hypothesis test in data science

  • Onsite training

3,000,000+ delegates

15,000+ clients

1,000+ locations

  • KnowledgePass
  • Log a ticket

01344203999 Available 24/7

Hypothesis Testing in Data Science: It's Usage and Types

Hypothesis Testing in Data Science is a crucial method for making informed decisions from data. This blog explores its essential usage in analysing trends and patterns, and the different types such as null, alternative, one-tailed, and two-tailed tests, providing a comprehensive understanding for both beginners and advanced practitioners.

stars

Exclusive 40% OFF

Training Outcomes Within Your Budget!

We ensure quality, budget-alignment, and timely delivery by our expert instructors.

Share this Resource

  • Advanced Data Science Certification
  • Data Science and Blockchain Training
  • Big Data Analysis
  • Python Data Science Course
  • Advanced Data Analytics Course {location}

course

Table of Contents  

1) What is Hypothesis Testing in Data Science? 

2) Importance of Hypothesis Testing in Data Science 

3) Types of Hypothesis Testing 

4) Basic steps in Hypothesis Testing 

5) Real-world use cases of Hypothesis Testing 

6) Conclusion 

What is Hypothesis Testing in Data Science?  

Hypothesis Testing in Data Science is a statistical method used to assess the validity of assumptions or claims about a population based on sample data. It involves formulating two Hypotheses, the null Hypothesis (H0) and the alternative Hypothesis (Ha or H1), and then using statistical tests to find out if there is enough evidence to support the alternative Hypothesis.  

Hypothetical Testing is a critical tool for making data-driven decisions, evaluating the significance of observed effects or differences, and drawing meaningful conclusions from data, allowing Data Scientists to uncover patterns, relationships, and insights that inform various domains, from medicine to business and beyond. 

Unlock the power of data with our comprehensive Data Science & Analytics Training . Sign up now!  

Importance of Hypothesis Testing in Data Science  

The significance of Hypothesis Testing in Data Science cannot be overstated. It serves as the cornerstone of data-driven decision-making. By systematically testing Hypotheses, Data Scientists can: 

Importance of Hypothesis Testing in Data Science

Objective decision-making 

Hypothesis Testing provides a structured and impartial method for making decisions based on data. In a world where biases can skew perceptions, Data Scientists rely on this method to ensure that their conclusions are grounded in empirical evidence, making their decisions more objective and trustworthy. 

Statistical rigour 

Data Scientists deal with large amounts of data, and Hypothesis Testing helps them make sense of it. It quantifies the significance of observed patterns, differences, or relationships. This statistical rigour is essential in distinguishing between mere coincidences and meaningful findings, reducing the likelihood of making decisions based on random chance. 

Resource allocation 

Resources, whether they are financial, human, or time-related, are often limited. Hypothesis Testing enables efficient resource allocation by guiding Data Scientists towards strategies or interventions that are statistically significant. This ensures that efforts are directed where they are most likely to yield valuable results. 

Risk management 

In domains like healthcare and finance, where lives and livelihoods are at stake, Hypothesis Testing is a critical tool for risk assessment. For instance, in drug development, Hypothesis Testing is used to determine the safety and efficiency of new treatments, helping mitigate potential risks to patients. 

Innovation and progress 

Hypothesis Testing fosters innovation by providing a systematic framework to evaluate new ideas, products, or strategies. It encourages a cycle of experimentation, feedback, and improvement, driving continuous progress and innovation. 

Strategic decision-making 

Organisations base their strategies on data-driven insights. Hypothesis Testing enables them to make informed decisions about market trends, customer behaviour, and product development. These decisions are grounded in empirical evidence, increasing the likelihood of success. 

Scientific integrity 

In scientific research, Hypothesis Testing is integral to maintaining the integrity of research findings. It ensures that conclusions are drawn from rigorous statistical analysis rather than conjecture. This is essential for advancing knowledge and building upon existing research. 

Regulatory compliance 

Many industries, such as pharmaceuticals and aviation, operate under strict regulatory frameworks. Hypothesis Testing is essential for demonstrating compliance with safety and quality standards. It provides the statistical evidence required to meet regulatory requirements. 

Supercharge your data skills with our Big Data and Analytics Training – register now!  

Types of Hypothesis Testing  

Hypothesis Testing can be seen in several different types. In total, we have five types of Hypothesis Testing. They are described below as follows: 

Types of Hypothesis Testing

Alternative Hypothesis

The Alternative Hypothesis, denoted as Ha or H1, is the assertion or claim that researchers aim to support with their data analysis. It represents the opposite of the null Hypothesis (H0) and suggests that there is a significant effect, relationship, or difference in the population. In simpler terms, it's the statement that researchers hope to find evidence for during their analysis. For example, if you are testing a new drug's efficacy, the alternative Hypothesis might state that the drug has a measurable positive effect on patients' health. 

Null Hypothesis 

The Null Hypothesis, denoted as H0, is the default assumption in Hypothesis Testing. It posits that there is no significant effect, relationship, or difference in the population being studied. In other words, it represents the status quo or the absence of an effect. Researchers typically set out to challenge or disprove the Null Hypothesis by collecting and analysing data. Using the drug efficacy example again, the Null Hypothesis might state that the new drug has no effect on patients' health. 

Non-directional Hypothesis 

A Non-directional Hypothesis, also known as a two-tailed Hypothesis, is used when researchers are interested in whether there is any significant difference, effect, or relationship in either direction (positive or negative). This type of Hypothesis allows for the possibility of finding effects in both directions. For instance, in a study comparing the performance of two groups, a Non-directional Hypothesis would suggest that there is a significant difference between the groups, without specifying which group performs better. 

Directional Hypothesis 

A Directional Hypothesis, also called a one-tailed Hypothesis, is employed when researchers have a specific expectation about the direction of the effect, relationship, or difference they are investigating. In this case, the Hypothesis predicts an outcome in a particular direction—either positive or negative. For example, if you expect that a new teaching method will improve student test scores, a directional Hypothesis would state that the new method leads to higher test scores. 

Statistical Hypothesis 

A Statistical Hypothesis is a Hypothesis formulated in a way that it can be tested using statistical methods. It involves specific numerical values or parameters that can be measured or compared. Statistical Hypotheses are crucial for quantitative research and often involve means, proportions, variances, correlations, or other measurable quantities. These Hypotheses provide a precise framework for conducting statistical tests and drawing conclusions based on data analysis. 

Want to unlock the power of Big Data Analysis? Join our Big Data Analysis Course today!  

Basic steps in Hypothesis Testing  

Hypothesis Testing is a systematic approach used in statistics to make informed decisions based on data. It is a critical tool in Data Science, research, and many other fields where data analysis is employed. The following are the basic steps involved in Hypothesis Testing: 

Basic steps in Hypothesis Testing

1) Formulate Hypotheses 

The first step in Hypothesis Testing is to clearly define your research question and translate it into two mutually exclusive Hypotheses: 

a) Null Hypothesis (H0): This is the default assumption, often representing the status quo or the absence of an effect. It states that there is no significant difference, relationship, or effect in the population. 

b) Alternative Hypothesis (Ha or H1): This is the statement that contradicts the null Hypothesis. It suggests that there is a significant difference, relationship, or effect in the population. 

The formulation of these Hypotheses is crucial, as they serve as the foundation for your entire Hypothesis Testing process. 

2) Collect data 

With your Hypotheses in place, the next step is to gather relevant data through surveys, experiments, observations, or any other suitable method. The data collected should be representative of the population you are studying. The quality and quantity of data are essential factors in the success of your Hypothesis Testing. 

3) Choose a significance level (α) 

Before conducting the statistical test, you need to decide on the level of significance, denoted as α. The significance level represents the threshold for statistical significance and determines how confident you want to be in your results. A common choice is α = 0.05, which implies a 5% chance of making a Type I error (rejecting the null Hypothesis when it's true). You can choose a different α value based on the specific requirements of your analysis. 

4) Perform the test 

Based on the nature of your data and the Hypotheses you've formulated, select the appropriate statistical test. There are various tests available, including t-tests, chi-squared tests, ANOVA, regression analysis, and more. The chosen test should align with the type of data (e.g., continuous or categorical) and the research question (e.g., comparing means or testing for independence). 

Execute the selected statistical test on your data to obtain test statistics and p-values. The test statistics quantify the difference or effect you are investigating, while the p-value represents the probability of obtaining the observed results if the null Hypothesis were true. 

5) Analyse the results 

Once you have the test statistics and p-value, it's time to interpret the results. The primary focus is on the p-value: 

a) If the p-value is less than or equal to your chosen significance level (α), typically 0.05, you have evidence to reject the null Hypothesis. This shows that there is a significant difference, relationship, or effect in the population. 

b) If the p-value is more than α, you fail to reject the null Hypothesis, showing that there is insufficient evidence to support the alternative Hypothesis. 

6) Draw conclusions 

Based on the analysis of the p-value and the comparison to the significance level, you can draw conclusions about your research question: 

a) In case you reject the null Hypothesis, you can accept the alternative Hypothesis and make inferences based on the evidence provided by your data. 

b) In case you fail to reject the null Hypothesis, you do not accept the alternative Hypothesis, and you acknowledge that there is no significant evidence to support your claim. 

It's important to communicate your findings clearly, including the implications and limitations of your analysis. 

Real-world use cases of Hypothesis Testing  

The following are some of the real-world use cases of Hypothesis Testing. 

a) Medical research: Hypothesis Testing is crucial in determining the efficacy of new medications or treatments. For instance, in a clinical trial, researchers use Hypothesis Testing to assess whether a new drug is significantly more effective than a placebo in treating a particular condition. 

b) Marketing and advertising: Businesses employ Hypothesis Testing to evaluate the impact of marketing campaigns. A company may test whether a new advertising strategy leads to a significant increase in sales compared to the previous approach. 

c) Manufacturing and quality control: Manufacturing industries use Hypothesis Testing to ensure product quality. For example, in the automotive industry, Hypothesis Testing can be applied to test whether a new manufacturing process results in a significant reduction in defects. 

d) Education: In the field of education, Hypothesis Testing can be used to assess the effectiveness of teaching methods. Researchers may test whether a new teaching approach leads to statistically significant improvements in student performance. 

e) Finance and investment: Investment strategies are often evaluated using Hypothesis Testing. Investors may test whether a new investment strategy outperforms a benchmark index over a specified period.  

Big Data Analytics

Conclusion 

To sum it up, Hypothesis Testing in Data Science is a powerful tool that enables Data Scientists to make evidence-based decisions and draw meaningful conclusions from data. Understanding the types, methods, and steps involved in Hypothesis Testing is essential for any Data Scientist. By rigorously applying Hypothesis Testing techniques, you can gain valuable insights and drive informed decision-making in various domains. 

Want to take your Data Science skills to the next level? Join our Big Data Analytics & Data Science Integration Course now!  

Frequently Asked Questions

Upcoming data, analytics & ai resources batches & dates.

Fri 12th Apr 2024

Fri 5th Jul 2024

Fri 1st Nov 2024

Get A Quote

WHO WILL BE FUNDING THE COURSE?

