• Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

A Comprehensive Guide to Methodology in Research

Sumalatha G

Table of Contents

Research methodology plays a crucial role in any study or investigation. It provides the framework for collecting, analyzing, and interpreting data, ensuring that the research is reliable, valid, and credible. Understanding the importance of research methodology is essential for conducting rigorous and meaningful research.

In this article, we'll explore the various aspects of research methodology, from its types to best practices, ensuring you have the knowledge needed to conduct impactful research.

What is Research Methodology?

Research methodology refers to the system of procedures, techniques, and tools used to carry out a research study. It encompasses the overall approach, including the research design, data collection methods, data analysis techniques, and the interpretation of findings.

Research methodology plays a crucial role in the field of research, as it sets the foundation for any study. It provides researchers with a structured framework to ensure that their investigations are conducted in a systematic and organized manner. By following a well-defined methodology, researchers can ensure that their findings are reliable, valid, and meaningful.

When defining research methodology, one of the first steps is to identify the research problem. This involves clearly understanding the issue or topic that the study aims to address. By defining the research problem, researchers can narrow down their focus and determine the specific objectives they want to achieve through their study.

How to Define Research Methodology

Once the research problem is identified, researchers move on to defining the research questions. These questions serve as a guide for the study, helping researchers to gather relevant information and analyze it effectively. The research questions should be clear, concise, and aligned with the overall goals of the study.

After defining the research questions, researchers need to determine how data will be collected and analyzed. This involves selecting appropriate data collection methods, such as surveys, interviews, observations, or experiments. The choice of data collection methods depends on various factors, including the nature of the research problem, the target population, and the available resources.

Once the data is collected, researchers need to analyze it using appropriate data analysis techniques. This may involve statistical analysis, qualitative analysis, or a combination of both, depending on the nature of the data and the research questions. The analysis of data helps researchers to draw meaningful conclusions and make informed decisions based on their findings.

Role of Methodology in Research

Methodology plays a crucial role in research, as it ensures that the study is conducted in a systematic and organized manner. It provides a clear roadmap for researchers to follow, ensuring that the research objectives are met effectively. By following a well-defined methodology, researchers can minimize bias, errors, and inconsistencies in their study, thus enhancing the reliability and validity of their findings.

In addition to providing a structured approach, research methodology also helps in establishing the reliability and validity of the study. Reliability refers to the consistency and stability of the research findings, while validity refers to the accuracy and truthfulness of the findings. By using appropriate research methods and techniques, researchers can ensure that their study produces reliable and valid results, which can be used to make informed decisions and contribute to the existing body of knowledge.

Steps in Choosing the Right Research Methodology

Choosing the appropriate research methodology for your study is a critical step in ensuring the success of your research. Let's explore some steps to help you select the right research methodology:

Identifying the Research Problem

The first step in choosing the right research methodology is to clearly identify and define the research problem. Understanding the research problem will help you determine which methodology will best address your research questions and objectives.

Identifying the research problem involves a thorough examination of the existing literature in your field of study. This step allows you to gain a comprehensive understanding of the current state of knowledge and identify any gaps that your research can fill. By identifying the research problem, you can ensure that your study contributes to the existing body of knowledge and addresses a significant research gap.

Once you have identified the research problem, you need to consider the scope of your study. Are you focusing on a specific population, geographic area, or time frame? Understanding the scope of your research will help you determine the appropriate research methodology to use.

Reviewing Previous Research

Before finalizing the research methodology, it is essential to review previous research conducted in the field. This will allow you to identify gaps, determine the most effective methodologies used in similar studies, and build upon existing knowledge.

Reviewing previous research involves conducting a systematic review of relevant literature. This process includes searching for and analyzing published studies, articles, and reports that are related to your research topic. By reviewing previous research, you can gain insights into the strengths and limitations of different methodologies and make informed decisions about which approach to adopt.

During the review process, it is important to critically evaluate the quality and reliability of the existing research. Consider factors such as the sample size, research design, data collection methods, and statistical analysis techniques used in previous studies. This evaluation will help you determine the most appropriate research methodology for your own study.

Formulating Research Questions

Once the research problem is identified, formulate specific and relevant research questions. These questions will guide your methodology selection process by helping you determine what type of data you need to collect and how to analyze it.

Formulating research questions involves breaking down the research problem into smaller, more manageable components. These questions should be clear, concise, and measurable. They should also align with the objectives of your study and provide a framework for data collection and analysis.

When formulating research questions, consider the different types of data that can be collected, such as qualitative or quantitative data. Depending on the nature of your research questions, you may need to employ different data collection methods, such as interviews, surveys, observations, or experiments. By carefully formulating research questions, you can ensure that your chosen methodology will enable you to collect the necessary data to answer your research questions effectively.

Implementing the Research Methodology

After choosing the appropriate research methodology, it is time to implement it. This stage involves collecting data using various techniques and analyzing the gathered information. Let's explore two crucial aspects of implementing the research methodology:

Data Collection Techniques

Data collection techniques depend on the chosen research methodology. They can include surveys, interviews, observations, experiments, or document analysis. Selecting the most suitable data collection techniques will ensure accurate and relevant data for your study.

Data Analysis Methods

Data analysis is a critical part of the research process. It involves interpreting and making sense of the collected data to draw meaningful conclusions. Depending on the research methodology, data analysis methods can include statistical analysis, content analysis, thematic analysis, or grounded theory.

Ensuring the Validity and Reliability of Your Research

In order to ensure the validity and reliability of your research findings, it is important to address these two key aspects:

Understanding Validity in Research

Validity refers to the accuracy and soundness of a research study. It is crucial to ensure that the research methods used effectively measure what they intend to measure. Researchers can enhance validity by using proper sampling techniques, carefully designing research instruments, and ensuring accurate data collection.

Ensuring Reliability in Your Study

Reliability refers to the consistency and stability of the research results. It is important to ensure that the research methods and instruments used yield consistent and reproducible results. Researchers can enhance reliability by using standardized procedures, ensuring inter-rater reliability, and conducting pilot studies.

A comprehensive understanding of research methodology is essential for conducting high-quality research. By selecting the right research methodology, researchers can ensure that their studies are rigorous, reliable, and valid. It is crucial to follow the steps in choosing the appropriate methodology, implement the chosen methodology effectively, and address validity and reliability concerns throughout the research process. By doing so, researchers can contribute valuable insights and advances in their respective fields.

You might also like

AI for Meta-Analysis — A Comprehensive Guide

AI for Meta-Analysis — A Comprehensive Guide

Monali Ghosh

Cybersecurity in Higher Education: Safeguarding Students and Faculty Data

Leena Jaiswal

How To Write An Argumentative Essay

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 6. The Methodology
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study’s overall validity and reliability. The methodology section of a research paper answers two main questions: How was the data collected or generated? And, how was it analyzed? The writing should be direct and precise and always written in the past tense.

Kallet, Richard H. "How to Write the Methods Section of a Research Paper." Respiratory Care 49 (October 2004): 1229-1232.

Importance of a Good Methodology Section

You must explain how you obtained and analyzed your results for the following reasons:

  • Readers need to know how the data was obtained because the method you chose affects the results and, by extension, how you interpreted their significance in the discussion section of your paper.
  • Methodology is crucial for any branch of scholarship because an unreliable method produces unreliable results and, as a consequence, undermines the value of your analysis of the findings.
  • In most cases, there are a variety of different methods you can choose to investigate a research problem. The methodology section of your paper should clearly articulate the reasons why you have chosen a particular procedure or technique.
  • The reader wants to know that the data was collected or generated in a way that is consistent with accepted practice in the field of study. For example, if you are using a multiple choice questionnaire, readers need to know that it offered your respondents a reasonable range of answers to choose from.
  • The method must be appropriate to fulfilling the overall aims of the study. For example, you need to ensure that you have a large enough sample size to be able to generalize and make recommendations based upon the findings.
  • The methodology should discuss the problems that were anticipated and the steps you took to prevent them from occurring. For any problems that do arise, you must describe the ways in which they were minimized or why these problems do not impact in any meaningful way your interpretation of the findings.
  • In the social and behavioral sciences, it is important to always provide sufficient information to allow other researchers to adopt or replicate your methodology. This information is particularly important when a new method has been developed or an innovative use of an existing method is utilized.

Bem, Daryl J. Writing the Empirical Journal Article. Psychology Writing Center. University of Washington; Denscombe, Martyn. The Good Research Guide: For Small-Scale Social Research Projects . 5th edition. Buckingham, UK: Open University Press, 2014; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008.

Structure and Writing Style

I.  Groups of Research Methods

There are two main groups of research methods in the social sciences:

  • The e mpirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences . This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured. The empirical-analytical group employs deductive reasoning that uses existing theory as a foundation for formulating hypotheses that need to be tested. This approach is focused on explanation.
  • The i nterpretative group of methods is focused on understanding phenomenon in a comprehensive, holistic way . Interpretive methods focus on analytically disclosing the meaning-making practices of human subjects [the why, how, or by what means people do what they do], while showing how those practices arrange so that it can be used to generate observable outcomes. Interpretive methods allow you to recognize your connection to the phenomena under investigation. However, the interpretative group requires careful examination of variables because it focuses more on subjective knowledge.

II.  Content

The introduction to your methodology section should begin by restating the research problem and underlying assumptions underpinning your study. This is followed by situating the methods you used to gather, analyze, and process information within the overall “tradition” of your field of study and within the particular research design you have chosen to study the problem. If the method you choose lies outside of the tradition of your field [i.e., your review of the literature demonstrates that the method is not commonly used], provide a justification for how your choice of methods specifically addresses the research problem in ways that have not been utilized in prior studies.

The remainder of your methodology section should describe the following:

  • Decisions made in selecting the data you have analyzed or, in the case of qualitative research, the subjects and research setting you have examined,
  • Tools and methods used to identify and collect information, and how you identified relevant variables,
  • The ways in which you processed the data and the procedures you used to analyze that data, and
  • The specific research tools or strategies that you utilized to study the underlying hypothesis and research questions.

In addition, an effectively written methodology section should:

  • Introduce the overall methodological approach for investigating your research problem . Is your study qualitative or quantitative or a combination of both (mixed method)? Are you going to take a special approach, such as action research, or a more neutral stance?
  • Indicate how the approach fits the overall research design . Your methods for gathering data should have a clear connection to your research problem. In other words, make sure that your methods will actually address the problem. One of the most common deficiencies found in research papers is that the proposed methodology is not suitable to achieving the stated objective of your paper.
  • Describe the specific methods of data collection you are going to use , such as, surveys, interviews, questionnaires, observation, archival research. If you are analyzing existing data, such as a data set or archival documents, describe how it was originally created or gathered and by whom. Also be sure to explain how older data is still relevant to investigating the current research problem.
  • Explain how you intend to analyze your results . Will you use statistical analysis? Will you use specific theoretical perspectives to help you analyze a text or explain observed behaviors? Describe how you plan to obtain an accurate assessment of relationships, patterns, trends, distributions, and possible contradictions found in the data.
  • Provide background and a rationale for methodologies that are unfamiliar for your readers . Very often in the social sciences, research problems and the methods for investigating them require more explanation/rationale than widely accepted rules governing the natural and physical sciences. Be clear and concise in your explanation.
  • Provide a justification for subject selection and sampling procedure . For instance, if you propose to conduct interviews, how do you intend to select the sample population? If you are analyzing texts, which texts have you chosen, and why? If you are using statistics, why is this set of data being used? If other data sources exist, explain why the data you chose is most appropriate to addressing the research problem.
  • Provide a justification for case study selection . A common method of analyzing research problems in the social sciences is to analyze specific cases. These can be a person, place, event, phenomenon, or other type of subject of analysis that are either examined as a singular topic of in-depth investigation or multiple topics of investigation studied for the purpose of comparing or contrasting findings. In either method, you should explain why a case or cases were chosen and how they specifically relate to the research problem.
  • Describe potential limitations . Are there any practical limitations that could affect your data collection? How will you attempt to control for potential confounding variables and errors? If your methodology may lead to problems you can anticipate, state this openly and show why pursuing this methodology outweighs the risk of these problems cropping up.

NOTE :   Once you have written all of the elements of the methods section, subsequent revisions should focus on how to present those elements as clearly and as logically as possibly. The description of how you prepared to study the research problem, how you gathered the data, and the protocol for analyzing the data should be organized chronologically. For clarity, when a large amount of detail must be presented, information should be presented in sub-sections according to topic. If necessary, consider using appendices for raw data.

ANOTHER NOTE : If you are conducting a qualitative analysis of a research problem , the methodology section generally requires a more elaborate description of the methods used as well as an explanation of the processes applied to gathering and analyzing of data than is generally required for studies using quantitative methods. Because you are the primary instrument for generating the data [e.g., through interviews or observations], the process for collecting that data has a significantly greater impact on producing the findings. Therefore, qualitative research requires a more detailed description of the methods used.

YET ANOTHER NOTE :   If your study involves interviews, observations, or other qualitative techniques involving human subjects , you may be required to obtain approval from the university's Office for the Protection of Research Subjects before beginning your research. This is not a common procedure for most undergraduate level student research assignments. However, i f your professor states you need approval, you must include a statement in your methods section that you received official endorsement and adequate informed consent from the office and that there was a clear assessment and minimization of risks to participants and to the university. This statement informs the reader that your study was conducted in an ethical and responsible manner. In some cases, the approval notice is included as an appendix to your paper.

III.  Problems to Avoid

Irrelevant Detail The methodology section of your paper should be thorough but concise. Do not provide any background information that does not directly help the reader understand why a particular method was chosen, how the data was gathered or obtained, and how the data was analyzed in relation to the research problem [note: analyzed, not interpreted! Save how you interpreted the findings for the discussion section]. With this in mind, the page length of your methods section will generally be less than any other section of your paper except the conclusion.

Unnecessary Explanation of Basic Procedures Remember that you are not writing a how-to guide about a particular method. You should make the assumption that readers possess a basic understanding of how to investigate the research problem on their own and, therefore, you do not have to go into great detail about specific methodological procedures. The focus should be on how you applied a method , not on the mechanics of doing a method. An exception to this rule is if you select an unconventional methodological approach; if this is the case, be sure to explain why this approach was chosen and how it enhances the overall process of discovery.

Problem Blindness It is almost a given that you will encounter problems when collecting or generating your data, or, gaps will exist in existing data or archival materials. Do not ignore these problems or pretend they did not occur. Often, documenting how you overcame obstacles can form an interesting part of the methodology. It demonstrates to the reader that you can provide a cogent rationale for the decisions you made to minimize the impact of any problems that arose.

Literature Review Just as the literature review section of your paper provides an overview of sources you have examined while researching a particular topic, the methodology section should cite any sources that informed your choice and application of a particular method [i.e., the choice of a survey should include any citations to the works you used to help construct the survey].

It’s More than Sources of Information! A description of a research study's method should not be confused with a description of the sources of information. Such a list of sources is useful in and of itself, especially if it is accompanied by an explanation about the selection and use of the sources. The description of the project's methodology complements a list of sources in that it sets forth the organization and interpretation of information emanating from those sources.

Azevedo, L.F. et al. "How to Write a Scientific Paper: Writing the Methods Section." Revista Portuguesa de Pneumologia 17 (2011): 232-238; Blair Lorrie. “Choosing a Methodology.” In Writing a Graduate Thesis or Dissertation , Teaching Writing Series. (Rotterdam: Sense Publishers 2016), pp. 49-72; Butin, Dan W. The Education Dissertation A Guide for Practitioner Scholars . Thousand Oaks, CA: Corwin, 2010; Carter, Susan. Structuring Your Research Thesis . New York: Palgrave Macmillan, 2012; Kallet, Richard H. “How to Write the Methods Section of a Research Paper.” Respiratory Care 49 (October 2004):1229-1232; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008. Methods Section. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Rudestam, Kjell Erik and Rae R. Newton. “The Method Chapter: Describing Your Research Plan.” In Surviving Your Dissertation: A Comprehensive Guide to Content and Process . (Thousand Oaks, Sage Publications, 2015), pp. 87-115; What is Interpretive Research. Institute of Public and International Affairs, University of Utah; Writing the Experimental Report: Methods, Results, and Discussion. The Writing Lab and The OWL. Purdue University; Methods and Materials. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College.

Writing Tip

Statistical Designs and Tests? Do Not Fear Them!

Don't avoid using a quantitative approach to analyzing your research problem just because you fear the idea of applying statistical designs and tests. A qualitative approach, such as conducting interviews or content analysis of archival texts, can yield exciting new insights about a research problem, but it should not be undertaken simply because you have a disdain for running a simple regression. A well designed quantitative research study can often be accomplished in very clear and direct ways, whereas, a similar study of a qualitative nature usually requires considerable time to analyze large volumes of data and a tremendous burden to create new paths for analysis where previously no path associated with your research problem had existed.

To locate data and statistics, GO HERE .

Another Writing Tip

Knowing the Relationship Between Theories and Methods

There can be multiple meaning associated with the term "theories" and the term "methods" in social sciences research. A helpful way to delineate between them is to understand "theories" as representing different ways of characterizing the social world when you research it and "methods" as representing different ways of generating and analyzing data about that social world. Framed in this way, all empirical social sciences research involves theories and methods, whether they are stated explicitly or not. However, while theories and methods are often related, it is important that, as a researcher, you deliberately separate them in order to avoid your theories playing a disproportionate role in shaping what outcomes your chosen methods produce.

Introspectively engage in an ongoing dialectic between the application of theories and methods to help enable you to use the outcomes from your methods to interrogate and develop new theories, or ways of framing conceptually the research problem. This is how scholarship grows and branches out into new intellectual territory.

Reynolds, R. Larry. Ways of Knowing. Alternative Microeconomics . Part 1, Chapter 3. Boise State University; The Theory-Method Relationship. S-Cool Revision. United Kingdom.

Yet Another Writing Tip

Methods and the Methodology

Do not confuse the terms "methods" and "methodology." As Schneider notes, a method refers to the technical steps taken to do research . Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save the interpretation of data for the discussion section of your paper].

The methodology refers to a discussion of the underlying reasoning why particular methods were used . This discussion includes describing the theoretical concepts that inform the choice of methods to be applied, placing the choice of methods within the more general nature of academic work, and reviewing its relevance to examining the research problem. The methodology section also includes a thorough review of the methods other scholars have used to study the topic.

Bryman, Alan. "Of Methods and Methodology." Qualitative Research in Organizations and Management: An International Journal 3 (2008): 159-168; Schneider, Florian. “What's in a Methodology: The Difference between Method, Methodology, and Theory…and How to Get the Balance Right?” PoliticsEastAsia.com. Chinese Department, University of Leiden, Netherlands.

  • << Previous: Scholarly vs. Popular Publications
  • Next: Qualitative Methods >>
  • Last Updated: Apr 19, 2024 11:16 AM
  • URL: https://libguides.usc.edu/writingguide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • What Is a Research Methodology? | Steps & Tips

What Is a Research Methodology? | Steps & Tips

Published on 25 February 2019 by Shona McCombes . Revised on 10 October 2022.

Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research.

It should include:

  • The type of research you conducted
  • How you collected and analysed your data
  • Any tools or materials you used in the research
  • Why you chose these methods
  • Your methodology section should generally be written in the past tense .
  • Academic style guides in your field may provide detailed guidelines on what to include for different types of studies.
  • Your citation style might provide guidelines for your methodology section (e.g., an APA Style methods section ).

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

How to write a research methodology, why is a methods section important, step 1: explain your methodological approach, step 2: describe your data collection methods, step 3: describe your analysis method, step 4: evaluate and justify the methodological choices you made, tips for writing a strong methodology chapter, frequently asked questions about methodology.

Prevent plagiarism, run a free check.

Your methods section is your opportunity to share how you conducted your research and why you chose the methods you chose. It’s also the place to show that your research was rigorously conducted and can be replicated .

It gives your research legitimacy and situates it within your field, and also gives your readers a place to refer to if they have any questions or critiques in other sections.

You can start by introducing your overall approach to your research. You have two options here.

Option 1: Start with your “what”

What research problem or question did you investigate?

  • Aim to describe the characteristics of something?
  • Explore an under-researched topic?
  • Establish a causal relationship?

And what type of data did you need to achieve this aim?

  • Quantitative data , qualitative data , or a mix of both?
  • Primary data collected yourself, or secondary data collected by someone else?
  • Experimental data gathered by controlling and manipulating variables, or descriptive data gathered via observations?

Option 2: Start with your “why”

Depending on your discipline, you can also start with a discussion of the rationale and assumptions underpinning your methodology. In other words, why did you choose these methods for your study?

  • Why is this the best way to answer your research question?
  • Is this a standard methodology in your field, or does it require justification?
  • Were there any ethical considerations involved in your choices?
  • What are the criteria for validity and reliability in this type of research ?

Once you have introduced your reader to your methodological approach, you should share full details about your data collection methods .

Quantitative methods

In order to be considered generalisable, you should describe quantitative research methods in enough detail for another researcher to replicate your study.

Here, explain how you operationalised your concepts and measured your variables. Discuss your sampling method or inclusion/exclusion criteria, as well as any tools, procedures, and materials you used to gather your data.

Surveys Describe where, when, and how the survey was conducted.

  • How did you design the questionnaire?
  • What form did your questions take (e.g., multiple choice, Likert scale )?
  • Were your surveys conducted in-person or virtually?
  • What sampling method did you use to select participants?
  • What was your sample size and response rate?

Experiments Share full details of the tools, techniques, and procedures you used to conduct your experiment.

  • How did you design the experiment ?
  • How did you recruit participants?
  • How did you manipulate and measure the variables ?
  • What tools did you use?

Existing data Explain how you gathered and selected the material (such as datasets or archival data) that you used in your analysis.

  • Where did you source the material?
  • How was the data originally produced?
  • What criteria did you use to select material (e.g., date range)?

The survey consisted of 5 multiple-choice questions and 10 questions measured on a 7-point Likert scale.

The goal was to collect survey responses from 350 customers visiting the fitness apparel company’s brick-and-mortar location in Boston on 4–8 July 2022, between 11:00 and 15:00.

