A herd of bison moves through a grassy valley in Yellowstone National Park

Earth Day Match: Donate to Defend Our Planet

Drilling on public lands, mass wildlife extinctions, worsening climate change—our planet is in crisis. Help us fight back this Earth Day and your gift will be matched $1 for $1.

What Are the Causes of Climate Change?

We can’t fight climate change without understanding what drives it.

A river runs through a valley between mountains, with brown banks visible on either side of the water

Low water levels at Shasta Lake, California, following a historic drought in October 2021

Andrew Innerarity/California Department of Water Resources

A headshot of Jeff Turrentine

  • Share this page block

At the root of climate change is the phenomenon known as the greenhouse effect , the term scientists use to describe the way that certain atmospheric gases “trap” heat that would otherwise radiate upward, from the planet’s surface, into outer space. On the one hand, we have the greenhouse effect to thank for the presence of life on earth; without it, our planet would be cold and unlivable.

But beginning in the mid- to late-19th century, human activity began pushing the greenhouse effect to new levels. The result? A planet that’s warmer right now than at any other point in human history, and getting ever warmer. This global warming has, in turn, dramatically altered natural cycles and weather patterns, with impacts that include extreme heat, protracted drought, increased flooding, more intense storms, and rising sea levels. Taken together, these miserable and sometimes deadly effects are what have come to be known as climate change .

Detailing and discussing the human causes of climate change isn’t about shaming people, or trying to make them feel guilty for their choices. It’s about defining the problem so that we can arrive at effective solutions. And we must honestly address its origins—even though it can sometimes be difficult, or even uncomfortable, to do so. Human civilization has made extraordinary productivity leaps, some of which have led to our currently overheated planet. But by harnessing that same ability to innovate and attaching it to a renewed sense of shared responsibility, we can find ways to cool the planet down, fight climate change , and chart a course toward a more just, equitable, and sustainable future.

Here’s a rough breakdown of the factors that are driving climate change.

Natural causes of climate change

Human-driven causes of climate change, transportation, electricity generation, industry & manufacturing, agriculture, oil & gas development, deforestation, our lifestyle choices.

Some amount of climate change can be attributed to natural phenomena. Over the course of Earth’s existence, volcanic eruptions , fluctuations in solar radiation , tectonic shifts , and even small changes in our orbit have all had observable effects on planetary warming and cooling patterns.

But climate records are able to show that today’s global warming—particularly what has occured since the start of the industrial revolution—is happening much, much faster than ever before. According to NASA , “[t]hese natural causes are still in play today, but their influence is too small or they occur too slowly to explain the rapid warming seen in recent decades.” And the records refute the misinformation that natural causes are the main culprits behind climate change, as some in the fossil fuel industry and conservative think tanks would like us to believe.

A black and white image of an industrial plant on the banks of a body of water, with black smoke rising from three smokestacks

Chemical manufacturing plants emit fumes along Onondaga Lake in Solvay, New York, in the late-19th century. Over time, industrial development severely polluted the local area.

Library of Congress, Prints & Photographs Division, Detroit Publishing Company Collection

Scientists agree that human activity is the primary driver of what we’re seeing now worldwide. (This type of climate change is sometimes referred to as anthropogenic , which is just a way of saying “caused by human beings.”) The unchecked burning of fossil fuels over the past 150 years has drastically increased the presence of atmospheric greenhouse gases, most notably carbon dioxide . At the same time, logging and development have led to the widespread destruction of forests, wetlands, and other carbon sinks —natural resources that store carbon dioxide and prevent it from being released into the atmosphere.

Right now, atmospheric concentrations of greenhouse gases like carbon dioxide, methane , and nitrous oxide are the highest they’ve been in the last 800,000 years . Some greenhouse gases, like hydrochlorofluorocarbons (HFCs) , do not even exist in nature. By continuously pumping these gases into the air, we helped raise the earth’s average temperature by about 1.9 degrees Fahrenheit during the 20th century—which has brought us to our current era of deadly, and increasingly routine, weather extremes. And it’s important to note that while climate change affects everyone in some way, it doesn’t do so equally: All over the world, people of color and those living in economically disadvantaged or politically marginalized communities bear a much larger burden , despite the fact that these communities play a much smaller role in warming the planet.

Our ways of generating power for electricity, heat, and transportation, our built environment and industries, our ways of interacting with the land, and our consumption habits together serve as the primary drivers of climate change. While the percentages of greenhouse gases stemming from each source may fluctuate, the sources themselves remain relatively consistent.

Four lanes of cars and trucks sit in traffic on a highway

Traffic on Interstate 25 in Denver

David Parsons/iStock

The cars, trucks, ships, and planes that we use to transport ourselves and our goods are a major source of global greenhouse gas emissions. (In the United States, they actually constitute the single-largest source.) Burning petroleum-based fuel in combustion engines releases massive amounts of carbon dioxide into the atmosphere. Passenger cars account for 41 percent of those emissions, with the typical passenger vehicle emitting about 4.6 metric tons of carbon dioxide per year. And trucks are by far the worst polluters on the road. They run almost constantly and largely burn diesel fuel, which is why, despite accounting for just 4 percent of U.S. vehicles, trucks emit 23 percent of all greenhouse gas emissions from transportation.

We can get these numbers down, but we need large-scale investments to get more zero-emission vehicles on the road and increase access to reliable public transit .

As of 2021, nearly 60 percent of the electricity used in the United States comes from the burning of coal, natural gas , and other fossil fuels . Because of the electricity sector’s historical investment in these dirty energy sources, it accounts for roughly a quarter of U.S. greenhouse gas emissions, including carbon dioxide, methane, and nitrous oxide.

That history is undergoing a major change, however: As renewable energy sources like wind and solar become cheaper and easier to develop, utilities are turning to them more frequently. The percentage of clean, renewable energy is growing every year—and with that growth comes a corresponding decrease in pollutants.

But while things are moving in the right direction, they’re not moving fast enough. If we’re to keep the earth’s average temperature from rising more than 1.5 degrees Celsius, which scientists say we must do in order to avoid the very worst impacts of climate change, we have to take every available opportunity to speed up the shift from fossil fuels to renewables in the electricity sector.

A graphic titled "Total U.S. Greenhouse Gas Emissions by Economic Sector (2020)"

The factories and facilities that produce our goods are significant sources of greenhouse gases; in 2020, they were responsible for fully 24 percent of U.S. emissions. Most industrial emissions come from the production of a small set of carbon-intensive products, including basic chemicals, iron and steel, cement and concrete, aluminum, glass, and paper. To manufacture the building blocks of our infrastructure and the vast array of products demanded by consumers, producers must burn through massive amounts of energy. In addition, older facilities in need of efficiency upgrades frequently leak these gases, along with other harmful forms of air pollution .

One way to reduce the industrial sector’s carbon footprint is to increase efficiency through improved technology and stronger enforcement of pollution regulations. Another way is to rethink our attitudes toward consumption (particularly when it comes to plastics ), recycling , and reuse —so that we don’t need to be producing so many things in the first place. And, since major infrastructure projects rely heavily on industries like cement manufacturing (responsible for 7 percent of annual global greenhouse gas), policy mandates must leverage the government’s purchasing power to grow markets for cleaner alternatives, and ensure that state and federal agencies procure more sustainably produced materials for these projects. Hastening the switch from fossil fuels to renewables will also go a long way toward cleaning up this energy-intensive sector.

The advent of modern, industrialized agriculture has significantly altered the vital but delicate relationship between soil and the climate—so much so that agriculture accounted for 11 percent of U.S. greenhouse gas emissions in 2020. This sector is especially notorious for giving off large amounts of nitrous oxide and methane, powerful gases that are highly effective at trapping heat. The widespread adoption of chemical fertilizers , combined with certain crop-management practices that prioritize high yields over soil health, means that agriculture accounts for nearly three-quarters of the nitrous oxide found in our atmosphere. Meanwhile, large-scale industrialized livestock production continues to be a significant source of atmospheric methane, which is emitted as a function of the digestive processes of cattle and other ruminants.

A man in a cap and outdoor vest in front of a wooden building holds a large squash

Stephen McComber holds a squash harvested from the community garden in Kahnawà:ke Mohawk Territory, a First Nations reserve of the Mohawks of Kahnawà:ke, in Quebec.

Stephanie Foden for NRDC

But farmers and ranchers—especially Indigenous farmers, who have been tending the land according to sustainable principles —are reminding us that there’s more than one way to feed the world. By adopting the philosophies and methods associated with regenerative agriculture , we can slash emissions from this sector while boosting our soil’s capacity for sequestering carbon from the atmosphere, and producing healthier foods.

A pipe sticks out of a hole in the ground in the center of a wide pit surrounded by crude fencing

A decades-old, plugged and abandoned oil well at a cattle ranch in Crane County, Texas, in June 2021, when it was found to be leaking brine water

Matthew Busch/Bloomberg via Getty Images

Oil and gas lead to emissions at every stage of their production and consumption—not only when they’re burned as fuel, but just as soon as we drill a hole in the ground to begin extracting them. Fossil fuel development is a major source of methane, which invariably leaks from oil and gas operations : drilling, fracking , transporting, and refining. And while methane isn’t as prevalent a greenhouse gas as carbon dioxide, it’s many times more potent at trapping heat during the first 20 years of its release into the atmosphere. Even abandoned and inoperative wells—sometimes known as “orphaned” wells —leak methane. More than 3 million of these old, defunct wells are spread across the country and were responsible for emitting more than 280,000 metric tons of methane in 2018.

Unsurprisingly, given how much time we spend inside of them, our buildings—both residential and commercial—emit a lot of greenhouse gases. Heating, cooling, cooking, running appliances, and maintaining other building-wide systems accounted for 13 percent of U.S. emissions overall in 2020. And even worse, some 30 percent of the energy used in U.S. buildings goes to waste, on average.

Every day, great strides are being made in energy efficiency , allowing us to achieve the same (or even better) results with less energy expended. By requiring all new buildings to employ the highest efficiency standards—and by retrofitting existing buildings with the most up-to-date technologies—we’ll reduce emissions in this sector while simultaneously making it easier and cheaper for people in all communities to heat, cool, and power their homes: a top goal of the environmental justice movement.

An aerial view show a large area of brown land surrounded by deep green land

An aerial view of clearcut sections of boreal forest near Dryden in Northwestern Ontario, Canada, in June 2019

River Jordan for NRDC

Another way we’re injecting more greenhouse gas into the atmosphere is through the clearcutting of the world’s forests and the degradation of its wetlands . Vegetation and soil store carbon by keeping it at ground level or underground. Through logging and other forms of development, we’re cutting down or digging up vegetative biomass and releasing all of its stored carbon into the air. In Canada’s boreal forest alone, clearcutting is responsible for releasing more than 25 million metric tons of carbon dioxide into the atmosphere each year—the emissions equivalent of 5.5 million vehicles.

Government policies that emphasize sustainable practices, combined with shifts in consumer behavior , are needed to offset this dynamic and restore the planet’s carbon sinks .

A passnger train crosses over a bridge on a river

The Yellow Line Metro train crossing over the Potomac River from Washington, DC, to Virginia on June 24, 2022

Sarah Baker

The decisions we make every day as individuals—which products we purchase, how much electricity we consume, how we get around, what we eat (and what we don’t—food waste makes up 4 percent of total U.S. greenhouse gas emissions)—add up to our single, unique carbon footprints . Put all of them together and you end up with humanity’s collective carbon footprint. The first step in reducing it is for us to acknowledge the uneven distribution of climate change’s causes and effects, and for those who bear the greatest responsibility for global greenhouse gas emissions to slash them without bringing further harm to those who are least responsible .

The big, climate-affecting decisions made by utilities, industries, and governments are shaped, in the end, by us : our needs, our demands, our priorities. Winning the fight against climate change will require us to rethink those needs, ramp up those demands , and reset those priorities. Short-term thinking of the sort that enriches corporations must give way to long-term planning that strengthens communities and secures the health and safety of all people. And our definition of climate advocacy must go beyond slogans and move, swiftly, into the realm of collective action—fueled by righteous anger, perhaps, but guided by faith in science and in our ability to change the world for the better.