My employer

By submitting your details you agree to be contacted in order to respond to your enquiry

  • Business Analysis
  • Lean Six Sigma Certification

Share this course

Our biggest spring sale.

red-star

We cannot process your enquiry without contacting you, please tick to confirm your consent to us for contacting you about your enquiry.

By submitting your details you agree to be contacted in order to respond to your enquiry.

We may not have the course you’re looking for. If you enquire or give us a call on 01344203999 and speak to our training experts, we may still be able to help with your training requirements.

Or select from our popular topics

  • ITIL® Certification
  • Scrum Certification
  • Change Management Certification
  • Business Analysis Courses
  • Microsoft Azure Certification
  • Microsoft Excel & Certification Course
  • Microsoft Project
  • Explore more courses

Press esc to close

Fill out your  contact details  below and our training experts will be in touch.

Fill out your   contact details   below

Thank you for your enquiry!

One of our training experts will be in touch shortly to go over your training requirements.

Back to Course Information

Fill out your contact details below so we can get in touch with you regarding your training requirements.

* WHO WILL BE FUNDING THE COURSE?

Preferred Contact Method

No preference

Back to course information

Fill out your  training details  below

Fill out your training details below so we have a better idea of what your training requirements are.

HOW MANY DELEGATES NEED TRAINING?

HOW DO YOU WANT THE COURSE DELIVERED?

Online Instructor-led

Online Self-paced

WHEN WOULD YOU LIKE TO TAKE THIS COURSE?

Next 2 - 4 months

WHAT IS YOUR REASON FOR ENQUIRING?

Looking for some information

Looking for a discount

I want to book but have questions

One of our training experts will be in touch shortly to go overy your training requirements.

Your privacy & cookies!

Like many websites we use cookies. We care about your data and experience, so to give you the best possible experience using our site, we store a very limited amount of your data. Continuing to use this site or clicking “Accept & close” means that you agree to our use of cookies. Learn more about our privacy policy and cookie policy cookie policy .

We use cookies that are essential for our site to work. Please visit our cookie policy for more information. To accept all cookies click 'Accept & close'.

For enquiries call:

+1-469-442-0620

banner-in1

  • Data Science

Hypothesis Testing in Data Science [Types, Process, Example]

Home Blog Data Science Hypothesis Testing in Data Science [Types, Process, Example]

Play icon

In day-to-day life, we come across a lot of data lot of variety of content. Sometimes the information is too much that we get confused about whether the information provided is correct or not. At that moment, we get introduced to a word called “Hypothesis testing” which helps in determining the proofs and pieces of evidence for some belief or information.  

What is Hypothesis Testing?

Hypothesis testing is an integral part of statistical inference. It is used to decide whether the given sample data from the population parameter satisfies the given hypothetical condition. So, it will predict and decide using several factors whether the predictions satisfy the conditions or not. In simpler terms, trying to prove whether the facts or statements are true or not.   

For example, if you predict that students who sit on the last bench are poorer and weaker than students sitting on 1st bench, then this is a hypothetical statement that needs to be clarified using different experiments. Another example we can see is implementing new business strategies to evaluate whether they will work for the business or not. All these things are very necessary when you work with data as a data scientist.  If you are interested in learning about data science, visit this amazing  Data Science full course   to learn data science.    

How is Hypothesis Testing Used in Data Science?

It is important to know how and where we can use hypothesis testing techniques in the field of data science. Data scientists predict a lot of things in their day-to-day work, and to check the probability of whether that finding is certain or not, we use hypothesis testing. The main goal of hypothesis testing is to gauge how well the predictions perform based on the sample data provided by the population. If you are interested to know more about the applications of the data, then refer to this  D ata  Scien ce course in India  which will give you more insights into application-based things. When data scientists work on model building using various machine learning algorithms, they need to have faith in their models and the forecasting of models. They then provide the sample data to the model for training purposes so that it can provide us with the significance of statistical data that will represent the entire population.  

Where and When to Use Hypothesis Test?

Hypothesis testing is widely used when we need to compare our results based on predictions. So, it will compare before and after results. For example, someone claimed that students writing exams from blue pen always get above 90%; now this statement proves it correct, and experiments need to be done. So, the data will be collected based on the student's input, and then the test will be done on the final result later after various experiments and observations on students' marks vs pen used, final conclusions will be made which will determine the results. Now hypothesis testing will be done to compare the 1st and the 2nd result, to see the difference and closeness of both outputs. This is how hypothesis testing is done.  

How Does Hypothesis Testing Work in Data Science?

In the whole data science life cycle, hypothesis testing is done in various stages, starting from the initial part, the 1st stage where the EDA, data pre-processing, and manipulation are done. In this stage, we will do our initial hypothesis testing to visualize the outcome in later stages. The next test will be done after we have built our model, once the model is ready and hypothesis testing is done, we will compare the results of the initial testing and the 2nd one to compare the results and significance of the results and to confirm the insights generated from the 1st cycle match with the 2nd one or not. This will help us know how the model responds to the sample training data. As we saw above, hypothesis testing is always needed when we are planning to contrast more than 2 groups. While checking on the results, it is important to check on the flexibility of the results for the sample and the population. Later, we can judge on the disagreement of the results are appropriate or vague. This is all we can do using hypothesis testing.   

Different Types of Hypothesis Testing

Hypothesis testing can be seen in several types. In total, we have 5 types of hypothesis testing. They are described below:

Hypothesis Testing

1. Alternative Hypothesis

The alternative hypothesis explains and defines the relationship between two variables. It simply indicates a positive relationship between two variables which means they do have a statistical bond. It indicates that the sample observed is going to influence or affect the outcome. An alternative hypothesis is described using H a  or H 1 . Ha indicates an alternative hypothesis and H 1  explains the possibility of influenced outcome which is 1. For example, children who study from the beginning of the class have fewer chances to fail. An alternate hypothesis will be accepted once the statistical predictions become significant. The alternative hypothesis can be further divided into 3 parts.   

  • Left-tailed: Left tailed hypothesis can be expected when the sample value is less than the true value.   
  • Right-tailed: Right-tailed hypothesis can be expected when the true value is greater than the outcome/predicted value.    
  • Two-tailed: Two-tailed hypothesis is defined when the true value is not equal to the sample value or the output.   

2. Null Hypothesis

The null hypothesis simply states that there is no relation between statistical variables. If the facts presented at the start do not match with the outcomes, then we can say, the testing is null hypothesis testing. The null hypothesis is represented as H 0 . For example, children who study from the beginning of the class have no fewer chances to fail. There are types of Null Hypothesis described below:   

Simple Hypothesis:  It helps in denoting and indicating the distribution of the population.   

Composite Hypothesis:  It does not denote the population distribution   

Exact Hypothesis:  In the exact hypothesis, the value of the hypothesis is the same as the sample distribution. Example- μ= 10   

Inexact Hypothesis:  Here, the hypothesis values are not equal to the sample. It will denote a particular range of values.   

3. Non-directional Hypothesis 

The non-directional hypothesis is a tow-tailed hypothesis that indicates the true value does not equal the predicted value. In simpler terms, there is no direction between the 2 variables. For an example of a non-directional hypothesis, girls and boys have different methodologies to solve a problem. Here the example explains that the thinking methodologies of a girl and a boy is different, they don’t think alike.    

4. Directional Hypothesis

In the Directional hypothesis, there is a direct relationship between two variables. Here any of the variables influence the other.   

5. Statistical Hypothesis

Statistical hypothesis helps in understanding the nature and character of the population. It is a great method to decide whether the values and the data we have with us satisfy the given hypothesis or not. It helps us in making different probabilistic and certain statements to predict the outcome of the population... We have several types of tests which are the T-test, Z-test, and Anova tests.  

Methods of Hypothesis Testing

1. frequentist hypothesis testing.

Frequentist hypotheses mostly work with the approach of making predictions and assumptions based on the current data which is real-time data. All the facts are based on current data. The most famous kind of frequentist approach is null hypothesis testing.    

2. Bayesian Hypothesis Testing

Bayesian testing is a modern and latest way of hypothesis testing. It is known to be the test that works with past data to predict the future possibilities of the hypothesis. In Bayesian, it refers to the prior distribution or prior probability samples for the observed data. In the medical Industry, we observe that Doctors deal with patients’ diseases using past historical records. So, with this kind of record, it is helpful for them to understand and predict the current and upcoming health conditions of the patient.

Importance of Hypothesis Testing in Data Science

Most of the time, people assume that data science is all about applying machine learning algorithms and getting results, that is true but in addition to the fact that to work in the data science field, one needs to be well versed with statistics as most of the background work in Data science is done through statistics. When we deal with data for pre-processing, manipulating, and analyzing, statistics play. Specifically speaking Hypothesis testing helps in making confident decisions, predicting the correct outcomes, and finding insightful conclusions regarding the population. Hypothesis testing helps us resolve tough things easily. To get more familiar with Hypothesis testing and other prediction models attend the superb useful  KnowledgeHut Data Science full course  which will give you more domain knowledge and will assist you in working with industry-related projects.          

Basic Steps in Hypothesis Testing [Workflow]

1. null and alternative hypothesis.

After we have done our initial research about the predictions that we want to find out if true, it is important to mention whether the hypothesis done is a null hypothesis(H0) or an alternative hypothesis (Ha). Once we understand the type of hypothesis, it will be easy for us to do mathematical research on it. A null hypothesis will usually indicate the no-relationship between the variables whereas an alternative hypothesis describes the relationship between 2 variables.    

  • H0 – Girls, on average, are not strong as boys   
  • Ha - Girls, on average are stronger than boys   

2. Data Collection

To prove our statistical test validity, it is essential and critical to check the data and proceed with sampling them to get the correct hypothesis results. If the target data is not prepared and ready, it will become difficult to make the predictions or the statistical inference on the population that we are planning to make. It is important to prepare efficient data, so that hypothesis findings can be easy to predict.   

3. Selection of an appropriate test statistic

To perform various analyses on the data, we need to choose a statistical test. There are various types of statistical tests available. Based on the wide spread of the data that is variance within the group or how different the data category is from one another that is variance without a group, we can proceed with our further research study.   

4. Selection of the appropriate significant level

Once we get the result and outcome of the statistical test, we have to then proceed further to decide whether the reject or accept the null hypothesis. The significance level is indicated by alpha (α). It describes the probability of rejecting or accepting the null hypothesis. Example- Suppose the value of the significance level which is alpha is 0.05. Now, this value indicates the difference from the null hypothesis. 

5. Calculation of the test statistics and the p-value

P value is simply the probability value and expected determined outcome which is at least as extreme and close as observed results of a hypothetical test. It helps in evaluating and verifying hypotheses against the sample data. This happens while assuming the null hypothesis is true. The lower the value of P, the higher and better will be the results of the significant value which is alpha (α). For example, if the P-value is 0.05 or even less than this, then it will be considered statistically significant. The main thing is these values are predicted based on the calculations done by deviating the values between the observed one and referenced one. The greater the difference between values, the lower the p-value will be.

