossa, C., Rivas, S.F., and Saiz, C. (2016). Estrategias metacognitivas en el desarrollo del análisis argumentativo. En:J. Casanova and C. Bisinoto Y L. Almeida. IV Seminário Internacional Cognição, aprendizagem e desempenho. Livro de atas Braga: Livro de atas (pp. 30–47).

Palma Luengo, M., Ossa Cornejo, C., Ahumada Gutiérrez, H., Moreno Osorio, L., and Miranda Jaña, C. (2021). Adaptación y validación del test Tareas de Pensamiento Crítico en estudiantes universitarios. Rev. Estud. Exp. Educ. 20, 199–212. doi: 10.21703/rexe.20212042palma12

Paul, R., and Elder, L. (2003). La mini-guía para el Pensamiento crítico . Conceptos y herramientas. Ed. Fundación para el Pensamiento Crítico. Available at: http://www.criticalthinking.org

Rivas, S. F., and Saiz, C. (2012). Validación y propiedades psicométricas de la prueba de pensamiento crítico PENCRISAL. Rev. Electrón. Metodol. Aplic. 17, 18–34.

Rivas, S. F., Saiz, C., and Ossa, C. (2022). Metacognitive strategies and development of critical thinking in higher education. Front. Psychol. 13:913219. doi: 10.3389/fpsyg.2022.913219

Saiz, C. (2017). Pensamiento Crítico y Cambio . Madrid: Pirámide.

Saiz, C., and Rivas, S. F. (2008). Evaluación en pensamiento crítico: una propuesta para diferenciar formas de pensar. Ergo. Nueva Época 22-23, 25–66.

Saiz, C., and Rivas, S. F. (2011). Evaluation of the ARDESOS programs: an initiative to improve critical thinking skills. J. Scholarsh. Teach. Learn. 11, 34–51.

Saiz, C., and Rivas, S. F. (2012). Pensamiento crítico y aprendizaje basado en problemas cotidianos. Rev. Docen. Universit. 10, 325–346. doi: 10.4995/redu.2012.6026

Saiz, C., and Rivas, S. F. (2016). New teaching techniques to improve critical thinking. DIAPROVE. Methodol. 40, 3–36.

Santana, L. M. Q., Cedeño, B. J. B., Atoche, C. B., Torres, C. V. G., Preciado, M. P. U., and Quito, C. R. M. (2022). Estrategias metacognitivas y pensamiento crítico en docentes. Ciencia Latina Revista Científica Multidisciplinar 6, 649–675. doi: 10.37811/cl_rcm.v6i1.1529

Scott, C. L. (2015). El futuro del aprendizaje 2 ¿Qué tipo de aprendizaje se necesita en el siglo XXI? Investigación y Prospectiva en Educación UNESCO, París. [Documentos de Trabajo ERF, No. 14]. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000242996_spa

Sierra, J., Carpintero, E., and Pérez, L. (2010). Pensamiento crítico y capacidad intelectual. Faísca 15, 98–110.

Silva Pacheco, C. (2019). El desarrollo del pensamiento crítico en la propuesta curricular de la educación del arte en Chile. Estud. Pedagóg. 45, 79–92. doi: 10.4067/S0718-07052019000300079

Tamayo-Alzate, O., Cadavid-Alzate, V., and Montoya-Londoño, D. (2019). Análisis metacognitivo en estudiantes de básica, durante la resolución de dos situaciones experimentales en la clase de ciencias Naturales. Rev. Colomb. Educ. 1, 117–141. doi: 10.17227/rce.num76-4188

Valenzuela, J., and Nieto, A.M. (2008). Motivación y Pensamiento Crítico: Aportes para el estudio de esta relación. Available at: http://reme.uji.es/articulos/numero28/article3/article3.pdf

Valenzuela, J., Nieto, A. M., and Muñoz, C. (2014). Motivación y disposiciones: enfoques alternativos para explicar el desempeño de habilidades de pensamiento crítico. Rev Electrón. Investig. Educat. 16, 16–32.

Valenzuela, J., Nieto, A., Ossa, C., Sepúlveda, S., and Muñoz, C. (2023). Relaciones entre factores motivacionales y pensamiento crítico. Eur. J. Educat. Psychol. 16, 1–18. doi: 10.32457/ejep.v16i1.2077

Valenzuela, J., and Saiz, C. (2010). Percepción sobre el coste de pensar críticamente en universitarios chilenos y españoles. Electron. J. Res. Educ. Psychol. 8, 689–706.

Wold, H. (1980). “Model construction and evaluation when theoretical knowledge is scarce,” in Evaluation of econometric models . eds. J. Kmnta and J. Ramsey (Cambridge: Academic press).

Yang, S. C., and Chung, T. Y. (2009). Experimental study of teaching critical thinking in civic education in Taiwanese junior high school. Br. J. Educ. Psychol. 79, 29–55. doi: 10.1348/000709907X238771

Keywords: critical thinking, structural models, cognition, motivation, pedagogy

Citation: Ossa CJ, Rivas SF and Saiz C (2023) Relation between metacognitive strategies, motivation to think, and critical thinking skills. Front. Psychol . 14:1272958. doi: 10.3389/fpsyg.2023.1272958

Received: 04 August 2023; Accepted: 13 November 2023; Published: 04 December 2023.