If our activity has brought us to this dangerous point in human history, breaking old patterns can help us find a way out.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

We need climate action to be a top priority in Washington!

Tell President Biden and Congress to slash climate pollution and reduce our dependence on fossil fuels.

essay cause of climate change

Urge President Biden and Congress to make equitable climate action a top priority in 2024

Related stories.

A great blue heron perches on a piling in a body of water, with an industrial plant and smokestacks visible in the background

Greenhouse Effect 101

A woman holds a lantern that is connected by a wire to a small solar panel held by a man to her left.

What Are the Solutions to Climate Change?

A person in an orange shirt holding up a solar panel

Failing to Meet Our Climate Goals Is Not an Option

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

JavaScript appears to be disabled on this computer. Please click here to see any active alerts .

Causes of Climate Change

Graph: Human and Natural Influences on Global Temperature

Since the Industrial Revolution, human activities have released large amounts of carbon dioxide and other greenhouse gases into the atmosphere, which has changed the earth’s climate. Natural processes, such as changes in the sun's energy and volcanic eruptions, also affect the earth's climate. However, they do not explain the warming that we have observed over the last century. 1

Human Versus Natural Causes

It is unequivocal that human influence has warmed the atmosphere, ocean and land . - Intergovernmental Panel on Climate Change 4

Scientists have pieced together a record of the earth’s climate by analyzing a number of indirect measures of climate, such as ice cores, tree rings, glacier lengths, pollen remains, and ocean sediments, and by studying changes in the earth’s orbit around the sun. 2 This record shows that the climate varies naturally over a wide range of time scales, but this variability does not explain the observed warming since the 1950s. Rather, it is extremely likely (> 95%) that human activities have been the dominant cause of that warming. 3

Human activities have contributed substantially to climate change through:

  • Greenhouse Gas Emissions

Reflectivity or Absorption of the Sun’s Energy

Heat-trapping greenhouse gases and the earth's climate, greenhouse gases.

Concentrations of the key greenhouse gases have all increased since the Industrial Revolution due to human activities. Carbon dioxide, methane, and nitrous oxide concentrations are now more abundant in the earth’s atmosphere than any time in the last 800,000 years. 5 These greenhouse gas emissions have increased the greenhouse effect and caused the earth’s surface temperature to rise . Burning fossil fuels changes the climate more than any other human activity.

Carbon dioxide: Human activities currently release over 30 billion tons of carbon dioxide into the atmosphere every year. 6 Atmospheric carbon dioxide concentrations have increased by more than 40 percent since pre-industrial times, from approximately 280 parts per million (ppm) in the 18th century 7 to 414 ppm in 2020. 8

Methane: Human activities increased methane concentrations during most of the 20th century to more than 2.5 times the pre-industrial level, from approximately 722 parts per billion (ppb) in the 18th century 9 to 1,867 ppb in 2019. 10

Nitrous oxide: Nitrous oxide concentrations have risen approximately 20 percent since the start of the Industrial Revolution, with a relatively rapid increase toward the end of the 20th century. Nitrous oxide concentrations have increased from a pre-industrial level of 270 ppb 11 to 332 ppb in 2019. 12

For more information on greenhouse gas emissions, see the Greenhouse Gas Emissions website. To learn more about actions that can reduce these emissions, see What You Can Do . To translate abstract greenhouse gas emissions measurements into concrete terms, try using EPA's Greenhouse Gas Equivalencies Calculator .

Graph showing concentrations of key greenhouse gases.

Activities such as agriculture, road construction, and deforestation can change the reflectivity of the earth's surface, leading to local warming or cooling. This effect is observed in heat islands , which are urban centers that are warmer than the surrounding, less populated areas. One reason that these areas are warmer is that buildings, pavement, and roofs tend to reflect less sunlight than natural surfaces. While deforestation can increase the earth’s reflectivity globally by replacing dark trees with lighter surfaces such as crops, the net effect of all land-use changes appears to be a small cooling. 13

Emissions of small particles, known as aerosols, into the air can also lead to reflection or absorption of the sun's energy. Many types of air pollutants undergo chemical reactions in the atmosphere to create aerosols. Overall, human-generated aerosols have a net cooling effect on the earth. Learn more about human-generated and natural aerosols .

Natural Processes

Natural processes are always influencing the earth’s climate and can explain climate changes prior to the Industrial Revolution in the 1700s. However, recent climate changes cannot be explained by natural causes alone.

Changes in the Earth’s Orbit and Rotation

Changes in the earth’s orbit and its axis of rotation have had a big impact on climate in the past. For example, the amount of summer sunshine on the Northern Hemisphere, which is affected by changes in the planet’s orbit, appears to be the primary cause of past cycles of ice ages, in which the earth has experienced long periods of cold temperatures (ice ages), as well as shorter interglacial periods (periods between ice ages) of relatively warmer temperatures. 14   At the coldest part of the last glacial period (or ice age), the average global temperature was about 11°F colder than it is today. At the peak of the last interglacial period, however, the average global temperature was at most 2°F warmer than it is today. 15

Variations in Solar Activity

Changes in the sun’s energy output can affect the intensity of the sunlight that reaches the earth’s surface. While these changes can influence the earth’s climate, solar variations have played little role in the climate changes observed in recent decades. 16 Satellites have been measuring the amount of energy the earth receives from the sun since 1978. These measurements show no net increase in the sun’s output, even as global surface temperatures have risen. 17

Measurements of Global Average Surface Temperature and the Sun’s Energy

Changes in the Earth’s Reflectivity

The amount of sunlight that is absorbed or reflected by the planet depends on the earth’s surface and atmosphere. Dark objects and surfaces, like the ocean, forests, and soil, tend to absorb more sunlight. Light-colored objects and surfaces, like snow and clouds, tend to reflect sunlight. About 70 percent of the sunlight that reaches the earth is absorbed. 18 Natural changes in the earth’s surface, like the melting of sea ice , have contributed to climate change in the past, often acting as feedbacks  to other processes.

Volcanic Activity

Volcanoes have played a noticeable role in climate, and volcanic eruptions released large quantities of carbon dioxide in the distant past. Some explosive volcano eruptions can throw particles (e.g., SO 2 ) into the upper atmosphere, where they can reflect enough sunlight back to space to cool the surface of the planet for several years. 19 These particles are an example of cooling aerosols .

Volcanic particles from a single eruption do not produce long-term climate change because they remain in the atmosphere for a much shorter time than greenhouse gases. In addition, human activities emit more than 100 times as much carbon dioxide as volcanoes each year. 20

Changes in Naturally Occurring Carbon Dioxide Concentrations

Over the last several hundred thousand years, carbon dioxide levels varied in tandem with the glacial cycles. During warm interglacial periods, carbon dioxide levels were higher. During cool glacial periods, carbon dioxide levels were lower. 21 The heating or cooling of the earth’s surface and oceans can cause changes in the natural sources and sinks of these gases, and thus change greenhouse gas concentrations in the atmosphere. 22 These changing concentrations have acted as a positive climate feedback , amplifying the temperature changes caused by long-term shifts in the earth’s orbit. 23

A graph of atmospheric carbon dioxide concentrations.

1  National Academy of Sciences. (2020). Climate change: Evidence and causes: Update 2020 . The National Academies Press, Washington, DC, p. 5. doi: 10.17226/25733

2  Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, B. DeAngelo, S. Doherty, K. Hayhoe, R. Horton, J.P. Kossin, P.C. Taylor, A.M. Waple & C.P. Weaver. (2017). Executive summary. In: Climate science special report: Fourth national climate assessment, volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart & T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, pp. 12–34, doi: 10.7930/J0DJ5CTG

National Academy of Sciences. (2020). Climate change: Evidence and causes: Update 2020 . The National Academies Press, Washington, DC, p. 5. doi: 10.17226/25733

3  IPCC (2013). Climate change 2013: The physical science basis .  Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, p. 869.

4  IPCC. (2021). Climate change 2021: The physical science basis . Working Group I contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu & B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom, p. SPM-5.

5  National Academy of Sciences. (2020). Climate change: Evidence and causes: Update 2020 . The National Academies Press, Washington, DC, p. B-2. doi: 10.17226/25733

Fahey, D.W., S.J. Doherty, K.A. Hibbard, A. Romanou & P.C. Taylor. (2017).  Physical drivers of climate change . In: Climate science special report: Fourth national climate assessment, volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart & T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, p. 80, Figure 2.4. doi: 10.7930/J0513WCR

6  Hayhoe, K., D.J. Wuebbles, D.R. Easterling, D.W. Fahey, S. Doherty, J. Kossin, W. Sweet, R. Vose & M. Wehner. (2018). Our changing climate . In: Impacts, risks, and adaptation in the United States: Fourth national climate assessment, volume II [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock & B.C. Stewart (eds.)]. U.S. Global Change Research Program, Washington, DC, p. 76. doi: 10.7930/NCA4.2018

7  IPCC. (2013). Climate change 2013: The physical science basis . Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, p. 166.

8 NOAA. (2021). Trends in atmospheric carbon dioxide . Retrieved 3/25/2021. esrl.noaa.gov/gmd/ccgg/trends/mlo.html

9 IPCC. (2013).  Climate change 2013: The physical science basis . Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, p. 167.

10 NOAA. (2021). Trends in atmospheric methane . Retrieved 3/25/2021. esrl.noaa.gov/gmd/ccgg/trends_ch4

11 IPCC. (2013).  Climate change 2013: The physical science basis . Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, p. 168.

12 NOAA. (2021). Trends in nitrous oxide . Retrieved 3/25/2021. esrl.noaa.gov/gmd/ccgg/trends_n2o/

13 Fahey, D.W., S.J. Doherty, K.A. Hibbard, A. Romanou & P.C. Taylor. (2017). Physical drivers of climate change . In: Climate science special report: Fourth national climate assessment, volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart & T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, p. 78, Fig. 2.3 and p. 86. doi: 10.7930/J0513WCR

14  National Academy of Sciences. (2020). Climate change: Evidence and causes: Update 2020.  The National Academies Press, Washington, DC, p. 9. doi: 10.17226/25733

15  Fahey, D.W., S.J. Doherty, K.A. Hibbard, A. Romanou & P.C. Taylor. (2017). Our globally changing climate . In: Climate science special report: Fourth national climate assessment, volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart & T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, p. 53. doi: 10.7930/J08S4N35

16  National Academy of Sciences. (2020). Climate change: Evidence and causes: Update 2020.  The National Academies Press, Washington, DC, p. 7. doi: 10.17226/25733

17  National Academy of Sciences. (2020). Climate change: Evidence and causes: Update 2020.  The National Academies Press, Washington, DC, p. 7. doi: 10.17226/25733

18  Fahey, D.W., S.J. Doherty, K.A. Hibbard, A. Romanou, & P.C. Taylor. (2017). Physical drivers of climate change . In: Climate science special report: Fourth national climate assessment, volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart & T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, p. 2. doi: 10.7930/J0513WCR

19  Fahey, D.W., S.J. Doherty, K.A. Hibbard, A. Romanou, & P.C. Taylor. (2017). Physical drivers of climate change . In: Climate science special report: Fourth national climate assessment, volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart & T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, p. 79. doi: 10.7930/J0513WCR

20  Fahey, D.W., S.J. Doherty, K.A. Hibbard, A. Romanou & P.C. Taylor. (2017). Physical drivers of climate change . In: Climate science special report: Fourth national climate assessment, volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart & T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, p. 79. doi: 10.7930/J0513WCR

21  National Academy of Sciences. (2020). Climate change: Evidence and causes: Update 2020.  The National Academies Press, Washington, DC, pp. 9–10. doi: 10.17226/25733

22  IPCC. (2013).  Climate change 2013: The physical science basis .  Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, p. 399.