6. Findings of the test

After knowing the P-value and statistical significance, we can determine our results and take the appropriate decision of whether to accept or reject the null hypothesis based on the facts and statistics presented to us.

How to Calculate Hypothesis Testing?

Hypothesis testing can be done using various statistical tests. One is Z-test. The formula for Z-test is given below:  

            Z = ( x̅  – μ 0 )  / (σ /√n)    

In the above equation, x̅ is the sample mean   

  • μ0 is the population mean   
  • σ is the standard deviation    
  • n is the sample size   

Now depending on the Z-test result, the examination will be processed further. The result is either going to be a null hypothesis or it is going to be an alternative hypothesis. That can be measured through below formula-   

  • H0: μ=μ0   
  • Ha: μ≠μ0   
  • Here,   
  • H0 = null hypothesis   
  • Ha = alternate hypothesis   

In this way, we calculate the hypothesis testing and can apply it to real-world scenarios.

Real-World Examples of Hypothesis Testing

Hypothesis testing has a wide variety of use cases that proves to be beneficial for various industries.    

1. Healthcare

In the healthcare industry, all the research and experiments which are done to predict the success of any medicine or drug are done successfully with the help of Hypothesis testing.   

2. Education sector

Hypothesis testing assists in experimenting with different teaching techniques to deal with the understanding capability of different students.   

3. Mental Health

Hypothesis testing helps in indicating the factors that may cause some serious mental health issues.   

4. Manufacturing

Testing whether the new change in the process of manufacturing helped in the improvement of the process as well as in the quantity or not.  In the same way, there are many other use cases that we get to see in different sectors for hypothesis testing. 

Error Terms in Hypothesis Testing

1. type-i error.

Type I error occurs during the process of hypothesis testing when the null hypothesis is rejected even though it is accurate. This kind of error is also known as False positive because even though the statement is positive or correct but results are given as false. For example, an innocent person still goes to jail because he is considered to be guilty.   

2. Type-II error

Type II error occurs during the process of hypothesis testing when the null hypothesis is not rejected even though it is inaccurate. This Kind of error is also called a False-negative which means even though the statements are false and inaccurate, it still says it is correct and doesn’t reject it. For example, a person is guilty, but in court, he has been proven innocent where he is guilty, so this is a Type II error.   

3. Level of Significance

The level of significance is majorly used to measure the confidence with which a null hypothesis can be rejected. It is the value with which one can reject the null hypothesis which is H0. The level of significance gauges whether the hypothesis testing is significant or not.   

P-value stands for probability value, which tells us the probability or likelihood to find the set of observations when the null hypothesis is true using statistical tests. The main purpose is to check the significance of the statistical statement.   

5. High P-Values

A higher P-value indicates that the testing is not statistically significant. For example, a P value greater than 0.05 is considered to be having higher P value. A higher P-value also means that our evidence and proofs are not strong enough to influence the population.

In hypothesis testing, each step is responsible for getting the outcomes and the results, whether it is the selection of statistical tests or working on data, each step contributes towards the better consequences of the hypothesis testing. It is always a recommendable step when planning for predicting the outcomes and trying to experiment with the sample; hypothesis testing is a useful concept to apply.   

Frequently Asked Questions (FAQs)

We can test a hypothesis by selecting a correct hypothetical test and, based on those getting results.   

Many statistical tests are used for hypothetical testing which includes Z-test, T-test, etc. 

Hypothesis helps us in doing various experiments and working on a specific research topic to predict the results.   

The null and alternative hypothesis, data collection, selecting a statistical test, selecting significance value, calculating p-value, check your findings.    

In simple words, parametric tests are purely based on assumptions whereas non-parametric tests are based on data that is collected and acquired from a sample.   

Profile

Gauri Guglani

Gauri Guglani works as a Data Analyst at Deloitte Consulting. She has done her major in Information Technology and holds great interest in the field of data science. She owns her technical skills as well as managerial skills and also is great at communicating. Since her undergraduate, Gauri has developed a profound interest in writing content and sharing her knowledge through the manual means of blog/article writing. She loves writing on topics affiliated with Statistics, Python Libraries, Machine Learning, Natural Language processes, and many more.

Avail your free 1:1 mentorship session.

Something went wrong

Upcoming Data Science Batches & Dates

Course advisor icon

logo

Introduction to Data Science I & II

Hypothesis testing, hypothesis testing #.

Hypothesis testing is about choosing between two views, called hypotheses , on how data were generated (for example, SSR=1 or SSR =1.05 where SSR is the secondary sex ratio we defined in the previous section). Hypotheses, called null and alternative , should be specified before doing the analysis. Testing is a way to select the hypothesis that is better supported by the data. Note that the null hypothesis corresponds to what we called “the data-generating model” in the previous section.

Ingredients of hypothesis testing:

A null hypothesis \(H_0\) (e.g. SSR=1.05);

An alternative hypothesis \(H_A\) (e.g. SSR \(\neq\) 1.05);

A test statistic;

A decision or a measure of significance that is obtained from the test statistic and its distribution under the null hypothesis.

In the previous section we investigated \(H_0\) : SSR=1 by simulating from the binomial distribution. The natural alternative there was \(H_A:\) SSR \(\neq\) 1. The test statistic we used was the number of boys.

Let’s look in more detail at the components of a hypothesis test on a subset of these data. Assume that someone claims that Illinois has a different SSR based on what they have seen in a hospital they work for. You decide to investigate this using the natality data we introduced above. Before looking at the data, you need to decide on the first three ingredients:

Null hypothesis is generally the default view (generally believed to be true) and it all needs to lead to clear rules on how the data were generated. In this case, it makes sense to declare that \(H_0:\) SSR_IL=1.05 (the probability of having a boy in Illinois is 0.512 which corresponds to a secondary sex ratio of 1.05).

Alternative hypothesis should be the opposite of the null, but it can have variations (for example, we can use SSR_IL<1.05 or SSR_IL>1.05). Here, because there was no additional information provided, it is natural to use \(H_A:\) SSR_IL \(\neq\) 1.05. Note that the choice of alternative will impact the measure of significance that is discussed below.

Test statistic is the summary of the data that will be used for investigating consistency. We aim to choose the statistic that is most informative for the hypotheses we are investigating. We will use here the observed SSR in IL as a test statistic.

Below are the cells that show the data and the histogram of test statistics generated under \(H_0\) .

../../_images/HypothesisTesting_2_Test_3_0.png

In the above histogram, the observed statistic (indicated by the red dot) seems to be natural realization from the distribution summarized by the histogram. There seems to be no evidence against \(H_0\) . A more complete conclusion: using the number of boys as test statistic, we find no evidence to reject \(H_0\) (no evidence that the data is inconsistent with SSR=1.05).

Significance as measured by the p-value #

P-values capture the consistency of the data (test statistic) with the null hypothesis (distribution of the statistic under the null).

The p-value is the chance, under the null hypothesis , that the test statistic is equal to the observed value or is further in the direction of the alternative.

It is important to use correctly the specified alternative hypothesis for specifying the tail or tails of the null distribution of the statistic.

The decision is made using the null distribution of the test statistics ( probability distribution ); we will use an approximation given by an empirical distribution . P-value is about the tail area of the distribution.

In the above example, the proportion of simulations that lead to more extreme values than the one observed is:

Interpretation of p-values #

When \(H_0\) is true : p-value is (approximately) distributed uniform on the interval [0,1]:

about half of p-values are larger than 0.5

about 10% are smaller than 0.1

about 5% are smaller than 0.05

A small p-value (typically smaller than 0.05 or 0.01) indicates evidence against the null hypothesis (smaller the p-value, stronger the evidence). A large p-value indicates no evidence (or weak evidence) against the null.

Hypothesis Testing

Hypothesis Tests (or Significance Tests) are statistical tests to see if a difference we observe is due to chance.

There are many different types of hypothesis tests for different scenarios, but they all have the same basic ideas. Below are the general steps to performing a hypothesis test:

  • Formulate your Null and Alternative Hypotheses.
  • Ho- Null Hypothesis : The null hypothesis is the hypothesis of no effect. It's the dull, boring hypothesis that says that nothing interesting is going on. If we are trying to test if a difference we observe is due to chance, the null says it is!
  • Ha- Alternative Hypothesis : The alternative hypothesis is the opposite of the null. It's what you are trying to test. If we are trying to test if a difference we observe is due to chance, the alternative says it is not!

Think about what you would expect to get if you randomly sampled from the population, assuming the null is true. Compare your observed data and expected data and calculate the test statistic .

Calculate the probability of getting the data you got or something even more extreme if the null were true. This is called the p-value .

  • Make your conclusion and interpret it in the context of the problem. If p is very low, we say that the data support rejecting the null hypothesis.

How low is “very low”?

The convention is to reject the null when P < 5% (P < 0.05) and call the result “significant”. There’s no particular justification for this value but it’s commonly used.

The P-value cut-off is called the significance level and is often represented by the Greek letter alpha (α).

The One Sample Z Test: One-sided Hypothesis

The first type of hypothesis test we are going to look at is the one-sample z-test. You can do a z-test for means or for proportions. This is the most simple type of hypothesis test and it uses z-scores and the normal curve. Let’s look at one below!

Hypothesis Test Example : Suppose a large university claims that the average ACT score of their incoming freshman class is 30, but we think the University may be inflating their average. To test the University’s claim we take a simple random sample of 50 students and find their average to be only 28.3 with an SD of 4. Perform a hypothesis test to test the claim. Here are the 4 steps:

  • This can be written in symbols as well: Ho: μ = 30
  • μ is the symbol for the population mean
  • This can be written in symbols as well: Ho: μ < 30
  • Our test statistic for the one sample z test is z! We can calculate z using our z-score formula for random variables since we are dealing with a sample of 50 students.

hypothesis test in data science

  • In our case, the expected value (EV) is 30 since we are assuming our null hypothesis is true (until proven otherwise).
  • Since we are dealing with means, our SE is found using the following formula:

hypothesis test in data science

Our z-score is -3. See the calculation below:

hypothesis test in data science

  • Calculate the probability of getting the data you got or something even more extreme if the null were true. This is called the p-value . In this case, our p-value is going to be the area to the left of z = -3. We can use Python to calculate this by using norm.cdf(-3).
  • We get that the p-value is 0.0013.
  • This is the probability that we would get a sample average of 28.3 given that the null hypothesis was true (the true average was 30).

hypothesis test in data science

  • Our p-value is less than 5% so we reject our Null Hypothesis. In other words, there is evidence of the Alternative Hypothesis (that the University is inflating their average).

The One Sample Z Test: Two-sided Hypothesis

Hypothesis Test Example : Now we're going to test the above claim but with a different alternative hypothesis. The large university still claims that the average ACT score of their incoming freshman class is 30, but now we think the University may be inflating or deflating their average. To test the University’s claim we take a simple random sample of 50 students and find their average to be only 28.3 with an SD of 4. Perform a hypothesis test to test the claim with our new alternative hypothesis. Here are the 4 steps:

  • This can be written in symbols as well: Ho: μ != 30

Step 2 is the same as the one-sided example, so our z score is still -3.