Here, a customer was defined as a person who had purchased a product from the company on the day they took the survey. Participants were given 5 minutes to fill in the survey anonymously. In total, 408 customers responded, but not all surveys were fully completed. Due to this, 371 survey results were included in the analysis.

Qualitative methods

In qualitative research , methods are often more flexible and subjective. For this reason, it’s crucial to robustly explain the methodology choices you made.

Be sure to discuss the criteria you used to select your data, the context in which your research was conducted, and the role you played in collecting your data (e.g., were you an active participant, or a passive observer?)

Interviews or focus groups Describe where, when, and how the interviews were conducted.

  • How did you find and select participants?
  • How many participants took part?
  • What form did the interviews take ( structured , semi-structured , or unstructured )?
  • How long were the interviews?
  • How were they recorded?

Participant observation Describe where, when, and how you conducted the observation or ethnography .

  • What group or community did you observe? How long did you spend there?
  • How did you gain access to this group? What role did you play in the community?
  • How long did you spend conducting the research? Where was it located?
  • How did you record your data (e.g., audiovisual recordings, note-taking)?

Existing data Explain how you selected case study materials for your analysis.

  • What type of materials did you analyse?
  • How did you select them?

In order to gain better insight into possibilities for future improvement of the fitness shop’s product range, semi-structured interviews were conducted with 8 returning customers.

Here, a returning customer was defined as someone who usually bought products at least twice a week from the store.

Surveys were used to select participants. Interviews were conducted in a small office next to the cash register and lasted approximately 20 minutes each. Answers were recorded by note-taking, and seven interviews were also filmed with consent. One interviewee preferred not to be filmed.

Mixed methods

Mixed methods research combines quantitative and qualitative approaches. If a standalone quantitative or qualitative study is insufficient to answer your research question, mixed methods may be a good fit for you.

Mixed methods are less common than standalone analyses, largely because they require a great deal of effort to pull off successfully. If you choose to pursue mixed methods, it’s especially important to robustly justify your methods here.

Next, you should indicate how you processed and analysed your data. Avoid going into too much detail: you should not start introducing or discussing any of your results at this stage.

In quantitative research , your analysis will be based on numbers. In your methods section, you can include:

  • How you prepared the data before analysing it (e.g., checking for missing data , removing outliers , transforming variables)
  • Which software you used (e.g., SPSS, Stata or R)
  • Which statistical tests you used (e.g., two-tailed t test , simple linear regression )

In qualitative research, your analysis will be based on language, images, and observations (often involving some form of textual analysis ).

Specific methods might include:

  • Content analysis : Categorising and discussing the meaning of words, phrases and sentences
  • Thematic analysis : Coding and closely examining the data to identify broad themes and patterns
  • Discourse analysis : Studying communication and meaning in relation to their social context

Mixed methods combine the above two research methods, integrating both qualitative and quantitative approaches into one coherent analytical process.

Above all, your methodology section should clearly make the case for why you chose the methods you did. This is especially true if you did not take the most standard approach to your topic. In this case, discuss why other methods were not suitable for your objectives, and show how this approach contributes new knowledge or understanding.

In any case, it should be overwhelmingly clear to your reader that you set yourself up for success in terms of your methodology’s design. Show how your methods should lead to results that are valid and reliable, while leaving the analysis of the meaning, importance, and relevance of your results for your discussion section .

  • Quantitative: Lab-based experiments cannot always accurately simulate real-life situations and behaviours, but they are effective for testing causal relationships between variables .
  • Qualitative: Unstructured interviews usually produce results that cannot be generalised beyond the sample group , but they provide a more in-depth understanding of participants’ perceptions, motivations, and emotions.
  • Mixed methods: Despite issues systematically comparing differing types of data, a solely quantitative study would not sufficiently incorporate the lived experience of each participant, while a solely qualitative study would be insufficiently generalisable.

Remember that your aim is not just to describe your methods, but to show how and why you applied them. Again, it’s critical to demonstrate that your research was rigorously conducted and can be replicated.

1. Focus on your objectives and research questions

The methodology section should clearly show why your methods suit your objectives  and convince the reader that you chose the best possible approach to answering your problem statement and research questions .

2. Cite relevant sources

Your methodology can be strengthened by referencing existing research in your field. This can help you to:

  • Show that you followed established practice for your type of research
  • Discuss how you decided on your approach by evaluating existing research
  • Present a novel methodological approach to address a gap in the literature

3. Write for your audience

Consider how much information you need to give, and avoid getting too lengthy. If you are using methods that are standard for your discipline, you probably don’t need to give a lot of background or justification.

Regardless, your methodology should be a clear, well-structured text that makes an argument for your approach, not just a list of technical details and procedures.

Methodology refers to the overarching strategy and rationale of your research. Developing your methodology involves studying the research methods used in your field and the theories or principles that underpin them, in order to choose the approach that best matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. interviews, experiments , surveys , statistical tests ).

In a dissertation or scientific paper, the methodology chapter or methods section comes after the introduction and before the results , discussion and conclusion .

Depending on the length and type of document, you might also include a literature review or theoretical framework before the methodology.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). What Is a Research Methodology? | Steps & Tips. Scribbr. Retrieved 15 April 2024, from https://www.scribbr.co.uk/thesis-dissertation/methodology/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a dissertation proposal | a step-by-step guide, what is a literature review | guide, template, & examples, what is a theoretical framework | a step-by-step guide.

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing

How to Write Research Methodology

Last Updated: May 21, 2023 Approved

This article was co-authored by Alexander Ruiz, M.Ed. and by wikiHow staff writer, Jennifer Mueller, JD . Alexander Ruiz is an Educational Consultant and the Educational Director of Link Educational Institute, a tutoring business based in Claremont, California that provides customizable educational plans, subject and test prep tutoring, and college application consulting. With over a decade and a half of experience in the education industry, Alexander coaches students to increase their self-awareness and emotional intelligence while achieving skills and the goal of achieving skills and higher education. He holds a BA in Psychology from Florida International University and an MA in Education from Georgia Southern University. wikiHow marks an article as reader-approved once it receives enough positive feedback. In this case, several readers have written to tell us that this article was helpful to them, earning it our reader-approved status. This article has been viewed 518,125 times.

The research methodology section of any academic research paper gives you the opportunity to convince your readers that your research is useful and will contribute to your field of study. An effective research methodology is grounded in your overall approach – whether qualitative or quantitative – and adequately describes the methods you used. Justify why you chose those methods over others, then explain how those methods will provide answers to your research questions. [1] X Research source

Describing Your Methods

Step 1 Restate your research problem.

  • In your restatement, include any underlying assumptions that you're making or conditions that you're taking for granted. These assumptions will also inform the research methods you've chosen.
  • Generally, state the variables you'll test and the other conditions you're controlling or assuming are equal.

Step 2 Establish your overall methodological approach.

  • If you want to research and document measurable social trends, or evaluate the impact of a particular policy on various variables, use a quantitative approach focused on data collection and statistical analysis.
  • If you want to evaluate people's views or understanding of a particular issue, choose a more qualitative approach.
  • You can also combine the two. For example, you might look primarily at a measurable social trend, but also interview people and get their opinions on how that trend is affecting their lives.

Step 3 Define how you collected or generated data.

  • For example, if you conducted a survey, you would describe the questions included in the survey, where and how the survey was conducted (such as in person, online, over the phone), how many surveys were distributed, and how long your respondents had to complete the survey.
  • Include enough detail that your study can be replicated by others in your field, even if they may not get the same results you did. [4] X Research source

Step 4 Provide background for uncommon methods.

  • Qualitative research methods typically require more detailed explanation than quantitative methods.
  • Basic investigative procedures don't need to be explained in detail. Generally, you can assume that your readers have a general understanding of common research methods that social scientists use, such as surveys or focus groups.

Step 5 Cite any sources that contributed to your choice of methodology.

  • For example, suppose you conducted a survey and used a couple of other research papers to help construct the questions on your survey. You would mention those as contributing sources.

Justifying Your Choice of Methods

Step 1 Explain your selection criteria for data collection.

  • Describe study participants specifically, and list any inclusion or exclusion criteria you used when forming your group of participants.
  • Justify the size of your sample, if applicable, and describe how this affects whether your study can be generalized to larger populations. For example, if you conducted a survey of 30 percent of the student population of a university, you could potentially apply those results to the student body as a whole, but maybe not to students at other universities.

Step 2 Distinguish your research from any weaknesses in your methods.

  • Reading other research papers is a good way to identify potential problems that commonly arise with various methods. State whether you actually encountered any of these common problems during your research.

Step 3 Describe how you overcame obstacles.

  • If you encountered any problems as you collected data, explain clearly the steps you took to minimize the effect that problem would have on your results.

Step 4 Evaluate other methods you could have used.

  • In some cases, this may be as simple as stating that while there were numerous studies using one method, there weren't any using your method, which caused a gap in understanding of the issue.
  • For example, there may be multiple papers providing quantitative analysis of a particular social trend. However, none of these papers looked closely at how this trend was affecting the lives of people.

Connecting Your Methods to Your Research Goals

Step 1 Describe how you analyzed your results.

  • Depending on your research questions, you may be mixing quantitative and qualitative analysis – just as you could potentially use both approaches. For example, you might do a statistical analysis, and then interpret those statistics through a particular theoretical lens.

Step 2 Explain how your analysis suits your research goals.

  • For example, suppose you're researching the effect of college education on family farms in rural America. While you could do interviews of college-educated people who grew up on a family farm, that would not give you a picture of the overall effect. A quantitative approach and statistical analysis would give you a bigger picture.

Step 3 Identify how your analysis answers your research questions.

  • If in answering your research questions, your findings have raised other questions that may require further research, state these briefly.
  • You can also include here any limitations to your methods, or questions that weren't answered through your research.

Step 4 Assess whether your findings can be transferred or generalized.

  • Generalization is more typically used in quantitative research. If you have a well-designed sample, you can statistically apply your results to the larger population your sample belongs to.

Template to Write Research Methodology

layout of research methodology

Community Q&A

AneHane

  • Organize your methodology section chronologically, starting with how you prepared to conduct your research methods, how you gathered data, and how you analyzed that data. [13] X Research source Thanks Helpful 0 Not Helpful 0
  • Write your research methodology section in past tense, unless you're submitting the methodology section before the research described has been carried out. [14] X Research source Thanks Helpful 2 Not Helpful 0
  • Discuss your plans in detail with your advisor or supervisor before committing to a particular methodology. They can help identify possible flaws in your study. [15] X Research source Thanks Helpful 0 Not Helpful 0

layout of research methodology

You Might Also Like

Write

  • ↑ http://expertjournals.com/how-to-write-a-research-methodology-for-your-academic-article/
  • ↑ http://libguides.usc.edu/writingguide/methodology
  • ↑ https://www.skillsyouneed.com/learn/dissertation-methodology.html
  • ↑ https://uir.unisa.ac.za/bitstream/handle/10500/4245/05Chap%204_Research%20methodology%20and%20design.pdf
  • ↑ https://elc.polyu.edu.hk/FYP/html/method.htm

About This Article

Alexander Ruiz, M.Ed.

To write a research methodology, start with a section that outlines the problems or questions you'll be studying, including your hypotheses or whatever it is you're setting out to prove. Then, briefly explain why you chose to use either a qualitative or quantitative approach for your study. Next, go over when and where you conducted your research and what parameters you used to ensure you were objective. Finally, cite any sources you used to decide on the methodology for your research. To learn how to justify your choice of methods in your research methodology, scroll down! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Prof. Dr. Ahmed Askar

Prof. Dr. Ahmed Askar

Apr 18, 2020

Did this article help you?

layout of research methodology

M. Mahmood Shah Khan

Mar 17, 2020

Shimola Makondo

Shimola Makondo

Jul 20, 2019

Zain Sharif Mohammed Alnadhery

Zain Sharif Mohammed Alnadhery

Jan 7, 2019

Lundi Dukashe

Lundi Dukashe

Feb 17, 2020

Am I a Narcissist or an Empath Quiz

Featured Articles

Choose the Right Car for You

Trending Articles

How to Set Boundaries with Texting

Watch Articles

Fold Boxer Briefs

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Level up your tech skills and stay ahead of the curve

Grad Coach

What Is Research Methodology? A Plain-Language Explanation & Definition (With Examples)

By Derek Jansen (MBA)  and Kerryn Warren (PhD) | June 2020 (Last updated April 2023)

If you’re new to formal academic research, it’s quite likely that you’re feeling a little overwhelmed by all the technical lingo that gets thrown around. And who could blame you – “research methodology”, “research methods”, “sampling strategies”… it all seems never-ending!

In this post, we’ll demystify the landscape with plain-language explanations and loads of examples (including easy-to-follow videos), so that you can approach your dissertation, thesis or research project with confidence. Let’s get started.

Research Methodology 101

  • What exactly research methodology means
  • What qualitative , quantitative and mixed methods are
  • What sampling strategy is
  • What data collection methods are
  • What data analysis methods are
  • How to choose your research methodology
  • Example of a research methodology

Free Webinar: Research Methodology 101

What is research methodology?

Research methodology simply refers to the practical “how” of a research study. More specifically, it’s about how  a researcher  systematically designs a study  to ensure valid and reliable results that address the research aims, objectives and research questions . Specifically, how the researcher went about deciding:

  • What type of data to collect (e.g., qualitative or quantitative data )
  • Who  to collect it from (i.e., the sampling strategy )
  • How to  collect  it (i.e., the data collection method )
  • How to  analyse  it (i.e., the data analysis methods )

Within any formal piece of academic research (be it a dissertation, thesis or journal article), you’ll find a research methodology chapter or section which covers the aspects mentioned above. Importantly, a good methodology chapter explains not just   what methodological choices were made, but also explains  why they were made. In other words, the methodology chapter should justify  the design choices, by showing that the chosen methods and techniques are the best fit for the research aims, objectives and research questions. 

So, it’s the same as research design?

Not quite. As we mentioned, research methodology refers to the collection of practical decisions regarding what data you’ll collect, from who, how you’ll collect it and how you’ll analyse it. Research design, on the other hand, is more about the overall strategy you’ll adopt in your study. For example, whether you’ll use an experimental design in which you manipulate one variable while controlling others. You can learn more about research design and the various design types here .

Need a helping hand?

layout of research methodology

What are qualitative, quantitative and mixed-methods?

Qualitative, quantitative and mixed-methods are different types of methodological approaches, distinguished by their focus on words , numbers or both . This is a bit of an oversimplification, but its a good starting point for understanding.

Let’s take a closer look.

Qualitative research refers to research which focuses on collecting and analysing words (written or spoken) and textual or visual data, whereas quantitative research focuses on measurement and testing using numerical data . Qualitative analysis can also focus on other “softer” data points, such as body language or visual elements.

It’s quite common for a qualitative methodology to be used when the research aims and research questions are exploratory  in nature. For example, a qualitative methodology might be used to understand peoples’ perceptions about an event that took place, or a political candidate running for president. 

Contrasted to this, a quantitative methodology is typically used when the research aims and research questions are confirmatory  in nature. For example, a quantitative methodology might be used to measure the relationship between two variables (e.g. personality type and likelihood to commit a crime) or to test a set of hypotheses .

As you’ve probably guessed, the mixed-method methodology attempts to combine the best of both qualitative and quantitative methodologies to integrate perspectives and create a rich picture. If you’d like to learn more about these three methodological approaches, be sure to watch our explainer video below.

What is sampling strategy?

Simply put, sampling is about deciding who (or where) you’re going to collect your data from . Why does this matter? Well, generally it’s not possible to collect data from every single person in your group of interest (this is called the “population”), so you’ll need to engage a smaller portion of that group that’s accessible and manageable (this is called the “sample”).

How you go about selecting the sample (i.e., your sampling strategy) will have a major impact on your study.  There are many different sampling methods  you can choose from, but the two overarching categories are probability   sampling and  non-probability   sampling .

Probability sampling  involves using a completely random sample from the group of people you’re interested in. This is comparable to throwing the names all potential participants into a hat, shaking it up, and picking out the “winners”. By using a completely random sample, you’ll minimise the risk of selection bias and the results of your study will be more generalisable  to the entire population. 

Non-probability sampling , on the other hand,  doesn’t use a random sample . For example, it might involve using a convenience sample, which means you’d only interview or survey people that you have access to (perhaps your friends, family or work colleagues), rather than a truly random sample. With non-probability sampling, the results are typically not generalisable .

To learn more about sampling methods, be sure to check out the video below.

What are data collection methods?

As the name suggests, data collection methods simply refers to the way in which you go about collecting the data for your study. Some of the most common data collection methods include:

  • Interviews (which can be unstructured, semi-structured or structured)
  • Focus groups and group interviews
  • Surveys (online or physical surveys)
  • Observations (watching and recording activities)
  • Biophysical measurements (e.g., blood pressure, heart rate, etc.)
  • Documents and records (e.g., financial reports, court records, etc.)

The choice of which data collection method to use depends on your overall research aims and research questions , as well as practicalities and resource constraints. For example, if your research is exploratory in nature, qualitative methods such as interviews and focus groups would likely be a good fit. Conversely, if your research aims to measure specific variables or test hypotheses, large-scale surveys that produce large volumes of numerical data would likely be a better fit.

What are data analysis methods?

Data analysis methods refer to the methods and techniques that you’ll use to make sense of your data. These can be grouped according to whether the research is qualitative  (words-based) or quantitative (numbers-based).

Popular data analysis methods in qualitative research include:

  • Qualitative content analysis
  • Thematic analysis
  • Discourse analysis
  • Narrative analysis
  • Interpretative phenomenological analysis (IPA)
  • Visual analysis (of photographs, videos, art, etc.)

Qualitative data analysis all begins with data coding , after which an analysis method is applied. In some cases, more than one analysis method is used, depending on the research aims and research questions . In the video below, we explore some  common qualitative analysis methods, along with practical examples.  

Moving on to the quantitative side of things, popular data analysis methods in this type of research include:

  • Descriptive statistics (e.g. means, medians, modes )
  • Inferential statistics (e.g. correlation, regression, structural equation modelling)

Again, the choice of which data collection method to use depends on your overall research aims and objectives , as well as practicalities and resource constraints. In the video below, we explain some core concepts central to quantitative analysis.

How do I choose a research methodology?

As you’ve probably picked up by now, your research aims and objectives have a major influence on the research methodology . So, the starting point for developing your research methodology is to take a step back and look at the big picture of your research, before you make methodology decisions. The first question you need to ask yourself is whether your research is exploratory or confirmatory in nature.

If your research aims and objectives are primarily exploratory in nature, your research will likely be qualitative and therefore you might consider qualitative data collection methods (e.g. interviews) and analysis methods (e.g. qualitative content analysis). 

Conversely, if your research aims and objective are looking to measure or test something (i.e. they’re confirmatory), then your research will quite likely be quantitative in nature, and you might consider quantitative data collection methods (e.g. surveys) and analyses (e.g. statistical analysis).

Designing your research and working out your methodology is a large topic, which we cover extensively on the blog . For now, however, the key takeaway is that you should always start with your research aims, objectives and research questions (the golden thread). Every methodological choice you make needs align with those three components. 

Example of a research methodology chapter

In the video below, we provide a detailed walkthrough of a research methodology from an actual dissertation, as well as an overview of our free methodology template .

layout of research methodology

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

What is descriptive statistics?

199 Comments

Leo Balanlay

Thank you for this simple yet comprehensive and easy to digest presentation. God Bless!

Derek Jansen

You’re most welcome, Leo. Best of luck with your research!

Asaf

I found it very useful. many thanks

Solomon F. Joel

This is really directional. A make-easy research knowledge.

Upendo Mmbaga

Thank you for this, I think will help my research proposal

vicky

Thanks for good interpretation,well understood.

Alhaji Alie Kanu

Good morning sorry I want to the search topic

Baraka Gombela

Thank u more

Boyd

Thank you, your explanation is simple and very helpful.

Suleiman Abubakar

Very educative a.nd exciting platform. A bigger thank you and I’ll like to always be with you

Daniel Mondela

That’s the best analysis

Okwuchukwu

So simple yet so insightful. Thank you.

Wendy Lushaba

This really easy to read as it is self-explanatory. Very much appreciated…

Lilian

Thanks for this. It’s so helpful and explicit. For those elements highlighted in orange, they were good sources of referrals for concepts I didn’t understand. A million thanks for this.

Tabe Solomon Matebesi

Good morning, I have been reading your research lessons through out a period of times. They are important, impressive and clear. Want to subscribe and be and be active with you.

Hafiz Tahir

Thankyou So much Sir Derek…

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on it so that we’ll continue to understand more.sorry that’s a suggestion.

James Olukoya

Beautiful presentation. I love it.

ATUL KUMAR

please provide a research mehodology example for zoology

Ogar , Praise

It’s very educative and well explained

Joseph Chan

Thanks for the concise and informative data.

Goja Terhemba John

This is really good for students to be safe and well understand that research is all about

Prakash thapa

Thank you so much Derek sir🖤🙏🤗

Abraham

Very simple and reliable

Chizor Adisa

This is really helpful. Thanks alot. God bless you.

Danushika

very useful, Thank you very much..

nakato justine

thanks a lot its really useful

karolina

in a nutshell..thank you!

Bitrus

Thanks for updating my understanding on this aspect of my Thesis writing.

VEDASTO DATIVA MATUNDA

thank you so much my through this video am competently going to do a good job my thesis

Jimmy

Thanks a lot. Very simple to understand. I appreciate 🙏

Mfumukazi

Very simple but yet insightful Thank you

Adegboyega ADaeBAYO

This has been an eye opening experience. Thank you grad coach team.

SHANTHi

Very useful message for research scholars

Teijili

Really very helpful thank you

sandokhan

yes you are right and i’m left

MAHAMUDUL HASSAN

Research methodology with a simplest way i have never seen before this article.

wogayehu tuji

wow thank u so much

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on is so that we will continue to understand more.sorry that’s a suggestion.

Gebregergish

Very precise and informative.

Javangwe Nyeketa

Thanks for simplifying these terms for us, really appreciate it.