23  National Academy of Sciences. (2020). Climate change: Evidence and causes: Update 2020.  The National Academies Press, Washington, DC, pp. 9–10. doi: 10.17226/25733

  • Frequently Asked Questions

 view all topics  > Climate change

Based on Science

Humans are causing global warming

essay cause of climate change

The Basics of Climate Change

Greenhouse gases affect Earth’s energy balance and climate

The Sun serves as the primary energy source for Earth’s climate. Some of the incoming sunlight is reflected directly back into space, especially by bright surfaces such as ice and clouds, and the rest is absorbed by the surface and the atmosphere. Much of this absorbed solar energy is re-emitted as heat (longwave or infrared radiation). The atmosphere in turn absorbs and re-radiates heat, some of which escapes to space. Any disturbance to this balance of incoming and outgoing energy will affect the climate. For example, small changes in the output of energy from the Sun will affect this balance directly.

If all heat energy emitted from the surface passed through the atmosphere directly into space, Earth’s average surface temperature would be tens of degrees colder than today. Greenhouse gases in the atmosphere, including water vapour, carbon dioxide, methane, and nitrous oxide, act to make the surface much warmer than this because they absorb and emit heat energy in all directions (including downwards), keeping Earth’s surface and lower atmosphere warm [Figure B1]. Without this greenhouse effect, life as we know it could not have evolved on our planet. Adding more greenhouse gases to the atmosphere makes it even more effective at preventing heat from escaping into space. When the energy leaving is less than the energy entering, Earth warms until a new balance is established.

Greenhouse gases emitted by human activities alter Earth’s energy balance and thus its climate. Humans also affect climate by changing the nature of the land surfaces (for example by clearing forests for farming) and through the emission of pollutants that affect the amount and type of particles in the atmosphere.

Scientists have determined that, when all human and natural factors are considered, Earth’s climate balance has been altered towards warming, with the biggest contributor being increases in CO 2 .

essay cause of climate change

Figure b1. Greenhouse gases in the atmosphere, including water vapour, carbon dioxide, methane, and nitrous oxide, absorb heat energy and emit it in all directions (including downwards), keeping Earth’s surface and lower atmosphere warm. Adding more greenhouse gases to the atmosphere enhances the effect, making Earth’s surface and lower atmosphere even warmer. Image based on a figure from US EPA.

Human activities have added greenhouse gases to the atmosphere

The atmospheric concentrations of carbon dioxide, methane, and nitrous oxide have increased significantly since the Industrial Revolution began. In the case of carbon dioxide, the average concentration measured at the Mauna Loa Observatory in Hawaii has risen from 316 parts per million (ppm) in 1959 (the first full year of data available) to more than 411 ppm in 2019 [Figure B2]. The same rates of increase have since been recorded at numerous other stations worldwide. Since preindustrial times, the atmospheric concentration of CO 2  has increased by over 40%, methane has increased by more than 150%, and nitrous oxide has increased by roughly 20%. More than half of the increase in CO 2  has occurred since 1970. Increases in all three gases contribute to warming of Earth, with the increase in CO 2  playing the largest role. See page B3 to learn about the sources of human emitted greenhouse gases.  Learn about the sources of human emitted greenhouse gases.

Scientists have examined greenhouse gases in the context of the past. Analysis of air trapped inside ice that has been accumulating over time in Antarctica shows that the CO 2  concentration began to increase significantly in the 19th century [Figure B3], after staying in the range of 260 to 280 ppm for the previous 10,000 years. Ice core records extending back 800,000 years show that during that time, CO 2  concentrations remained within the range of 170 to 300 ppm throughout many “ice age” cycles -  learn about the ice ages  -  and no concentration above 300 ppm is seen in ice core records until the past 200 years.

Measurements of the forms (isotopes) of carbon in the modern atmosphere show a clear fingerprint of the addition of “old” carbon (depleted in natural radioactive  14 C) coming from the combustion of fossil fuels (as opposed to “newer” carbon coming from living systems). In addition, it is known that human activities (excluding land use changes) currently emit an estimated 10 billion tonnes of carbon each year, mostly by burning fossil fuels, which is more than enough to explain the observed increase in concentration. These and other lines of evidence point conclusively to the fact that the elevated CO 2  concentration in our atmosphere is the result of human activities. 

essay cause of climate change

Fig b2. Measurements of atmospheric CO 2  since 1958 from the Mauna Loa Observatory in Hawaii (black) and from the South Pole (red) show a steady annual increase in atmospheric CO 2  concentration. The measurements are made at remote places like these because they are not greatly influenced by local processes, so therefore they are representative of the background atmosphere. The small up-and-down saw-tooth pattern reflects seasonal changes in the release and uptake of CO 2  by plants. Source: Scripps CO2 Program

essay cause of climate change

Figure b3. CO 2  variations during the past 1,000 years, obtained from analysis of air trapped in an ice core extracted from Antarctica (red squares), show a sharp rise in atmospheric CO 2  starting in the late 19th century. Modern atmospheric measurements from Mauna Loa are superimposed in gray. Source: figure by Eric Wolff, data from Etheridge et al., 1996; MacFarling Meure et al., 2006; Scripps CO 2  Program. 

Climate records show a warming trend

Estimating global average surface air temperature increase requires careful analysis of millions of measurements from around the world, including from land stations, ships, and satellites. Despite the many complications of synthesising such data, multiple independent teams have concluded separately and unanimously that global average surface air temperature has risen by about 1 °C (1.8 °F) since 1900 [Figure B4]. Although the record shows several pauses and accelerations in the increasing trend, each of the last four decades has been warmer than any other decade in the instrumental record since 1850.

Going further back in time before accurate thermometers were widely available, temperatures can be reconstructed using climate-sensitive indicators “proxies” in materials such as tree rings, ice cores, and marine sediments. Comparisons of the thermometer record with these proxy measurements suggest that the time since the early 1980s has been the warmest 40-year period in at least eight centuries, and that global temperature is rising towards peak temperatures last seen 5,000 to 10,000 years ago in the warmest part of our current interglacial period.

Many other impacts associated with the warming trend have become evident in recent years. Arctic summer sea ice cover has shrunk dramatically. The heat content of the ocean has increased. Global average sea level has risen by approximately 16 cm (6 inches) since 1901, due both to the expansion of warmer ocean water and to the addition of melt waters from glaciers and ice sheets on land. Warming and precipitation changes are altering the geographical ranges of many plant and animal species and the timing of their life cycles. In addition to the effects on climate, some of the excess CO 2  in the atmosphere is being taken up by the ocean, changing its chemical composition (causing ocean acidification).

essay cause of climate change

Figure b4. Earth’s global average surface temperature has risen, as shown in this plot of combined land and ocean measurements from 1850 to 2019 derived from three independent analyses of the available data sets. The top panel shows annual average values from the three analyses, and the bottom panel shows decadal average values, including the uncertainty range (grey bars) for the maroon (HadCRUT4) dataset. The temperature changes are relative to the global average surface temperature, averaged from 1961−1990. Source: Based on IPCC AR5, data from the HadCRUT4 dataset (black), NOAA Climate.gov; data from UK Met Office Hadley Centre (maroon), US National Aeronautics and Space Administration Goddard Institute for Space Studies (red), and US National Oceanic and Atmospheric Administration National Centers for Environmental Information (orange). 

Many complex processes shape our climate

Based just on the physics of the amount of energy that CO 2 absorbs and emits, a doubling of atmospheric CO 2 concentration from pre-industrial levels (up to about 560 ppm) would by itself cause a global average temperature increase of about 1 °C (1.8 °F). In the overall climate system, however, things are more complex; warming leads to further effects (feedbacks) that either amplify or diminish the initial warming.

The most important feedbacks involve various forms of water. A warmer atmosphere generally contains more water vapour. Water vapour is a potent greenhouse gas, thus causing more warming; its short lifetime in the atmosphere keeps its increase largely in step with warming. Thus, water vapour is treated as an amplifier, and not a driver, of climate change. Higher temperatures in the polar regions melt sea ice and reduce seasonal snow cover, exposing a darker ocean and land surface that can absorb more heat, causing further warming. Another important but uncertain feedback concerns changes in clouds. Warming and increases in water vapour together may cause cloud cover to increase or decrease which can either amplify or dampen temperature change depending on the changes in the horizontal extent, altitude, and properties of clouds. The latest assessment of the science indicates that the overall net global effect of cloud changes is likely to be to amplify warming.

The ocean moderates climate change. The ocean is a huge heat reservoir, but it is difficult to heat its full depth because warm water tends to stay near the surface. The rate at which heat is transferred to the deep ocean is therefore slow; it varies from year to year and from decade to decade, and it helps to determine the pace of warming at the surface. Observations of the sub-surface ocean are limited prior to about 1970, but since then, warming of the upper 700 m (2,300 feet) is readily apparent, and deeper warming is also clearly observed since about 1990.

Surface temperatures and rainfall in most regions vary greatly from the global average because of geographical location, in particular latitude and continental position. Both the average values of temperature, rainfall, and their extremes (which generally have the largest impacts on natural systems and human infrastructure), are also strongly affected by local patterns of winds.

Estimating the effects of feedback processes, the pace of the warming, and regional climate change requires the use of mathematical models of the atmosphere, ocean, land, and ice (the cryosphere) built upon established laws of physics and the latest understanding of the physical, chemical and biological processes affecting climate, and run on powerful computers. Models vary in their projections of how much additional warming to expect (depending on the type of model and on assumptions used in simulating certain climate processes, particularly cloud formation and ocean mixing), but all such models agree that the overall net effect of feedbacks is to amplify warming.

Human activities are changing the climate

Rigorous analysis of all data and lines of evidence shows that most of the observed global warming over the past 50 years or so cannot be explained by natural causes and instead requires a significant role for the influence of human activities.

In order to discern the human influence on climate, scientists must consider many natural variations that affect temperature, precipitation, and other aspects of climate from local to global scale, on timescales from days to decades and longer. One natural variation is the El Niño Southern Oscillation (ENSO), an irregular alternation between warming and cooling (lasting about two to seven years) in the equatorial Pacific Ocean that causes significant year-to-year regional and global shifts in temperature and rainfall patterns. Volcanic eruptions also alter climate, in part increasing the amount of small (aerosol) particles in the stratosphere that reflect or absorb sunlight, leading to a short-term surface cooling lasting typically about two to three years. Over hundreds of thousands of years, slow, recurring variations in Earth’s orbit around the Sun, which alter the distribution of solar energy received by Earth, have been enough to trigger the ice age cycles of the past 800,000 years.

Fingerprinting is a powerful way of studying the causes of climate change. Different influences on climate lead to different patterns seen in climate records. This becomes obvious when scientists probe beyond changes in the average temperature of the planet and look more closely at geographical and temporal patterns of climate change. For example, an increase in the Sun’s energy output will lead to a very different pattern of temperature change (across Earth’s surface and vertically in the atmosphere) compared to that induced by an increase in CO 2 concentration. Observed atmospheric temperature changes show a fingerprint much closer to that of a long-term CO 2 increase than to that of a fluctuating Sun alone. Scientists routinely test whether purely natural changes in the Sun, volcanic activity, or internal climate variability could plausibly explain the patterns of change they have observed in many different aspects of the climate system. These analyses have shown that the observed climate changes of the past several decades cannot be explained just by natural factors.

How will climate change in the future?

Scientists have made major advances in the observations, theory, and modelling of Earth’s climate system, and these advances have enabled them to project future climate change with increasing confidence. Nevertheless, several major issues make it impossible to give precise estimates of how global or regional temperature trends will evolve decade by decade into the future. Firstly, we cannot predict how much CO 2  human activities will emit, as this depends on factors such as how the global economy develops and how society’s production and consumption of energy changes in the coming decades. Secondly, with current understanding of the complexities of how climate feedbacks operate, there is a range of possible outcomes, even for a particular scenario of CO 2  emissions. Finally, over timescales of a decade or so, natural variability can modulate the effects of an underlying trend in temperature. Taken together, all model projections indicate that Earth will continue to warm considerably more over the next few decades to centuries. If there were no technological or policy changes to reduce emission trends from their current trajectory, then further globally-averaged warming of 2.6 to 4.8 °C (4.7 to 8.6 °F) in addition to that which has already occurred would be expected during the 21st century [Figure B5]. Projecting what those ranges will mean for the climate experienced at any particular location is a challenging scientific problem, but estimates are continuing to improve as regional and local-scale models advance.

essay cause of climate change

Figure b5. The amount and rate of warming expected for the 21st century depends on the total amount of greenhouse gases that humankind emits. Models project the temperature increase for a business-as-usual emissions scenario (in red) and aggressive emission reductions, falling close to zero 50 years from now (in blue). Black is the modelled estimate of past warming. Each solid line represents the average of different model runs using the same emissions scenario, and the shaded areas provide a measure of the spread (one standard deviation) between the temperature changes projected by the different models. All data are relative to a reference period (set to zero) of 1986-2005. Source: Based on IPCC AR5

Climate change and biodiversity

Human activities are changing the climate. Science can help us understand what we are doing to habitats and the climate, but also find solutions.