Calculate the probability of getting the data you got or something even more extreme if the null were true. This is called the p-value . In this case, our p-value is going to be the area to the left or right of z = -3. We can use Python to calculate this by using 2*norm.cdf(-3).

  • We get that the p-value is 0.0027.
  • Our p-value is less than 5% so we reject our Null Hypothesis. In other words, there is evidence of the Alternative Hypothesis (that the University is inflating or deflating their average).

Example Walk-Throughs with Worksheets

Video 1: one sample z-test examples.

  • Download Blank Worksheet (PDF)

Video 2: Two Sample z-test Examples

Video 3: z-tests in Python

Video 4: One Sample t-test Examples

Video 5: t-tests in Python

Data Science Stunt

Data Science Stunt

Join Our Stunt to Successful Product Strategies with a Data Mindset

What is hypothesis testing in data science?

Hypothesis testing is a statistical technique used to evaluate hypotheses about a population based on sample data. In data science, hypothesis testing is an essential tool used to make inferences about the population based on a representative sample. In this blog, we will discuss the key aspects of hypothesis testing, including null hypothesis, alternate hypothesis, significance level, type I and type II errors, p-value, region of acceptance, typical steps involved in p-value approach, and key terms around type I error and type II error.

Table of Contents

What is hypothesis testing in data science or AI or ML or Statistics?

Hypothesis testing is a statistical technique used to test whether a claim or hypothesis about a population is true or not. Imagine that you have a hypothesis that eating breakfast helps students perform better in school. To test this hypothesis, you would collect data from a sample of students and compare their performance in school to whether they ate breakfast or not. You would then compare the results to what would be expected by chance, assuming the null hypothesis is true, which means there is no difference in performance between those who ate breakfast and those who didn’t. If the results show a statistically significant difference, you can reject the null hypothesis and accept the alternative hypothesis, which in this case is that eating breakfast does, in fact, help students perform better in school. Hypothesis testing is important in many fields, including science and medicine, to help make decisions based on empirical evidence.

Hypothesis testing is a statistical tool that helps to test assumptions or claims about a population based on a sample of data. The process of hypothesis testing involves formulating a null hypothesis and an alternative hypothesis, selecting an appropriate test statistic, choosing a level of significance, calculating the p-value, and making a decision whether to reject or fail to reject the null hypothesis based on the p-value. Hypothesis testing is widely used in various fields, such as social sciences, medicine, engineering, and economics, to evaluate research questions and determine the statistical significance of results. It is a crucial component of data analysis that can help to make sound decisions based on empirical evidence.

What is hypothesis testing in data science?

What are the null hypothesis and alternative hypothesis with examples?

Hypothesis testing involves comparing two statements, the null hypothesis and the alternative hypothesis. The null hypothesis is the starting assumption we make about a population, which suggests there is no difference or relationship between two or more variables being tested. For instance, if we want to test whether there is a difference in the average height between boys and girls, the null hypothesis would state that there is no difference in height between the two groups.

On the other hand, the alternative hypothesis is a statement that assumes there is a difference or relationship between the variables being tested. In this example, the alternative hypothesis would propose that there is a difference in height between boys and girls.

To evaluate which hypothesis to accept or reject, we collect data from a sample and compare it to what would be expected by chance, assuming the null hypothesis is correct. If the results reveal a statistically significant difference, we reject the null hypothesis and accept the alternative hypothesis. However, if there is insufficient evidence to dismiss the null hypothesis, we fail to reject it. To sum up, the null hypothesis is the original assumption we test, and the alternative hypothesis is the statement we attempt to validate.

The null hypothesis is a statement of no effect or no difference between two groups. This statement is usually the starting point in hypothesis testing, and we assume it to be true. For example, if we want to test the efficacy of a new drug, the null hypothesis would state that the drug has no effect.

The alternate hypothesis is the opposite of the null hypothesis. It is the statement we want to test, and it suggests that there is an effect or difference between two groups. For example, if we want to test the efficacy of a new drug, the alternate hypothesis would suggest that the drug is effective.

Here are some more examples to help illustrate the concept of null and alternative hypotheses:

Example 1: Null hypothesis: There is no difference in exam scores between students who study alone versus students who study in groups. Alternative hypothesis: Students who study in groups score higher on exams than students who study alone.

Example 2: Null hypothesis: There is no difference in sales between two different advertising campaigns. Alternative hypothesis: One advertising campaign leads to more sales than the other.

Example 3: Null hypothesis: There is no relationship between the amount of sleep a person gets and their cognitive performance. Alternative hypothesis: The amount of sleep a person gets is positively correlated with their cognitive performance.

What is the significance level in hypothesis testing with examples?

In hypothesis testing, the significance level is a number that we pick before we do a test. It helps us know how sure we are about our results. It’s like saying, “I’m only going to say something is true if I’m really sure.”

For example, if we’re trying to find out if girls are taller than boys on average, we might set a significance level of 0.05. This means we’re only going to say girls are taller if we’re at least 95% sure that’s true. If our test gives us a result that is less than 95% sure, we won’t say for sure that girls are taller.

The significance level is like a safety net to make sure we’re not jumping to conclusions without enough evidence. It helps us be more careful and confident about what we say is true based on the data we have.

In hypothesis testing, the significance level is the probability threshold that we set for rejecting the null hypothesis. The significance level, also known as alpha (α), is usually chosen before the test is conducted and is typically set at 0.05, meaning that we are willing to accept a 5% chance of making a type I error, which is the probability of rejecting the null hypothesis when it is actually true.

For example, let’s say we’re testing the hypothesis that boys and girls have different average heights. We would start by setting a significance level of 0.05. If the results of our study indicate that there is a statistically significant difference in height between boys and girls, with a p-value less than 0.05, we would reject the null hypothesis and conclude that there is a significant difference in height between the two groups. However, if the p-value is greater than 0.05, we would fail to reject the null hypothesis and conclude that there is insufficient evidence to support the claim that there is a difference in height between boys and girls.

In summary, the significance level is the probability threshold we set for rejecting the null hypothesis, and it helps us determine how confident we are in our conclusions based on the data we have collected. It is a critical component of hypothesis testing and helps us make informed decisions based on empirical evidence.

The significance level is the probability of making a type I error, or the probability of rejecting the null hypothesis when it is actually true. It is denoted by alpha (α) and is typically set to 0.05 or 0.01.

What are Type I and Type II Errors in hypothesis testing with examples?

When we do a test to see if something is true or not, sometimes we can make mistakes. There are two kinds of mistakes we can make:

The first mistake is called a Type I error. This happens when we say something is true, but it’s really not true. It’s like thinking you found a diamond in the sand, but it’s just a piece of glass.

The second mistake is called a Type II error. This happens when we say something is not true, but it’s actually true. It’s like thinking there are no more cookies in the cookie jar, but there are still some left.

We use some special words to describe these mistakes. Type I errors are also called false positives, and Type II errors are also called false negatives.

To make things even more confusing, we use a letter called beta (β) to talk about the chance of making a Type II error. But don’t worry too much about that for now. Just remember that sometimes we can make mistakes when we do tests, and we have special names for those mistakes.

Type I error occurs when we reject the null hypothesis when it is actually true. It is also known as a false positive. Type II error occurs when we fail to reject the null hypothesis when it is actually false. It is also known as a false negative. The probability of making a type II error is denoted by beta (β).

We also have something called power. Power is like the opposite of a false negative. It’s the chance that we’ll figure out something is true, if it really is true.

Another thing we think about is the sample size. That means how many things we’re looking at to figure out if something is true or not.

And finally, we think about the effect size. That’s how big the difference is between two things we’re looking at. If the difference is really big, we might be more likely to find out if something is true or not.

So basically, when we do hypothesis testing, we try to figure out if something is true or not. But sometimes we make mistakes. We also think about how many things we’re looking at, how big the difference is between them, and how likely we are to figure out if something is true if it really is true.

What is the p-value in hypothesis testing with examples?

When we do a test to see if something is true or not, we get a number called the p-value. The p-value tells us how likely it is that we got the result we did just by chance.

Here’s an example: Let’s say we’re trying to find out if cats are smarter than dogs. We do a test and get a p-value of 0.03. This means there’s only a 3% chance that we got our result just by chance.

We also have something called a significance level, which is like a safety net to make sure we’re not jumping to conclusions without enough evidence. It’s like saying, “I’m only going to say something is true if I’m really sure.”

If the p-value is less than the significance level, we can say that we’re really sure our result is true, and we reject the idea that cats and dogs are equally smart. But if the p-value is greater than the significance level, we don’t have enough evidence to say for sure that cats are smarter than dogs.

So the p-value is a number that helps us decide if our test is giving us good evidence or if it’s just a fluke.

The p-value is the probability of obtaining a test statistic as extreme as the observed one, assuming that the null hypothesis is true. If the p-value is less than the significance level, we reject the null hypothesis. If the p-value is greater than the significance level, we fail to reject the null hypothesis.

What is the Region of Acceptance in hypothesis testing with examples?

When we do a test to see if something is true or not, we use a number called the test statistic. This number tells us how different our result is from what we would expect if the null hypothesis were true.

Sometimes, we get a test statistic that is in a certain range, and we say that it’s not different enough from what we would expect to be sure that our result is true. This range is called the region of acceptance.

For example, let’s say we’re trying to find out if a new medicine helps people sleep better. We do a test and get a test statistic of 1.2. We look at our chart and see that the region of acceptance is from -1.96 to 1.96. This means that our test statistic of 1.2 is in this range, so we can’t be sure that the medicine really works.

The region of acceptance is like a zone of uncertainty. It’s saying, “We’re not sure if this result is really different from what we would expect.”

The complement of the region of acceptance is called the critical region. This is the range of values that is different enough from what we would expect that we can be pretty sure our result is true.

So the region of acceptance is just the opposite of the critical region. If our test statistic is in the region of acceptance, we can’t say for sure if our result is true or not. But if it’s in the critical region, we can be pretty sure that it is.

The region of acceptance is the range of values of the test statistic that leads to failing to reject the null hypothesis. It is the complement of the critical region.

Typical Steps Involved in P-Value Approach

What are the 5 steps in hypothesis testing?

When we do a hypothesis test using the p-value approach, there are some typical steps we follow to find out if our hypothesis is true or not. Here are the steps we usually follow:

  • We start by stating what we think is true (the null hypothesis) and what we think might be true instead (the alternate hypothesis).
  • Then we pick a number called the test statistic. This number helps us figure out if our result is different enough from what we would expect to be sure it’s true.
  • Next, we calculate something called the p-value. This is like a score that tells us how likely it is that our result is true, based on the test statistic.
  • After that, we compare the p-value to another number called the significance level. If the p-value is smaller than the significance level, it means our result is very unlikely to be a coincidence, so we can say it’s true. If the p-value is bigger than the significance level, it means our result might just be a coincidence, so we can’t be sure it’s true.
  • Finally, we make a decision about whether our hypothesis is true or not, based on the comparison we made in step 4. We also explain what our results mean in real-life terms.