Mary Benard Mwanganya

Thanks this has really helped me. It is very easy to understand.

mandla

I found the notes and the presentation assisting and opening my understanding on research methodology

Godfrey Martin Assenga

Good presentation

Nhubu Tawanda

Im so glad you clarified my misconceptions. Im now ready to fry my onions. Thank you so much. God bless

Odirile

Thank you a lot.

prathap

thanks for the easy way of learning and desirable presentation.

Ajala Tajudeen

Thanks a lot. I am inspired

Visor Likali

Well written

Pondris Patrick

I am writing a APA Format paper . I using questionnaire with 120 STDs teacher for my participant. Can you write me mthology for this research. Send it through email sent. Just need a sample as an example please. My topic is ” impacts of overcrowding on students learning

Thanks for your comment.

We can’t write your methodology for you. If you’re looking for samples, you should be able to find some sample methodologies on Google. Alternatively, you can download some previous dissertations from a dissertation directory and have a look at the methodology chapters therein.

All the best with your research.

Anon

Thank you so much for this!! God Bless

Keke

Thank you. Explicit explanation

Sophy

Thank you, Derek and Kerryn, for making this simple to understand. I’m currently at the inception stage of my research.

Luyanda

Thnks a lot , this was very usefull on my assignment

Beulah Emmanuel

excellent explanation

Gino Raz

I’m currently working on my master’s thesis, thanks for this! I’m certain that I will use Qualitative methodology.

Abigail

Thanks a lot for this concise piece, it was quite relieving and helpful. God bless you BIG…

Yonas Tesheme

I am currently doing my dissertation proposal and I am sure that I will do quantitative research. Thank you very much it was extremely helpful.

zahid t ahmad

Very interesting and informative yet I would like to know about examples of Research Questions as well, if possible.

Maisnam loyalakla

I’m about to submit a research presentation, I have come to understand from your simplification on understanding research methodology. My research will be mixed methodology, qualitative as well as quantitative. So aim and objective of mixed method would be both exploratory and confirmatory. Thanks you very much for your guidance.

Mila Milano

OMG thanks for that, you’re a life saver. You covered all the points I needed. Thank you so much ❤️ ❤️ ❤️

Christabel

Thank you immensely for this simple, easy to comprehend explanation of data collection methods. I have been stuck here for months 😩. Glad I found your piece. Super insightful.

Lika

I’m going to write synopsis which will be quantitative research method and I don’t know how to frame my topic, can I kindly get some ideas..

Arlene

Thanks for this, I was really struggling.

This was really informative I was struggling but this helped me.

Modie Maria Neswiswi

Thanks a lot for this information, simple and straightforward. I’m a last year student from the University of South Africa UNISA South Africa.

Mursel Amin

its very much informative and understandable. I have enlightened.

Mustapha Abubakar

An interesting nice exploration of a topic.

Sarah

Thank you. Accurate and simple🥰

Sikandar Ali Shah

This article was really helpful, it helped me understanding the basic concepts of the topic Research Methodology. The examples were very clear, and easy to understand. I would like to visit this website again. Thank you so much for such a great explanation of the subject.

Debbie

Thanks dude

Deborah

Thank you Doctor Derek for this wonderful piece, please help to provide your details for reference purpose. God bless.

Michael

Many compliments to you

Dana

Great work , thank you very much for the simple explanation

Aryan

Thank you. I had to give a presentation on this topic. I have looked everywhere on the internet but this is the best and simple explanation.

omodara beatrice

thank you, its very informative.

WALLACE

Well explained. Now I know my research methodology will be qualitative and exploratory. Thank you so much, keep up the good work

GEORGE REUBEN MSHEGAME

Well explained, thank you very much.

Ainembabazi Rose

This is good explanation, I have understood the different methods of research. Thanks a lot.

Kamran Saeed

Great work…very well explanation

Hyacinth Chebe Ukwuani

Thanks Derek. Kerryn was just fantastic!

Great to hear that, Hyacinth. Best of luck with your research!

Matobela Joel Marabi

Its a good templates very attractive and important to PhD students and lectuter

Thanks for the feedback, Matobela. Good luck with your research methodology.

Elie

Thank you. This is really helpful.

You’re very welcome, Elie. Good luck with your research methodology.

Sakina Dalal

Well explained thanks

Edward

This is a very helpful site especially for young researchers at college. It provides sufficient information to guide students and equip them with the necessary foundation to ask any other questions aimed at deepening their understanding.

Thanks for the kind words, Edward. Good luck with your research!

Ngwisa Marie-claire NJOTU

Thank you. I have learned a lot.

Great to hear that, Ngwisa. Good luck with your research methodology!

Claudine

Thank you for keeping your presentation simples and short and covering key information for research methodology. My key takeaway: Start with defining your research objective the other will depend on the aims of your research question.

Zanele

My name is Zanele I would like to be assisted with my research , and the topic is shortage of nursing staff globally want are the causes , effects on health, patients and community and also globally

Oluwafemi Taiwo

Thanks for making it simple and clear. It greatly helped in understanding research methodology. Regards.

Francis

This is well simplified and straight to the point

Gabriel mugangavari

Thank you Dr

Dina Haj Ibrahim

I was given an assignment to research 2 publications and describe their research methodology? I don’t know how to start this task can someone help me?

Sure. You’re welcome to book an initial consultation with one of our Research Coaches to discuss how we can assist – https://gradcoach.com/book/new/ .

BENSON ROSEMARY

Thanks a lot I am relieved of a heavy burden.keep up with the good work

Ngaka Mokoena

I’m very much grateful Dr Derek. I’m planning to pursue one of the careers that really needs one to be very much eager to know. There’s a lot of research to do and everything, but since I’ve gotten this information I will use it to the best of my potential.

Pritam Pal

Thank you so much, words are not enough to explain how helpful this session has been for me!

faith

Thanks this has thought me alot.

kenechukwu ambrose

Very concise and helpful. Thanks a lot

Eunice Shatila Sinyemu 32070

Thank Derek. This is very helpful. Your step by step explanation has made it easier for me to understand different concepts. Now i can get on with my research.

Michelle

I wish i had come across this sooner. So simple but yet insightful

yugine the

really nice explanation thank you so much

Goodness

I’m so grateful finding this site, it’s really helpful…….every term well explained and provide accurate understanding especially to student going into an in-depth research for the very first time, even though my lecturer already explained this topic to the class, I think I got the clear and efficient explanation here, much thanks to the author.

lavenda

It is very helpful material

Lubabalo Ntshebe

I would like to be assisted with my research topic : Literature Review and research methodologies. My topic is : what is the relationship between unemployment and economic growth?

Buddhi

Its really nice and good for us.

Ekokobe Aloysius

THANKS SO MUCH FOR EXPLANATION, ITS VERY CLEAR TO ME WHAT I WILL BE DOING FROM NOW .GREAT READS.

Asanka

Short but sweet.Thank you

Shishir Pokharel

Informative article. Thanks for your detailed information.

Badr Alharbi

I’m currently working on my Ph.D. thesis. Thanks a lot, Derek and Kerryn, Well-organized sequences, facilitate the readers’ following.

Tejal

great article for someone who does not have any background can even understand

Hasan Chowdhury

I am a bit confused about research design and methodology. Are they the same? If not, what are the differences and how are they related?

Thanks in advance.

Ndileka Myoli

concise and informative.

Sureka Batagoda

Thank you very much

More Smith

How can we site this article is Harvard style?

Anne

Very well written piece that afforded better understanding of the concept. Thank you!

Denis Eken Lomoro

Am a new researcher trying to learn how best to write a research proposal. I find your article spot on and want to download the free template but finding difficulties. Can u kindly send it to my email, the free download entitled, “Free Download: Research Proposal Template (with Examples)”.

fatima sani

Thank too much

Khamis

Thank you very much for your comprehensive explanation about research methodology so I like to thank you again for giving us such great things.

Aqsa Iftijhar

Good very well explained.Thanks for sharing it.

Krishna Dhakal

Thank u sir, it is really a good guideline.

Vimbainashe

so helpful thank you very much.

Joelma M Monteiro

Thanks for the video it was very explanatory and detailed, easy to comprehend and follow up. please, keep it up the good work

AVINASH KUMAR NIRALA

It was very helpful, a well-written document with precise information.

orebotswe morokane

how do i reference this?

Roy

MLA Jansen, Derek, and Kerryn Warren. “What (Exactly) Is Research Methodology?” Grad Coach, June 2021, gradcoach.com/what-is-research-methodology/.

APA Jansen, D., & Warren, K. (2021, June). What (Exactly) Is Research Methodology? Grad Coach. https://gradcoach.com/what-is-research-methodology/

sheryl

Your explanation is easily understood. Thank you

Dr Christie

Very help article. Now I can go my methodology chapter in my thesis with ease

Alice W. Mbuthia

I feel guided ,Thank you

Joseph B. Smith

This simplification is very helpful. It is simple but very educative, thanks ever so much

Dr. Ukpai Ukpai Eni

The write up is informative and educative. It is an academic intellectual representation that every good researcher can find useful. Thanks

chimbini Joseph

Wow, this is wonderful long live.

Tahir

Nice initiative

Thembsie

thank you the video was helpful to me.

JesusMalick

Thank you very much for your simple and clear explanations I’m really satisfied by the way you did it By now, I think I can realize a very good article by following your fastidious indications May God bless you

G.Horizon

Thanks very much, it was very concise and informational for a beginner like me to gain an insight into what i am about to undertake. I really appreciate.

Adv Asad Ali

very informative sir, it is amazing to understand the meaning of question hidden behind that, and simple language is used other than legislature to understand easily. stay happy.

Jonas Tan

This one is really amazing. All content in your youtube channel is a very helpful guide for doing research. Thanks, GradCoach.

mahmoud ali

research methodologies

Lucas Sinyangwe

Please send me more information concerning dissertation research.

Amamten Jr.

Nice piece of knowledge shared….. #Thump_UP

Hajara Salihu

This is amazing, it has said it all. Thanks to Gradcoach

Gerald Andrew Babu

This is wonderful,very elaborate and clear.I hope to reach out for your assistance in my research very soon.

Safaa

This is the answer I am searching about…

realy thanks a lot

Ahmed Saeed

Thank you very much for this awesome, to the point and inclusive article.

Soraya Kolli

Thank you very much I need validity and reliability explanation I have exams

KuzivaKwenda

Thank you for a well explained piece. This will help me going forward.

Emmanuel Chukwuma

Very simple and well detailed Many thanks

Zeeshan Ali Khan

This is so very simple yet so very effective and comprehensive. An Excellent piece of work.

Molly Wasonga

I wish I saw this earlier on! Great insights for a beginner(researcher) like me. Thanks a mil!

Blessings Chigodo

Thank you very much, for such a simplified, clear and practical step by step both for academic students and general research work. Holistic, effective to use and easy to read step by step. One can easily apply the steps in practical terms and produce a quality document/up-to standard

Thanks for simplifying these terms for us, really appreciated.

Joseph Kyereme

Thanks for a great work. well understood .

Julien

This was very helpful. It was simple but profound and very easy to understand. Thank you so much!

Kishimbo

Great and amazing research guidelines. Best site for learning research

ankita bhatt

hello sir/ma’am, i didn’t find yet that what type of research methodology i am using. because i am writing my report on CSR and collect all my data from websites and articles so which type of methodology i should write in dissertation report. please help me. i am from India.

memory

how does this really work?

princelow presley

perfect content, thanks a lot

George Nangpaak Duut

As a researcher, I commend you for the detailed and simplified information on the topic in question. I would like to remain in touch for the sharing of research ideas on other topics. Thank you

EPHRAIM MWANSA MULENGA

Impressive. Thank you, Grad Coach 😍

Thank you Grad Coach for this piece of information. I have at least learned about the different types of research methodologies.

Varinder singh Rana

Very useful content with easy way

Mbangu Jones Kashweeka

Thank you very much for the presentation. I am an MPH student with the Adventist University of Africa. I have successfully completed my theory and starting on my research this July. My topic is “Factors associated with Dental Caries in (one District) in Botswana. I need help on how to go about this quantitative research

Carolyn Russell

I am so grateful to run across something that was sooo helpful. I have been on my doctorate journey for quite some time. Your breakdown on methodology helped me to refresh my intent. Thank you.

Indabawa Musbahu

thanks so much for this good lecture. student from university of science and technology, Wudil. Kano Nigeria.

Limpho Mphutlane

It’s profound easy to understand I appreciate

Mustafa Salimi

Thanks a lot for sharing superb information in a detailed but concise manner. It was really helpful and helped a lot in getting into my own research methodology.

Rabilu yau

Comment * thanks very much

Ari M. Hussein

This was sooo helpful for me thank you so much i didn’t even know what i had to write thank you!

You’re most welcome 🙂

Varsha Patnaik

Simple and good. Very much helpful. Thank you so much.

STARNISLUS HAAMBOKOMA

This is very good work. I have benefited.

Dr Md Asraul Hoque

Thank you so much for sharing

Nkasa lizwi

This is powerful thank you so much guys

I am nkasa lizwi doing my research proposal on honors with the university of Walter Sisulu Komani I m on part 3 now can you assist me.my topic is: transitional challenges faced by educators in intermediate phase in the Alfred Nzo District.

Atonisah Jonathan

Appreciate the presentation. Very useful step-by-step guidelines to follow.

Bello Suleiman

I appreciate sir

Titilayo

wow! This is super insightful for me. Thank you!

Emerita Guzman

Indeed this material is very helpful! Kudos writers/authors.

TSEDEKE JOHN

I want to say thank you very much, I got a lot of info and knowledge. Be blessed.

Akanji wasiu

I want present a seminar paper on Optimisation of Deep learning-based models on vulnerability detection in digital transactions.

Need assistance

Clement Lokwar

Dear Sir, I want to be assisted on my research on Sanitation and Water management in emergencies areas.

Peter Sone Kome

I am deeply grateful for the knowledge gained. I will be getting in touch shortly as I want to be assisted in my ongoing research.

Nirmala

The information shared is informative, crisp and clear. Kudos Team! And thanks a lot!

Bipin pokhrel

hello i want to study

Kassahun

Hello!! Grad coach teams. I am extremely happy in your tutorial or consultation. i am really benefited all material and briefing. Thank you very much for your generous helps. Please keep it up. If you add in your briefing, references for further reading, it will be very nice.

Ezra

All I have to say is, thank u gyz.

Work

Good, l thanks

Artak Ghonyan

thank you, it is very useful

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] the literature review is to inform the choice of methodology for your own research. As we’ve discussed on the Grad Coach blog,…
  • Free Download: Research Proposal Template (With Examples) - Grad Coach - […] Research design (methodology) […]
  • Dissertation vs Thesis: What's the difference? - Grad Coach - […] and thesis writing on a daily basis – everything from how to find a good research topic to which…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Get science-backed answers as you write with Paperpal's Research feature

What is Research Methodology? Definition, Types, and Examples

layout of research methodology

Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of the research. Several aspects must be considered before selecting an appropriate research methodology, such as research limitations and ethical concerns that may affect your research.

The research methodology section in a scientific paper describes the different methodological choices made, such as the data collection and analysis methods, and why these choices were selected. The reasons should explain why the methods chosen are the most appropriate to answer the research question. A good research methodology also helps ensure the reliability and validity of the research findings. There are three types of research methodology—quantitative, qualitative, and mixed-method, which can be chosen based on the research objectives.

What is research methodology ?

A research methodology describes the techniques and procedures used to identify and analyze information regarding a specific research topic. It is a process by which researchers design their study so that they can achieve their objectives using the selected research instruments. It includes all the important aspects of research, including research design, data collection methods, data analysis methods, and the overall framework within which the research is conducted. While these points can help you understand what is research methodology, you also need to know why it is important to pick the right methodology.

Why is research methodology important?

Having a good research methodology in place has the following advantages: 3

  • Helps other researchers who may want to replicate your research; the explanations will be of benefit to them.
  • You can easily answer any questions about your research if they arise at a later stage.
  • A research methodology provides a framework and guidelines for researchers to clearly define research questions, hypotheses, and objectives.
  • It helps researchers identify the most appropriate research design, sampling technique, and data collection and analysis methods.
  • A sound research methodology helps researchers ensure that their findings are valid and reliable and free from biases and errors.
  • It also helps ensure that ethical guidelines are followed while conducting research.
  • A good research methodology helps researchers in planning their research efficiently, by ensuring optimum usage of their time and resources.

Writing the methods section of a research paper? Let Paperpal help you achieve perfection

Types of research methodology.

There are three types of research methodology based on the type of research and the data required. 1

  • Quantitative research methodology focuses on measuring and testing numerical data. This approach is good for reaching a large number of people in a short amount of time. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations.
  • Qualitative research methodology examines the opinions, behaviors, and experiences of people. It collects and analyzes words and textual data. This research methodology requires fewer participants but is still more time consuming because the time spent per participant is quite large. This method is used in exploratory research where the research problem being investigated is not clearly defined.
  • Mixed-method research methodology uses the characteristics of both quantitative and qualitative research methodologies in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method.

What are the types of sampling designs in research methodology?

Sampling 4 is an important part of a research methodology and involves selecting a representative sample of the population to conduct the study, making statistical inferences about them, and estimating the characteristics of the whole population based on these inferences. There are two types of sampling designs in research methodology—probability and nonprobability.

  • Probability sampling

In this type of sampling design, a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are:

  • Systematic —sample members are chosen at regular intervals. It requires selecting a starting point for the sample and sample size determination that can be repeated at regular intervals. This type of sampling method has a predefined range; hence, it is the least time consuming.
  • Stratified —researchers divide the population into smaller groups that don’t overlap but represent the entire population. While sampling, these groups can be organized, and then a sample can be drawn from each group separately.
  • Cluster —the population is divided into clusters based on demographic parameters like age, sex, location, etc.
  • Convenience —selects participants who are most easily accessible to researchers due to geographical proximity, availability at a particular time, etc.
  • Purposive —participants are selected at the researcher’s discretion. Researchers consider the purpose of the study and the understanding of the target audience.
  • Snowball —already selected participants use their social networks to refer the researcher to other potential participants.
  • Quota —while designing the study, the researchers decide how many people with which characteristics to include as participants. The characteristics help in choosing people most likely to provide insights into the subject.

What are data collection methods?

During research, data are collected using various methods depending on the research methodology being followed and the research methods being undertaken. Both qualitative and quantitative research have different data collection methods, as listed below.

Qualitative research 5

  • One-on-one interviews: Helps the interviewers understand a respondent’s subjective opinion and experience pertaining to a specific topic or event
  • Document study/literature review/record keeping: Researchers’ review of already existing written materials such as archives, annual reports, research articles, guidelines, policy documents, etc.
  • Focus groups: Constructive discussions that usually include a small sample of about 6-10 people and a moderator, to understand the participants’ opinion on a given topic.
  • Qualitative observation : Researchers collect data using their five senses (sight, smell, touch, taste, and hearing).

Quantitative research 6

  • Sampling: The most common type is probability sampling.
  • Interviews: Commonly telephonic or done in-person.
  • Observations: Structured observations are most commonly used in quantitative research. In this method, researchers make observations about specific behaviors of individuals in a structured setting.
  • Document review: Reviewing existing research or documents to collect evidence for supporting the research.
  • Surveys and questionnaires. Surveys can be administered both online and offline depending on the requirement and sample size.

Let Paperpal help you write the perfect research methods section. Start now!

What are data analysis methods.

The data collected using the various methods for qualitative and quantitative research need to be analyzed to generate meaningful conclusions. These data analysis methods 7 also differ between quantitative and qualitative research.

Quantitative research involves a deductive method for data analysis where hypotheses are developed at the beginning of the research and precise measurement is required. The methods include statistical analysis applications to analyze numerical data and are grouped into two categories—descriptive and inferential.

Descriptive analysis is used to describe the basic features of different types of data to present it in a way that ensures the patterns become meaningful. The different types of descriptive analysis methods are:

  • Measures of frequency (count, percent, frequency)
  • Measures of central tendency (mean, median, mode)
  • Measures of dispersion or variation (range, variance, standard deviation)
  • Measure of position (percentile ranks, quartile ranks)

Inferential analysis is used to make predictions about a larger population based on the analysis of the data collected from a smaller population. This analysis is used to study the relationships between different variables. Some commonly used inferential data analysis methods are:

  • Correlation: To understand the relationship between two or more variables.
  • Cross-tabulation: Analyze the relationship between multiple variables.
  • Regression analysis: Study the impact of independent variables on the dependent variable.
  • Frequency tables: To understand the frequency of data.
  • Analysis of variance: To test the degree to which two or more variables differ in an experiment.

Qualitative research involves an inductive method for data analysis where hypotheses are developed after data collection. The methods include:

  • Content analysis: For analyzing documented information from text and images by determining the presence of certain words or concepts in texts.
  • Narrative analysis: For analyzing content obtained from sources such as interviews, field observations, and surveys. The stories and opinions shared by people are used to answer research questions.
  • Discourse analysis: For analyzing interactions with people considering the social context, that is, the lifestyle and environment, under which the interaction occurs.
  • Grounded theory: Involves hypothesis creation by data collection and analysis to explain why a phenomenon occurred.
  • Thematic analysis: To identify important themes or patterns in data and use these to address an issue.

How to choose a research methodology?

Here are some important factors to consider when choosing a research methodology: 8

  • Research objectives, aims, and questions —these would help structure the research design.
  • Review existing literature to identify any gaps in knowledge.
  • Check the statistical requirements —if data-driven or statistical results are needed then quantitative research is the best. If the research questions can be answered based on people’s opinions and perceptions, then qualitative research is most suitable.
  • Sample size —sample size can often determine the feasibility of a research methodology. For a large sample, less effort- and time-intensive methods are appropriate.
  • Constraints —constraints of time, geography, and resources can help define the appropriate methodology.

Got writer’s block? Kickstart your research paper writing with Paperpal now!

How to write a research methodology .