Email updates

We promote excellence in science so that, together, we can benefit humanity and tackle the biggest challenges of our time.

Subscribe to our newsletters to be updated with the latest news on innovation, events, articles and reports.

What subscription are you interested in receiving? (Choose at least one subject)

ENCYCLOPEDIC ENTRY

Climate change.

Climate change is a long-term shift in global or regional climate patterns. Often climate change refers specifically to the rise in global temperatures from the mid-20th century to present.

Earth Science, Climatology

Fracking tower

Fracking is a controversial form of drilling that uses high-pressure liquid to create cracks in underground shale to extract natural gas and petroleum. Carbon emissions from fossils fuels like these have been linked to global warming and climate change.

Photograph by Mark Thiessen / National Geographic

Fracking is a controversial form of drilling that uses high-pressure liquid to create cracks in underground shale to extract natural gas and petroleum. Carbon emissions from fossils fuels like these have been linked to global warming and climate change.

Climate is sometimes mistaken for weather. But climate is different from weather because it is measured over a long period of time, whereas weather can change from day to day, or from year to year. The climate of an area includes seasonal temperature and rainfall averages, and wind patterns. Different places have different climates. A desert, for example, is referred to as an arid climate because little water falls, as rain or snow, during the year. Other types of climate include tropical climates, which are hot and humid , and temperate climates, which have warm summers and cooler winters.

Climate change is the long-term alteration of temperature and typical weather patterns in a place. Climate change could refer to a particular location or the planet as a whole. Climate change may cause weather patterns to be less predictable. These unexpected weather patterns can make it difficult to maintain and grow crops in regions that rely on farming because expected temperature and rainfall levels can no longer be relied on. Climate change has also been connected with other damaging weather events such as more frequent and more intense hurricanes, floods, downpours, and winter storms.

In polar regions, the warming global temperatures associated with climate change have meant ice sheets and glaciers are melting at an accelerated rate from season to season. This contributes to sea levels rising in different regions of the planet. Together with expanding ocean waters due to rising temperatures, the resulting rise in sea level has begun to damage coastlines as a result of increased flooding and erosion.

The cause of current climate change is largely human activity, like burning fossil fuels , like natural gas, oil, and coal. Burning these materials releases what are called greenhouse gases into Earth’s atmosphere . There, these gases trap heat from the sun’s rays inside the atmosphere causing Earth’s average temperature to rise. This rise in the planet's temperature is called global warming. The warming of the planet impacts local and regional climates. Throughout Earth's history, climate has continually changed. When occuring naturally, this is a slow process that has taken place over hundreds and thousands of years. The human influenced climate change that is happening now is occuring at a much faster rate.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

The importance of storytelling in fighting climate change

In a webinar on April 19, we'll explore how climate organizations are currently using storytelling in their work, the impacts of these stories, and lessons learned from other movements.

Knowledge is power

essay cause of climate change

Stay in the know about climate impacts and solutions. Subscribe to our weekly newsletter.

By clicking submit, you agree to share your email address with the site owner and Mailchimp to receive emails from the site owner. Use the unsubscribe link in those emails to opt out at any time.

Yale Climate Connections

Yale Climate Connections

Scientists agree: Climate change is real and caused by people

Sam Harrington

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on X (Opens in new window)

Scientific equipment in the mountains

[Leer en español aquí]

The scientific consensus that climate change is happening and that it is human-caused is strong. Scientific investigation of global warming began in the 19th century , and by the early 2000s, this research began to coalesce into confidence about the reality, causes, and general range of adverse effects of global warming. This conclusion was drawn from studying air and ocean temperatures, the atmosphere’s composition, satellite records, ice cores, modeling, and more.

In 1988 the United Nations and World Meteorological Organization founded the Intergovernmental Panel on Climate Change, IPCC, to provide regular updates on the scientific evidence on global warming. In a 2013 report , the IPCC concluded that scientific evidence of warming is “unequivocal” and that the largest cause is an increase of carbon dioxide in the atmosphere as a result of humans burning fossil fuels. The IPCC continues to assess this science, periodically issuing new reports.

Climate change is real and caused by humans

The IPCC is not the only scientific group that has reached a clear consensus on the scientific evidence of human-caused global warming. As this NASA page points out, 200 global scientific organizations, 11 international science academies, and 18 American science associations have released statements in alignment with this consensus.

Graphic showing how atmospheric CO2 has increased since Industrial Revolution

Amanda Staudt is the senior director for climate, atmospheric and polar sciences at the National Academies of Science, Engineering and Medicine, where she has worked since 2001. The Academies, she said, first began studying climate change in 1979, researching how much warming would likely happen if the amount of carbon dioxide concentrations in the atmosphere were doubled.

Four decades later, those findings have held up and have been strengthened based on scores of continued studies and analysis. “The remarkable thing about that study,” she said, “is that they basically got the right answer” from the start. This 1979 study by the National Research Council, Staudt said, led to investment in climate science in the U.S. 

Temperature data graphic

Though this consensus has been thoroughly established, scientific research and new findings continue. Staudt said countless attempted rebuttals of climate science findings have been researched and disproved.

“We did a lot of studies in that time period, looking at those questions,” she said, ”and one by one, putting them to bed and convincing ourselves over and over again, that humans were affecting climate, and that we could document that effect.”

At the National Academies, reaching consensus requires open sessions and dialogue with scientists and agreement from committees, which typically consist of 12-15 experts. Their draft reports go through peer review, and reviewers’ concerns are resolved before publication is approved. The goal is for the complex science of climate change to become as thoroughly researched and substantiated as possible.

“One of the things I think about scientists is that we’re all inherently skeptics at some level,” Staudt said. “That’s what drives us to science, that we have questions about the world around us. And we want to prove that for ourselves.”

Scientists consistently reaffirm evidence that climate change is happening

Climate scientists worldwide go through similar processes before their findings are published. And their research papers, too, show a strong consensus about global warming. As NASA states on its website , “Multiple studies published in peer-reviewed scientific journals show that 97 percent or more of actively publishing climate scientists agree: Climate-warming trends over the past century are extremely likely due to human activities.” (By sound practice, scientists resist saying science is for all times “certain” or that its findings are “final,” and the “extremely likely” language respects that practice.)

One of the studies about the consensus was led by John Cook, a fellow at the Climate Change Communication Research Hub at Monash University in Melbourne, Australia. Cook and colleagues reviewed nearly 12,000 scientific papers to examine how aligned published research is on major findings on climate change. That study found that 97 percent of scholarly papers that take a position on climate change do endorse the consensus. The papers that rejected the consensus position contained errors, according to subsequent research .

In reviewing the papers, Cook has said he and his colleagues found the consensus to have been so widely accepted by 2013 that many researchers by then no longer felt a need to mention or reaffirm it in their research papers.

essay cause of climate change

Also see: Causes of global warming: How scientists know that humans are responsible

Samantha Harrington

Samantha Harrington, director of audience experience for Yale Climate Connections, is a journalist and graphic designer with a background in digital media and entrepreneurship. Sam is especially interested... More by Samantha Harrington

essay cause of climate change

Yale Program on Climate Change Communication

  • About YPCCC
  • Yale Climate Connections
  • Student Employment
  • For The Media
  • Past Events
  • YPCCC in the News
  • Climate Change in the American Mind (CCAM)
  • Publications
  • Climate Opinion Maps
  • Climate Opinion Factsheets
  • Six Americas Super Short Survey (SASSY)
  • Resources for Educators
  • All Tools & Interactives
  • Partner with YPCCC

Home / For Educators: Grades 6-12 / Climate Explained: Introductory Essays About Climate Change Topics

Climate Explained: Introductory Essays About Climate Change Topics

Filed under: backgrounders for educators ,.

Climate Explained, a part of Yale Climate Connections, is an essay collection that addresses an array of climate change questions and topics, including why it’s cold outside if global warming is real, how we know that humans are responsible for global warming, and the relationship between climate change and national security.

More Activities like this

essay cause of climate change

Climate Change Basics: Five Facts, Ten Words

Backgrounders for Educators

To simplify the scientific complexity of climate change, we focus on communicating five key facts about climate change that everyone should know. 

essay cause of climate change

Why should we care about climate change?

Having different perspectives about global warming is natural, but the most important thing that anyone should know about climate change is why it matters.  

essay cause of climate change

External Resources

Looking for resources to help you and your students build a solid climate change science foundation? We’ve compiled a list of reputable, student-friendly links to help you do just that!  

Subscribe to our mailing list

Please select all the ways you would like to hear from Yale Program on Climate Change Communication:

You can unsubscribe at any time by clicking the link in the footer of our emails. For information about our privacy practices, please visit our website.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices here.

essay cause of climate change

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

What Is Climate Change?

Climate change refers to long-term shifts in temperatures and weather patterns. Such shifts can be natural, due to changes in the sun’s activity or large volcanic eruptions. But since the 1800s, human activities have been the main driver of climate change , primarily due to the burning of fossil fuels like coal, oil and gas.

Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun’s heat and raising temperatures.

The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from using gasoline for driving a car or coal for heating a building, for example. Clearing land and cutting down forests can also release carbon dioxide. Agriculture, oil and gas operations are major sources of methane emissions. Energy, industry, transport, buildings, agriculture and land use are among the main sectors  causing greenhouse gases.

Illustration reads: $90 Trillion for infrastructure by 2030

Humans are responsible for global warming

Climate scientists have showed that humans are responsible for virtually all global heating over the last 200 years. Human activities like the ones mentioned above are causing greenhouse gases that are warming the world faster than at any time in at least the last two thousand years.

The average temperature of the Earth’s surface is now about 1.1°C warmer than it was in the late 1800s (before the industrial revolution) and warmer than at any time in the last 100,000 years. The last decade (2011-2020) was the warmest on record , and each of the last four decades has been warmer than any previous decade since 1850.

Many people think climate change mainly means warmer temperatures. But temperature rise is only the beginning of the story. Because the Earth is a system, where everything is connected, changes in one area can influence changes in all others.

The consequences of climate change now include, among others, intense droughts, water scarcity, severe fires, rising sea levels, flooding, melting polar ice, catastrophic storms and declining biodiversity.

The Earth is asking for help.

People are experiencing climate change in diverse ways

Climate change can affect our health , ability to grow food, housing, safety and work. Some of us are already more vulnerable to climate impacts, such as people living in small island nations and other developing countries. Conditions like sea-level rise and saltwater intrusion have advanced to the point where whole communities have had to relocate, and protracted droughts are putting people at risk of famine. In the future, the number of people displaced by weather-related events is expected to rise.

Every increase in global warming matters

In a series of UN reports , thousands of scientists and government reviewers agreed that limiting global temperature rise to no more than 1.5°C would help us avoid the worst climate impacts and maintain a livable climate. Yet policies currently in place point to a 3°C temperature rise by the end of the century.

The emissions that cause climate change come from every part of the world and affect everyone, but some countries produce much more than others .The seven biggest emitters alone (China, the United States of America, India, the European Union, Indonesia, the Russian Federation, and Brazil) accounted for about half of all global greenhouse gas emissions in 2020.

Everyone must take climate action, but people and countries creating more of the problem have a greater responsibility to act first.