So basically, when we do a hypothesis test using the p-value approach, we follow these steps to figure out if our hypothesis is true or not.

To summarize, hypothesis testing is a critical technique in data science that helps us draw conclusions about the population based on sample data. By setting up the null and alternate hypotheses, selecting an appropriate significance level, and computing the p-value, we can make informed judgments about whether to accept or reject the null hypothesis. It’s essential to recognize the kinds of errors that can happen during hypothesis testing and to choose a suitable sample size and effect size to reduce these errors.

Check out the table of contents for  Product Management  and  Data Science  to explore those topics.

Curious about how product managers can utilize Bhagwad Gita’s principles to tackle difficulties? Give this super short  book  a shot. This will certainly support my work.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Mastodon (Opens in new window)

Leave a Reply Cancel reply

  • Machine Learning Tutorial
  • Data Analysis Tutorial
  • Python - Data visualization tutorial
  • Machine Learning Projects
  • Machine Learning Interview Questions
  • Machine Learning Mathematics
  • Deep Learning Tutorial
  • Deep Learning Project
  • Deep Learning Interview Questions
  • Computer Vision Tutorial
  • Computer Vision Projects
  • NLP Project
  • NLP Interview Questions
  • Statistics with Python
  • 100 Days of Machine Learning
  • Data Analysis with Python

Introduction to Data Analysis

  • What is Data Analysis?
  • Data Analytics and its type
  • How to Install Numpy on Windows?
  • How to Install Pandas in Python?
  • How to Install Matplotlib on python?
  • How to Install Python Tensorflow in Windows?

Data Analysis Libraries

  • Pandas Tutorial
  • NumPy Tutorial - Python Library
  • Data Analysis with SciPy
  • Introduction to TensorFlow

Data Visulization Libraries

  • Matplotlib Tutorial
  • Python Seaborn Tutorial
  • Plotly tutorial
  • Introduction to Bokeh in Python

Exploratory Data Analysis (EDA)

  • Univariate, Bivariate and Multivariate data and its analysis
  • Measures of Central Tendency in Statistics
  • Measures of spread - Range, Variance, and Standard Deviation
  • Interquartile Range and Quartile Deviation using NumPy and SciPy
  • Anova Formula
  • Skewness of Statistical Data
  • How to Calculate Skewness and Kurtosis in Python?
  • Difference Between Skewness and Kurtosis
  • Histogram | Meaning, Example, Types and Steps to Draw
  • Interpretations of Histogram
  • Quantile Quantile plots
  • What is Univariate, Bivariate & Multivariate Analysis in Data Visualisation?
  • Using pandas crosstab to create a bar plot
  • Exploring Correlation in Python
  • Mathematics | Covariance and Correlation
  • Factor Analysis | Data Analysis
  • Data Mining - Cluster Analysis
  • MANOVA Test in R Programming
  • Python - Central Limit Theorem
  • Probability Distribution Function
  • Probability Density Estimation & Maximum Likelihood Estimation
  • Exponential Distribution in R Programming - dexp(), pexp(), qexp(), and rexp() Functions
  • Mathematics | Probability Distributions Set 4 (Binomial Distribution)
  • Poisson Distribution - Definition, Formula, Table and Examples
  • P-Value: Comprehensive Guide to Understand, Apply, and Interpret
  • Z-Score in Statistics
  • How to Calculate Point Estimates in R?
  • Confidence Interval
  • Chi-square test in Machine Learning

Understanding Hypothesis Testing

Data preprocessing.

  • ML | Data Preprocessing in Python
  • ML | Overview of Data Cleaning
  • ML | Handling Missing Values
  • Detect and Remove the Outliers using Python

Data Transformation

  • Data Normalization Machine Learning
  • Sampling distribution Using Python

Time Series Data Analysis

  • Data Mining - Time-Series, Symbolic and Biological Sequences Data
  • Basic DateTime Operations in Python
  • Time Series Analysis & Visualization in Python
  • How to deal with missing values in a Timeseries in Python?
  • How to calculate MOVING AVERAGE in a Pandas DataFrame?
  • What is a trend in time series?
  • How to Perform an Augmented Dickey-Fuller Test in R
  • AutoCorrelation

Case Studies and Projects

  • Top 8 Free Dataset Sources to Use for Data Science Projects
  • Step by Step Predictive Analysis - Machine Learning
  • 6 Tips for Creating Effective Data Visualizations

Hypothesis testing involves formulating assumptions about population parameters based on sample statistics and rigorously evaluating these assumptions against empirical evidence. This article sheds light on the significance of hypothesis testing and the critical steps involved in the process.

What is Hypothesis Testing?

Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data. 

Example: You say an average height in the class is 30 or a boy is taller than a girl. All of these is an assumption that we are assuming, and we need some statistical way to prove these. We need some mathematical conclusion whatever we are assuming is true.

Defining Hypotheses

\mu

Key Terms of Hypothesis Testing

\alpha

  • P-value: The P value , or calculated probability, is the probability of finding the observed/extreme results when the null hypothesis(H0) of a study-given problem is true. If your P-value is less than the chosen significance level then you reject the null hypothesis i.e. accept that your sample claims to support the alternative hypothesis.
  • Test Statistic: The test statistic is a numerical value calculated from sample data during a hypothesis test, used to determine whether to reject the null hypothesis. It is compared to a critical value or p-value to make decisions about the statistical significance of the observed results.
  • Critical value : The critical value in statistics is a threshold or cutoff point used to determine whether to reject the null hypothesis in a hypothesis test.
  • Degrees of freedom: Degrees of freedom are associated with the variability or freedom one has in estimating a parameter. The degrees of freedom are related to the sample size and determine the shape.

Why do we use Hypothesis Testing?

Hypothesis testing is an important procedure in statistics. Hypothesis testing evaluates two mutually exclusive population statements to determine which statement is most supported by sample data. When we say that the findings are statistically significant, thanks to hypothesis testing. 

One-Tailed and Two-Tailed Test

One tailed test focuses on one direction, either greater than or less than a specified value. We use a one-tailed test when there is a clear directional expectation based on prior knowledge or theory. The critical region is located on only one side of the distribution curve. If the sample falls into this critical region, the null hypothesis is rejected in favor of the alternative hypothesis.

One-Tailed Test

There are two types of one-tailed test:

\mu \geq 50

Two-Tailed Test

A two-tailed test considers both directions, greater than and less than a specified value.We use a two-tailed test when there is no specific directional expectation, and want to detect any significant difference.

\mu =

What are Type 1 and Type 2 errors in Hypothesis Testing?

In hypothesis testing, Type I and Type II errors are two possible errors that researchers can make when drawing conclusions about a population based on a sample of data. These errors are associated with the decisions made regarding the null hypothesis and the alternative hypothesis.

\alpha

How does Hypothesis Testing work?

Step 1: define null and alternative hypothesis.

H_0

We first identify the problem about which we want to make an assumption keeping in mind that our assumption should be contradictory to one another, assuming Normally distributed data.

Step 2 – Choose significance level

\alpha

Step 3 – Collect and Analyze data.

Gather relevant data through observation or experimentation. Analyze the data using appropriate statistical methods to obtain a test statistic.

Step 4-Calculate Test Statistic

The data for the tests are evaluated in this step we look for various scores based on the characteristics of data. The choice of the test statistic depends on the type of hypothesis test being conducted.

There are various hypothesis tests, each appropriate for various goal to calculate our test. This could be a Z-test , Chi-square , T-test , and so on.

  • Z-test : If population means and standard deviations are known. Z-statistic is commonly used.
  • t-test : If population standard deviations are unknown. and sample size is small than t-test statistic is more appropriate.
  • Chi-square test : Chi-square test is used for categorical data or for testing independence in contingency tables
  • F-test : F-test is often used in analysis of variance (ANOVA) to compare variances or test the equality of means across multiple groups.

We have a smaller dataset, So, T-test is more appropriate to test our hypothesis.

T-statistic is a measure of the difference between the means of two groups relative to the variability within each group. It is calculated as the difference between the sample means divided by the standard error of the difference. It is also known as the t-value or t-score.

Step 5 – Comparing Test Statistic:

In this stage, we decide where we should accept the null hypothesis or reject the null hypothesis. There are two ways to decide where we should accept or reject the null hypothesis.

Method A: Using Crtical values

Comparing the test statistic and tabulated critical value we have,

  • If Test Statistic>Critical Value: Reject the null hypothesis.
  • If Test Statistic≤Critical Value: Fail to reject the null hypothesis.

Note: Critical values are predetermined threshold values that are used to make a decision in hypothesis testing. To determine critical values for hypothesis testing, we typically refer to a statistical distribution table , such as the normal distribution or t-distribution tables based on.

Method B: Using P-values

We can also come to an conclusion using the p-value,

p\leq\alpha

Note : The p-value is the probability of obtaining a test statistic as extreme as, or more extreme than, the one observed in the sample, assuming the null hypothesis is true. To determine p-value for hypothesis testing, we typically refer to a statistical distribution table , such as the normal distribution or t-distribution tables based on.

Step 7- Interpret the Results

At last, we can conclude our experiment using method A or B.

Calculating test statistic

To validate our hypothesis about a population parameter we use statistical functions . We use the z-score, p-value, and level of significance(alpha) to make evidence for our hypothesis for normally distributed data .

1. Z-statistics:

When population means and standard deviations are known.

z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

  • μ represents the population mean, 
  • σ is the standard deviation
  • and n is the size of the sample.

2. T-Statistics

T test is used when n<30,

t-statistic calculation is given by:

t=\frac{x̄-μ}{s/\sqrt{n}}

  • t = t-score,
  • x̄ = sample mean
  • μ = population mean,
  • s = standard deviation of the sample,
  • n = sample size

3. Chi-Square Test

Chi-Square Test for Independence categorical Data (Non-normally distributed) using:

\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}

  • i,j are the rows and columns index respectively.

E_{ij}

Real life Hypothesis Testing example

Let’s examine hypothesis testing using two real life situations,

Case A: D oes a New Drug Affect Blood Pressure?

Imagine a pharmaceutical company has developed a new drug that they believe can effectively lower blood pressure in patients with hypertension. Before bringing the drug to market, they need to conduct a study to assess its impact on blood pressure.

  • Before Treatment: 120, 122, 118, 130, 125, 128, 115, 121, 123, 119
  • After Treatment: 115, 120, 112, 128, 122, 125, 110, 117, 119, 114

Step 1 : Define the Hypothesis

  • Null Hypothesis : (H 0 )The new drug has no effect on blood pressure.
  • Alternate Hypothesis : (H 1 )The new drug has an effect on blood pressure.

Step 2: Define the Significance level

Let’s consider the Significance level at 0.05, indicating rejection of the null hypothesis.

If the evidence suggests less than a 5% chance of observing the results due to random variation.

Step 3 : Compute the test statistic

Using paired T-test analyze the data to obtain a test statistic and a p-value.