A research methodology should include the following components: 3,9

  • Research design —should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory.
  • Research method —this can be quantitative, qualitative, or mixed-method.
  • Reason for selecting a specific methodology —explain why this methodology is the most suitable to answer your research problem.
  • Research instruments —explain the research instruments you plan to use, mainly referring to the data collection methods such as interviews, surveys, etc. Here as well, a reason should be mentioned for selecting the particular instrument.
  • Sampling —this involves selecting a representative subset of the population being studied.
  • Data collection —involves gathering data using several data collection methods, such as surveys, interviews, etc.
  • Data analysis —describe the data analysis methods you will use once you’ve collected the data.
  • Research limitations —mention any limitations you foresee while conducting your research.
  • Validity and reliability —validity helps identify the accuracy and truthfulness of the findings; reliability refers to the consistency and stability of the results over time and across different conditions.
  • Ethical considerations —research should be conducted ethically. The considerations include obtaining consent from participants, maintaining confidentiality, and addressing conflicts of interest.

Streamline Your Research Paper Writing Process with Paperpal

The methods section is a critical part of the research papers, allowing researchers to use this to understand your findings and replicate your work when pursuing their own research. However, it is usually also the most difficult section to write. This is where Paperpal can help you overcome the writer’s block and create the first draft in minutes with Paperpal Copilot, its secure generative AI feature suite.  

With Paperpal you can get research advice, write and refine your work, rephrase and verify the writing, and ensure submission readiness, all in one place. Here’s how you can use Paperpal to develop the first draft of your methods section.  

  • Generate an outline: Input some details about your research to instantly generate an outline for your methods section 
  • Develop the section: Use the outline and suggested sentence templates to expand your ideas and develop the first draft.  
  • P araph ras e and trim : Get clear, concise academic text with paraphrasing that conveys your work effectively and word reduction to fix redundancies. 
  • Choose the right words: Enhance text by choosing contextual synonyms based on how the words have been used in previously published work.  
  • Check and verify text : Make sure the generated text showcases your methods correctly, has all the right citations, and is original and authentic. .   

You can repeat this process to develop each section of your research manuscript, including the title, abstract and keywords. Ready to write your research papers faster, better, and without the stress? Sign up for Paperpal and start writing today!

Frequently Asked Questions

Q1. What are the key components of research methodology?

A1. A good research methodology has the following key components:

  • Research design
  • Data collection procedures
  • Data analysis methods
  • Ethical considerations

Q2. Why is ethical consideration important in research methodology?

A2. Ethical consideration is important in research methodology to ensure the readers of the reliability and validity of the study. Researchers must clearly mention the ethical norms and standards followed during the conduct of the research and also mention if the research has been cleared by any institutional board. The following 10 points are the important principles related to ethical considerations: 10

  • Participants should not be subjected to harm.
  • Respect for the dignity of participants should be prioritized.
  • Full consent should be obtained from participants before the study.
  • Participants’ privacy should be ensured.
  • Confidentiality of the research data should be ensured.
  • Anonymity of individuals and organizations participating in the research should be maintained.
  • The aims and objectives of the research should not be exaggerated.
  • Affiliations, sources of funding, and any possible conflicts of interest should be declared.
  • Communication in relation to the research should be honest and transparent.
  • Misleading information and biased representation of primary data findings should be avoided.

Q3. What is the difference between methodology and method?

A3. Research methodology is different from a research method, although both terms are often confused. Research methods are the tools used to gather data, while the research methodology provides a framework for how research is planned, conducted, and analyzed. The latter guides researchers in making decisions about the most appropriate methods for their research. Research methods refer to the specific techniques, procedures, and tools used by researchers to collect, analyze, and interpret data, for instance surveys, questionnaires, interviews, etc.

Research methodology is, thus, an integral part of a research study. It helps ensure that you stay on track to meet your research objectives and answer your research questions using the most appropriate data collection and analysis tools based on your research design.

Accelerate your research paper writing with Paperpal. Try for free now!

  • Research methodologies. Pfeiffer Library website. Accessed August 15, 2023. https://library.tiffin.edu/researchmethodologies/whatareresearchmethodologies
  • Types of research methodology. Eduvoice website. Accessed August 16, 2023. https://eduvoice.in/types-research-methodology/
  • The basics of research methodology: A key to quality research. Voxco. Accessed August 16, 2023. https://www.voxco.com/blog/what-is-research-methodology/
  • Sampling methods: Types with examples. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/types-of-sampling-for-social-research/
  • What is qualitative research? Methods, types, approaches, examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-qualitative-research-methods-types-examples/
  • What is quantitative research? Definition, methods, types, and examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-quantitative-research-types-and-examples/
  • Data analysis in research: Types & methods. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/data-analysis-in-research/#Data_analysis_in_qualitative_research
  • Factors to consider while choosing the right research methodology. PhD Monster website. Accessed August 17, 2023. https://www.phdmonster.com/factors-to-consider-while-choosing-the-right-research-methodology/
  • What is research methodology? Research and writing guides. Accessed August 14, 2023. https://paperpile.com/g/what-is-research-methodology/
  • Ethical considerations. Business research methodology website. Accessed August 17, 2023. https://research-methodology.net/research-methodology/ethical-considerations/

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Dangling Modifiers and How to Avoid Them in Your Writing 
  • Webinar: How to Use Generative AI Tools Ethically in Your Academic Writing
  • Research Outlines: How to Write An Introduction Section in Minutes with Paperpal Copilot
  • How to Paraphrase Research Papers Effectively

Language and Grammar Rules for Academic Writing

Climatic vs. climactic: difference and examples, you may also like, what is academic writing: tips for students, what is hedging in academic writing  , how to use ai to enhance your college..., how to use paperpal to generate emails &..., ai in education: it’s time to change the..., is it ethical to use ai-generated abstracts without..., do plagiarism checkers detect ai content, word choice problems: how to use the right..., how to avoid plagiarism when using generative ai..., what are journal guidelines on using generative ai....

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Perspect Clin Res
  • v.9(4); Oct-Dec 2018

Study designs: Part 1 – An overview and classification

Priya ranganathan.

Department of Anaesthesiology, Tata Memorial Centre, Mumbai, Maharashtra, India

Rakesh Aggarwal

1 Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

There are several types of research study designs, each with its inherent strengths and flaws. The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on “study designs,” we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

INTRODUCTION

Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem.

Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the nature of question, the goal of research, and the availability of resources. Since the design of a study can affect the validity of its results, it is important to understand the different types of study designs and their strengths and limitations.

There are some terms that are used frequently while classifying study designs which are described in the following sections.

A variable represents a measurable attribute that varies across study units, for example, individual participants in a study, or at times even when measured in an individual person over time. Some examples of variables include age, sex, weight, height, health status, alive/dead, diseased/healthy, annual income, smoking yes/no, and treated/untreated.

Exposure (or intervention) and outcome variables

A large proportion of research studies assess the relationship between two variables. Here, the question is whether one variable is associated with or responsible for change in the value of the other variable. Exposure (or intervention) refers to the risk factor whose effect is being studied. It is also referred to as the independent or the predictor variable. The outcome (or predicted or dependent) variable develops as a consequence of the exposure (or intervention). Typically, the term “exposure” is used when the “causative” variable is naturally determined (as in observational studies – examples include age, sex, smoking, and educational status), and the term “intervention” is preferred where the researcher assigns some or all participants to receive a particular treatment for the purpose of the study (experimental studies – e.g., administration of a drug). If a drug had been started in some individuals but not in the others, before the study started, this counts as exposure, and not as intervention – since the drug was not started specifically for the study.

Observational versus interventional (or experimental) studies

Observational studies are those where the researcher is documenting a naturally occurring relationship between the exposure and the outcome that he/she is studying. The researcher does not do any active intervention in any individual, and the exposure has already been decided naturally or by some other factor. For example, looking at the incidence of lung cancer in smokers versus nonsmokers, or comparing the antenatal dietary habits of mothers with normal and low-birth babies. In these studies, the investigator did not play any role in determining the smoking or dietary habit in individuals.

For an exposure to determine the outcome, it must precede the latter. Any variable that occurs simultaneously with or following the outcome cannot be causative, and hence is not considered as an “exposure.”

Observational studies can be either descriptive (nonanalytical) or analytical (inferential) – this is discussed later in this article.

Interventional studies are experiments where the researcher actively performs an intervention in some or all members of a group of participants. This intervention could take many forms – for example, administration of a drug or vaccine, performance of a diagnostic or therapeutic procedure, and introduction of an educational tool. For example, a study could randomly assign persons to receive aspirin or placebo for a specific duration and assess the effect on the risk of developing cerebrovascular events.

Descriptive versus analytical studies

Descriptive (or nonanalytical) studies, as the name suggests, merely try to describe the data on one or more characteristics of a group of individuals. These do not try to answer questions or establish relationships between variables. Examples of descriptive studies include case reports, case series, and cross-sectional surveys (please note that cross-sectional surveys may be analytical studies as well – this will be discussed in the next article in this series). Examples of descriptive studies include a survey of dietary habits among pregnant women or a case series of patients with an unusual reaction to a drug.

Analytical studies attempt to test a hypothesis and establish causal relationships between variables. In these studies, the researcher assesses the effect of an exposure (or intervention) on an outcome. As described earlier, analytical studies can be observational (if the exposure is naturally determined) or interventional (if the researcher actively administers the intervention).

Directionality of study designs

Based on the direction of inquiry, study designs may be classified as forward-direction or backward-direction. In forward-direction studies, the researcher starts with determining the exposure to a risk factor and then assesses whether the outcome occurs at a future time point. This design is known as a cohort study. For example, a researcher can follow a group of smokers and a group of nonsmokers to determine the incidence of lung cancer in each. In backward-direction studies, the researcher begins by determining whether the outcome is present (cases vs. noncases [also called controls]) and then traces the presence of prior exposure to a risk factor. These are known as case–control studies. For example, a researcher identifies a group of normal-weight babies and a group of low-birth weight babies and then asks the mothers about their dietary habits during the index pregnancy.

Prospective versus retrospective study designs

The terms “prospective” and “retrospective” refer to the timing of the research in relation to the development of the outcome. In retrospective studies, the outcome of interest has already occurred (or not occurred – e.g., in controls) in each individual by the time s/he is enrolled, and the data are collected either from records or by asking participants to recall exposures. There is no follow-up of participants. By contrast, in prospective studies, the outcome (and sometimes even the exposure or intervention) has not occurred when the study starts and participants are followed up over a period of time to determine the occurrence of outcomes. Typically, most cohort studies are prospective studies (though there may be retrospective cohorts), whereas case–control studies are retrospective studies. An interventional study has to be, by definition, a prospective study since the investigator determines the exposure for each study participant and then follows them to observe outcomes.

The terms “prospective” versus “retrospective” studies can be confusing. Let us think of an investigator who starts a case–control study. To him/her, the process of enrolling cases and controls over a period of several months appears prospective. Hence, the use of these terms is best avoided. Or, at the very least, one must be clear that the terms relate to work flow for each individual study participant, and not to the study as a whole.

Classification of study designs

Figure 1 depicts a simple classification of research study designs. The Centre for Evidence-based Medicine has put forward a useful three-point algorithm which can help determine the design of a research study from its methods section:[ 1 ]

An external file that holds a picture, illustration, etc.
Object name is PCR-9-184-g001.jpg

Classification of research study designs

  • Does the study describe the characteristics of a sample or does it attempt to analyze (or draw inferences about) the relationship between two variables? – If no, then it is a descriptive study, and if yes, it is an analytical (inferential) study
  • If analytical, did the investigator determine the exposure? – If no, it is an observational study, and if yes, it is an experimental study
  • If observational, when was the outcome determined? – at the start of the study (case–control study), at the end of a period of follow-up (cohort study), or simultaneously (cross sectional).

In the next few pieces in the series, we will discuss various study designs in greater detail.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Employee Exit Interviews
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories

Market Research

  • Artificial Intelligence
  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO

What is design research methodology and why is it important?

What is design research.

Design research is the process of gathering, analyzing and interpreting data and insights to inspire, guide and provide context for designs. It’s a research discipline that applies both quantitative and qualitative research methods to help make well-informed design decisions.

Not to be confused with user experience research – focused on the usability of primarily digital products and experiences – design research is a broader discipline that informs the entire design process across various design fields. Beyond focusing solely on researching with users, design research can also explore aesthetics, cultural trends, historical context and more.

Design research has become more important in business, as brands place greater emphasis on building high-quality customer experiences as a point of differentiation.

Elevate Your Brand's Potential with Qualtrics

Design research vs. market research

The two may seem like the same thing at face value, but really they use different methods, serve different purposes and produce different insights.

Design research focuses on understanding user needs, behaviors and experiences to inform and improve product or service design.  Market research , on the other hand, is more concerned with the broader market dynamics, identifying opportunities, and maximizing sales and profitability.

Both are essential for the success of a product or service, but cater to different aspects of its lifecycle.

Design research in action: A mini mock case study

A popular furniture brand, known for its sleek and simple designs, faced an unexpected challenge: dropping sales in some overseas markets. To address this, they turned to design research – using quantitative and qualitative methods – to build a holistic view of the issue.

Company researchers visited homes in these areas to interview members of their target audience and understand local living spaces and preferences. Through these visits, they realized that while the local customers appreciated quality, their choices in furniture were heavily influenced by traditions and regional aesthetics, which the company's portfolio wasn’t addressing.

To further their understanding, the company rolled out surveys, asking people about their favorite materials, colors and furniture functionalities. They discovered a consistent desire for versatile furniture pieces that could serve multiple purposes. Additionally, the preference leaned towards certain regional colors and patterns that echoed local culture.

Armed with these insights, the company took to the drawing board. They worked on combining their minimalist style with the elements people in those markets valued. The result was a refreshed furniture line that seamlessly blended the brand's signature simplicity with local tastes. As this new line hit the market, it resonated deeply with customers in the markets, leading to a notable recovery in sales and even attracting new buyers.

design research method image

When to use design research

Like most forms of research, design research should be used whenever there are gaps in your understanding of your audience’s needs, behaviors or preferences. It’s most valuable when used throughout the product development and design process.

When differing opinions within a team can derail a design process, design research provides concrete data and evidence-based insights, preventing decisions based on assumptions.

Design research brings value to any product development and design process, but it’s especially important in larger, resource intensive projects to minimize risk and create better outcomes for all.

The benefits of design research

Design research may be perceived as time-consuming, but in reality it’s often a time – and money – saver that can. easily prove to be the difference between strong product-market fit and a product with no real audience.

Deeper customer knowledge

Understanding your audience on a granular level is paramount – without tapping into the nuances of their desires, preferences and pain points, you run the risk of misalignment.

Design research dives deep into these intricacies, ensuring that products and services don't just meet surface level demands. Instead, they can resonate and foster a bond between the user and the brand, building foundations for lasting loyalty .

Efficiency and cost savings

More often than not, designing products or services based on assumptions or gut feelings leads to costly revisions, underwhelming market reception and wasted resources.

Design research offers a safeguard against these pitfalls by grounding decisions in real, tangible insights directly from the target market – streamlining the development process and ensuring that every dollar spent yields maximum value.

New opportunities

Design research often brings to light overlooked customer needs and emerging trends. The insights generated can shift the trajectory of product development, open doors to new and novel solutions, and carve out fresh market niches.

Sometimes it's not just about avoiding mistakes – it can be about illuminating new paths of innovation.

Enhanced competitive edge

In today’s world, one of the most powerful ways to stand out as a business is to be relentlessly user focused. By ensuring that products and services are continuously refined based on user feedback, businesses can maintain a step ahead of competitors.

Whether it’s addressing pain points competitors might overlook, or creating user experiences that are not just satisfactory but delightful, design research can be the foundations for a sharpened competitive edge.

Design research methods

The broad scope of design research means it demands a variety of research tools, with both numbers-driven and people-driven methods coming into play. There are many methods to choose from, so we’ve outlined those that are most common and can have the biggest impact.

four design research methods

This stage is about gathering initial insights to set a clear direction.

Literature review

Simply put, this research method involves investigating existing secondary research, like studies and articles, in your design area. It's a foundational method that helps you understand current knowledge and identify any gaps – think of it like surveying the landscape before navigating through it.

Field observations

By observing people's interactions in real-world settings, we gather genuine insights. Field observations are about connecting the dots between observed behaviors and your design's intended purpose. This method proves invaluable as it can reveal how design choices can impact everyday experiences.

Stakeholder interviews

Talking to those invested in the design's outcome, be it users or experts, is key. These discussions provide first-hand feedback that can clarify user expectations and illuminate the path towards a design that resonates with its audience.

This stage is about delving deeper and starting to shape your design concepts based on what you’ve already discovered.

Design review

This is a closer look at existing designs in the market or other related areas. Design reviews are very valuable because they can provide an understanding of current design trends and standards – helping you see where there's room for innovation or improvement.

Without a design review, you could be at risk of reinventing the wheel.

Persona building

This involves creating detailed profiles representing different groups in your target audience using real data and insights.

Personas help bring to life potential users, ensuring your designs address actual needs and scenarios. By having these "stand-in" users, you can make more informed design choices tailored to specific user experiences.

Putting your evolving design ideas to the test and gauging their effectiveness in the real world.

Usability testing

This is about seeing how real users interact with a design.

In usability testing you observe this process, note where they face difficulties and moments of satisfaction. It's a hands-on way to ensure that the design is intuitive and meets user needs.

Benchmark testing

Benchmark testing is about comparing your design's performance against set standards or competitor products.

Doing this gives a clearer idea of where your design stands in the broader context and highlights areas for improvement or differentiation. With these insights you can make informed decisions to either meet or exceed those benchmarks.

This final stage is about gathering feedback once your design is out in the world, ensuring it stays relevant and effective.

Feedback surveys

After users have interacted with the design for some time, use feedback surveys to gather their thoughts. The results of these surveys will help to ensure that you have your finger on the pulse of user sentiment – enabling iterative improvements.

Remember, simple questions can reveal a lot about what's working and where improvements might be needed.

Focus groups

These are structured, moderator-led discussions with a small group of users . The aim is for the conversation to dive deep into their experiences with the design and extract rich insights – not only capturing what users think but also why.

Start your free 30-day trial of DesignXM® today

Understanding what your market wants before they even know it can set your business apart in a saturated market. That's where DesignXM by Qualtrics® comes in – offering a top-tier platform designed for those who want to lead, not just follow.

Why dive into DesignXM?

  • Quick insights: Get to the heart of the matter faster and make informed decisions swiftly
  • Cost-effective research: Cut back on outsourced studies and get more bang for your buck, all while ensuring top-notch quality
  • Premium quality: Stand shoulder to shoulder with leading brands, using best-in-class research methods

Qualtrics // Experience Management

Qualtrics, the leader and creator of the experience management category, is a cloud-native software platform that empowers organizations to deliver exceptional experiences and build deep relationships with their customers and employees.

With insights from Qualtrics, organizations can identify and resolve the greatest friction points in their business, retain and engage top talent, and bring the right products and services to market. Nearly 20,000 organizations around the world use Qualtrics’ advanced AI to listen, understand, and take action. Qualtrics uses its vast universe of experience data to form the largest database of human sentiment in the world. Qualtrics is co-headquartered in Provo, Utah and Seattle.

Related Articles

December 20, 2023

Top market research analyst skills for 2024

November 7, 2023

Brand Experience

The 4 market research trends redefining insights in 2024

September 14, 2023

How BMG and Loop use data to make critical decisions

August 21, 2023

Designing for safety: Making user consent and trust an organizational asset

June 27, 2023

The fresh insights people: Scaling research at Woolworths Group

June 20, 2023

Bank less, delight more: How Bankwest built an engine room for customer obsession

June 16, 2023

How Qualtrics Helps Three Local Governments Drive Better Outcomes Through Data Insights

April 1, 2023

Academic Experience

How to write great survey questions (with examples)

Stay up to date with the latest xm thought leadership, tips and news., request demo.

Ready to learn more about Qualtrics?

MBA Knowledge Base

Business • Management • Technology

Home » Research Methodology » Contents and Layout of Research Report

Contents and Layout of Research Report

Contents of  research  report.

The researcher must keep in mind that his research report must contain following aspects:

  • Purpose of study
  • Significance of his study or statement of the problem
  • Review of literature
  • Methodology
  • Interpretation of data
  • Conclusions and suggestions
  • Bibliography

These can be discussed in detail as under:

(1) Purpose of study:

Research is one direction oriented study. He should discuss the problem of his study. He must give background of the problem. He must lay down his hypothesis of the study. Hypothesis is the statement indicating the nature of the problem. He should be able to collect data, analyze it and prove the hypothesis . The importance of the problem for the advancement of knowledge or removed of some evil may also be explained. He must use review of literature or the data from secondary source for explaining the statement of the problems.

(2) Significance of study:

Research is re-search and hence the researcher may highlight the earlier research in new manner or establish new theory. He must refer earlier research work and distinguish his own research from earlier work. He must explain how his research is different and how his research topic is different and how his research topic is important. In a statement of his problem, he must be able to explain in brief the historical account of the topic and way in which he can make and attempt. In his study to conduct the research on his topic.

(3) Review of Literature :

Research is a continuous process. He cannot avoid earlier research work. He must start with earlier work. He should note down all such research work, published in books, journals or unpublished thesis. He will get guidelines for his research from taking a review of literature . He should collect information in respect of earlier research work. He should enlist them in the given below:

  • Author/researcher
  • Title of research /Name of book
  • Year of publication
  • Objectives of his study
  • Conclusion/suggestions

Then he can compare this information with his study to show separate identity of his study. He must be honest to point out similarities and differences of his study from earlier research work.

(4) Methodology:

It is related to collection of data. There are two sources for collecting data; primary and secondary. Primary data is original and collected in field work, either through questionnaire interviews. The secondary data relied on library work. Such primary data are collected by sampling method . The procedure for selecting the sample must be mentioned. The methodology must give various aspects of the problem that are studied for valid generalization about the phenomena. The scales of measurement must be explained along with different concepts used in the study.

While conducting a research based on field work, the procedural things like definition of universe, preparation of source list must be given. We use case study method , historical research etc. He must make it clear as to which method is used in his research work. When questionnaire is prepared, a copy of it must be given in appendix.

(5) Interpretation of data :

Mainly the data collected from primary source need to be interpreted in systematic manner. The tabulation must be completed to draw conclusions. All the questions are not useful for report writing . One has to select them or club them according to hypothesis or objectives of study .