Photocomposition: an image of the world globe looking worried to a thermometer with raising temperatures

We face a huge challenge but already know many solutions

Many climate change solutions can deliver economic benefits while improving our lives and protecting the environment. We also have global frameworks and agreements to guide progress, such as the Sustainable Development Goals , the UN Framework Convention on Climate Change and the Paris Agreement . Three broad categories of action are: cutting emissions, adapting to climate impacts and financing required adjustments.

Switching energy systems from fossil fuels to renewables like solar or wind will reduce the emissions driving climate change. But we have to act now. While a growing number of countries is committing to net zero emissions by 2050, emissions must be cut in half by 2030 to keep warming below 1.5°C. Achieving this means huge declines in the use of coal, oil and gas: over two-thirds of today’s proven reserves of fossil fuels need to be kept in the ground by 2050 in order to prevent catastrophic levels of climate change.

Growing coalition

Adapting to climate consequences protects people, homes, businesses, livelihoods, infrastructure and natural ecosystems. It covers current impacts and those likely in the future. Adaptation will be required everywhere, but must be prioritized now for the most vulnerable people with the fewest resources to cope with climate hazards. The rate of return can be high. Early warning systems for disasters, for instance, save lives and property, and can deliver benefits up to 10 times the initial cost.

We can pay the bill now, or pay dearly in the future

Climate action requires significant financial investments by governments and businesses. But climate inaction is vastly more expensive. One critical step is for industrialized countries to fulfil their commitment to provide $100 billion a year to developing countries so they can adapt and move towards greener economies.

Climate finance

To get familiar with some of the more technical terms used in connection with climate change, consult the Climate Dictionary .

Learn more about…

photocomposition: two hands, each one holding a megaphone

The facts on climate and energy

Climate change is a hot topic – with myths and falsehoods circulating widely. Find some essential facts here .

The science

The science

See the latest climate reports from the United Nations as well as climate action facts .

Photocomposition: an image showing causes and effects of climate change - a smokestack and a storm

Causes and Effects

Fossil fuels are by far the largest contributor to the greenhouse gas emissions that cause climate change, which poses many risks to all forms of life on Earth. Learn more .

The science

From the Secretary-General

Read the UN Chief’s latest statements on climate action.

Net zero

What is net zero? Why is it important? Our  net-zero page  explains why we need steep emissions cuts now and what efforts are underway.

Sustainable Development Goals

Renewable energy – powering a safer future

What is renewable energy and why does it matter? Learn more about why the shift to renewables is our only hope for a brighter and safer world.

Finance

How will the world foot the bill? We explain the issues and the value of financing climate action.

Adaptation

What is climate adaptation? Why is it so important for every country? Find out how we can protect lives and livelihoods as the climate changes.

A butterfly on the tip of a branch

Climate Issues

Learn more about how climate change impacts are felt across different sectors and ecosystems.

A butterfly on the tip of a branch

Why women are key to climate action

Women and girls are on the frontlines of the climate crisis and uniquely situated to drive action. Find out why it’s time to invest in women.

Facts and figures

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

Climate Change Essay

500+ words essay on climate change.

Climate change is a major global challenge today, and the world is becoming more vulnerable to this change. Climate change refers to the changes in Earth’s climate condition. It describes the changes in the atmosphere which have taken place over a period ranging from decades to millions of years. A recent report from the United Nations predicted that the average global temperature could increase by 6˚ Celsius at the end of the century. Climate change has an adverse effect on the environment and ecosystem. With the help of this essay, students will get to know the causes and effects of climate change and possible solutions. Also, they will be able to write essays on similar topics and can boost their writing skills.

What Causes Climate Change?

The Earth’s climate has always changed and evolved. Some of these changes have been due to natural causes such as volcanic eruptions, floods, forest fires etc., but quite a few of them are due to human activities. Human activities such as deforestation, burning fossil fuels, farming livestock etc., generate an enormous amount of greenhouse gases. This results in the greenhouse effect and global warming which are the major causes of climate change.

Effects of Climate Change

If the current situation of climate change continues in a similar manner, then it will impact all forms of life on the earth. The earth’s temperature will rise, the monsoon patterns will change, sea levels will rise, and storms, volcanic eruptions and natural disasters will occur frequently. The biological and ecological balance of the earth will get disturbed. The environment will get polluted and humans will not be able to get fresh air to breathe and fresh water to drink. Life on earth will come to an end.

Steps to be Taken to Reduce Climate Change

The Government of India has taken many measures to improve the dire situation of Climate Change. The Ministry of Environment and Forests is the nodal agency for climate change issues in India. It has initiated several climate-friendly measures, particularly in the area of renewable energy. India took several steps and policy initiatives to create awareness about climate change and help capacity building for adaptation measures. It has initiated a “Green India” programme under which various trees are planted to make the forest land more green and fertile.

We need to follow the path of sustainable development to effectively address the concerns of climate change. We need to minimise the use of fossil fuels, which is the major cause of global warming. We must adopt alternative sources of energy, such as hydropower, solar and wind energy to make a progressive transition to clean energy. Mahatma Gandhi said that “Earth provides enough to satisfy every man’s need, but not any man’s greed”. With this view, we must remodel our outlook and achieve the goal of sustainable development. By adopting clean technologies, equitable distribution of resources and addressing the issues of equity and justice, we can make our developmental process more harmonious with nature.

We hope students liked this essay on Climate Change and gathered useful information on this topic so that they can write essays in their own words. To get more study material related to the CBSE, ICSE, State Board and Competitive exams, keep visiting the BYJU’S website.

Frequently Asked Questions on climate change Essay

What are the reasons for climate change.

1. Deforestation 2. Excessive usage of fossil fuels 3. Water, Soil pollution 4. Plastic and other non-biodegradable waste 5. Wildlife and nature extinction

How can we save this climate change situation?

1. Avoid over usage of natural resources 2. Do not use or buy items made from animals 3. Avoid plastic usage and pollution

Are there any natural causes for climate change?

Yes, some of the natural causes for climate change are: 1. Solar variations 2. Volcanic eruption and tsunamis 3. Earth’s orbital changes

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

essay cause of climate change

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Counselling

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 10 April 2024

What happens when climate change and the mental-health crisis collide?

You have full access to this article via your institution.

An "Extreme Heat Danger" sign at the Badwater Basin in Death Valley, California, U.S., on Thursday, June 17, 2021.

Climate change can cause anxiety — researchers need to work out when that requires specialist help. Credit: Kyle Grillot/Bloomberg/Getty

Nearly one billion people worldwide — including one in seven teenagers — have a mental disorder. A growing body of research suggests that climate change is worsening people’s mental health and emotional well-being . Acute heatwaves, droughts, floods and fires fuelled by climate change cause trauma, mental illness and distress. So can chronic effects of global warming, such as water and food insecurity, community breakdown and conflict, as we report in a News feature .

essay cause of climate change

The rise of eco-anxiety: scientists wake up to the mental-health toll of climate change

Surveys are revealing that experiencing the effects of climate change — and awareness of the threat — can lead to psychological responses such as a chronic fear of environmental doom, known as eco-anxiety. Eco-distress, climate anxiety and climate grief are other terms used. In a 2021 survey of 10,000 people aged 16–25 in 10 countries, nearly 60% of respondents were highly worried about climate change, and more than 45% said their feelings about climate change affected their daily lives, such as their ability to work or sleep 1 .

Make the problem visible

Such reactions to an existential threat are expected, and many people can handle these feelings on their own — but some need specialist help. Although there is anecdotal evidence that people with eco-anxiety are increasingly going to clinics, the psychological toll of climate change tends to be invisible — one reason why it has been neglected.

Researchers and governments need better ways to measure the wide-ranging extent of climate change’s effects on mental health. Data scientists, climate scientists and climate-attribution researchers, among others, should join mental-health researchers in furthering the underlying science. Mental-health professionals also need training and support to provide help. Mental illness is already underdiagnosed and stigmatized, and mental health care in most countries is shockingly insufficient. Climate change makes the case for addressing this crisis even more urgent.

essay cause of climate change

Greener cities: a necessity or a luxury?

One key challenge for researchers is measuring the mental-health burden attributable to climate change and tracking it over time. Most research so far has been conducted in high-income countries, despite low- and middle-income countries experiencing the harshest effects of the warming planet. The day-to-day experiences of people in marginalized groups and Indigenous communities must also be captured.

Much research on climate and mental health has focused on one end of the spectrum of mental health — such as clinical diagnoses, emergencies or suicides 2 . But when around half the global population lives in nations with one psychiatrist per 200,000 people, it is no surprise that many conditions are undiagnosed and undocumented. Better monitoring and sharing of clinical mental-health data are needed. Researchers must develop and track standardized ways to measure milder or more fleeting forms of eco-anxiety and distress that fall outside standard diagnoses, and work out when interventions are needed.

A call to action

Some steps are already being taken. Researchers are, for instance, trying to develop global mental-health indicators that can be linked to weather and climate data, as part of the Lancet Countdown on Health and Climate Change , a collaboration of specialists from more than 50 academic institutions and United Nations agencies. The group welcomes collaborators to further this work, says Kelton Minor, a research scientist at Columbia University’s Data Science Institute in New York City who is leading the collaboration’s effort on climate and mental health.

essay cause of climate change

Making cities mental health friendly for adolescents and young adults

A top priority must be developing and evaluating ways to effectively reduce climate change’s mental-health burden while strengthening the resilience of communities that are particularly at risk. Existing tools and treatments — such as cognitive behavioural therapy, which helps people to challenge unhelpful thoughts and behaviours — will be part of the solution. Some studies suggest that, for individuals, taking action to combat climate change could also help to manage their eco-anxiety 3 : a double win.

The problem amounts to a call to action on all fronts. The constant drip of research adding to evidence of a climate crisis — as well as leaders’ inaction — is itself probably a source of eco-anxiety and frustration. More than 55% of young people in the 2021 survey said that climate change made them feel powerless, and 58% that their government had betrayed them and future generations 1 .

Those who experience debilitating effects on their mental health caused by climate change need help from specialists. The many others who are scared or angry, but otherwise not unwell, need to know that these feelings are normal — and if they can harness their unease to spur action, they could help themselves, others and the world.

At the same time, it must also be recognized that world leaders’ inaction is a cause of distress — and action by governments is what is needed to soothe it.

Nature 628 , 235 (2024)

doi: https://doi.org/10.1038/d41586-024-00993-x

Hickman, C. & Marks, E. Lancet Planet. Health 5 , e863–e873 (2021).

Article   PubMed   Google Scholar  

Nori-Sarma, A. et al. JAMA Psychiatry 79 , 341–349 (2022).

Article   Google Scholar  

Lawrance, E., Thompson, R., Fontana, G. & Jennings, N. Briefing Paper No. 36 (Grantham Inst. on Climate Change and the Environment, 2021).

Download references

Reprints and permissions

Related Articles

essay cause of climate change

  • Climate change
  • Climate sciences
  • Neuroscience

The rise of eco-anxiety: scientists wake up to the mental-health toll of climate change

News Feature 10 APR 24

Iran frees scientists who studied big cats in surprise move

Iran frees scientists who studied big cats in surprise move

News 09 APR 24

The EU’s ominous emphasis on ‘open strategic autonomy’ in research

The EU’s ominous emphasis on ‘open strategic autonomy’ in research

Editorial 03 APR 24

Baseball-sized hail in Spain began with a heatwave at sea

Baseball-sized hail in Spain began with a heatwave at sea

Research Highlight 05 APR 24

This fMRI technique promised to transform brain research — why can no one replicate it?

This fMRI technique promised to transform brain research — why can no one replicate it?