The test statistic (e.g., T-statistic) is calculated based on the differences between blood pressure measurements before and after treatment.

t = m/(s/√n)

  • m  = mean of the difference i.e X after, X before
  • s  = standard deviation of the difference (d) i.e d i ​= X after, i ​− X before,
  • n  = sample size,

then, m= -3.9, s= 1.8 and n= 10

we, calculate the , T-statistic = -9 based on the formula for paired t test

Step 4: Find the p-value

The calculated t-statistic is -9 and degrees of freedom df = 9, you can find the p-value using statistical software or a t-distribution table.

thus, p-value = 8.538051223166285e-06

Step 5: Result

  • If the p-value is less than or equal to 0.05, the researchers reject the null hypothesis.
  • If the p-value is greater than 0.05, they fail to reject the null hypothesis.

Conclusion: Since the p-value (8.538051223166285e-06) is less than the significance level (0.05), the researchers reject the null hypothesis. There is statistically significant evidence that the average blood pressure before and after treatment with the new drug is different.

Python Implementation of Hypothesis Testing

Let’s create hypothesis testing with python, where we are testing whether a new drug affects blood pressure. For this example, we will use a paired T-test. We’ll use the scipy.stats library for the T-test.

Scipy is a mathematical library in Python that is mostly used for mathematical equations and computations.

We will implement our first real life problem via python,

In the above example, given the T-statistic of approximately -9 and an extremely small p-value, the results indicate a strong case to reject the null hypothesis at a significance level of 0.05. 

  • The results suggest that the new drug, treatment, or intervention has a significant effect on lowering blood pressure.
  • The negative T-statistic indicates that the mean blood pressure after treatment is significantly lower than the assumed population mean before treatment.

Case B : Cholesterol level in a population

Data: A sample of 25 individuals is taken, and their cholesterol levels are measured.

Cholesterol Levels (mg/dL): 205, 198, 210, 190, 215, 205, 200, 192, 198, 205, 198, 202, 208, 200, 205, 198, 205, 210, 192, 205, 198, 205, 210, 192, 205.

Populations Mean = 200

Population Standard Deviation (σ): 5 mg/dL(given for this problem)

Step 1: Define the Hypothesis

  • Null Hypothesis (H 0 ): The average cholesterol level in a population is 200 mg/dL.
  • Alternate Hypothesis (H 1 ): The average cholesterol level in a population is different from 200 mg/dL.

As the direction of deviation is not given , we assume a two-tailed test, and based on a normal distribution table, the critical values for a significance level of 0.05 (two-tailed) can be calculated through the z-table and are approximately -1.96 and 1.96.

(203.8 - 200) / (5 \div \sqrt{25})

Step 4: Result

Since the absolute value of the test statistic (2.04) is greater than the critical value (1.96), we reject the null hypothesis. And conclude that, there is statistically significant evidence that the average cholesterol level in the population is different from 200 mg/dL

Limitations of Hypothesis Testing

  • Although a useful technique, hypothesis testing does not offer a comprehensive grasp of the topic being studied. Without fully reflecting the intricacy or whole context of the phenomena, it concentrates on certain hypotheses and statistical significance.
  • The accuracy of hypothesis testing results is contingent on the quality of available data and the appropriateness of statistical methods used. Inaccurate data or poorly formulated hypotheses can lead to incorrect conclusions.
  • Relying solely on hypothesis testing may cause analysts to overlook significant patterns or relationships in the data that are not captured by the specific hypotheses being tested. This limitation underscores the importance of complimenting hypothesis testing with other analytical approaches.

Hypothesis testing stands as a cornerstone in statistical analysis, enabling data scientists to navigate uncertainties and draw credible inferences from sample data. By systematically defining null and alternative hypotheses, choosing significance levels, and leveraging statistical tests, researchers can assess the validity of their assumptions. The article also elucidates the critical distinction between Type I and Type II errors, providing a comprehensive understanding of the nuanced decision-making process inherent in hypothesis testing. The real-life example of testing a new drug’s effect on blood pressure using a paired T-test showcases the practical application of these principles, underscoring the importance of statistical rigor in data-driven decision-making.

Frequently Asked Questions (FAQs)

1. what are the 3 types of hypothesis test.

There are three types of hypothesis tests: right-tailed, left-tailed, and two-tailed. Right-tailed tests assess if a parameter is greater, left-tailed if lesser. Two-tailed tests check for non-directional differences, greater or lesser.

2.What are the 4 components of hypothesis testing?

Null Hypothesis ( ): No effect or difference exists. Alternative Hypothesis ( ): An effect or difference exists. Significance Level ( ): Risk of rejecting null hypothesis when it’s true (Type I error). Test Statistic: Numerical value representing observed evidence against null hypothesis.

3.What is hypothesis testing in ML?

Statistical method to evaluate the performance and validity of machine learning models. Tests specific hypotheses about model behavior, like whether features influence predictions or if a model generalizes well to unseen data.

4.What is the difference between Pytest and hypothesis in Python?

Pytest purposes general testing framework for Python code while Hypothesis is a Property-based testing framework for Python, focusing on generating test cases based on specified properties of the code.

Please Login to comment...

Similar reads.

  • data-science
  • Data Science
  • Machine Learning
  • CBSE Exam Format Changed for Class 11-12: Focus On Concept Application Questions
  • 10 Best Waze Alternatives in 2024 (Free)
  • 10 Best Squarespace Alternatives in 2024 (Free)
  • Top 10 Owler Alternatives & Competitors in 2024
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Tutorial Playlist

Statistics tutorial, everything you need to know about the probability density function in statistics, the best guide to understand central limit theorem, an in-depth guide to measures of central tendency : mean, median and mode, the ultimate guide to understand conditional probability.

A Comprehensive Look at Percentile in Statistics

The Best Guide to Understand Bayes Theorem

Everything you need to know about the normal distribution, an in-depth explanation of cumulative distribution function, a complete guide to chi-square test, a complete guide on hypothesis testing in statistics, understanding the fundamentals of arithmetic and geometric progression, the definitive guide to understand spearman’s rank correlation, a comprehensive guide to understand mean squared error, all you need to know about the empirical rule in statistics, the complete guide to skewness and kurtosis, a holistic look at bernoulli distribution.

All You Need to Know About Bias in Statistics

A Complete Guide to Get a Grasp of Time Series Analysis

The Key Differences Between Z-Test Vs. T-Test

The Complete Guide to Understand Pearson's Correlation

A complete guide on the types of statistical studies, everything you need to know about poisson distribution, your best guide to understand correlation vs. regression, the most comprehensive guide for beginners on what is correlation, what is hypothesis testing in statistics types and examples.

Lesson 10 of 24 By Avijeet Biswal

A Complete Guide on Hypothesis Testing in Statistics

Table of Contents

In today’s data-driven world , decisions are based on data all the time. Hypothesis plays a crucial role in that process, whether it may be making business decisions, in the health sector, academia, or in quality improvement. Without hypothesis & hypothesis tests, you risk drawing the wrong conclusions and making bad decisions. In this tutorial, you will look at Hypothesis Testing in Statistics.

What Is Hypothesis Testing in Statistics?

Hypothesis Testing is a type of statistical analysis in which you put your assumptions about a population parameter to the test. It is used to estimate the relationship between 2 statistical variables.

Let's discuss few examples of statistical hypothesis from real-life - 

  • A teacher assumes that 60% of his college's students come from lower-middle-class families.
  • A doctor believes that 3D (Diet, Dose, and Discipline) is 90% effective for diabetic patients.

Now that you know about hypothesis testing, look at the two types of hypothesis testing in statistics.

Hypothesis Testing Formula

Z = ( x̅ – μ0 ) / (σ /√n)

  • Here, x̅ is the sample mean,
  • μ0 is the population mean,
  • σ is the standard deviation,
  • n is the sample size.

How Hypothesis Testing Works?

An analyst performs hypothesis testing on a statistical sample to present evidence of the plausibility of the null hypothesis. Measurements and analyses are conducted on a random sample of the population to test a theory. Analysts use a random population sample to test two hypotheses: the null and alternative hypotheses.

The null hypothesis is typically an equality hypothesis between population parameters; for example, a null hypothesis may claim that the population means return equals zero. The alternate hypothesis is essentially the inverse of the null hypothesis (e.g., the population means the return is not equal to zero). As a result, they are mutually exclusive, and only one can be correct. One of the two possibilities, however, will always be correct.

Your Dream Career is Just Around The Corner!

Your Dream Career is Just Around The Corner!

Null Hypothesis and Alternate Hypothesis

The Null Hypothesis is the assumption that the event will not occur. A null hypothesis has no bearing on the study's outcome unless it is rejected.

H0 is the symbol for it, and it is pronounced H-naught.

The Alternate Hypothesis is the logical opposite of the null hypothesis. The acceptance of the alternative hypothesis follows the rejection of the null hypothesis. H1 is the symbol for it.

Let's understand this with an example.

A sanitizer manufacturer claims that its product kills 95 percent of germs on average. 

To put this company's claim to the test, create a null and alternate hypothesis.

H0 (Null Hypothesis): Average = 95%.

Alternative Hypothesis (H1): The average is less than 95%.

Another straightforward example to understand this concept is determining whether or not a coin is fair and balanced. The null hypothesis states that the probability of a show of heads is equal to the likelihood of a show of tails. In contrast, the alternate theory states that the probability of a show of heads and tails would be very different.

Become a Data Scientist with Hands-on Training!

Become a Data Scientist with Hands-on Training!

Hypothesis Testing Calculation With Examples

Let's consider a hypothesis test for the average height of women in the United States. Suppose our null hypothesis is that the average height is 5'4". We gather a sample of 100 women and determine that their average height is 5'5". The standard deviation of population is 2.

To calculate the z-score, we would use the following formula:

z = ( x̅ – μ0 ) / (σ /√n)

z = (5'5" - 5'4") / (2" / √100)

z = 0.5 / (0.045)

 We will reject the null hypothesis as the z-score of 11.11 is very large and conclude that there is evidence to suggest that the average height of women in the US is greater than 5'4".

Steps of Hypothesis Testing

Step 1: specify your null and alternate hypotheses.

It is critical to rephrase your original research hypothesis (the prediction that you wish to study) as a null (Ho) and alternative (Ha) hypothesis so that you can test it quantitatively. Your first hypothesis, which predicts a link between variables, is generally your alternate hypothesis. The null hypothesis predicts no link between the variables of interest.

Step 2: Gather Data

For a statistical test to be legitimate, sampling and data collection must be done in a way that is meant to test your hypothesis. You cannot draw statistical conclusions about the population you are interested in if your data is not representative.

Step 3: Conduct a Statistical Test

Other statistical tests are available, but they all compare within-group variance (how to spread out the data inside a category) against between-group variance (how different the categories are from one another). If the between-group variation is big enough that there is little or no overlap between groups, your statistical test will display a low p-value to represent this. This suggests that the disparities between these groups are unlikely to have occurred by accident. Alternatively, if there is a large within-group variance and a low between-group variance, your statistical test will show a high p-value. Any difference you find across groups is most likely attributable to chance. The variety of variables and the level of measurement of your obtained data will influence your statistical test selection.