(6) Conclusions/suggestions:

Data analysis forms the crux of the research problem . The information collected in field work is useful to draw conclusions of study. In relation with the objectives of study the analysis of data may lead the researcher to pin point his suggestions. This is the most important part of study. The conclusions must be based on logical and statistical reasoning. The report should contain not only the generalization of inference but also the basis on which the inferences are drawn. All sorts of proofs, numerical and logical, must be given in support of any theory that has been advanced. He should point out the limitations of his study.

(7) Bibliography:

The list of references must be arranged in alphabetical order and be presented in appendix. The books should be given in first section and articles are in second section and research projects in the third. The pattern of bibliography is considered convenient and satisfactory from the point of view of reader.

(8) Appendices:

The general information in tabular form which is not directly used in the analysis of data but which is useful to understand the background of study can be given in appendix.

Layout of the Research Report

There is scientific method for the layout of research report . The layout of research report means as to what the research report should contain. The contents of the research report are noted below:

  • Preliminary Page

(1) Preliminary Pages:

These must be title of the research topic and data. There must be preface of foreword to the research work. It should be followed by table of contents. The list of tables, maps should be given.

(2) Main Text:

It provides the complete outline of research report along with all details. The title page is reported in the main text. Details of text are given continuously as divided in different chapters.

  • (a)       Introduction
  • (b)     Statement of the problem
  • (c)   The analysis of data
  • (d)     The implications drawn from the results
  • (e)   The summary

(a)       Introduction :

Its purpose is to introduce the research topic to readers. It must cover statement of the research problem , hypotheses, objectives of study, review of literature, and the methodology to cover primary and secondary data, limitations of study and chapter scheme. Some may give in brief in the first chapter the introduction of the research project highlighting the importance of study. This is followed by research methodology in separate chapter.

The methodology should point out the method of study, the research design and method of data collection.

(b)     Statement of the problem :

This is crux of his research. It highlights main theme of his study. It must be in nontechnical language. It should be in simple manner so ordinary reader may follow it. The social research must be made available to common man. The research in agricultural problems must be easy for farmers to read it.

(c)       Analysis of data :

Data so collected should be presented in systematic manner and with its help, conclusions can be drawn. This helps to test the hypothesis . Data analysis must be made to confirm the objectives of the study.

(d)     Implications of Data :

The results based on the analysis of data must be valid. This is the main body of research. It contains statistical summaries and analysis of data. There should be logical sequence in the analysis of data. The primary data may lead to establish the results. He must have separate chapter on conclusions and recommendations. The conclusions must be based on data analysis. The conclusions must be such which may lead to generalization and its applicability in similar circumstances. The conditions of research work limiting its scope for generalization must be made clear by the researcher.

(e)       Summary :

This is conclusive part of study. It makes the reader to understand by reading summary the knowledge of the research work. This is also a synopsis of study.

(3) End Matter:

It covers relevant appendices covering general information, the concepts and bibliography. The index may also be added to the report.

Related Posts:

  • Sources of Hypothesis in Research
  • Referencing a Research Report
  • Primary stages of research process
  • Interpretation of Research Data
  • Pre-Testing Research Data Collection Instruments
  • Exploratory research and it's methods
  • Significance and Problems of Social Research
  • Descriptive research and it's methods
  • The Role of Business Research
  • Secondary Data Sources for Research

One thought on “ Contents and Layout of Research Report ”

Any more research’s is welcome….

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Country Specific Methodology

layout of research methodology

Our surveys internationally are conducted via telephone or face-to-face interviews, depending on the country. Face-to-face interviews are either computer-assisted personal interviews (CAPI) or pen and paper interviews (PAPI). The results are based on national samples, unless otherwise noted. Included here is detailed information, such as mode of interview, sampling design, margin of error, and design effect, for each country we survey, organized by survey, country and year.

For more general information on how we conduct our international survey research, visit here .

The margin of sampling error reported is based on all interviews conducted in a country. The margin of error takes into account the design effect due to clustering and weighting, where applicable. For results based on the full sample in a given country, one can say with 95% confidence that the error attributable to sampling and other random effects is plus or minus the margin of error. The margin of error is larger for results based on subsamples in the survey. Sample sizes and sampling errors for subgroups are available upon request. In addition to sampling error, one should bear in mind that question wording and practical difficulties in conducting surveys can introduce error or bias into the findings of opinion polls.

Sign up for our weekly newsletter

Fresh data delivered Saturday mornings

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

This paper is in the following e-collection/theme issue:

Published on 19.4.2024 in Vol 26 (2024)

Psychometric Evaluation of a Tablet-Based Tool to Detect Mild Cognitive Impairment in Older Adults: Mixed Methods Study

Authors of this article:

Author Orcid Image

Original Paper

  • Josephine McMurray 1, 2 * , MBA, PhD   ; 
  • AnneMarie Levy 1 * , MSc, PhD   ; 
  • Wei Pang 1, 3 * , BTM   ; 
  • Paul Holyoke 4 , PhD  

1 Lazaridis School of Business & Economics, Wilfrid Laurier University, Brantford, ON, Canada

2 Health Studies, Faculty of Human and Social Sciences, Wilfrid Laurier University, Brantford, ON, Canada

3 Biomedical Informatics & Data Science, Yale University, New Haven, CT, United States

4 SE Research Centre, Markham, ON, Canada

*these authors contributed equally

Corresponding Author:

Josephine McMurray, MBA, PhD

Lazaridis School of Business & Economics

Wilfrid Laurier University

73 George St

Brantford, ON, N3T3Y3

Phone: 1 548 889 4492

Email: [email protected]

Background: With the rapid aging of the global population, the prevalence of mild cognitive impairment (MCI) and dementia is anticipated to surge worldwide. MCI serves as an intermediary stage between normal aging and dementia, necessitating more sensitive and effective screening tools for early identification and intervention. The BrainFx SCREEN is a novel digital tool designed to assess cognitive impairment. This study evaluated its efficacy as a screening tool for MCI in primary care settings, particularly in the context of an aging population and the growing integration of digital health solutions.

Objective: The primary objective was to assess the validity, reliability, and applicability of the BrainFx SCREEN (hereafter, the SCREEN) for MCI screening in a primary care context. We conducted an exploratory study comparing the SCREEN with an established screening tool, the Quick Mild Cognitive Impairment (Qmci) screen.

Methods: A concurrent mixed methods, prospective study using a quasi-experimental design was conducted with 147 participants from 5 primary care Family Health Teams (FHTs; characterized by multidisciplinary practice and capitated funding) across southwestern Ontario, Canada. Participants included health care practitioners, patients, and FHT administrative executives. Individuals aged ≥55 years with no history of MCI or diagnosis of dementia rostered in a participating FHT were eligible to participate. Participants were screened using both the SCREEN and Qmci. The study also incorporated the Geriatric Anxiety Scale–10 to assess general anxiety levels at each cognitive screening. The SCREEN’s scoring was compared against that of the Qmci and the clinical judgment of health care professionals. Statistical analyses included sensitivity, specificity, internal consistency, and test-retest reliability assessments.

Results: The study found that the SCREEN’s longer administration time and complex scoring algorithm, which is proprietary and unavailable for independent analysis, presented challenges. Its internal consistency, indicated by a Cronbach α of 0.63, was below the acceptable threshold. The test-retest reliability also showed limitations, with moderate intraclass correlation coefficient (0.54) and inadequate κ (0.15) values. Sensitivity and specificity were consistent (63.25% and 74.07%, respectively) between cross-tabulation and discrepant analysis. In addition, the study faced limitations due to its demographic skew (96/147, 65.3% female, well-educated participants), the absence of a comprehensive gold standard for MCI diagnosis, and financial constraints limiting the inclusion of confirmatory neuropsychological testing.

Conclusions: The SCREEN, in its current form, does not meet the necessary criteria for an optimal MCI screening tool in primary care settings, primarily due to its longer administration time and lower reliability. As the number of digital health technologies increases and evolves, further testing and refinement of tools such as the SCREEN are essential to ensure their efficacy and reliability in real-world clinical settings. This study advocates for continued research in this rapidly advancing field to better serve the aging population.

International Registered Report Identifier (IRRID): RR2-10.2196/25520

Introduction

Mild cognitive impairment (MCI) is a syndrome characterized by a slight but noticeable and measurable deterioration in cognitive abilities, predominantly memory and thinking skills, that is greater than expected for an individual’s age and educational level [ 1 , 2 ]. The functional impairments associated with MCI are subtle and often impair instrumental activities of daily living (ADL). Instrumental ADL include everyday tasks such as managing finances, cooking, shopping, or taking regularly prescribed medications and are considered more complex than ADL such as bathing, dressing, and toileting [ 3 , 4 ]. In cases in which memory impairment is the primary indicator of the disease, MCI is classified as amnesic MCI and when significant impairment of non–memory-related cognitive domains such as visual-spatial or executive functioning is dominant, MCI is classified as nonamnesic [ 5 ].

Cognitive decline, more so than cancer and cardiovascular disease, poses a substantial threat to an individual’s ability to live independently or at home with family caregivers [ 6 ]. The Centers for Disease Control and Prevention reports that 1 in 8 adults aged ≥60 years experiences memory loss and confusion, with 35% reporting functional difficulties with basic ADL [ 7 ]. The American Academy of Neurology estimates that the prevalence of MCI ranges from 13.4% to 42% in people aged ≥65 years [ 8 ], and a 2023 meta-analysis that included 233 studies and 676,974 participants aged ≥50 years estimated that the overall global prevalence of MCI is 19.7% [ 9 ]. Once diagnosed, the prognosis for MCI is variable, whereby the impairment may be reversible; the rate of decline may plateau; or it may progressively worsen and, in some cases, may be a prodromal stage to dementia [ 10 - 12 ]. While estimates vary based on sample (community vs clinical), annual rates of conversion from MCI to dementia range from 5% to 24% [ 11 , 12 ], and those who present with multiple domains of cognitive impairment are at higher risk of conversion [ 5 ].

The risk of developing MCI rises with age, and while there are no drug treatments for MCI, nonpharmacologic interventions may improve cognitive function, alleviate the burden on caregivers, and potentially delay institutionalization should MCI progress to dementia [ 13 ]. To overcome the challenges of early diagnosis, which currently depends on self-detection, family observation, or health care provider (HCP) recognition of symptoms, screening high-risk groups for MCI or dementia is suggested as a solution [ 13 ]. However, the Canadian Task Force on Preventive Health Care recommends against screening adults aged ≥65 years due to a lack of meaningful evidence from randomized controlled trials and the high false-positive rate [ 14 - 16 ]. The main objective of a screening test is to reduce morbidity or mortality in at-risk populations through early detection and intervention, with the anticipated benefits outweighing potential harms. Using brief screening tools in primary care might improve MCI case detection, allowing patients and families to address reversible causes, make lifestyle changes, and access disease-modifying treatments [ 17 ].

There is no agreement among experts as to which tests or groups of tests are most predictive of MCI [ 16 ], and the gold standard approach uses a combination of positive results from neuropsychological assessments, laboratory tests, and neuroimaging to infer a diagnosis [ 8 , 18 ]. The clinical heterogeneity of MCI complicates its diagnosis because it influences not only memory and thinking abilities but also mood, behavior, emotional regulation, and sensorimotor abilities, and patients may present with any combination of symptoms with varying rates of onset and decline [ 4 , 8 ]. For this reason, a collaborative approach between general practitioners and specialists (eg, geriatricians and neurologists) is often required to be confident in the diagnosis of MCI [ 8 , 19 , 20 ].

In Canada, diagnosis often begins with screening for cognitive impairment followed by referral for additional testing; this process takes, on average, 5 months [ 20 ]. The current usual practice screening tools for MCI are the Mini-Mental State Examination (MMSE) [ 21 , 22 ] and the Montreal Cognitive Assessment (MoCA) 8.1 [ 3 ]. Both are paper-and-pencil screens administered in 10 to 15 minutes, scored out of 30, and validated as MCI screening tools across diverse clinical samples [ 23 , 24 ]. Universally, the MMSE is most often used to screen for MCI [ 20 , 25 ] and consists of 20 items that measure orientation, immediate and delayed recall, attention and calculation, visual-spatial skills, verbal fluency, and writing. The MoCA 8.1 was developed to improve on the MMSE’s ability to detect early signs of MCI, placing greater emphasis on evaluating executive function as well as language, memory, visual-spatial skills, abstraction, attention, concentration, and orientation across 30 items [ 24 , 26 ]. Scores of <24 on the MMSE or ≤25 on the MoCA 8.1 signal probable MCI [ 21 , 27 ]. Lower cutoff scores for both screens have been recommended to address evidence that they lack specificity to detect mild and early cases of MCI [ 4 , 28 - 31 ]. The clinical efficacy of both screens for tracking change in cognition over time is limited as they are also subject to practice effects with repeated administration [ 32 ].

Novel screening tools, including the Quick Mild Cognitive Impairment (Qmci) screen, have been developed with the goal of improving the accuracy of detecting MCI [ 33 , 34 ]. The Qmci is a sensitive and specific tool that differentiates normal cognition from MCI and dementia and is more accurate at differentiating MCI from controls than either the MoCA 8.1 (Qmci area under the curve=0.97 vs MoCA 8.1 area under the curve=0.92) [ 25 , 35 ] or the Short MMSE [ 33 , 36 ]. It also demonstrates high test-retest reliability (intraclass correlation coefficient [ICC]=0.88) [ 37 ] and is clinically useful as a rapid screen for MCI as the Qmci mean is 4.5 (SD 1.3) minutes versus 9.5 (SD 2.8) minutes for the MoCA 8.1 [ 25 ].

The COVID-19 pandemic and the necessary shift to virtual health care accelerated the use of digital assessment tools, including MCI screening tools such as the electronic MoCA 8.1 [ 38 , 39 ], and the increased use and adoption of technology (eg, smartphones and tablets) by older adults suggests that a lack of proficiency with technology may not be a barrier to the use of such assessment tools [ 40 , 41 ]. BrainFx is a for-profit firm that creates proprietary software designed to assess cognition and changes in neurofunction that may be caused by neurodegenerative diseases (eg, MCI or dementia), stroke, concussions, or mental illness using ecologically relevant tasks (eg, prioritizing daily schedules and route finding on a map) [ 42 ]. Their assessments are administered via a tablet and stylus. The BrainFx 360 performance assessment (referred to hereafter as the 360) is a 90-minute digitally administered test that was designed to assess cognitive, physical, and psychosocial areas of neurofunction across 26 cognitive domains using 49 tasks that are timed and scored [ 42 ]. The BrainFx SCREEN (referred to hereafter as the SCREEN) is a short digital version of the 360 that includes 7 of the cognitive domains included in the 360, is estimated to take approximately 10 to 15 minutes to complete, and was designed to screen for early detection of cognitive impairment [ 43 , 44 ]. Upon completion of any BrainFx assessment, the results of the 360 or SCREEN are added to the BrainFx Living Brain Bank (LBB), which is an electronic database that stores all completed 360 and SCREEN assessments and is maintained by BrainFx. An electronic report is generated by BrainFx comparing an individual’s results to those of others collected and stored in the LBB. Normative data from the LBB are used to evaluate and compare an individual’s results.

The 360 has been used in clinical settings to assess neurofunction among youth [ 45 ] and anecdotally in other rehabilitation settings (T Milner, personal communication, May 2018). To date, research on the 360 indicates that it has been validated in healthy young adults (mean age 22.9, SD 2.4 years) and that the overall test-retest reliability of the tool is high (ICC=0.85) [ 42 ]. However, only 2 of the 7 tasks selected to be included in the SCREEN produced reliability coefficients of >0.70 (visual-spatial and problem-solving abilities) [ 42 ]. Jones et al [ 43 ] explored the acceptability and perceived usability of the SCREEN with a small sample (N=21) of Canadian Armed Forces veterans living with posttraumatic stress disorder. A structural equation model based on the Unified Theory of Acceptance and Use of Technology suggested that behavioral intent to use the SCREEN was predicted by facilitating conditions such as guidance during the test and appropriate resources to complete the test [ 43 ]. However, the validity, reliability, and sensitivity of the SCREEN for detecting cognitive impairment have not been tested.

McMurray et al [ 44 ] designed a protocol to assess the validity, reliability, and sensitivity of the SCREEN for detecting early signs of MCI in asymptomatic adults aged ≥55 years in a primary care setting (5 Family Health Teams [FHTs]). The protocol also used a series of semistructured interviews and surveys guided by the fit between individuals, task, technology, and environment framework [ 46 ], a health-specific model derived from the Task-Technology Fit model by Goodhue and Thompson [ 47 ], to explore the SCREEN’s acceptability and use by HCPs and patients in primary care settings (manuscript in preparation). This study is a psychometric evaluation of the SCREEN’s validity, reliability, and sensitivity for detecting MCI in asymptomatic adults aged ≥55 years in primary care settings.

Study Location, Design, and Data Collection

This was a concurrent, mixed methods, prospective study using a quasi-experimental design. Participants were recruited from 5 primary care FHTs (characterized by multidisciplinary practice and capitated funding) across southwestern Ontario, Canada. FHTs that used a registered occupational therapist on staff were eligible to participate in the study, and participating FHTs received a nominal compensatory payment for the time the HCPs spent in training; collecting data for the study; administering the SCREEN, Qmci, and Geriatric Anxiety Scale–10 (GAS-10); and communicating with the research team. A multipronged recruitment approach was used [ 44 ]. A designated occupational therapist at each location was provided with training and equipment to recruit participants, administer assessment tools, and submit collected data to the research team.

The research protocol describing the methods of both the quantitative and qualitative arms of the study is published elsewhere [ 44 ].

Ethical Considerations

This study was approved by the Wilfrid Laurier University Research Ethics Board (ORE 5820) and was reviewed and approved by each FHT. Participants (HCPs, patients, and administrative executives) read and signed an information and informed consent package in advance of taking part in the study. We complied with recommendations for obtaining informed consent and conducting qualitative interviews with persons with dementia when recruiting patients who may be affected by neurocognitive diseases [ 48 - 50 ]. In addition, at the end of each SCREEN assessment, patients were required to provide their consent (electronic signature) to contribute their anonymized scores to the database of SCREEN results maintained by BrainFx. Upon enrolling in the study, participants were assigned a unique identification number that was used in place of their name on all study documentation to anonymize the data and preserve their confidentiality. A master list matching participant names with their unique identification number was stored in a password-protected file by the administering HCP and principal investigator on the research team. The FHTs received a nominal compensatory payment to account for their HCPs’ time spent administering the SCREEN, collecting data for the study, and communicating with the research team. However, the individual HCPs who volunteered to participate and the patient participants were not financially compensated for taking part in the study.

Participants

Patients who were rostered with the FHT, were aged ≥55 years, and had no history of MCI or dementia diagnoses to better capture the population at risk of early signs of cognitive impairment were eligible to participate [ 51 , 52 ]. It was necessary for the participants to be rostered with the FHTs to ensure that the HCPs could access their electronic medical record to confirm eligibility and record the testing sessions and results and to ensure that there was a responsible physician for referral if indicated. As the SCREEN is administered using a tablet, participants had to be able to read and think in English and discern color, have adequate hearing and vision to interact with the administering HCP, read 12-point font on the tablet, and have adequate hand and arm function to manipulate and hold the tablet. The exclusion criteria used in the study included colorblindness and any disability that might impair the individual’s ability to hold and interact with the tablet. Prospective participants were also excluded based on a diagnosis of conditions that may result in MCI or dementia-like symptoms, including major depression that required hospitalization, psychiatric disorders (eg, schizophrenia and bipolar disorder), psychopathology, epilepsy, substance use disorders, or sleep apnea (without the use of a continuous positive airway pressure machine) [ 52 ]. Patients were required to complete a minimum of 2 screening sessions spaced 3 months apart to participate in the study and, depending on when they enrolled to participate, could complete a maximum of 4 screening sessions over a year.

Data Collection Instruments

Gas-10 instrument.

A standardized protocol was used to collect demographic data, randomly administer the SCREEN and the Qmci (a validated screening tool for MCI), and administer the GAS-10 immediately before and after the completion of the first MCI screen at each visit [ 44 ]. This was to assess participants’ general anxiety as it related to screening for cognitive impairment at the time of the assessment, any change in subjective ratings after completion of the first MCI screen, and change in anxiety between appointments. The GAS-10 is a 10-item, self-report screen for anxiety in older adults [ 53 ] developed for rapid screening of anxiety in clinical settings (the GAS-10 is the short form of the full 30-item Geriatric Anxiety Scale [GAS]) [ 54 ]. While 3 subscales are identified, the GAS is reported to be a unidimensional scale that assesses general anxiety [ 55 , 56 ]. Validation of the GAS-10 suggests that it is optimal for assessing average to moderate levels of anxiety in older adults, with subscale scores that are highly and positively correlated with the GAS and high internal consistency [ 53 ]. Participants were asked to use a 4-point Likert scale (0= not at all , 1= sometimes , 2= most of the time , and 3= all of the time ) to rate how often they had experienced each symptom over the previous week, including on the day the test was administered [ 54 ]. The GAS-10 has a maximum score of 30, with higher scores indicating higher levels of anxiety [ 53 , 54 , 57 ].

HCPs completed the required training to become certified BrainFx SCREEN administrators before the start of the study. To this end, HCPs completed a web-based training program (developed and administered through the BrainFx website) that included 3 self-directed training modules. For the purpose of the study, they also participated in 1 half-day in-person training session conducted by a certified BrainFx administrator (T Milner, BrainFx chief executive officer) at one of the participating FHT locations. The SCREEN (version 0.5; beta) was administered on a tablet (ASUS ZenPad 10.1” IPS WXGA display, 1920 × 1200, powered by a quad-core 1.5 GHz, 64-bit MediaTek MTK 8163A processor with 2 GB RAM and 16-GB storage). The tablet came with a tablet stand for optional use and a dedicated stylus that is recommended for completion of a subset of questions. At the start of the study, HCPs were provided with identical tablets preloaded with the SCREEN software for use in the study. The 7 tasks on the SCREEN are summarized in Table 1 and were taken directly from the 360 based on a clustering and regression analysis of LBB records in 2016 (N=188) [ 58 ]. A detailed description of the study and SCREEN administration procedures was published by McMurray et al [ 44 ].