News 11 APR 24

Cell-type-resolved mosaicism reveals clonal dynamics of the human forebrain

Cell-type-resolved mosaicism reveals clonal dynamics of the human forebrain

Article 10 APR 24

Why loneliness is bad for your health

Why loneliness is bad for your health

News Feature 03 APR 24

Husbandry Technician I

Memphis, Tennessee

St. Jude Children's Research Hospital (St. Jude)

essay cause of climate change

Lead Researcher – Department of Bone Marrow Transplantation & Cellular Therapy

Researcher in the center for in vivo imaging and therapy, scientist or lead researcher (protein engineering, hematology, shengdar q. tsai lab), lead or senior researcher - flow cytometry.

essay cause of climate change

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies
  • Share full article

Advertisement

Supported by

‘Alarming’ Ocean Temperatures Suggest This Hurricane Season Will Be a Daunting One

An early forecast from one set of experts sees an above-average hurricane season that may rival the busiest years on record.

essay cause of climate change

Where sea surface temperatures are hotter or cooler than average

–6°F

–4°

–2°

Atlantic Ocean

essay cause of climate change

By Judson Jones

Judson Jones is a meteorologist and reporter for The Times.

A key area of the Atlantic Ocean where hurricanes form is already abnormally warm, much warmer than an ideal swimming pool temperature of about 80 degrees and on the cusp of feeling more like warm bathtub water.

These conditions were described by Benjamin Kirtman, a professor of atmospheric sciences at the University of Miami , as “unprecedented,” “alarming” and an “out-of-bounds anomaly.” Combined with the rapidly subsiding El Niño weather pattern, it is leading to mounting confidence among forecasting experts that there will be an exceptionally high number of storms this hurricane season.

One such expert, Phil Klotzbach, a researcher at Colorado State University, said in his team’s annual forecast on Thursday that they expected a remarkably busy season of 23 named storms, including 11 hurricanes — five of them potentially reaching major status, meaning Category 3 or higher. In a typical season, there are 14 named storms with seven hurricanes and three of them major.

Dr. Klotzbach said there was a “well above-average probability” that at least one major hurricane would make landfall along the United States and in the Caribbean.

It’s the Colorado State researchers’ biggest April prediction ever, by a healthy margin, said Dr. Klotzbach. While things could still play out differently, he said he was more confident than he normally would be this early in the year. All the conditions that he and other researchers look at to forecast the season, such as weather patterns, sea surface temperatures and computer model data, are pointing in one direction.

“Normally, I wouldn’t go nearly this high,” he said, but with the data he’s seeing, “Why hedge?”

If anything, he said, his numbers are on the conservative side, and there are computer models that indicate even more storms on the way.

The United States was lucky in 2023.

Last year was unusual. Though only one hurricane, Idalia, made landfall in the United States, 20 storms formed, a number far above average and the fourth most since record keeping began.

Typically, the El Niño pattern that was in force would have suppressed hurricanes and reduced the number of storms in a season. But in 2023, the warm ocean temperatures in the Atlantic blunted El Niño’s effect to thwart storms.

That left Idalia as the one impactful storm of the season in the Atlantic, with 12 deaths attributed to it and over $1 billion in damage. It hit in the big bend of Florida, where few people live, and the prevailing thought among hurricane researchers is that the East Coast got lucky, Dr. Klotzbach said.

That luck may change this year.

The El Niño pattern is dwindling now, and the likelihood of a La Niña pattern emerging during the hurricane season could also cause a shift in the steering pattern over the Atlantic. During an El Niño weather pattern, the area of high pressure over the Atlantic tends to weaken, which allows for storms to curve north and then east away from land. That’s what kept most of the storms last year away from land.

A La Niña weather pattern would already have forecasters looking toward an above-average year. The possibility of a La Niña, combined with record sea surface temperatures this hurricane season, could create a robust environment for storms to form and intensify this year.

Just because there are strong signals during an El Niño year that one thing will occur, it doesn’t mean the opposite happens during a La Niña year, Dr. Kirtman said. But if the high pressure strengthens and shifts west, it would mean more hurricanes making landfall.

The region where storms are most likely to form is often called the “tropical Atlantic,” stretching from West Africa to Central America and between Cuba and South America. During a La Niña year, Dr. Klotzbach said, there’s a slight increase in hurricanes forming in the western side of this main development zone — closer to the Caribbean than to Africa. When a storm forms there, it is more likely to make landfall because it’s closer to land.

And while it is difficult to predict specific landfalls this far ahead of the season, the sheer odds of more storms increases the expected risk to coastal areas.

Sea surface temperatures also affect the hurricane season. Over the past century, those temperatures have increased gradually. But last year, with an intensity that unnerved climate scientists, the warming ratcheted up more rapidly. And in the main area where hurricanes form, 2024 is already the warmest in a decade.

Ocean heat in an area where Atlantic hurricanes form

To date, this year is already much warmer than any other in the previous decade.

essay cause of climate change

80 kJ/cm²

essay cause of climate change

“Crazy” is how Dr. Kirtman described it. “ The main development region is, right now, warmer than it’s historically been,” he said. “So it’s an out-of-bounds anomaly.”

There is little doubt in his mind that we are seeing some profound climate change impacts, but scientists don’t know exactly why it is occurring so quickly all of a sudden.

But it is happening, and it is likely to affect the season.

“The chances of a big, big hurricane that has a large impact making landfall is definitely increased,” he said.

Early forecasts aren’t always right.

It’s reasonable to take this forecast with a grain of sea salt; the seasonal forecast in April hasn’t always been the most accurate.

Colorado State University’s April forecast for the 2023 hurricane season called for a slightly below-average season with 13 named storms. Instead, there were 20. Even Dr. Klotzbach admits the April forecast isn’t always the best prediction, but its accuracy is improving.

The weather can be fickle, and much can change before the season officially begins on June 1. The National Oceanic and Atmospheric Administration will issue its own forecast in late May.

But for now, Colorado State and a few other forecasting groups have all called for one of the busiest seasons on record.

By year’s end, Dr. Klotzbach said, he’ll be writing a scientific paper on one of two things: the incredibly active hurricane season of 2024, or one of the biggest head fakes in Atlantic hurricane season history. But he’s pretty confident it will be the former. “If it turns out to be two hurricanes,” he said, “then I should just quit and do something else.”

Judson Jones is a meteorologist and reporter for The Times who forecasts and covers extreme weather. More about Judson Jones

Learn More About Climate Change

Have questions about climate change? Our F.A.Q. will tackle your climate questions, big and small .

“Buying Time,” a new series from The New York Times, looks at the risky ways  humans are starting to manipulate nature  to fight climate change.

Big brands like Procter & Gamble and Nestlé say a new generation of recycling plants will help them meet environmental goals, but the technology is struggling to deliver .

The Italian energy giant Eni sees future profits from collecting carbon dioxide and pumping it  into natural gas fields that have been exhausted.

New satellite-based research reveals how land along the East Coast is slumping into the ocean, compounding the danger from global sea level rise . A major culprit: the overpumping of groundwater.

Did you know the ♻ symbol doesn’t mean something is actually recyclable ? Read on about how we got here, and what can be done.

essay cause of climate change

Is climate change the cause of storms in the Western Cape?

I s climate change in South Africa behind the  vicious storms that have battered the Western Cape ? Leaving untold destruction in its wake, wildfires have destroyed several homes. And torturous winds have ripped the roofs off buildings and even overturned vehicles on the highway.

Major rains and flooding have been reported in low-lying areas and the fallout will only continue to worsen as the worst of the weather sets in on Monday (8 April 2024). Worse still, thousands of people living in informal settlements have been displaced, with most of their worldly belongings gone in the wake of the destruction.  

CLIMATE CHANGE IN SOUTH AFRICA

A near-identical storm was also caused by an identical cut-off low only seven months ago in  September 2023 . Now, the question must be asked, whether these extreme weather events are in fact related to climate change in South Africa? Referring to information published by  Green Peace , it’s safe to say these two storms are not merely coincidental events.

Green Peace says climate change in South Africa is accelerating. Specifically, “Mean annual temperatures in South Africa have increased by twice the global average ( 0.7°C ). Hot and cold extremes have increased. Rainfall seasonality has changed, and rainfall intensity has increased,” says the non-profit organisation.

EXTREME WEATHER

While Gauteng and other northern regions have experienced oppressive heatwaves, low rainfall and dwindling natural water supplies, the Western Cape has seen one of the windiest summers on record. In turn, this has led to multiple wildfires which authorities have fought bravely over the last five months.

Notably, South Africa is ranked  96  out of  182  countries in terms of climate change vulnerability, according to the  2022 Climate Scorecard  report. While the issue of climate change in South Africa persists, a big issue lies in Mzansi’s inequality. And our social system’s ability to cope with the adverse effects of climate change and extreme weather. Hence the displacement of thousands of people in informal settlements in the event of wildfire, flooding, etc …

MZANSI IS HEATING UP … AND NOT IN A GOOD WAY

Furthermore, if the global temperature rise continues on its current trajectory, semi-arid South Africa may experience up to a  4°C  increase in the next 75 years. This could prove catastrophic for our food security, ecosystem and human settlements. And adding insult to injury is the fact that we only have ourselves to blame.

As one of the highest emitters of greenhouse gases globally, for a relatively small nation, we are among the top 25 dirtiest countries worldwide.  90%  of our energy is derived from Eskom’s dirty coal-fired power stations. And there has been precious little progress towards shifting to renewable energy in the last two decades.

ALSO READ: Western Cape storms update: Cape Point open, Lion’s Head trails closed

The post Is climate change the cause of storms in the Western Cape? appeared first on SAPeople - Worldwide South African News .

Increased heat and wind has led to record wildfires in the Western Cape. Image: File

More From Forbes

Infectious disease, an overlooked climate change impact: how leaders can help.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Dr. Kamran Khan is a practicing infectious disease physician and the CEO & founder of BlueDot — an infectious disease intelligence company.

After a summer of climate turmoil, from Canadian wildfires to New York City flash floods, many organizations are taking stock of the risks and costs of climate change. The list is long: reduced worker productivity due to extreme heat, supply chain disruptions, decreased output, rising energy and insurance costs and more.

But the impacts of climate change reach beyond weather events, and no example illustrates the problem better than infectious diseases. The same human activities that drive climate change are also driving new infectious disease risks. It’s another factor that people and businesses will need to prepare for.

Understanding The Issues

Once you connect the dots, you realize how unprepared we are. Consider the example of land deforestation , which disrupts ecosystems, forcing wildlife to move into unfamiliar habitats. This increases the chances of interaction between human settlements and microbes—including some humanity may have yet to encounter—crossing from wild animals to domestic ones or even directly to humans.

Rising global temperatures also impact the geographical ranges of animals and insects—and the diseases they carry. Southern Canada, which until recently was largely unaffected by Lyme disease , is now a welcoming environment for Lyme-carrying ticks. Research by my own organization projects that America’s eastern seaboard and much of eastern Canada will become a breeding ground for the Aedes mosquito—an important disease carrying insect—within the next 10 years.

Apple Confirms Major iPhone Changes With New App Features Enabled

Aew dynamite results winners and grades as cm punk destroys jack perry, apple warns users in 92 countries they may have been targeted by mercenary spyware attacks.

The rise of extreme weather events in populated areas also leads to an increase in the incidence of waterborne as well as vector-borne diseases. Torrential floods in Pakistan last year led to spikes in cases of leptospirosis, diarrhea, malaria and respiratory infections. Extreme weather events disrupt human settlements and force human migration. This puts increased pressure on health care systems at migrant destinations and has the potential to introduce new diseases spread by humans.

What Leaders Can Do

I admit that the chain reactions I describe above are simplified. Climate change takes place across a long time horizon, the cumulative result of many different factors. But we can still anticipate what its impacts will look like. Our research on the Aedes mosquito is a case in point. We can predict that dengue fever and other viral diseases will be able to spread in previously unaffected cities around the world within a decade. We can’t yet say precisely where it will first expand, but we can still prepare for the eventuality.

As companies assess the risks of climate change to their business, I believe they must also make infectious disease part of their analysis and put plans in place to build resilient organizations that are able to withstand the impacts of future outbreaks.

There are two key sectors that the rest of us rely upon when it comes to infectious diseases, and they’ll need to make the biggest adjustments.

The first sector, governments and public health authorities, can act now to prepare for future outbreaks. If I were the chief medical officer of health of a major city, I’d be sending local teams abroad to help respond to outbreaks of unfamiliar diseases so that, when climate change brings those diseases to my city, I would have in-house experience in managing them.