Reviewed by:

Copyright © 2023 Ossa, Rivas and Saiz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Carlos J. Ossa, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

IMAGES

  1. How to promote Critical Thinking Skills

    critical thinking skills in psychology

  2. Critical Thinking Skills

    critical thinking skills in psychology

  3. Critical Thinking Definition, Skills, and Examples

    critical thinking skills in psychology

  4. Critical_Thinking_Skills_Diagram_svg

    critical thinking skills in psychology

  5. What Is... Critical Thinking

    critical thinking skills in psychology

  6. Tools Of Critical Thinking

    critical thinking skills in psychology

VIDEO

  1. Introduction to Critical Thinking

  2. Critical thinking #psychology #cognitivefitness #problemsolving

  3. Top Critical Thinking Skills

  4. The Core of Critical Thinking Sneak Peek #school #criticalthinking #motivation #education #success

  5. #iqtest#how learning critical thinking #psychology #questions

  6. What is Critical Thinking and Benefits of Critical Thinking?

COMMENTS

  1. A Crash Course in Critical Thinking

    Neil Browne, author of the seminal Asking the Right Questions: A Guide to Critical Thinking, has been a pioneer in presenting critical thinking as a question-based approach to making sense of the ...

  2. On Critical Thinking

    Theoretical critical thinking involves helping the student develop an appreciation for scientific explanations of behavior. This means learning not just the content of psychology but how and why psychology is organized into concepts, principles, laws, and theories. Developing theoretical skills begins in the introductory course where the ...

  3. Why is critical thinking important for Psychology students?

    Critical thinking is objective and requires you to analyse and evaluate information to form a sound judgement. It is a cornerstone of evidence-based arguments and forming an evidence-based argument is essential in Psychology. That is why we, your tutors, as well as your future employers, want you to develop this skill effectively.

  4. A Brief Guide for Teaching and Assessing Critical Thinking in Psychology

    Instructional interventions affecting critical thinking skills and dispositions: A stage 1 meta-analysis. Review of Educational Research, 4, 1102-1134. Angelo, T. A. (1995). Classroom assessment for critical thinking. Teaching of Psychology, 22(1), 6-7. Bensley, D.A. (1998). Critical thinking in psychology: A unified skills approach.

  5. Critical Thinking

    Diane F. Halpern defined critical thinking as an attempt to increase the probability of a desired outcome (e.g., making a sound decision, successfully solving a problem) by using certain cognitive skills and strategies. Critical thinking is more than just a collection of skills and strategies: it is a disposition toward engaging with problems.

  6. An Introduction to Critical Thinking: Maybe It Will Change Your Life

    We define critical thinking in several different ways that converge on the same basic idea. It is a combination of skills, attitude, and knowledge. To think critically about any topic, one needs a deep knowledge of the topic and the propensity to apply the appropriate thinking skills.

  7. Critical thinking

    Critical thinking includes identification of prejudice, bias, propaganda, self-deception, distortion, misinformation, etc. Given research in cognitive psychology, some educators believe that schools should focus on teaching their students critical-thinking skills and cultivation of intellectual traits.

  8. PDF Critical Thinking in Psychology

    This book is an introductory text on critical thinking for upper-level undergraduates and graduate students. It shows students how to think critically about key topics such as experimental research, statistical inference, case studies, logical fallacies, and ethical judgments. Robert J. Sternberg is Dean of Arts and Sciences at Tufts University.

  9. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  10. Critical Thinking: A Model of Intelligence for Solving Real-World

    4. Critical Thinking as an Applied Model for Intelligence. One definition of intelligence that directly addresses the question about intelligence and real-world problem solving comes from Nickerson (2020, p. 205): "the ability to learn, to reason well, to solve novel problems, and to deal effectively with novel problems—often unpredictable—that confront one in daily life."

  11. Critical thinking psychology 2nd edition

    Written by leading experts in critical thinking in psychology, each chapter contains useful pedagogical features, such as critical-thinking questions, brief summaries, and definitions of key terms. It also supplies descriptions of each chapter author's critical-thinking experience, which evidences how critical thinking has made a difference to ...

  12. PDF Critical Thinking in Psychology (& Life) Workshop Series: Instructional

    The development of critical thinking skills and habits is one of the most important features of an undergraduate education, and the American Psychological Association (APA) includes critical ... • Critical thinking about psychology in particular is important because psychology is important to life! (e.g. coping with stress, improving ...

  13. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  14. 41+ Critical Thinking Examples (Definition

    There are many resources to help you determine if information sources are factual or not. 7. Socratic Questioning. This way of thinking is called the Socrates Method, named after an old-time thinker from Greece. It's about asking lots of questions to understand a topic.

  15. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  16. How Do Critical Thinking Ability and Critical Thinking Disposition

    Relationship Between Critical Thinking and Mental Health. Associating critical thinking with mental health is not without reason, since theories of psychotherapy have long stressed a linkage between mental problems and dysfunctional thinking (Gilbert, 2003; Gambrill, 2005; Cuijpers, 2019).Proponents of cognitive behavioral therapy suggest that the interpretation by people of a situation ...

  17. Frontiers

    Introduction. Critical thinking is a relevant topic for the 21st century, highlighted by Unesco as one of the skills to develop among students to properly face the challenges of this century (Scott, 2015).Despite its importance for human development, its implementation in educational curricula has been difficult to carry out, both at the level of school systems and in higher education systems ...

  18. PDF Critical thinking: A literature review

    The literature on critical thinking has roots in two primary academic disciplines: philosophy and psychology (Lewis & Smith, 1993). Sternberg (1986) has also noted a third critical thinking strand within the field of education. These separate academic strands have developed different approaches to defining critical thinking that reflect their ...