An activity score is generated for each of the 7 tasks on the SCREEN. It is computed based on a combination of the accuracy of the participant’s response and the processing speed (time in seconds) that it takes to complete the task. The relative contribution of accuracy and processing speed to the final activity score for each task is proprietary to BrainFx and unknown to the research team. The participant’s activity score is compared to the mean activity score for the same task at the time of testing in the LBB. The mean activity score from the LBB may be based on the global reference population (ie, all available SCREEN results in the LBB), or the administering HCP may select a specific reference population by filtering according to factors including but not limited to age, sex, or diagnosis. If the participant’s activity score is >1 SD below the LBB activity score mean for that task, it is labeled as an area of challenge . Each of the 7 tasks on the SCREEN are evaluated independently of each other, producing a report with 7 activity scores showing the participant’s score, the LBB mean score, and the SD. The report also provides an overall performance and processing speed score. The overall performance score is an average of all 7 activity scores; however, the way in which the overall processing speed score is generated remains proprietary to BrainFx and unknown to the research team. Both the overall performance and processing speed scores are similarly evaluated against the LBB and identified as an area of challenge using the criteria described previously. For the purpose of this study, participants’ mean activity scores on the SCREEN were compared to the results of people aged ≥55 years in the LBB.

The Qmci evaluated 6 cognitive domains: orientation (10 points), registration (5 points), clock drawing (15 points), delayed recall (20 points), verbal fluency (20 points), and logical memory (30 points) [ 59 ]. Administering HCPs scored the text manually, with each subtest’s points contributing to the overall score out of 100 points, and the cutoff score to distinguish normal cognition from MCI was ≤67/100 [ 60 ]. Cutoffs to account for age and education have been validated and are recommended as the Qmci is sensitive to these factors [ 60 ]. A 2019 meta-analysis of the diagnostic accuracy of MCI screening tools reported that the sensitivity and specificity of the Qmci for distinguishing MCI from normal cognition is similar to usual standard-of-care tools (eg, the MoCA, Addenbrooke Cognitive Examination–Revised, Consortium to Establish a Registry for Alzheimer’s Disease battery total score, and Sunderland Clock Drawing Test) [ 61 ]. The Qmci has also been translated into >15 different languages and has undergone psychometric evaluation across a subset of these languages. While not as broadly adopted as the MoCA 8.1 in Canada, its psychometric properties, administration time, and availability for use suggested that the Qmci was an optimal assessment tool for MCI screening in FHT settings during the study.

Psychometric Evaluation

To date, the only published psychometric evaluation of any BrainFx tool is by Searles et al [ 42 ] in Athletic Training & Sports Health Care ; it assessed the test-retest reliability of the 360 in 15 healthy adults between the ages of 20 and 25 years. This study evaluated the psychometric properties of the SCREEN and included a statistical analysis of the tool’s internal consistency, construct validity, test-retest reliability, and sensitivity and specificity. McMurray et al [ 44 ] provide a detailed description of the data collection procedures for administration of the SCREEN and Qmci completed by participants at each visit.

Validity Testing

Face validity was outside the scope of this study but was implied, and assumptions are reported in the Results section. Construct validity, whether the 7 activities that make up the SCREEN were representative of MCI, was assessed through comparison with a substantive body of literature in the domain and through principal component analysis using varimax rotation. Criterion validity measures how closely the SCREEN results corresponded to the results of the Qmci (used here as an “imperfect gold standard” for identifying MCI in older adults) [ 62 ]. A BrainFx representative hypothesized that the ecological validity of the SCREEN questions (ie, using tasks that reflect real-world activities to detect early signs of cognitive impairment) [ 63 ] makes it a more sensitive tool than other screens (T Milner, personal communication, May 2018) and allows HCPs to equate activity scores on the SCREEN with real-world functional abilities. Criterion validity was explored first using cross-tabulations to calculate the sensitivity and specificity of the SCREEN compared to those of the Qmci. Conventional screens such as the Qmci are scored by taking the sum of correct responses on the screen and a cutoff score derived from normative data to distinguish normal cognition from MCI. The SCREEN used a different method of scoring whereby each of the 7 tasks was scored and evaluated independently of each other and there were no recommended guidelines for distinguishing normal cognition from MCI based on the aggregate areas of challenge identified by the SCREEN. Therefore, to compare the sensitivity and specificity of the SCREEN against those of the Qmci, the results of both screens were coded into a binary format as 1=healthy and 2=unhealthy, where healthy denoted no areas of challenge identified through the SCREEN and a Qmci score of ≥67. Conversely, unhealthy denoted one or more areas of challenge identified through the SCREEN and a Qmci score of <67.

Criterion validity was further explored using discrepant analysis via a resolver test [ 44 ]. Following the administration of the SCREEN and Qmci, screen results were evaluated by the administering HCP. HCPs were instructed to refer the participant for follow-up with their primary care physician if the Qmci result was <67 regardless of whether any areas of challenge were identified on the SCREEN. However, HCPs could use their clinical judgment to refer a participant for physician follow-up based on the results of the SCREEN or the Qmci, and all the referral decisions were charted on the participant’s electronic medical record following each visit and screening. In discrepant analysis, the results of the imperfect gold standard [ 64 ], as was the role of the Qmci in this study, were compared with the SCREEN results. A resolver test (classified as whether the HCP referred the patient to a physician for follow-up based on their performance on the SCREEN and the Qmci) was used on discordant results [ 64 , 65 ] to determine sensitivity and specificity. To this end, a new variable, Referral to a Physician for Cognitive Impairment , was coded as the true status (1=no referral; 2=referral was made) and compared to the Qmci as the imperfect gold standard (1=healthy; 2=unhealthy).

Reliability Testing

The reliability of a screening instrument is its ability to consistently measure an attribute and how well its component measures fit together conceptually. Internal consistency identifies whether the items in a multi-item scale are measuring the same underlying construct; the internal consistency of the SCREEN was assessed using the Cronbach α. Test-retest reliability refers to the ability of a measurement instrument to reproduce results over ≥2 occasions (assuming the underlying conditions have not changed) and was assessed using paired t tests (2-tailed), ICC, and the κ coefficient. In this study, participants completed both the SCREEN and the Qmci in the same sitting in a random sequence on at least 2 different occasions spaced 3 months apart (administration procedures are described elsewhere) [ 44 ]. In some instances, the screens were administered to the same participant on 4 separate occasions spaced 3 months apart each, and this provided up to 3 separate opportunities to conduct test-retest reliability analyses and investigate the effects of repeated practice. There are no clear guidelines on the optimal time between tests [ 66 , 67 ]; however, Streiner and Kottner [ 68 ] and Streiner [ 69 ] recommend longer periods between tests (eg, at least 10-14 days) to avoid recall bias, and greater practice effects have been experienced with shorter test-retest intervals [ 32 ].

Analysis of the quantitative data was completed using Stata (version 17.0; StataCorp). Assumptions of normality were not violated, so parametric tests were used. Collected data were reported using frequencies and percentages and compared using the chi-square or Fisher exact test as necessary. Continuous data were analyzed for central tendency and variability; categoric data were presented as proportions. Normality was tested using the Shapiro-Wilk test, and nonparametric data were tested using the Mann-Whitney U test. A P value of .05 was considered statistically significant, with 95% CIs provided where appropriate. We powered the exploratory analysis to validate the SCREEN using an estimated effect size of 12%—understanding that Canadian prevalence rates of MCI were not available [ 1 ]—and determined that the study required at least 162 participants. For test-retest reliability, using 90% power and a 5% type-I error rate, a minimum of 67 test results was required.

The time taken for participants to complete the SCREEN was recorded by the HCPs at the time of testing; there were 6 missing HCP records of time to complete the SCREEN. For these 6 cases of missing data, we imputed the mean time to complete the SCREEN by all participants who were tested by that HCP and used this to populate the missing cells [ 70 ]. There were 3 cases of missing data related to the SCREEN reports. More specifically, the SCREEN report generated by BrainFx did not include 1 or 2 data points each for the route finding, divided attention, and prioritizing tasks. The clinical notes provided by the HCP at the time of SCREEN administration did not indicate that the participant had not completed those questions, and it was not possible to determine the root cause of the missing data in report generation according to BrainFx (M Milner, personal communication, July 7, 2020). For continuous variables in analyses such as exploratory factor analysis, Cronbach α, and t test, missing values were imputed using the mean. However, for the coded healthy and unhealthy categorical variables, values were not imputed.

Data collection began in January 2019 and was to conclude on May 31, 2020. However, the emergence of the global COVID-19 pandemic resulted in the FHTs and Wilfrid Laurier University prohibiting all in-person research starting on March 16, 2020.

Participant Demographics

A total of 154 participants were recruited for the study, and 20 (13%) withdrew following their first visit to the FHT. The data of 65% (13/20) of the participants who withdrew were included in the final analysis, and the data of the remaining 35% (7/20) were removed, either due to their explicit request (3/7, 43%) or because technical issues at the time of testing rendered their data unusable (4/7, 57%). These technical issues were related to software issues (eg, any instance in which the patient or HCP interacted with the SCREEN software and followed the instructions provided, the software did not work as expected [ie, objects did not move where they were dragged or tapping on objects failed to highlight the object], and the question could not be completed). After attrition, a total of 147 individuals aged ≥55 years with no previous diagnosis of MCI or dementia participated in the study ( Table 2 ). Of the 147 participants, 71 (48.3%) took part in only 1 round of screening on visit 1 (due to COVID-19 restrictions imposed on in-person research that prevented a second visit). The remaining 51.7% (76/147) of the participants took part in ≥2 rounds of screening across multiple visits (76/147, 51.7% participated in 2 rounds; 22/147, 15% participated in 3 rounds; and 13/147, 8.8% participated in 4 rounds of screening).

The sample population was 65.3% (96/147) female (mean 70.2, SD 7.9 years) and 34.7% (51/147) male (mean 72.5, SD 8.1 years), with age ranging from 55 to 88 years; 65.3% (96/147) achieved the equivalent of or higher than a college diploma or certificate ( Table 2 ); and 32.7% (48/147) self-reported living with one or more chronic medical conditions ( Table 3 ). At the time of screening, 73.5% (108/147) of participants were also taking medications with side effects that may include impairments to memory and thinking abilities [ 71 - 75 ]; therefore, medication use was accounted for in a subset of the analyses. Finally, 84.4% (124/147) of participants self-reported regularly using technology (eg, smartphone, laptop, or tablet) with high proficiency. A random sequence generator was used to determine the order for administering the MCI screens; the SCREEN was administered first 51.9% (134/258) of the time.

Construct Validity

Construct validity was assessed through a review of relevant peer-reviewed literature that compared constructs included in the SCREEN with those identified in the literature as 2 of the most sensitive tools for MCI screening: the MoCA 8.1 [ 76 ] and the Qmci [ 25 ]. Memory, language, and verbal skills are assessed in the MoCA and Qmci but are absent from the SCREEN. Tests of verbal fluency and logical memory have been shown to be particularly sensitive to early cognitive changes [ 77 , 78 ] but are similarly absent from the SCREEN.

Exploratory factor analysis was performed to examine the SCREEN’s ability to reliably measure risk of MCI. The Kaiser-Meyer-Olkin measure yielded a value of 0.79, exceeding the commonly accepted threshold of 0.70, indicating that the sample was adequate for factor analysis. The Bartlett test of sphericity returned a chi-square value of χ 2 21 =167.1 ( P <.001), confirming the presence of correlations among variables suitable for factor analysis. A principal component analysis revealed 2 components with eigenvalues of >1, cumulatively accounting for 52.12% of the variance, with the first factor alone explaining 37.8%. After the varimax rotation, the 2 factors exhibited distinct patterns of loadings, with the visual-spatial ability factor loading predominantly on the second factor. The SCREEN tasks, except for visual-spatial ability, loaded substantially on the factors (>0.5), suggesting that the SCREEN possesses good convergent validity for assessing the risk of MCI.

Criterion Validity

The coding of SCREEN scores into a binary healthy and unhealthy outcome standardized the dependent variable to allow for criterion testing. Criterion validity was assessed using cross-tabulations and the analysis of confusion matrices and provided insights into the sensitivity and specificity of the SCREEN when compared to the Qmci. Of the 144 cases considered, 20 (13.9%) were true negatives, and 74 (51.4%) were true positives. The SCREEN’s sensitivity, which reflects its capacity to accurately identify healthy individuals (true positives), was 63.25% (74 correct identifications/117 actual positives). The specificity of the test, indicating its ability to accurately identify unhealthy individuals (true negatives), was 74.07% (20 correct identifications/27 actual negatives). Then, sensitivity and specificity were derived using discrepant analysis and a resolver test previously described (whether the HCP referred the participant to a physician following the screens). The results were identical, the estimate of the SCREEN sensitivity was 63.3% (74/117), and the estimate of the specificity was 74% (20/27).

Internal Reliability

A Cronbach α=0.70 is acceptable, and at least 0.90 is required for clinical instruments [ 79 ]. The estimate of internal consistency for the SCREEN (N=147) was Cronbach α=0.63.

Test-Retest Reliability

Test-retest reliability analyses were conducted using ICC for the SCREEN activity scores and the κ coefficient for the healthy and unhealthy classifications. Guidelines for interpretation of the ICC suggest that anything <0.5 indicates poor reliability and anything between 0.5 and 0.75 suggests moderate reliability [ 80 ]; the ICC for the SCREEN activity scores was 0.54. With respect to the κ coefficient, a κ value of <0.2 is considered to have no level of agreement, a κ value of 0.21 to 0.39 is considered minimal, a κ value of 0.4 to 0.59 is considered weak agreement, and anything >0.8 suggests strong to almost perfect agreement [ 81 ]. The κ coefficient for healthy and unhealthy classifications was 0.15.

Analysis of the Factors Impacting Healthy and Unhealthy Results

The Spearman rank correlation was used to assess the relationships between participants’ overall activity score on the SCREEN and their total time to complete the SCREEN; age, sex, and self-reported levels of education; technology use; medication use; amount of sleep; and level of anxiety (as measured using the GAS-10) at the time of SCREEN administration. Lower overall activity scores were moderately correlated with being older ( r s142 =–0.57; P <.001) and increased total time to complete the SCREEN ( r s142 =0.49; P <.001). There was also a moderate inverse relationship between overall activity score and total time to compete the SCREEN ( r s142 =–0.67; P <.001) whereby better performance was associated with quicker task completion. There were weak positive associations between overall activity score and increased technology use ( r s142 =0.34; P <.001) and higher level of education ( r s142 =0.21; P =.01).

A logistic regression model was used to predict the SCREEN result using data from 144 observations. The model’s predictors explain approximately 21.33% of the variance in the outcome variable. The likelihood ratio test indicates that the model provides a significantly better fit to the data than a model without predictors ( P <.001).

The SCREEN outcome variable ( healthy vs unhealthy ) was associated with the predictor variables sex and total time to complete the SCREEN. More specifically, female participants were more likely to obtain healthy SCREEN outcomes ( P =.007; 95% CI 0.32-2.05). For all participants, the longer it took to complete the SCREEN, the less likely they were to achieve a healthy SCREEN outcome ( P =.002; 95% CI –0.33 to –0.07). Age ( P =.25; 95% CI –0.09 to 0.02), medication use ( P =.96; 95% CI –0.9 to 0.94), technology use ( P =.44; 95% CI –0.28 to 0.65), level of education ( P =.14; 95% CI –0.09 to 0.64), level of anxiety ( P =.26; 95% CI –1.13 to 0.3), and hours of sleep ( P =.08; 95% CI –0.06 to 0.93) were not significant.

Impact of Practice Effects

The SCREEN was administered approximately 3 months apart, and separate, paired-sample t tests were performed to compare SCREEN outcomes between visits 1 and 2 (76/147, 51.7%; Table 4 ), visits 2 and 3 (22/147, 15%), and visits 3 and 4 (13/147, 8.8%). Declining visits were partially attributable to the early shutdown of data collection due to the COVID-19 pandemic, and therefore, comparisons between visits 2 and 3 or visits 3 and 4 were not reported. Compared to participants’ SCREEN performance on visit 1, their overall mean activity score and overall processing time improved on their second administration of the SCREEN (score: t 75 =–2.86 and P =.005; processing time: t 75 =–2.98 and P =.004). Even though the 7 task-specific activity scores on the SCREEN also increased between visits 1 and 2, these improvements were not significant, indicating that the difference in overall activity scores was cumulative and not attributable to a specific task ( Table 4 ).

Principal Findings

Our study aimed to evaluate the effectiveness and reliability of the BrainFx SCREEN in detecting MCI in primary care settings. The research took place during the COVID-19 pandemic, which influenced the study’s execution and timeline. Despite these challenges, the findings offer valuable insights into cognitive impairment screening.

Brief MCI screening tools help time-strapped primary care physicians determine whether referral for a definitive battery of more time-consuming and expensive tests is warranted. These tools must optimize and balance the need for time efficiency while also being psychometrically valid and easily administered [ 82 ]. The importance of brevity is determined by a number of factors, including the clinical setting. Screens that can be completed in approximately ≤5 minutes [ 13 ] are recommended for faster-paced clinical settings (eg, emergency rooms and preoperative screens), whereas those that can be completed in 5 to 10 minutes or less are better suited to primary care settings [ 82 - 84 ]. Identifying affordable, psychometrically tested screening tests for MCI that integrate into clinical workflows and are easy to consistently administer and complete may help with the following:

  • Initiating appropriate diagnostic tests for signs and symptoms at an earlier stage
  • Normalizing and destigmatizing cognitive testing for older adults
  • Expediting referrals
  • Allowing for timely access to programs and services that can support aging in place or delay institutionalization
  • Reducing risk
  • Improving the psychosocial well-being of patients and their care partners by increasing access to information and resources that aid with future planning and decision-making [ 85 , 86 ]

Various cognitive tests are commonly used for detecting MCI. These include the Addenbrook Cognitive Examination–Revised, Consortium to Establish a Registry for Alzheimer’s Disease, Sunderland Clock Drawing Test, Informant Questionnaire on Cognitive Decline in the Elderly, Memory Alternation Test, MMSE, MoCA 8.1, and Qmci [ 61 , 87 ]. The Addenbrook Cognitive Examination–Revised, Consortium to Establish a Registry for Alzheimer’s Disease, MoCA 8.1, Qmci, and Memory Alternation Test are reported to have similar diagnostic accuracy [ 61 , 88 ]. The HCPs participating in this study reported using the MoCA 8.1 as their primary screening tool for MCI along with other assessments such as the MMSE and Trail Making Test parts A and B.

Recent research highlights the growing use of digital tools [ 51 , 89 , 90 ], mobile technology [ 91 , 92 ], virtual reality [ 93 , 94 ], and artificial intelligence [ 95 ] to improve early identification of MCI. Demeyere et al [ 51 ] developed the tablet-based, 10-item Oxford Cognitive Screen–Plus to detect slight changes in cognitive impairment across 5 domains of cognition (memory, attention, number, praxis, and language), which has been validated among neurologically healthy older adults. Statsenko et al [ 96 ] have explored improvement of the predictive capabilities of tests using artificial intelligence. Similarly, there is an emerging focus on the use of machine learning techniques to detect dementia leveraging routinely collected clinical data [ 97 , 98 ]. This progression signifies a shift toward more technologically advanced, efficient, and potentially more accurate diagnostic approaches in the detection of MCI.

Whatever the modality, screening tools should be quick to administer, demonstrate consistent results over time and between different evaluators, cover all major cognitive areas, and be straightforward to both administer and interpret [ 99 ]. However, highly sensitive tests such as those suggested for screening carry a significant risk of false-positive diagnoses [ 15 ]. Given the high potential for harm of false positives, it is important to validate the psychometric properties of screening tests across different populations and understand how factors such as age and education can influence the results [ 99 ].

Our study did not assess the face validity of the SCREEN, but participating occupational therapists were comfortable with the test regimen. Nonetheless, the research team noted the absence of verbal fluency and memory tests in the SCREEN, both of which McDonnell et al [ 100 ] identified as being more sensitive to the more commonly seen amnesic MCI. Two of the most sensitive tools for MCI screening, the MoCA 8.1 [ 76 ] and Qmci [ 25 ], assess memory, language, and verbal skills, and tests of verbal fluency and logical memory have been shown to be particularly sensitive to early cognitive changes [ 77 , 78 ].

The constructs included in the SCREEN ( Table 1 ) were selected based on a single non–peer-reviewed study [ 58 ] using the 360 and traumatic brain injury data (N=188) that identified the constructs as predictive of brain injury. The absence of tasks that measure verbal fluency or logical memory in the SCREEN appears to weaken claims of construct validity. The principal component analysis of the SCREEN assessment identified 2 components accounting for 52.12% of the total variance. The first component was strongly associated with abstract reasoning, constructive ability, and divided attention, whereas the second was primarily influenced by visual-spatial abilities. This indicates that constructs related to perception, attention, and memory are central to the SCREEN scores.

The SCREEN’s binary outcome (healthy or unhealthy) created by the research team was based on comparisons with the Qmci. However, the method of identifying areas of challenge in the SCREEN by comparing the individual’s mean score on each of the 7 tasks with the mean scores of a global or filtered cohort in the LBB introduces potential biases or errors. These could arise from a surge in additions to the LBB from patients with specific characteristics, self-selection of participants, poorly trained SCREEN administrators, inclusion of nonstandard test results, underuse of appropriate filters, and underreporting of clinical conditions or factors such as socioeconomic status that impact performance in standardized cognitive tests.

The proprietary method of analyzing and reporting SCREEN results complicates traditional sensitivity and specificity measurement. Our testing indicated a sensitivity of 63.25% and specificity of 74.07% for identifying healthy (those without MCI) and unhealthy (those with MCI) individuals. The SCREEN’s Cronbach α=.63, slightly below the threshold for clinical instruments, and reliability scores that were lower than the ideal standards suggest a higher-than-acceptable level of random measurement error in its constructs. The lower reliability may also stem from an inadequate sample size or a limited number of scale items.