For the second sector, the pharmaceutical and biomedical industries, evolving changes to the global landscape of infectious diseases will have a direct impact on their business. They need time to conduct research and development, run clinical trials, and manufacture and distribute vaccines, therapeutics and other medical countermeasures needed to prevent or control outbreaks.

Leveraging Prediction Models

Leaders in both sectors can benefit from using advanced data analytics and prediction models to quickly detect, assess and respond to new local or global disease threats. The best approach to using prediction models involves three steps.

1. Detect threats early, and look in the right places. Given how rapidly outbreaks can spread in our modern world, early warnings offer leaders valuable time. Organizations should know where in the world they need to be on the alert for infectious disease risk. In addition to the locations of corporate headquarters and operations centers, consider the locations of key partners and subsidiaries within global supply networks, where an outbreak at a single link can break an entire chain.

2. Assess the risk. Once a threat is identified, the next step is to anticipate what kind of impact it is likely to present. Some infections spread faster than others, while some cause more severe illness. Risk assessments will look different for organizations in different parts of the world, and will vary across the public and private sector.

3. Take measured action. Since every organization's risk tolerance will be different, leaders must decide what actions are appropriate for their organization and culture. Whether it's distributing supplies of personal protective equipment, enabling more remote work when outbreaks occur, or encouraging the use of healthcare benefits, businesses must decide which actions are best suited to their organization. The key is to avoid over-reacting or under-reacting, each of which carries significant costs.

In a world where machine intelligence is rapidly advancing, it’s important to not forget about the critical role of human intelligence. The key challenge in using predictive intelligence is structuring the interface between machine learning and human expertise so that any predictive model is purpose-built to perform a specific task well.

While machine learning is now able to continuously process and identify patterns in massive datasets, it takes people to critically review outputs and ensure they are being interpreted correctly and applied in the real world appropriately. Bookending a predictive model with human expertise is what transforms data into actionable intelligence.

As we’ve seen many times, human beings are vigorous responders when dealing with an emergency. We are not always as effective at preparing for future threats. But it’s never too late to get better at it. We can start now.

Forbes Business Council is the foremost growth and networking organization for business owners and leaders. Do I qualify?

Kamran Khan

  • Editorial Standards
  • Reprints & Permissions

No, ice core study does not show CO2 is 'not the cause of warming' | Fact check

essay cause of climate change

The claim: Ice core data shows CO2 does not cause global temperature changes

A Dec. 20, 2023, Instagram video ( direct link , archive link ) shows clips from the movie "The Great Global Warming Swindle" in which Ian Clark and the late Frederick Singer − both scientists critical of human-driven climate change − talk about CO2 and ice cores. Clark references a 2003 ice core study that reported temperatures increased hundreds of years before CO2 levels in Antarctica about 240,000 years ago.

"CO2 clearly cannot be causing temperature changes," says Clark.

Text included in the post reads, "How inconvenient. Ice core surveys show carbon dioxide is not the cause of warming."

The video, which also circulated on TikTok , garnered more than 10,000 likes in two months.

More from the Fact-Check Team: How we pick and research claims | Email newsletter | Facebook page

Our rating: False

The post misrepresents the findings of the 2003 ice core study, which does not preclude the possibility of CO2-driven warming during the study period. A greenhouse gas increase isn't the only thing that can initiate climate change, but greenhouse gas emissions from human activity are driving modern warming.

Ice core data consistent with CO2-driven warming

The conclusions of the 2003 study have "often been misunderstood," Nicolas Caillon , lead author on the study and researcher at the French National Centre for Scientific Research, told USA TODAY in an email.

The study used a chemical analysis of Antarctic ice core samples to investigate climate changes 240,000 years ago. The authors reported an apparent temperature increase in Antarctica roughly 800 years (plus or minus 200 years) prior to an atmospheric CO2 increase.

However, the authors were clear that this finding does not mean CO2 did not also cause warming during that timeframe. Instead, they suggested that changes in Earth's orbit initiated warming in Antarctica and caused the release of stores of CO2 (through various natural processes), which then caused more warming.

Warming events like the one 240,000 years ago "take about 5,000 years to be complete," Caillon said. "The lag is only 800 years. All that the lag shows is that CO2 did not cause the first 800 years of warming, out of the 5,000-year trend. The other 4,200 years of warming could, in fact, have been caused by CO2 as far as we can tell from this ice core data."

While an increase in atmospheric greenhouse gases initiated modern global warming, it is well known that other things can initiate climate change.

For instance, "changes in the amount of summer sunshine, due to changes in the Earth's orbit around the sun ... have long been known to affect the comings and goings of ice ages," Caillon said.

Fact check: No, Antarctic sea ice data doesn't show 'global warming narrative is falling apart'

The social media post also ignores other relevant studies. For instance, while the 2003 study only reports temperature change in Antarctica, a 2012 study found that global temperature warmed after CO2 levels rose at the end of the last ice age, according to Edward Brook , an Antarctic ice core researcher at Oregon State University.

CO2 causes warming regardless of how it gets into the atmosphere, Richard Alley , a climate scientist at Penn State, told USA TODAY.

"CO2 can be released to the atmosphere by some processes that are triggered by warming," he said in an email. "Or CO2 can be released by processes not related to warming. Whatever process adds CO2 to the atmosphere, the physics and the models and the recent data and the history show that the CO2 warms the climate, which does not care how the CO2 got into the air."

'Overwhelming' evidence CO2 release by humans drives modern global warming

While changes in Earth's orbit around the sun can initiate climate change, scientists can tell this is not what is causing modern warming.

Orbital cycles "operate on long time scales, ranging from tens of thousands to hundreds of thousands of years," NASA reports. "In contrast, Earth’s current warming has taken place over time scales of decades to centuries."

Additionally, "Earth is currently in an interglacial period − a period of milder climate between Ice Ages. If there were no human influences on climate, scientists say Earth’s current orbital positions within the Milankovitch cycles   predict our planet should be cooling, not warming," NASA noted.

However, there is compelling evidence that modern warming is driven by an increase in the concentration of atmospheric greenhouse gases due to human activity – specifically industrial pollution . Researchers have long understood that CO2 (and other greenhouse gases) warm the Earth by slowing the escape of heat into space , and the amount of warming matches what scientists would expect based on the increased CO2  humans have added.

Researchers have also been able to demonstrate that their understanding of greenhouse gas and planetary physics is sound by accurately predicting greenhouse gas-driven warming decades in advance.

"Climate models published since 1973 have generally been quite skillful in projecting future warming," Carbon Brief reports. "While some were too low and some too high, they all show outcomes reasonably close to what has actually occurred, especially when discrepancies between predicted and actual CO2 concentrations and other climate forcings are taken into account."

Can we count on renewable energy? Four ways wind, solar and water can power the US

USA TODAY reached out to the Instagram user who shared the post for comment but did not receive a response.

Our fact-check sources:

  • Richard Alley , Feb. 12, Email exchange with USA TODAY
  • Edward Brook , Feb. 12, Email exchange with USA TODAY
  • Nicolas Caillon , March 6, Email exchange with USA TODAY
  • Jeff Severinghaus , March 26, Email exchange with USA TODAY
  • USA TODAY, Jan. 20, 2023, Fact check: Global warming caused by greenhouse gas emissions, not mysterious ocean warming
  • USA TODAY, Nov. 8, 2022, Fact check: Earth's warming well documented, other planets' climate data limited
  • USA TODAY, Dec. 20, 2023, How we know humans cause global warming: A brief history of climate science | Fact check
  • USA TODAY, Aug. 17, 2023, Greenhouse gases, not Milankovitch cycles, drive modern global warming | Fact check
  • Australian Department of Climate Change, Energy and the Environment and Water, accessed Feb. 9,  Understanding climate change
  • The Conversation, July 21, 2020,  John Tyndall: the forgotten co-founder of climate science
  • NASA Vital Signs of the Planet, accessed Feb. 9,  Causes
  • NASA Vital Signs of the Planet, accessed Feb. 9,  Global temperature
  • NASA Vital Signs of the Planet, accessed Feb. 9,  Carbon dioxide
  • NASA Vital Signs of the Planet, accessed Feb. 9,  Ocean warming
  • NASA Vital Signs of the Planet, accessed Feb. 9,  Ice sheets
  • NASA Vital Signs of the Planet, accessed Feb. 9,  Sea level
  • NASA Earth Observatory, accessed Feb. 9,  World of Change: Global Temperatures
  • NASA, Feb. 27, 2020, Why Milankovitch (Orbital) Cycles Can’t Explain Earth’s Current Warming
  • Environmental Protection Agency, July 2022,  Climate Change Indicators: Heat Waves
  • Environmental Protection Agency, accessed Feb. 9,  Climate Change Indicators: Weather and Climate
  • NOAA, Oct. 12, 2022,  How do we know the build-up of carbon dioxide in the atmosphere is caused by humans?
  • Carbon Brief, April 28, 2021,  Melting glaciers drove ‘21% of sea level rise’ over past two decades
  • Carbon Brief, July 2, 2020, Explainer: How the rise and fall of CO2 levels influenced the ice ages
  • Carbon Brief, Oct. 5, 2017,  Analysis: How well have climate models projected global warming?
  • The Harvard Gazette, Jan. 12, 2023, Exxon disputed climate findings for years. Its scientists knew better
  • Science, Jan. 13, 2023, Assessing ExxonMobil’s global warming projections
  • Science, March 14, 2002, Timing of atmospheric CO2 and Antarctic temperature changes across termination III
  • Nature, June 13, 2018, Antarctic and global climate history viewed from ice cores

Thank you for supporting our journalism. You can subscribe to our print edition, ad-free app or e-newspaper here .

USA TODAY is a verified signatory of the International Fact-Checking Network, which requires a demonstrated commitment to nonpartisanship, fairness and transparency. Our fact-check work is supported in part by a grant from Meta .

Why curbing methane emissions is tricky in fight against climate change

Tackling the second most significant contributor to global warming could have an immediate impact

  • Newsletter sign up Newsletter

Illustration of a cow grazing and expelling gas

Marks and Spencer is to invest £1 million on a diet plan for dairy cows in the latest bid by big business to curb methane emissions.

The retailer is aiming to "slash" up to 11,000 tons of greenhouse gas emissions annually by making the burps and farts of its 40 herds of pasture-grazed milk cows "more eco-friendly", said the Daily Mail . M&S claims that switching them to a diet derived from mineral salts and a by-product of fermented corn will reduce methane production during digestion, cutting the carbon footprint of the cows' milk by 8.4%.

How much damage does methane cause?

Aside from carbon dioxide, methane is the "most significant" contributor to climate change , said New Scientist . Methane occurs naturally but is also caused by humans, most commonly during fossil fuel production, "due to leaks from wells, coal mines, pipelines and ships". 

Subscribe to The Week

Escape your echo chamber. Get the facts behind the news, plus analysis from multiple perspectives.

https://cdn.mos.cms.futurecdn.net/flexiimages/jacafc5zvs1692883516.jpg

Sign up for The Week's Free Newsletters

From our morning news briefing to a weekly Good News Newsletter, get the best of The Week delivered directly to your inbox.

Landfills are also a significant contributor, because of methane released by decomposing food waste, but the second biggest emitter is through the burping and defecation of livestock. With "around 1.5 billion cows on the planet being raised as livestock", said Vox , the production of meat and dairy is a "climate problem we've struggled to solve".

Methane is responsible for "about a quarter of overall warming", said New Scientist. Although it does not stay in the atmosphere for anywhere near as long as carbon dioxide, methane is "around 30 times more potent than CO2" – and there has been a "steady rise" in methane emissions for almost two decades. The long-lasting effects of CO2 will "increasingly dominate over time", but tackling non-CO2 gases such as methane will bring a "significant near-term effect".

How is it being combatted?

Given that methane only lasts in the atmosphere for around 12 years, many see it "as low-hanging fruit for climate solutions", said The Associated Press (AP). At the UN's Cop26 climate summit, in 2021, a "global methane pledge" was launched to combat rising emissions. Yet while 155 countries have signed up, the pledge does not include an agriculture target and little improvement has been made. 