Step 4: Determine Rejection Of Your Null Hypothesis

Your statistical test results must determine whether your null hypothesis should be rejected or not. In most circumstances, you will base your judgment on the p-value provided by the statistical test. In most circumstances, your preset level of significance for rejecting the null hypothesis will be 0.05 - that is, when there is less than a 5% likelihood that these data would be seen if the null hypothesis were true. In other circumstances, researchers use a lower level of significance, such as 0.01 (1%). This reduces the possibility of wrongly rejecting the null hypothesis.

Step 5: Present Your Results 

The findings of hypothesis testing will be discussed in the results and discussion portions of your research paper, dissertation, or thesis. You should include a concise overview of the data and a summary of the findings of your statistical test in the results section. You can talk about whether your results confirmed your initial hypothesis or not in the conversation. Rejecting or failing to reject the null hypothesis is a formal term used in hypothesis testing. This is likely a must for your statistics assignments.

Types of Hypothesis Testing

To determine whether a discovery or relationship is statistically significant, hypothesis testing uses a z-test. It usually checks to see if two means are the same (the null hypothesis). Only when the population standard deviation is known and the sample size is 30 data points or more, can a z-test be applied.

A statistical test called a t-test is employed to compare the means of two groups. To determine whether two groups differ or if a procedure or treatment affects the population of interest, it is frequently used in hypothesis testing.

Chi-Square 

You utilize a Chi-square test for hypothesis testing concerning whether your data is as predicted. To determine if the expected and observed results are well-fitted, the Chi-square test analyzes the differences between categorical variables from a random sample. The test's fundamental premise is that the observed values in your data should be compared to the predicted values that would be present if the null hypothesis were true.

Hypothesis Testing and Confidence Intervals

Both confidence intervals and hypothesis tests are inferential techniques that depend on approximating the sample distribution. Data from a sample is used to estimate a population parameter using confidence intervals. Data from a sample is used in hypothesis testing to examine a given hypothesis. We must have a postulated parameter to conduct hypothesis testing.

Bootstrap distributions and randomization distributions are created using comparable simulation techniques. The observed sample statistic is the focal point of a bootstrap distribution, whereas the null hypothesis value is the focal point of a randomization distribution.

A variety of feasible population parameter estimates are included in confidence ranges. In this lesson, we created just two-tailed confidence intervals. There is a direct connection between these two-tail confidence intervals and these two-tail hypothesis tests. The results of a two-tailed hypothesis test and two-tailed confidence intervals typically provide the same results. In other words, a hypothesis test at the 0.05 level will virtually always fail to reject the null hypothesis if the 95% confidence interval contains the predicted value. A hypothesis test at the 0.05 level will nearly certainly reject the null hypothesis if the 95% confidence interval does not include the hypothesized parameter.

Simple and Composite Hypothesis Testing

Depending on the population distribution, you can classify the statistical hypothesis into two types.

Simple Hypothesis: A simple hypothesis specifies an exact value for the parameter.

Composite Hypothesis: A composite hypothesis specifies a range of values.

A company is claiming that their average sales for this quarter are 1000 units. This is an example of a simple hypothesis.

Suppose the company claims that the sales are in the range of 900 to 1000 units. Then this is a case of a composite hypothesis.

One-Tailed and Two-Tailed Hypothesis Testing

The One-Tailed test, also called a directional test, considers a critical region of data that would result in the null hypothesis being rejected if the test sample falls into it, inevitably meaning the acceptance of the alternate hypothesis.

In a one-tailed test, the critical distribution area is one-sided, meaning the test sample is either greater or lesser than a specific value.

In two tails, the test sample is checked to be greater or less than a range of values in a Two-Tailed test, implying that the critical distribution area is two-sided.

If the sample falls within this range, the alternate hypothesis will be accepted, and the null hypothesis will be rejected.

Become a Data Scientist With Real-World Experience

Become a Data Scientist With Real-World Experience

Right Tailed Hypothesis Testing

If the larger than (>) sign appears in your hypothesis statement, you are using a right-tailed test, also known as an upper test. Or, to put it another way, the disparity is to the right. For instance, you can contrast the battery life before and after a change in production. Your hypothesis statements can be the following if you want to know if the battery life is longer than the original (let's say 90 hours):

  • The null hypothesis is (H0 <= 90) or less change.
  • A possibility is that battery life has risen (H1) > 90.

The crucial point in this situation is that the alternate hypothesis (H1), not the null hypothesis, decides whether you get a right-tailed test.

Left Tailed Hypothesis Testing

Alternative hypotheses that assert the true value of a parameter is lower than the null hypothesis are tested with a left-tailed test; they are indicated by the asterisk "<".

Suppose H0: mean = 50 and H1: mean not equal to 50

According to the H1, the mean can be greater than or less than 50. This is an example of a Two-tailed test.

In a similar manner, if H0: mean >=50, then H1: mean <50

Here the mean is less than 50. It is called a One-tailed test.

Type 1 and Type 2 Error

A hypothesis test can result in two types of errors.

Type 1 Error: A Type-I error occurs when sample results reject the null hypothesis despite being true.

Type 2 Error: A Type-II error occurs when the null hypothesis is not rejected when it is false, unlike a Type-I error.

Suppose a teacher evaluates the examination paper to decide whether a student passes or fails.

H0: Student has passed

H1: Student has failed

Type I error will be the teacher failing the student [rejects H0] although the student scored the passing marks [H0 was true]. 

Type II error will be the case where the teacher passes the student [do not reject H0] although the student did not score the passing marks [H1 is true].

Level of Significance

The alpha value is a criterion for determining whether a test statistic is statistically significant. In a statistical test, Alpha represents an acceptable probability of a Type I error. Because alpha is a probability, it can be anywhere between 0 and 1. In practice, the most commonly used alpha values are 0.01, 0.05, and 0.1, which represent a 1%, 5%, and 10% chance of a Type I error, respectively (i.e. rejecting the null hypothesis when it is in fact correct).

Future-Proof Your AI/ML Career: Top Dos and Don'ts

Future-Proof Your AI/ML Career: Top Dos and Don'ts

A p-value is a metric that expresses the likelihood that an observed difference could have occurred by chance. As the p-value decreases the statistical significance of the observed difference increases. If the p-value is too low, you reject the null hypothesis.

Here you have taken an example in which you are trying to test whether the new advertising campaign has increased the product's sales. The p-value is the likelihood that the null hypothesis, which states that there is no change in the sales due to the new advertising campaign, is true. If the p-value is .30, then there is a 30% chance that there is no increase or decrease in the product's sales.  If the p-value is 0.03, then there is a 3% probability that there is no increase or decrease in the sales value due to the new advertising campaign. As you can see, the lower the p-value, the chances of the alternate hypothesis being true increases, which means that the new advertising campaign causes an increase or decrease in sales.

Why is Hypothesis Testing Important in Research Methodology?

Hypothesis testing is crucial in research methodology for several reasons:

  • Provides evidence-based conclusions: It allows researchers to make objective conclusions based on empirical data, providing evidence to support or refute their research hypotheses.
  • Supports decision-making: It helps make informed decisions, such as accepting or rejecting a new treatment, implementing policy changes, or adopting new practices.
  • Adds rigor and validity: It adds scientific rigor to research using statistical methods to analyze data, ensuring that conclusions are based on sound statistical evidence.
  • Contributes to the advancement of knowledge: By testing hypotheses, researchers contribute to the growth of knowledge in their respective fields by confirming existing theories or discovering new patterns and relationships.

Limitations of Hypothesis Testing

Hypothesis testing has some limitations that researchers should be aware of:

  • It cannot prove or establish the truth: Hypothesis testing provides evidence to support or reject a hypothesis, but it cannot confirm the absolute truth of the research question.
  • Results are sample-specific: Hypothesis testing is based on analyzing a sample from a population, and the conclusions drawn are specific to that particular sample.
  • Possible errors: During hypothesis testing, there is a chance of committing type I error (rejecting a true null hypothesis) or type II error (failing to reject a false null hypothesis).
  • Assumptions and requirements: Different tests have specific assumptions and requirements that must be met to accurately interpret results.

After reading this tutorial, you would have a much better understanding of hypothesis testing, one of the most important concepts in the field of Data Science . The majority of hypotheses are based on speculation about observed behavior, natural phenomena, or established theories.

If you are interested in statistics of data science and skills needed for such a career, you ought to explore Simplilearn’s Post Graduate Program in Data Science.

If you have any questions regarding this ‘Hypothesis Testing In Statistics’ tutorial, do share them in the comment section. Our subject matter expert will respond to your queries. Happy learning!

1. What is hypothesis testing in statistics with example?

Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence. An example: testing if a new drug improves patient recovery (Ha) compared to the standard treatment (H0) based on collected patient data.

2. What is hypothesis testing and its types?

Hypothesis testing is a statistical method used to make inferences about a population based on sample data. It involves formulating two hypotheses: the null hypothesis (H0), which represents the default assumption, and the alternative hypothesis (Ha), which contradicts H0. The goal is to assess the evidence and determine whether there is enough statistical significance to reject the null hypothesis in favor of the alternative hypothesis.

Types of hypothesis testing:

  • One-sample test: Used to compare a sample to a known value or a hypothesized value.
  • Two-sample test: Compares two independent samples to assess if there is a significant difference between their means or distributions.
  • Paired-sample test: Compares two related samples, such as pre-test and post-test data, to evaluate changes within the same subjects over time or under different conditions.
  • Chi-square test: Used to analyze categorical data and determine if there is a significant association between variables.
  • ANOVA (Analysis of Variance): Compares means across multiple groups to check if there is a significant difference between them.

3. What are the steps of hypothesis testing?

The steps of hypothesis testing are as follows:

  • Formulate the hypotheses: State the null hypothesis (H0) and the alternative hypothesis (Ha) based on the research question.
  • Set the significance level: Determine the acceptable level of error (alpha) for making a decision.
  • Collect and analyze data: Gather and process the sample data.
  • Compute test statistic: Calculate the appropriate statistical test to assess the evidence.
  • Make a decision: Compare the test statistic with critical values or p-values and determine whether to reject H0 in favor of Ha or not.
  • Draw conclusions: Interpret the results and communicate the findings in the context of the research question.

4. What are the 2 types of hypothesis testing?

  • One-tailed (or one-sided) test: Tests for the significance of an effect in only one direction, either positive or negative.
  • Two-tailed (or two-sided) test: Tests for the significance of an effect in both directions, allowing for the possibility of a positive or negative effect.

The choice between one-tailed and two-tailed tests depends on the specific research question and the directionality of the expected effect.

5. What are the 3 major types of hypothesis?

The three major types of hypotheses are:

  • Null Hypothesis (H0): Represents the default assumption, stating that there is no significant effect or relationship in the data.
  • Alternative Hypothesis (Ha): Contradicts the null hypothesis and proposes a specific effect or relationship that researchers want to investigate.
  • Nondirectional Hypothesis: An alternative hypothesis that doesn't specify the direction of the effect, leaving it open for both positive and negative possibilities.

Find our Data Analyst Online Bootcamp in top cities:

About the author.