The SCREEN’s results are less favorable compared to those of other digital MCI screening tools that similarly enable evaluation of specific cognitive domains but also provide validated, norm-referenced cutoff scores and methods for cumulative scoring in clinical settings (Oxford Cognitive Screen–Plus) [ 51 ] or of validated MCI screening tools used in primary care (eg, MoCA 8.1, Qmci, and MMSE) [ 51 , 87 ]. The SCREEN’s unique scoring algorithm and the dynamic denominator in data analysis necessitate caution in comparing these results to those of other tools with fixed scoring algorithms and known sensitivities [ 101 , 102 ]. We found the SCREEN to have lower-than-expected internal reliability, suggesting significant random measurement error. Test-retest reliability was weak for the healthy or unhealthy outcome but stronger for overall activity scores between tests. The variability in identifying areas of challenge could relate to technological difficulties or variability from comparisons with a growing database of test results.

Potential reasons for older adults’ poorer scores on timed tests include the impact of sensorimotor decline on touch screen sensation and reaction time [ 38 , 103 ], anxiety related to taking a computer-enabled test [ 104 - 106 ], or the anticipated consequences of a negative outcome [ 107 ]. However, these effects were unlikely to have influenced the results of this study. Practice effects were observed [ 29 , 108 ], but the SCREEN’s novelty suggests that familiarity is not gained through prepreparation or word of mouth as this sample was self-selected and not randomized. Future research might also explore the impact of digital literacy and cultural differences in the interpretation of software constructs or icons on MCI screening in a randomized, older adult sample.

Limitations

This study had methodological limitations that warrant attention. The small sample size and the demographic distribution of the 147 participants aged ≥55 years, with most (96/147, 65.3%) being female and well educated, limits the generalizability of the findings to different populations. The study’s design, aiming to explore the sensitivity of the SCREEN for early detection of MCI, necessitated the exclusion of individuals with a previous diagnosis of MCI or dementia. This exclusion criterion might have impacted the study’s ability to thoroughly assess the SCREEN’s effectiveness in a more varied clinical context. The requirement for participants to read and comprehend English introduced another limitation to our study. This criterion potentially limited the SCREEN tool’s applicability across diverse linguistic backgrounds as individuals with language-based impairments or those not proficient in English may face challenges in completing the assessment [ 51 ]. Such limitations could impact the generalizability of our findings to non–English-speaking populations or to those with language impairments, underscoring the need for further research to evaluate the SCREEN tool’s effectiveness in broader clinical and linguistic contexts.

Financial constraints played a role in limiting the study’s scope. Due to funding limitations, it was not possible to include specialist assessments and a battery of neuropsychiatric tests generally considered the gold standard to confirm or rule out an MCI diagnosis. Therefore, the study relied on differential verification through 2 imperfect reference standards: a comparison with the Qmci (the tool with the highest published sensitivity to MCI in 2019, when the study was designed) and the clinical judgment of the administering HCP, particularly in decisions regarding referrals for further clinical assessment. Furthermore, while an economic feasibility assessment was considered, the research team determined that it should follow, not precede, an evaluation of the SCREEN’s validity and reliability.

The proprietary nature of the algorithm used for scoring the SCREEN posed another challenge. Without access to this algorithm, the research team had to use a novel comparative statistical approach, coding patient results into a binary variable: healthy (SCREEN=no areas of challenge OR Qmci≥67 out of 100) or unhealthy (SCREEN=one or more areas of challenge OR Qmci<67 out of 100). This may have introduced a higher level of error into our statistical analysis. Furthermore, the process for determining areas of challenge on the SCREEN involves comparing a participant’s result to the existing SCREEN results in the LBB at the time of testing. By the end of this study, the LBB contained 632 SCREEN results for adults aged ≥55 years, with this study contributing 258 of those results. The remaining 366 original SCREEN results, 64% of which were completed by individuals who self-identified as having a preexisting diagnosis or conditions associated with cognitive impairment (eg, traumatic brain injury, concussion, or stroke), could have led to an overestimation of the means and SDs of the study participants’ results at the outset of the study.

Unlike other cognitive screening tools, the SCREEN allows for filtering of results to compare different patient cohorts in the LBB using criteria such as age and education. However, at this stage of the LBB’s development, using such filters can significantly reduce the reliability of the results due to a smaller comparator population (ie, the denominator used to calculate the mean and SD). This, in turn, affects the significance of the results. Moreover, the constantly changing LBB data set makes it challenging to meaningfully compare an individual’s results over time as the evolving denominator affects the accuracy and relevance of these comparisons. Finally, the significant improvement in SCREEN scores between the first and second visits suggests the presence of practice effects, which could have influenced the reliability and validity of the findings.

Conclusions

In a primary care setting, where MCI screening tools are essential and recommended for those with concerns [ 85 ], certain criteria are paramount: time efficiency, ease of administration, and robust psychometric properties [ 82 ]. Our analysis of the BrainFx SCREEN suggests that, despite its innovative approach and digital delivery, it currently falls short in meeting these criteria. The SCREEN’s comparatively longer administration time and lower-than-expected reliability scores suggest that it may not be the most effective tool for MCI screening of older adults in a primary care setting at this time.

It is important to note that, in the wake of the COVID-19 pandemic, and with an aging population living and aging by design or necessity in a community setting, there is growing interest in digital solutions, including web-based applications and platforms to both collect digital biomarkers and deliver cognitive training and other interventions [ 109 , 110 ]. However, new normative standards are required when adapting cognitive tests to digital formats [ 92 ] as the change in medium can significantly impact test performance and results interpretation. Therefore, we recommend caution when interpreting our study results and encourage continued research and refinement of tools such as the SCREEN. This ongoing process will ensure that current and future MCI screening tools are effective, reliable, and relevant in meeting the needs of our aging population, particularly in primary care settings where early detection and intervention are key.

Acknowledgments

The researchers gratefully acknowledge the Ontario Centres of Excellence Health Technologies Fund for their financial support of this study; the executive directors and clinical leads in each of the Family Health Team study locations; the participants and their friends and families who took part in the study; and research assistants Sharmin Sharker, Kelly Zhu, and Muhammad Umair for their contributions to data management and statistical analysis.

Data Availability

The data sets generated during and analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions

JM contributed to the conceptualization, methodology, validation, formal analysis, data curation, writing—original draft, writing—review and editing, visualization, supervision, and funding acquisition. AML contributed to the conceptualization, methodology, validation, investigation, formal analysis, data curation, writing—original draft, writing—review and editing, visualization, and project administration. WP contributed to the validation, formal analysis, data curation, writing—original draft, writing—review and editing, and visualization. Finally, PH contributed to conceptualization, methodology, writing—review and editing, supervision, and funding acquisition.

Conflicts of Interest

None declared.

  • Casagrande M, Marselli G, Agostini F, Forte G, Favieri F, Guarino A. The complex burden of determining prevalence rates of mild cognitive impairment: a systematic review. Front Psychiatry. 2022;13:960648. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med. Mar 2014;275(3):214-228. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Knopman DS, Petersen RC. Mild cognitive impairment and mild dementia: a clinical perspective. Mayo Clin Proc. Oct 2014;89(10):1452-1459. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Anderson ND. State of the science on mild cognitive impairment (MCI). CNS Spectr. Feb 2019;24(1):78-87. [ CrossRef ] [ Medline ]
  • Tangalos EG, Petersen RC. Mild cognitive impairment in geriatrics. Clin Geriatr Med. Nov 2018;34(4):563-589. [ CrossRef ] [ Medline ]
  • Ng R, Maxwell C, Yates E, Nylen K, Antflick J, Jette N, et al. Brain disorders in Ontario: prevalence, incidence and costs from health administrative data. Institute for Clinical Evaluative Sciences. 2015. URL: https:/​/www.​ices.on.ca/​publications/​research-reports/​brain-disorders-in-ontario-prevalence-incidence-and-costs-from-health-administrative-data/​ [accessed 2024-04-01]
  • Centers for Disease ControlPrevention (CDC). Self-reported increased confusion or memory loss and associated functional difficulties among adults aged ≥ 60 years - 21 states, 2011. MMWR Morb Mortal Wkly Rep. May 10, 2013;62(18):347-350. [ FREE Full text ] [ Medline ]
  • Petersen RC, Lopez O, Armstrong MJ, Getchius TS, Ganguli M, Gloss D, et al. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. Jan 16, 2018;90(3):126-135. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Song WX, Wu WW, Zhao YY, Xu HL, Chen GC, Jin SY, et al. Evidence from a meta-analysis and systematic review reveals the global prevalence of mild cognitive impairment. Front Aging Neurosci. 2023;15:1227112. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chen Y, Denny KG, Harvey D, Farias ST, Mungas D, DeCarli C, et al. Progression from normal cognition to mild cognitive impairment in a diverse clinic-based and community-based elderly cohort. Alzheimers Dement. Apr 2017;13(4):399-405. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA. Dec 17, 2014;312(23):2551-2561. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Zhang Y, Natale G, Clouston S. Incidence of mild cognitive impairment, conversion to probable dementia, and mortality. Am J Alzheimers Dis Other Demen. 2021;36:15333175211012235. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Prince M, Bryce R, Ferri CP. World Alzheimer report 2011: the benefits of early diagnosis and intervention. Alzheimer’s Disease International. 2011. URL: https://www.alzint.org/u/WorldAlzheimerReport2011.pdf [accessed 2024-04-01]
  • Patnode CD, Perdue LA, Rossom RC, Rushkin MC, Redmond N, Thomas RG, et al. Screening for cognitive impairment in older adults: updated evidence report and systematic review for the US preventive services task force. JAMA. Feb 25, 2020;323(8):764-785. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Canadian Task Force on Preventive Health Care, Pottie K, Rahal R, Jaramillo A, Birtwhistle R, Thombs BD, et al. Recommendations on screening for cognitive impairment in older adults. CMAJ. Jan 05, 2016;188(1):37-46. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Tahami Monfared AA, Phan NT, Pearson I, Mauskopf J, Cho M, Zhang Q, et al. A systematic review of clinical practice guidelines for Alzheimer's disease and strategies for future advancements. Neurol Ther. Aug 2023;12(4):1257-1284. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Mattke S, Jun H, Chen E, Liu Y, Becker A, Wallick C. Expected and diagnosed rates of mild cognitive impairment and dementia in the U.S. medicare population: observational analysis. Alzheimers Res Ther. Jul 22, 2023;15(1):128. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Manly JJ, Tang MX, Schupf N, Stern Y, Vonsattel JP, Mayeux R. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol. Apr 2008;63(4):494-506. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Black CM, Ambegaonkar BM, Pike J, Jones E, Husbands J, Khandker RK. The diagnostic pathway from cognitive impairment to dementia in Japan: quantification using real-world data. Alzheimer Dis Assoc Disord. 2019;33(4):346-353. [ CrossRef ] [ Medline ]
  • Ritchie CW, Black CM, Khandker RK, Wood R, Jones E, Hu X, et al. Quantifying the diagnostic pathway for patients with cognitive impairment: real-world data from seven European and north American countries. J Alzheimers Dis. 2018;62(1):457-466. [ CrossRef ] [ Medline ]
  • Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. Nov 1975;12(3):189-198. [ CrossRef ] [ Medline ]
  • Tsoi KK, Chan JY, Hirai HW, Wong SY, Kwok TC. Cognitive tests to detect dementia: a systematic review and meta-analysis. JAMA Intern Med. Sep 2015;175(9):1450-1458. [ CrossRef ] [ Medline ]
  • Lopez MN, Charter RA, Mostafavi B, Nibut LP, Smith WE. Psychometric properties of the Folstein mini-mental state examination. Assessment. Jun 2005;12(2):137-144. [ CrossRef ] [ Medline ]
  • Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. Apr 2005;53(4):695-699. [ CrossRef ] [ Medline ]
  • O'Caoimh R, Timmons S, Molloy DW. Screening for mild cognitive impairment: comparison of "MCI specific" screening instruments. J Alzheimers Dis. 2016;51(2):619-629. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Trzepacz PT, Hochstetler H, Wang S, Walker B, Saykin AJ, Alzheimer’s Disease Neuroimaging Initiative. Relationship between the Montreal cognitive assessment and mini-mental state examination for assessment of mild cognitive impairment in older adults. BMC Geriatr. Sep 07, 2015;15:107. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Nasreddine ZS, Phillips N, Chertkow H. Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology. Mar 06, 2012;78(10):765-766. [ CrossRef ] [ Medline ]
  • Monroe T, Carter M. Using the Folstein Mini Mental State Exam (MMSE) to explore methodological issues in cognitive aging research. Eur J Ageing. Sep 2012;9(3):265-274. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Damian AM, Jacobson SA, Hentz JG, Belden CM, Shill HA, Sabbagh MN, et al. The Montreal cognitive assessment and the mini-mental state examination as screening instruments for cognitive impairment: item analyses and threshold scores. Dement Geriatr Cogn Disord. 2011;31(2):126-131. [ CrossRef ] [ Medline ]
  • Kaufer DI, Williams CS, Braaten AJ, Gill K, Zimmerman S, Sloane PD. Cognitive screening for dementia and mild cognitive impairment in assisted living: comparison of 3 tests. J Am Med Dir Assoc. Oct 2008;9(8):586-593. [ CrossRef ] [ Medline ]
  • Gagnon C, Saillant K, Olmand M, Gayda M, Nigam A, Bouabdallaoui N, et al. Performances on the Montreal cognitive assessment along the cardiovascular disease continuum. Arch Clin Neuropsychol. Jan 17, 2022;37(1):117-124. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Cooley SA, Heaps JM, Bolzenius JD, Salminen LE, Baker LM, Scott SE, et al. Longitudinal change in performance on the Montreal cognitive assessment in older adults. Clin Neuropsychol. 2015;29(6):824-835. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • O'Caoimh R, Gao Y, McGlade C, Healy L, Gallagher P, Timmons S, et al. Comparison of the quick mild cognitive impairment (Qmci) screen and the SMMSE in screening for mild cognitive impairment. Age Ageing. Sep 2012;41(5):624-629. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • O'Caoimh R, Molloy DW. Comparing the diagnostic accuracy of two cognitive screening instruments in different dementia subtypes and clinical depression. Diagnostics (Basel). Aug 08, 2019;9(3):93. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Clarnette R, O'Caoimh R, Antony DN, Svendrovski A, Molloy DW. Comparison of the Quick Mild Cognitive Impairment (Qmci) screen to the Montreal Cognitive Assessment (MoCA) in an Australian geriatrics clinic. Int J Geriatr Psychiatry. Jun 2017;32(6):643-649. [ CrossRef ] [ Medline ]
  • Glynn K, Coen R, Lawlor BA. Is the Quick Mild Cognitive Impairment screen (QMCI) more accurate at detecting mild cognitive impairment than existing short cognitive screening tests? A systematic review of the current literature. Int J Geriatr Psychiatry. Dec 2019;34(12):1739-1746. [ CrossRef ] [ Medline ]
  • Lee MT, Chang WY, Jang Y. Psychometric and diagnostic properties of the Taiwan version of the quick mild cognitive impairment screen. PLoS One. 2018;13(12):e0207851. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Wallace SE, Donoso Brown EV, Simpson RC, D'Acunto K, Kranjec A, Rodgers M, et al. A comparison of electronic and paper versions of the Montreal cognitive assessment. Alzheimer Dis Assoc Disord. 2019;33(3):272-278. [ CrossRef ] [ Medline ]
  • Gagnon C, Olmand M, Dupuy EG, Besnier F, Vincent T, Grégoire CA, et al. Videoconference version of the Montreal cognitive assessment: normative data for Quebec-French people aged 50 years and older. Aging Clin Exp Res. Jul 2022;34(7):1627-1633. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Friemel TN. The digital divide has grown old: determinants of a digital divide among seniors. New Media & Society. Jun 12, 2014;18(2):313-331. [ CrossRef ]
  • Ventola CL. Mobile devices and apps for health care professionals: uses and benefits. P T. May 2014;39(5):356-364. [ FREE Full text ] [ Medline ]
  • Searles C, Farnsworth JL, Jubenville C, Kang M, Ragan B. Test–retest reliability of the BrainFx 360® performance assessment. Athl Train Sports Health Care. Jul 2019;11(4):183-191. [ CrossRef ]
  • Jones C, Miguel-Cruz A, Brémault-Phillips S. Technology acceptance and usability of the BrainFx SCREEN in Canadian military members and veterans with posttraumatic stress disorder and mild traumatic brain injury: mixed methods UTAUT study. JMIR Rehabil Assist Technol. May 13, 2021;8(2):e26078. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • McMurray J, Levy A, Holyoke P. Psychometric evaluation and workflow integration study of a tablet-based tool to detect mild cognitive impairment in older adults: protocol for a mixed methods study. JMIR Res Protoc. May 21, 2021;10(5):e25520. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Wilansky P, Eklund JM, Milner T, Kreindler D, Cheung A, Kovacs T, et al. Cognitive behavior therapy for anxious and depressed youth: improving homework adherence through mobile technology. JMIR Res Protoc. Nov 10, 2016;5(4):e209. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ammenwerth E, Iller C, Mahler C. IT-adoption and the interaction of task, technology and individuals: a fit framework and a case study. BMC Med Inform Decis Mak. Jan 09, 2006;6:3. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Goodhue DL, Thompson RL. Task-technology fit and individual performance. MIS Q. Jun 1995;19(2):213-236. [ CrossRef ]
  • Beuscher L, Grando VT. Challenges in conducting qualitative research with individuals with dementia. Res Gerontol Nurs. Jan 2009;2(1):6-11. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Howe E. Informed consent, participation in research, and the Alzheimer's patient. Innov Clin Neurosci. May 2012;9(5-6):47-51. [ FREE Full text ] [ Medline ]
  • Thorogood A, Mäki-Petäjä-Leinonen A, Brodaty H, Dalpé G, Gastmans C, Gauthier S, et al. Global Alliance for GenomicsHealth‚ AgeingDementia Task Team. Consent recommendations for research and international data sharing involving persons with dementia. Alzheimers Dement. Oct 2018;14(10):1334-1343. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Demeyere N, Haupt M, Webb SS, Strobel L, Milosevich ET, Moore MJ, et al. Introducing the tablet-based Oxford Cognitive Screen-Plus (OCS-Plus) as an assessment tool for subtle cognitive impairments. Sci Rep. Apr 12, 2021;11(1):8000. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Nasreddine ZS, Patel BB. Validation of Montreal cognitive assessment, MoCA, alternate French versions. Can J Neurol Sci. Sep 2016;43(5):665-671. [ CrossRef ] [ Medline ]
  • Mueller AE, Segal DL, Gavett B, Marty MA, Yochim B, June A, et al. Geriatric anxiety scale: item response theory analysis, differential item functioning, and creation of a ten-item short form (GAS-10). Int Psychogeriatr. Jul 2015;27(7):1099-1111. [ CrossRef ] [ Medline ]
  • Segal DL, June A, Payne M, Coolidge FL, Yochim B. Development and initial validation of a self-report assessment tool for anxiety among older adults: the Geriatric Anxiety Scale. J Anxiety Disord. Oct 2010;24(7):709-714. [ CrossRef ] [ Medline ]
  • Balsamo M, Cataldi F, Carlucci L, Fairfield B. Assessment of anxiety in older adults: a review of self-report measures. Clin Interv Aging. 2018;13:573-593. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Gatti A, Gottschling J, Brugnera A, Adorni R, Zarbo C, Compare A, et al. An investigation of the psychometric properties of the Geriatric Anxiety Scale (GAS) in an Italian sample of community-dwelling older adults. Aging Ment Health. Sep 2018;22(9):1170-1178. [ CrossRef ] [ Medline ]
  • Yochim BP, Mueller AE, June A, Segal DL. Psychometric properties of the Geriatric Anxiety Scale: comparison to the beck anxiety inventory and geriatric anxiety inventory. Clin Gerontol. Dec 06, 2010;34(1):21-33. [ CrossRef ]
  • Recent concussion (< 6 months ago) analysis result. Daisy Intelligence. 2016. URL: https://www.daisyintelligence.com/retail-solutions/ [accessed 2024-04-01]
  • Malloy DW, O'Caoimh R. The Quick Guide: Scoring and Administration Instructions for The Quick Mild Cognitive Impairment (Qmci) Screen. Waterford, Ireland. Newgrange Press; 2017.
  • O'Caoimh R, Gao Y, Svendovski A, Gallagher P, Eustace J, Molloy DW. Comparing approaches to optimize cut-off scores for short cognitive screening instruments in mild cognitive impairment and dementia. J Alzheimers Dis. 2017;57(1):123-133. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Breton A, Casey D, Arnaoutoglou NA. Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: meta-analysis of diagnostic accuracy studies. Int J Geriatr Psychiatry. Feb 2019;34(2):233-242. [ CrossRef ] [ Medline ]
  • Umemneku Chikere CM, Wilson K, Graziadio S, Vale L, Allen AJ. Diagnostic test evaluation methodology: a systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard - An update. PLoS One. 2019;14(10):e0223832. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Espinosa A, Alegret M, Boada M, Vinyes G, Valero S, Martínez-Lage P, et al. Ecological assessment of executive functions in mild cognitive impairment and mild Alzheimer's disease. J Int Neuropsychol Soc. Sep 2009;15(5):751-757. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Hawkins DM, Garrett JA, Stephenson B. Some issues in resolution of diagnostic tests using an imperfect gold standard. Stat Med. Jul 15, 2001;20(13):1987-2001. [ CrossRef ] [ Medline ]
  • Hadgu A, Dendukuri N, Hilden J. Evaluation of nucleic acid amplification tests in the absence of a perfect gold-standard test: a review of the statistical and epidemiologic issues. Epidemiology. Sep 2005;16(5):604-612. [ CrossRef ] [ Medline ]
  • Marx RG, Menezes A, Horovitz L, Jones EC, Warren RF. A comparison of two time intervals for test-retest reliability of health status instruments. J Clin Epidemiol. Aug 2003;56(8):730-735. [ CrossRef ] [ Medline ]
  • Paiva CE, Barroso EM, Carneseca EC, de Pádua Souza C, Dos Santos FT, Mendoza López RV, et al. A critical analysis of test-retest reliability in instrument validation studies of cancer patients under palliative care: a systematic review. BMC Med Res Methodol. Jan 21, 2014;14:8. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Streiner DL, Kottner J. Recommendations for reporting the results of studies of instrument and scale development and testing. J Adv Nurs. Sep 2014;70(9):1970-1979. [ CrossRef ] [ Medline ]
  • Streiner DL. A checklist for evaluating the usefulness of rating scales. Can J Psychiatry. Mar 1993;38(2):140-148. [ CrossRef ] [ Medline ]
  • Peyre H, Leplège A, Coste J. Missing data methods for dealing with missing items in quality of life questionnaires. A comparison by simulation of personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques applied to the SF-36 in the French 2003 decennial health survey. Qual Life Res. Mar 2011;20(2):287-300. [ CrossRef ] [ Medline ]
  • Nevado-Holgado AJ, Kim CH, Winchester L, Gallacher J, Lovestone S. Commonly prescribed drugs associate with cognitive function: a cross-sectional study in UK Biobank. BMJ Open. Nov 30, 2016;6(11):e012177. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Moore AR, O'Keeffe ST. Drug-induced cognitive impairment in the elderly. Drugs Aging. Jul 1999;15(1):15-28. [ CrossRef ] [ Medline ]
  • Rogers J, Wiese BS, Rabheru K. The older brain on drugs: substances that may cause cognitive impairment. Geriatr Aging. 2008;11(5):284-289. [ FREE Full text ]
  • Marvanova M. Drug-induced cognitive impairment: effect of cardiovascular agents. Ment Health Clin. Jul 2016;6(4):201-206. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Espeland MA, Rapp SR, Manson JE, Goveas JS, Shumaker SA, Hayden KM, et al. WHIMSYWHIMS-ECHO Study Groups. Long-term effects on cognitive trajectories of postmenopausal hormone therapy in two age groups. J Gerontol A Biol Sci Med Sci. Jun 01, 2017;72(6):838-845. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Luis CA, Keegan AP, Mullan M. Cross validation of the Montreal cognitive assessment in community dwelling older adults residing in the Southeastern US. Int J Geriatr Psychiatry. Feb 2009;24(2):197-201. [ CrossRef ] [ Medline ]
  • Cunje A, Molloy DW, Standish TI, Lewis DL. Alternate forms of logical memory and verbal fluency tasks for repeated testing in early cognitive changes. Int Psychogeriatr. Feb 2007;19(1):65-75. [ CrossRef ] [ Medline ]
  • Molloy DW, Standish TI, Lewis DL. Screening for mild cognitive impairment: comparing the SMMSE and the ABCS. Can J Psychiatry. Jan 2005;50(1):52-58. [ CrossRef ] [ Medline ]
  • Streiner DL, Norman GR. Health Measurement Scales: A Practical Guide to Their Development and Use. 4th edition. Oxford, UK. Oxford University Press; 2008.
  • Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. Jun 2016;15(2):155-163. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276-282. [ FREE Full text ] [ Medline ]
  • Zhuang L, Yang Y, Gao J. Cognitive assessment tools for mild cognitive impairment screening. J Neurol. May 2021;268(5):1615-1622. [ CrossRef ] [ Medline ]
  • Zhang J, Wang L, Deng X, Fei G, Jin L, Pan X, et al. Five-minute cognitive test as a new quick screening of cognitive impairment in the elderly. Aging Dis. Dec 2019;10(6):1258-1269. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Feldman HH, Jacova C, Robillard A, Garcia A, Chow T, Borrie M, et al. Diagnosis and treatment of dementia: 2. Diagnosis. CMAJ. Mar 25, 2008;178(7):825-836. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Sabbagh MN, Boada M, Borson S, Chilukuri M, Dubois B, Ingram J, et al. Early detection of mild cognitive impairment (MCI) in primary care. J Prev Alzheimers Dis. 2020;7(3):165-170. [ CrossRef ] [ Medline ]
  • Milne A. Dementia screening and early diagnosis: the case for and against. Health Risk Soc. Mar 05, 2010;12(1):65-76. [ CrossRef ]
  • Screening tools to identify adults with cognitive impairment associated with dementia: diagnostic accuracy. Canadian Agency for Drugs and Technologies in Health. 2014. URL: https:/​/www.​cadth.ca/​sites/​default/​files/​pdf/​htis/​nov-2014/​RB0752%20Cognitive%20Assessments%20for%20Dementia%20Final.​pdf [accessed 2024-04-01]
  • Chehrehnegar N, Nejati V, Shati M, Rashedi V, Lotfi M, Adelirad F, et al. Early detection of cognitive disturbances in mild cognitive impairment: a systematic review of observational studies. Psychogeriatrics. Mar 2020;20(2):212-228. [ CrossRef ] [ Medline ]
  • Chan JY, Yau ST, Kwok TC, Tsoi KK. Diagnostic performance of digital cognitive tests for the identification of MCI and dementia: a systematic review. Ageing Res Rev. Dec 2021;72:101506. [ CrossRef ] [ Medline ]
  • Cubillos C, Rienzo A. Digital cognitive assessment tests for older adults: systematic literature review. JMIR Ment Health. Dec 08, 2023;10:e47487. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chen R, Foschini L, Kourtis L, Signorini A, Jankovic F, Pugh M, et al. Developing measures of cognitive impairment in the real world from consumer-grade multimodal sensor streams. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019. Presented at: KDD '19; August 4-8, 2019;2145; Anchorage, AK. URL: https://dl.acm.org/doi/10.1145/3292500.3330690 [ CrossRef ]
  • Koo BM, Vizer LM. Mobile technology for cognitive assessment of older adults: a scoping review. Innov Aging. Jan 2019;3(1):igy038. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Zygouris S, Ntovas K, Giakoumis D, Votis K, Doumpoulakis S, Segkouli S, et al. A preliminary study on the feasibility of using a virtual reality cognitive training application for remote detection of mild cognitive impairment. J Alzheimers Dis. 2017;56(2):619-627. [ CrossRef ] [ Medline ]
  • Liu Q, Song H, Yan M, Ding Y, Wang Y, Chen L, et al. Virtual reality technology in the detection of mild cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev. Jun 2023;87:101889. [ CrossRef ] [ Medline ]
  • Fayemiwo MA, Olowookere TA, Olaniyan OO, Ojewumi TO, Oyetade IS, Freeman S, et al. Immediate word recall in cognitive assessment can predict dementia using machine learning techniques. Alzheimers Res Ther. Jun 15, 2023;15(1):111. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Statsenko Y, Meribout S, Habuza T, Almansoori TM, van Gorkom KN, Gelovani JG, et al. Patterns of structure-function association in normal aging and in Alzheimer's disease: screening for mild cognitive impairment and dementia with ML regression and classification models. Front Aging Neurosci. 2022;14:943566. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Roebuck-Spencer TM, Glen T, Puente AE, Denney RL, Ruff RM, Hostetter G, et al. Cognitive screening tests versus comprehensive neuropsychological test batteries: a national academy of neuropsychology education paper†. Arch Clin Neuropsychol. Jun 01, 2017;32(4):491-498. [ CrossRef ] [ Medline ]
  • Jammeh EA, Carroll CB, Pearson SW, Escudero J, Anastasiou A, Zhao P, et al. Machine-learning based identification of undiagnosed dementia in primary care: a feasibility study. BJGP Open. Jul 2018;2(2):bjgpopen18X101589. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Riello M, Rusconi E, Treccani B. The role of brief global cognitive tests and neuropsychological expertise in the detection and differential diagnosis of dementia. Front Aging Neurosci. 2021;13:648310. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • McDonnell M, Dill L, Panos S, Amano S, Brown W, Giurgius S, et al. Verbal fluency as a screening tool for mild cognitive impairment. Int Psychogeriatr. Sep 2020;32(9):1055-1062. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Wojtowicz A, Larner AJ. Diagnostic test accuracy of cognitive screeners in older people. Prog Neurol Psychiatry. Mar 20, 2017;21(1):17-21. [ CrossRef ]
  • Larner AJ. Cognitive screening instruments for the diagnosis of mild cognitive impairment. Prog Neurol Psychiatry. Apr 07, 2016;20(2):21-26. [ CrossRef ]
  • Heintz BD, Keenan KG. Spiral tracing on a touchscreen is influenced by age, hand, implement, and friction. PLoS One. 2018;13(2):e0191309. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Laguna K, Babcock RL. Computer anxiety in young and older adults: implications for human-computer interactions in older populations. Comput Human Behav. Aug 1997;13(3):317-326. [ CrossRef ]
  • Wild KV, Mattek NC, Maxwell SA, Dodge HH, Jimison HB, Kaye JA. Computer-related self-efficacy and anxiety in older adults with and without mild cognitive impairment. Alzheimers Dement. Nov 2012;8(6):544-552. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Wiechmann D, Ryan AM. Reactions to computerized testing in selection contexts. Int J Sel Assess. Jul 30, 2003;11(2-3):215-229. [ CrossRef ]
  • Gass CS, Curiel RE. Test anxiety in relation to measures of cognitive and intellectual functioning. Arch Clin Neuropsychol. Aug 2011;26(5):396-404. [ CrossRef ] [ Medline ]
  • Barbic D, Kim B, Salehmohamed Q, Kemplin K, Carpenter CR, Barbic SP. Diagnostic accuracy of the Ottawa 3DY and short blessed test to detect cognitive dysfunction in geriatric patients presenting to the emergency department. BMJ Open. Mar 16, 2018;8(3):e019652. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Owens AP, Ballard C, Beigi M, Kalafatis C, Brooker H, Lavelle G, et al. Implementing remote memory clinics to enhance clinical care during and after COVID-19. Front Psychiatry. 2020;11:579934. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Geddes MR, O'Connell ME, Fisk JD, Gauthier S, Camicioli R, Ismail Z, et al. Alzheimer Society of Canada Task Force on Dementia Care Best Practices for COVID‐19. Remote cognitive and behavioral assessment: report of the Alzheimer Society of Canada task force on dementia care best practices for COVID-19. Alzheimers Dement (Amst). 2020;12(1):e12111. [ FREE Full text ] [ CrossRef ] [ Medline ]