At last year's Cop28, further plans were announced to try to reduce methane emissions by 30% before 2030, with more than $1 billion in extra funding and reduction commitments by leading methane producers.

But some countries, notably India, have yet to commit to any such pledges. India is the "world's largest milk producer", said AP, and is home to around 303 million bovine cattle that are responsible for around 48% of all of the country's methane emissions.

There are some promising practices that could help stem the flow of agricultural methane, including "new breeding and feeding techniques", said the BBC . But it is human diets, and the consumption of meat and dairy, that are the "ultimate blind spot holding up methane reduction".

 An independent monitoring business is using satellites to determine the amount of methane in the Earth's atmosphere and where the biggest emissions are coming from, with a primary focus on leaks from oil and gas fields.  

The data collected is being fed back to "scientists, policymakers, industry and the public", said Gina McCarthy in The Guardian , and demonstrates how "collective efforts" could help "avoid the worst impacts of the climate crisis". What has become clear is that cutting methane levels "is the most efficient way to slow global warming in our lifetimes", and that "we have the chance – and the obligation – to do so".

Sign up for Today's Best Articles in your inbox

A free daily email with the biggest news stories of the day – and the best features from TheWeek.com

Richard Windsor is a freelance writer for The Week Digital. He began his journalism career writing about politics and sport while studying at the University of Southampton. He then worked across various football publications before specialising in cycling for almost nine years, covering major races including the Tour de France and interviewing some of the sport’s top riders. He led Cycling Weekly’s digital platforms as editor for seven of those years, helping to transform the publication into the UK’s largest cycling website. He now works as a freelance writer, editor and consultant.

essay cause of climate change

Speed Read These American women reshaped the work force during World War II

By Peter Weber, The Week US Published 11 April 24

US Gen. Christopher Cavoli

Speed Read Without more US aid, Ukraine is at risk of losing the war

Political Cartoon

Cartoons Thursday's cartoons - Arizona turns back the clock, NPR bias, and more

By The Week US Published 11 April 24

Photo collage of a bar graph. One bar is large, representing animal agriculture with an assortment of cows and clouds of pollution emerging from it; the other, small, represents plant agriculture and is overlayed with an aerial view of a harvested wheat field, with a few wilting ears of wheat sticking out from it. In the background, the stars of the EU flag are visible.

Under the radar Bloc's agricultural policy incentivises carbon-intensive animal farming over growing crops, despite aims to be carbon-neutral

By Harriet Marsden, The Week UK Published 11 April 24

Tilted building in Taiwan.

The Explainer The country was rocked but not rolled

By Devika Rao, The Week US Published 10 April 24

Photo collage of elephants, a freshly picked bunch of mangoes, a road sign warning of elephant activity. In the background, there is a top-down view of farmland, a botanical illustration of a banana tree, and a map of Sri Lanka.

Under The Radar Farmers encroaching into elephant habitats has led to deaths on both sides

By Chas Newkey-Burden, The Week UK Published 26 March 24

A landmine warning sign in Ethiopia

In Depth Some experts argue that global warming can be tied to rising levels of violence around the world

By Justin Klawans, The Week US Published 19 March 24

Photo composite of tourists visiting nature sites

The Explainer Race to visit places threatened by climate change 'before it's too late'

By Austin Chen, The Week UK Published 7 March 24

Factory spewing green smoke

The Explainer Pretending to be green can be expensive

By Devika Rao, The Week US Published 4 March 24

Smoke along the Hudson River with two people walking

The Explainer Breathing fresh air is becoming more rare

By Devika Rao, The Week US Published 1 March 24

3D Render of Hurricane Laura in 2020

Under the Radar Any way the wind blows

By Devika Rao, The Week US Published 27 February 24

  • Contact Future's experts
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Advertise With Us

The Week is part of Future plc, an international media group and leading digital publisher. Visit our corporate site . © Future US, Inc. Full 7th Floor, 130 West 42nd Street, New York, NY 10036.

IMAGES

  1. Causes of Climate Change Revision Posters

    essay cause of climate change

  2. Climate Change: The Human Causes of Climate Change

    essay cause of climate change

  3. What Is Climate Change?

    essay cause of climate change

  4. ≫ Global Climate Change Free Essay Sample on Samploon.com

    essay cause of climate change

  5. ≫ Human Activities as the Reason of Climate Change Free Essay Sample on

    essay cause of climate change

  6. Write A Short Essay On Global Warming

    essay cause of climate change

VIDEO

  1. Essay on Climate change in English || Short essay on Climate change || Climate change essay

  2. Reducing factors that cause climate change

  3. Essay on climate crisis #climatecrisis #writingclasses #shorts

  4. essay on climate change in english/jalvayu Parivartan par nibandh

  5. 10 lines on climate change in english/jalvayu Parivartan par nibandh/essay on climate change in engl

  6. Main cause of all climate disasters

COMMENTS

  1. What Causes Climate Change? Human and Natural Causes

    Natural causes of climate change. Some amount of climate change can be attributed to natural phenomena. Over the course of Earth's existence, volcanic eruptions, fluctuations in solar radiation ...

  2. Causes and Effects of Climate Change Essay

    Essay Writing Service. There are two main causes of climate changes - natural causes and human activities. Natural causes have influenced the earth's climates such as volcanic eruptions, ocean current, the earth's orbital changes and solar variations. The eruptions of volcanoes cause a cooling effect on the earth.

  3. The Causes of Climate Change

    Takeaways. The greenhouse effect is essential to life on Earth, but human-made emissions in the atmosphere are trapping and slowing heat loss to space. Five key greenhouse gases are carbon dioxide, nitrous oxide, methane, chlorofluorocarbons, and water vapor. While the Sun has played a role in past climate changes, the evidence shows the ...

  4. Causes and Effects of Climate Change

    Causes and Effects of Climate Change. Fossil fuels - coal, oil and gas - are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas ...

  5. Global warming

    Global warming, the phenomenon of rising average air temperatures near Earth's surface over the past 100 to 200 years. Although Earth's climate has been evolving since the dawn of geologic time, human activities since the Industrial Revolution have a growing influence over the pace and extent of climate change.

  6. Causes of Climate Change

    Carbon dioxide, methane, and nitrous oxide concentrations are now more abundant in the earth's atmosphere than any time in the last 800,000 years. 5 These greenhouse gas emissions have increased the greenhouse effect and caused the earth's surface temperature to rise. Burning fossil fuels changes the climate more than any other human activity.

  7. Humans are causing global warming

    Today's climate change is driven by human activities. Scientists know that the warming climate is caused by human activities because: They understand how heat-trapping gases like carbon dioxide work in the atmosphere. They know why those gases are increasing in the atmosphere. They have ruled out other possible explanations.

  8. Climate change: evidence and causes

    Fingerprinting is a powerful way of studying the causes of climate change. Different influences on climate lead to different patterns seen in climate records. This becomes obvious when scientists probe beyond changes in the average temperature of the planet and look more closely at geographical and temporal patterns of climate change.

  9. Causes of climate change

    Formation of carbon dioxide is unavoidable as long as carbon anodes are used, and it is of great concern because CO2 is a greenhouse gas. ^ a b US Environmental Protection Agency (EPA) (28 June 2012). "Causes of Climate Change: The Greenhouse Effect causes the atmosphere to retain heat". EPA.

  10. Climate change

    Climate change - Evidence, Causes, Impacts: All historical sciences share a problem: As they probe farther back in time, they become more reliant on fragmentary and indirect evidence. Earth system history is no exception. High-quality instrumental records spanning the past century exist for most parts of the world, but the records become sparse in the 19th century, and few records predate the ...

  11. The Science of Climate Change Explained: Facts, Evidence and Proof

    Average global temperatures have increased by 2.2 degrees Fahrenheit, or 1.2 degrees Celsius, since 1880, with the greatest changes happening in the late 20th century. Land areas have warmed more ...

  12. Evidence

    While Earth's climate has changed throughout its history, the current warming is happening at a rate not seen in the past 10,000 years.; According to the Intergovernmental Panel on Climate Change (), "Since systematic scientific assessments began in the 1970s, the influence of human activity on the warming of the climate system has evolved from theory to established fact."

  13. Climate Change

    Climate change is the long-term alteration of temperature and typical weather patterns in a place. Climate change could refer to a particular location or the planet as a whole. Climate change may cause weather patterns to be less predictable. These unexpected weather patterns can make it difficult to maintain and grow crops in regions that rely ...

  14. Climate Change: Causes, Effects, and Solutions

    change happens widely because we are burning fossil fuels and that increases gases such as. CO2, methane, and some other gases in the atmosphere" (phone interview). According to the. Australian Greenhouse Office, the world depends on fossil fuels such as oil, coal, and natural. gas for 80% of its energy needs.

  15. What Is Climate Change?

    Climate change is a long-term change in the average weather patterns that have come to define Earth's local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term. Changes observed in Earth's climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, […]

  16. Scientists agree: Climate change is real and caused by people

    The scientific consensus that climate change is happening and that it is human-caused is strong. Scientific investigation of global warming began in the 19th century, and by the early 2000s, this research began to coalesce into confidence about the reality, causes, and general range of adverse effects of global warming.

  17. Climate Explained: Introductory Essays About Climate Change Topics

    Climate Explained, a part of Yale Climate Connections, is an essay collection that addresses an array of climate change questions and topics, including why it's cold outside if global warming is real, how we know that humans are responsible for global warming, and the relationship between climate change and national security.

  18. Climate Change Assay: A Spark Of Change

    This climate change essay competition saw many students submitting well thought out pieces of writing. These essays were marked on their format, creativity, organisation, clarity, unity/development of thought, and grammar/mechanics. ... He perfectly summarises the biggest cause of the issues the world of today struggles with, the issues that ...

  19. What Is Climate Change?

    The emissions that cause climate change come from every part of the world and affect everyone, but some countries produce much more than others.The seven biggest emitters alone (China, the United ...

  20. Climate Change Essay for Students in English

    Climate Change Essay: Go through the 500+ Words Essay on Climate Change and get ideas on how to write an effective essay on issues related to the environment. ... This results in the greenhouse effect and global warming which are the major causes of climate change. Effects of Climate Change. If the current situation of climate change continues ...

  21. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  22. What happens when climate change and the mental-health crisis ...

    A growing body of research suggests that climate change is worsening people's mental health and emotional well-being. Acute heatwaves, droughts, floods and fires fuelled by climate change cause ...

  23. Global Forest Loss Remains High, Despite Recent Progress

    Still, there is a lot governments, companies and communities can do to combat forest loss, beyond curbing the carbon emissions that cause climate change, said Mr. Taylor, the World Resources ...

  24. Ocean Temperatures Suggest a Daunting 2024 Hurricane Season

    April 4, 2024. A key area of the Atlantic Ocean where hurricanes form is already abnormally warm, much warmer than an ideal swimming pool temperature of about 80 degrees and on the cusp of feeling ...

  25. The Effects of Climate Change

    Global climate change is not a future problem. Changes to Earth's climate driven by increased human emissions of heat-trapping greenhouse gases are already having widespread effects on the environment: glaciers and ice sheets are shrinking, river and lake ice is breaking up earlier, plant and animal geographic ranges are shifting, and plants and trees are blooming sooner.

  26. Is climate change the cause of storms in the Western Cape?

    Notably, South Africa is ranked 96 out of 182 countries in terms of climate change vulnerability, according to the 2022 Climate Scorecard report. While the issue of climate change in South Africa ...

  27. Infectious Disease And Climate Change: How Leaders Can Help

    Leveraging Prediction Models. Leaders in both sectors can benefit from using advanced data analytics and prediction models to quickly detect, assess and respond to new local or global disease ...

  28. Ice core study misused in flawed climate change assertion

    The study used a chemical analysis of Antarctic ice core samples to investigate climate changes 240,000 years ago. The authors reported an apparent temperature increase in Antarctica roughly 800 ...

  29. Why curbing methane emissions is tricky in fight against climate change

    At the UN's Cop26 climate summit, in 2021, a "global methane pledge" was launched to combat rising emissions. Yet while 155 countries have signed up, the pledge does not include an agriculture ...