Avijeet Biswal

Avijeet is a Senior Research Analyst at Simplilearn. Passionate about Data Analytics, Machine Learning, and Deep Learning, Avijeet is also interested in politics, cricket, and football.

Recommended Resources

The Key Differences Between Z-Test Vs. T-Test

Free eBook: Top Programming Languages For A Data Scientist

Normality Test in Minitab: Minitab with Statistics

Normality Test in Minitab: Minitab with Statistics

A Comprehensive Look at Percentile in Statistics

Machine Learning Career Guide: A Playbook to Becoming a Machine Learning Engineer

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.
  • Diversity and Inclusion
  • Faculty Positions
  • Location and Maps
  • Our Department
  • Graduate Programs
  • How to Apply
  • Online Programs
  • Student Resources
  • Grad Student Assoc.
  • Graduate Student Highlights
  • Frequently Asked Questions
  • Online Courses
  • Prospective Students
  • Undergraduate Programs
  • Integrated Degree
  • Research Opportunities
  • Statistics Club
  • Syllabus Archive
  • Career Development
  • Administrative Faculty
  • Graduate Students
  • M.A.S. Students
  • Affiliated Faculty
  • Lindsay Assistant Professors
  • Online Instructors
  • Post-docs / Visitors
  • Astrostatistics
  • Bayesian Statistics
  • Biostatistics & Bioinformatics
  • Business Analytics
  • Computational Statistics
  • Functional Data Analysis
  • High Dimensional Data
  • Imaging Science
  • Social Science
  • Spatial and Spatiotemporal Data

  • Statistical Network Science
  • Statistical and Machine Learning
  • Statistics Education
  • Giving to Statistics

Dept. of Department of Statistics

Abstract: We introduce a new framework to analyze shape descriptors that capture the geometric features of an ensemble of point clouds. At the core of our approach is the point of view that the data arises as sampled recordings from a metric space-valued stochastic process, possibly of nonstationary nature, thereby integrating geometric data analysis into the realm of functional time series analysis. We focus on the descriptors coming from topological data analysis. Our framework allows for natural incorporation of spatial-temporal dynamics, heterogeneous sampling, and the study of convergence rates. Further, we derive complete invariants for classes of metric space-valued stochastic processes in the spirit of Gromov, and relate these invariants to so-called ball volume processes. Under mild dependence conditions, a weak invariance principle in  is established for sequential empirical versions of the latter, assuming the probabilistic structure possibly changes over time. Finally, we use this result to introduce novel test statistics for topological change, which are distribution free in the limit under the hypothesis of stationarity.

Ben Feringa

  • Physics CAMP: “Introduction to Circuit QED: Towards Building Quantum Simulators for Interacting Spins, Bosons, Molecules, and Lattice Gauge Theories” April 10, 3:00 pm - April 10, 4:00 pm 339 Davey Laboratory
  • The Art of Building Small from Molecular Switches to Motors April 10, 3:30 pm - April 10, 4:30 pm 101 Thomas Building
  • Planning electromagnetic observations of LISA massive black hole binaries April 10, 3:45 pm - April 10, 5:00 pm Davey Laboratory 538
  • Coherent Multidimensional Spectroscopy of Gas Phase Molecules April 11, 2:30 pm - April 11, 3:30 pm 301A Chemistry Building

Knew exactly when to expect totality in Cleveland? Thank the scientists, again: Eric Foster

  • Updated: Apr. 10, 2024, 5:42 a.m. |
  • Published: Apr. 10, 2024, 5:41 a.m.

Astronomy enthusiasts watch as the eclipse nears totality during the total solar eclipse at the Great Lakes Science Center in Cleveland.

The moon begins to pass in front of the sun during the total solar eclipse at the Great Lakes Science Center in Cleveland. Joshua Gunter, cleveland.com

  • Eric Foster, cleveland.com

ATLANTA -- As I am sure you heard (or saw), a total solar eclipse moved across North America this past Monday . Almost 32 million people were in the path of totality , meaning they could look up and see the moon essentially blot out the sun. The sight is a rare one. It will not be seen again in the contiguous United States until 2044 — 20 years from now. Tourism officials believe that at least 4 to 5 million people traveled from other parts of the United States to see it, The Guardian newspaper of Britain reported.

Scientists had known when this eclipse was coming for some time. According to NASA, “Astronomers first have to work out the geometry and mechanics of how the Earth and the Moon orbit the sun ,” factoring in “the gravitational fields of these three bodies.” After the motions are reduced to mathematical equations, they “then feed the current positions and speeds of Earth and Moon into these complex equations.” Lastly, they “program a computer to ‘integrate’ these equations forward or backward in time” to determine the relative positions of these bodies at a given time.

If you purchase a product or register for an account through a link on our site, we may receive compensation. By using this site, you consent to our User Agreement and agree that your clicks, interactions, and personal information may be collected, recorded, and/or stored by us and social media and other third-party partners in accordance with our Privacy Policy.

IMAGES

  1. Statistical Hypothesis Testing: Step by Step

    hypothesis test in data science

  2. Hypothesis Testing Steps & Examples

    hypothesis test in data science

  3. Hypothesis Testing- Meaning, Types & Steps

    hypothesis test in data science

  4. Guide to Hypothesis Testing for Data Scientists

    hypothesis test in data science

  5. How to do Hypothesis Testing : A Beginner Guide For Data Scientist

    hypothesis test in data science

  6. Introduction to Hypothesis Testing in R

    hypothesis test in data science

VIDEO

  1. Session 8- Hypothesis testing by Non Parametric Tests (7/12/23)

  2. What Is A Hypothesis?

  3. Hypothesis Testing

  4. Hypothesis Testing for Population Proportion Using Rejection Region and P-value (Cell Phone Example)

  5. Step by step Statistics: Hypothesis Testing for Population Proportion Cell Phone Browsing Example

  6. Concept of Hypothesis

COMMENTS

  1. Hypothesis testing for data scientists

    4. Photo by Anna Nekrashevich from Pexels. Hypothesis testing is a common statistical tool used in research and data science to support the certainty of findings. The aim of testing is to answer how probable an apparent effect is detected by chance given a random data sample. This article provides a detailed explanation of the key concepts in ...

  2. Introduction to Hypothesis Testing with Examples

    Likelihood ratio. In the likelihood ratio test, we reject the null hypothesis if the ratio is above a certain value i.e, reject the null hypothesis if L(X) > 𝜉, else accept it. 𝜉 is called the critical ratio.. So this is how we can draw a decision boundary: we separate the observations for which the likelihood ratio is greater than the critical ratio from the observations for which it ...

  3. Everything You Need To Know about Hypothesis Testing

    6. Test Statistic: The test statistic measures how close the sample has come to the null hypothesis. Its observed value changes randomly from one random sample to a different sample. A test statistic contains information about the data that is relevant for deciding whether to reject the null hypothesis or not.

  4. Hypothesis Testing Guide for Data Science Beginners

    In the realm of data science, hypothesis testing stands out as a crucial tool, much like a detective's key instrument. By mastering the relevant terminology, following systematic steps, setting decision rules, utilizing insights from the confusion matrix, and exploring diverse hypothesis test types, data scientists enhance their ability to ...

  5. Hypothesis Testing

    It is the total probability of achieving a value so rare and even rarer. It is the area under the normal curve beyond the P-Value mark. This P-Value is calculated using the Z score we just found. Each Z-score has a corresponding P-Value. This can be found using any statistical software like R or even from the Z-Table.

  6. Hypothesis Testing with Python: Step by step ...

    It tests the null hypothesis that the population variances are equal (called homogeneity of variance or homoscedasticity). Suppose the resulting p-value of Levene's test is less than the significance level (typically 0.05).In that case, the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances.

  7. Statistical Inference and Hypothesis Testing in Data Science

    Statistical Inference and Hypothesis Testing in Data Science Applications. This course is part of Data Science Foundations: Statistical Inference Specialization. Taught in English. 22 languages available. Some content may not be translated. Instructor: Jem Corcoran. Enroll for Free. Starts Apr 8.

  8. Hypothesis Testing in Data Science: A Comprehensive Guide

    Hypothesis Testing in Data Science is a statistical method used to assess the validity of assumptions or claims about a population based on sample data. It involves formulating two Hypotheses, the null Hypothesis (H0) and the alternative Hypothesis (Ha or H1), and then using statistical tests to find out if there is enough evidence to support ...

  9. Hypothesis Testing for Data Science and Analytics

    In this article, you will learn about hypothesis testing wherein we will cover concepts like p-value, Z test, t-test and much more. ... Hypothesis Testing for Data Science and Analytics. Kajal Kumari 18 May, 2022 • 9 min read . This article was published as a part of the Data Science Blogathon.

  10. Hypothesis Testing in Data Science [Types, Process, Example]

    In the whole data science life cycle, hypothesis testing is done in various stages, starting from the initial part, the 1st stage where the EDA, data pre-processing, and manipulation are done. In this stage, we will do our initial hypothesis testing to visualize the outcome in later stages. The next test will be done after we have built our ...

  11. A Crash Course on Hypothesis Testing

    Hypothesis testing is a quintessential part of statistical inference in data science context. In previous article, we talked about the estimating the population parameter such as mean or variance ...

  12. Hypothesis testing

    Hypothesis testing#. Hypothesis testing is about choosing between two views, called hypotheses, on how data were generated (for example, SSR=1 or SSR =1.05 where SSR is the secondary sex ratio we defined in the previous section).Hypotheses, called null and alternative, should be specified before doing the analysis.Testing is a way to select the hypothesis that is better supported by the data.

  13. Hypothesis Testing

    Hypothesis Testing - Data Science DISCOVERY - University of Illinois (m5-07) Watch on. Hypothesis Tests (or Significance Tests) are statistical tests to see if a difference we observe is due to chance. There are many different types of hypothesis tests for different scenarios, but they all have the same basic ideas.

  14. What is hypothesis testing in data science?

    Hypothesis testing is a statistical technique used to evaluate hypotheses about a population based on sample data. In data science, hypothesis testing is an essential tool used to make inferences about the population based on a representative sample. In this blog, we will discuss the key aspects of hypothesis testing, including null hypothesis ...

  15. Hypothesis Testing in Data Science

    Hypothesis Testing is when the team builds a strong hypothesis based on the available dataset. This will help direct the team and plan accordingly throughout the data science project. The hypothesis will then be tested with a complete dataset and determine if it is: Null hypothesis - There's no effect on the population.

  16. Understanding Hypothesis Testing

    Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data.

  17. What is Hypothesis Testing in Statistics? Types and Examples

    Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence.

  18. A Statistical Framework for Analyzing Shape in a Time Series of Random

    Abstract: We introduce a new framework to analyze shape descriptors that capture the geometric features of an ensemble of point clouds. At the core of our approach is the point of view that the data arises as sampled recordings from a metric space-valued stochastic process, possibly of nonstationary nature, thereby integrating geometric data analysis into the realm of functional time series ...

  19. Knew exactly when to expect totality in Cleveland? Thank the scientists

    Science provides us with one of, if not the best, method for answering a question about almost anything: Develop a hypothesis. Conduct experiments to test that hypothesis. Analyze the data.