Abbreviations

Edited by G Eysenbach, T de Azevedo Cardoso; submitted 29.01.24; peer-reviewed by J Gao, MJ Moore; comments to author 20.02.24; revised version received 05.03.24; accepted 19.03.24; published 19.04.24.

©Josephine McMurray, AnneMarie Levy, Wei Pang, Paul Holyoke. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 19.04.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

Wind turbine blades get a sustainable upgrade

Researchers at Virginia Tech’s College of Engineering create novel 3D printing methods and new recyclable materials to improve the environmental footprint of wind turbine blade production.

  • Chelsea Seeber  and 
  • Hailey Wade

17 Apr 2024

  • Share on Facebook
  • Share on Twitter
  • Copy address link to clipboard

Three researchers gather around 3D printing robot.

The average wind turbine generates enough electricity in 46 minutes to power a home in the United States for an entire month, according to the United States Geological Survey . And with more than 70,800 turbines scattered throughout the country, wind power has now surpassed hydroelectric power as the largest producer of renewable energy.

With a $2 million grant from the Department of Energy , researchers from Virginia Tech are pioneering processes to make this sustainable energy source even more sustainable. The grant is part of a $72 million initiative to innovate manufacturing processes for wind technologies and create sustainable solutions for harnessing wind energy. The research team at Virginia Tech will be using new methods of additive manufacturing, computational design, and a recyclable, high strength thermoplastic material.

Chris Williams , the L.S. Randolph Professor in the Department of Mechanical Engineering , is leading the project along with Associate Professor Michael Bortner  of the Department of Chemical Engineering . They will be joined by postdoctoral researcher  Joseph Kubalak and graduate student researchers from mechanical engineering, chemical engineering, and the Macromolecules Innovation Institute . The project will use Virginia Tech’s Stability Wind Tunnel to evaluate the printed turbine blades with help from Research Associate Professor Aurelien Borgoltz and Research Assistant Professor Nanyaporn Intaratep of the Kevin T. Crofton Department of Aerospace and Ocean Engineering.

“Although the energy generated by wind turbines is green, the materials they are made of are not recyclable, create a tremendous amount of waste, and blade manufacturing is quite arduous,” said Williams. “Our proposed project is looking to dramatically reduce waste, completely eliminate all hazardous materials, and enable 3D printing of a completely recyclable wind turbine.”

To accomplish this, Williams, the director of the Design, Research, and Education for Additive Manufacturing Systems (DREAMS) Laboratory , said the project requires the convergence of three key innovations:

  • Robotically printing large objects using new technology created in the DREAMS lab 
  • Utilizing unique design optimization techniques to enhance how the materials are printed in the most strong and efficient way possible
  • Employing a novel polymer composite material, provided by Bortner and his team, that is completely recyclable, but has the properties of commonly known glass fiber reinforced composites 

Environmental improvements for the future

Currently, wind turbine blades are made at off-site production facilities using large molds that require long lead times. Once those blades are fabricated, they then take a long and costly journey to their often remote destination by way of semi-truck. According to Utility Drive , it can take up to 10 loads and a year of planning to relocate these roughly 200-foot energy generators. The team’s new printing technology could one day provide a means to produce large turbine blades near the installation site, thus removing the challenges in their transport.

“There is a huge emphasis right now across the world for renewable energy resources and implementation of renewable resources,” said Bortner, associate director of the Macromolecules Innovation Institute . “With my focus on the materials research side coupled with Chris Williams’ work on the process side for additive manufacturing, we’re able to collaborate and solve these complex problems and transition them into full-scale wind turbine blade components.”

When it comes to designing wind turbine blades, the materials used in construction play a critical role in overall performance and durability. This is increasingly crucial as wind turbine blades grow in size to harness more energy. While current blades are made out of some recyclable materials, they are not exclusively recyclable. This new process will eliminate the use of hazardous materials in manufacturing, making them reusable. 

“We have a novel material design that, when processed through 3D printing, not only produces the properties that are traditionally used to make up wind turbine blades, but are also wholly recyclable,” said Bortner. “So if the blades get damaged or reach their end of life, we can break them down, reprocess them, and 3D print them again into new blades.”

“Over the last few years, we’ve seen energy costs skyrocket,” said Bortner. “We need to start to identify more practical ways to harness renewable energy resources and ways to do so that are less expensive. By identifying technologies to reduce energy costs, that cost savings will eventually trickle down to the average consumer.”

This process is made possible through the team's new innovations in 3D printing, which allow large objects even bigger than the printer itself, such as wind turbine blades, to be printed on the spot.

Two students look at research on a computer.

Collaboration across disciplines

A project the size of a wind turbine blade could benefit from some helping hands. Luckily, the research team is collaborating with multiple groups in the wind energy industry to make the project a success.

Working with the National Renewable Energy Laboratory (NREL) and TPI Composites is a critical step toward the end goal of producing wind turbine blades on-site at wind farms throughout the United States. Virginia Tech’s Stability Wind Tunnel will take aeroacoustic measurements of the printed wind turbine blades using the wind tunnel on campus.

“Collaboration with industries gives us access to world class expertise in wind turbine blade designing, manufacturing, testing, and characterization,” said Williams. “NREL and TPI Composites are helping us explore how our research could be translated into their facilities and will help evaluate and test our materials and our optimized robotic printing toolpaths on their large robotic additive manufacturing platforms. The goal is to make sure that the interdisciplinary expertise we are bringing together has industrial relevance.”  

For Williams, collaboration across so many disciplines was natural to enable the creation of new technologies and materials.

“This project speaks to the core strengths of Virginia Tech,” said Williams. “We are bringing together interdisciplinary expertise in a collaboration that is unique to this university. Our work with national labs and industry partners adds contextual expertise and a guiding path toward industrial relevance and future technology transition. It’s all in the name of advancing sustainability, which aligns perfectly with Virginia Tech’s vision to be a leader in climate action in service to our community, the commonwealth, and the world.”

Chelsea Seeber

540-231-2108

  • Aerospace and Ocean Engineering
  • Affordable and Clean Energy
  • Chemical Engineering
  • Climate Action
  • College of Engineering
  • Macromolecules Innovation Institute
  • Mechanical Engineering
  • Responsible Consumption and Production
  • Stability Wind Tunnel
  • Virginia Tech Global Distinction

Related Content

Five researchers looking at results on a computer.

COMMENTS

  1. Research Methodology

    The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

  2. What Is a Research Methodology?

    Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, ... The research design is a strategy for answering your research questions. It determines how you will collect and analyze your data. 4802.

  3. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  4. Your Step-by-Step Guide to Writing a Good Research Methodology

    Provide the rationality behind your chosen approach. Based on logic and reason, let your readers know why you have chosen said research methodologies. Additionally, you have to build strong arguments supporting why your chosen research method is the best way to achieve the desired outcome. 3. Explain your mechanism.

  5. Research Design

    Table of contents. Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies.

  6. A Comprehensive Guide to Methodology in Research

    Research methodology refers to the system of procedures, techniques, and tools used to carry out a research study. It encompasses the overall approach, including the research design, data collection methods, data analysis techniques, and the interpretation of findings. Research methodology plays a crucial role in the field of research, as it ...

  7. 6. The Methodology

    The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study's overall validity and reliability.

  8. How To Write The Methodology Chapter

    Do yourself a favour and start with the end in mind. Section 1 - Introduction. As with all chapters in your dissertation or thesis, the methodology chapter should have a brief introduction. In this section, you should remind your readers what the focus of your study is, especially the research aims. As we've discussed many times on the blog ...

  9. What Is a Research Methodology?

    Revised on 10 October 2022. Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research.

  10. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  11. Research Methodology Example (PDF + Template)

    Research methodology 101: an introductory video discussing what a methodology is and the role it plays within a dissertation; Research design 101: an overview of the most common research designs for both qualitative and quantitative studies; Variables 101: an introductory video covering the different types of variables that exist within research.

  12. How to Write Research Methodology: 13 Steps (with Pictures)

    A quantitative approach and statistical analysis would give you a bigger picture. 3. Identify how your analysis answers your research questions. Relate your methodology back to your original research questions and present a proposed outcome based on your analysis.

  13. What Is Research Methodology? Definition + Examples

    As we mentioned, research methodology refers to the collection of practical decisions regarding what data you'll collect, from who, how you'll collect it and how you'll analyse it. Research design, on the other hand, is more about the overall strategy you'll adopt in your study. For example, whether you'll use an experimental design ...

  14. What is Research Methodology? Definition, Types, and Examples

    A research methodology should include the following components: 3,9. Research design—should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory. Research method—this can be quantitative, qualitative, or mixed-method.

  15. How to Write Research Methodology in 2024: Overview, Tips, and

    Methodology in research is defined as the systematic method to resolve a research problem through data gathering using various techniques, providing an interpretation of data gathered and drawing conclusions about the research data. Essentially, a research methodology is the blueprint of a research or study (Murthy & Bhojanna, 2009, p. 32).

  16. Study designs: Part 1

    Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem. Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the ...

  17. What is design research methodology and why is it important?

    Design research is the process of gathering, analyzing and interpreting data and insights to inspire, guide and provide context for designs. It's a research discipline that applies both quantitative and qualitative research methods to help make well-informed design decisions. Not to be confused with user experience research - focused on the ...

  18. Planning Qualitative Research: Design and Decision Making for New

    While many books and articles guide various qualitative research methods and analyses, there is currently no concise resource that explains and differentiates among the most common qualitative approaches. We believe novice qualitative researchers, students planning the design of a qualitative study or taking an introductory qualitative research course, and faculty teaching such courses can ...

  19. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  20. (PDF) Research Design and Methodology

    There are a number of approaches used in this research method design. The purpose of this chapter is to design the methodology of the research approach through mixed types of research techniques.

  21. Contents and Layout of Research Report

    The layout of research report means as to what the research report should contain. The contents of the research report are noted below: Preliminary Page. Main Text. End Matter. (1) Preliminary Pages: These must be title of the research topic and data. There must be preface of foreword to the research work.

  22. How to establish a user research process

    User research is systematically used in designing new features that represent great value to our users. The team now has a deeper understanding of its markets and users. Several strategic decisions are made based on user research. By involving key stakeholders, communication and collaboration are improved.

  23. Country Specific Methodology

    The results are based on national samples, unless otherwise noted. Included here is detailed information, such as mode of interview, sampling design, margin of error, and design effect, for each country we survey, organized by survey, country and year. For more general information on how we conduct our international survey research, visit here.

  24. Behavioral Sciences

    A mixed-methods design was adopted through the use of a self-report protocol and the implementation of a semi-structured interview . The longitudinal-type research was divided into a base-line phase [ 5 , 38 ] and a follow-up phase six months after the first one (as the Criterion A for Prolonged Grief Disorders requires a 12-month temporal line ...

  25. Journal of Medical Internet Research

    Background: With the rapid aging of the global population, the prevalence of mild cognitive impairment (MCI) and dementia is anticipated to surge worldwide. MCI serves as an intermediary stage between normal aging and dementia, necessitating more sensitive and effective screening tools for early identification and intervention. The BrainFx SCREEN is a novel digital tool designed to assess ...

  26. How to Write a Research Proposal

    Research design and methods. Following the literature review, restate your main objectives. This brings the focus back to your own project. Next, your research design or methodology section will describe your overall approach, and the practical steps you will take to answer your research questions.

  27. Perspectives on Work in the Continuing Care Sector during and ...

    Materials and Methods 2.1. Design, Setting, and Participants. A sequential exploratory design was completed for this mixed-methods study . The qualitative descriptive methodology was used first through focus group interviews, followed by quantitative survey methodology. ... S. Jamshed, "Qualitative research method-interviewing and observation ...

  28. Wind turbine blades get a sustainable upgrade

    The research team will be using new methods of additive manufacturing, computational design, and a recyclable, high strength thermoplastic material. With a $2 million grant from the Department of Energy, researchers from Virginia Tech have pioneered processes to make this sustainable energy source even more efficient. The research team will be ...