Essay on Air Pollution for Students and Children

500+ words essay on air pollution.

Essay on Air Pollution – Earlier the air we breathe in use to be pure and fresh. But, due to increasing industrialization and concentration of poisonous gases in the environment the air is getting more and more toxic day by day. Also, these gases are the cause of many respiratory and other diseases . Moreover, the rapidly increasing human activities like the burning of fossil fuels, deforestation is the major cause of air pollution.

Essay on Air Pollution

How Air Gets Polluted?

The fossil fuel , firewood, and other things that we burn produce oxides of carbons which got released into the atmosphere. Earlier there happens to be a large number of trees which can easily filter the air we breathe in. But with the increase in demand for land, the people started cutting down of trees which caused deforestation. That ultimately reduced the filtering capacity of the tree.

Moreover, during the last few decades, the numbers of fossil fuel burning vehicle increased rapidly which increased the number of pollutants in the air .

Causes Of Air Pollution

Its causes include burning of fossil fuel and firewood, smoke released from factories , volcanic eruptions, forest fires, bombardment, asteroids, CFCs (Chlorofluorocarbons), carbon oxides and many more.

Besides, there are some other air pollutants like industrial waste, agricultural waste, power plants, thermal nuclear plants, etc.

Greenhouse Effect

The greenhouse effect is also the cause of air pollution because air pollution produces the gases that greenhouse involves. Besides, it increases the temperature of earth surface so much that the polar caps are melting and most of the UV rays are easily penetrating the surface of the earth.

Get the huge list of more than 500 Essay Topics and Ideas

Effects Of Air Pollution On Health

air pollution nowadays essay

Moreover, it increases the rate of aging of lungs, decreases lungs function, damage cells in the respiratory system.

Ways To Reduce Air Pollution

Although the level of air pollution has reached a critical point. But, there are still ways by which we can reduce the number of air pollutants from the air.

Reforestation- The quality of air can be improved by planting more and more trees as they clean and filter the air.

Policy for industries- Strict policy for industries related to the filter of gases should be introduced in the countries. So, we can minimize the toxins released from factories.

Use of eco-friendly fuel-  We have to adopt the usage of Eco-friendly fuels such as LPG (Liquefied Petroleum Gas), CNG (Compressed Natural Gas), bio-gas, and other eco-friendly fuels. So, we can reduce the amount of harmful toxic gases.

To sum it up, we can say that the air we breathe is getting more and more polluted day by day. The biggest contribution to the increase in air pollution is of fossil fuels which produce nitric and sulphuric oxides. But, humans have taken this problem seriously and are devotedly working to eradicate the problem that they have created.

Above all, many initiatives like plant trees, use of eco-friendly fuel are promoted worldwide.

{ “@context”: “https://schema.org”, “@type”: “FAQPage”, “mainEntity”: [{ “@type”: “Question”, “name”: “Mention five effect of air pollution on human health?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “The major risk factor related to human health are asthma, lung cancer, Alzheimer, psychological complications, and autism. Besides, there are other effects of air pollution on a person’s health.”} }, { “@type”: “Question”, “name”: “What is the effect of air pollution in the environment?”, “acceptedAnswer”: { “@type”: “Answer”, “text”:”Acid, rain, ozone depletion, greenhouse gases, smog are many other things are the cause of air pollution that affect the environment severely.”} }] }

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Public Health

Environmental and Health Impacts of Air Pollution: A Review

Ioannis manisalidis.

1 Delphis S.A., Kifisia, Greece

2 Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece

Elisavet Stavropoulou

3 Centre Hospitalier Universitaire Vaudois (CHUV), Service de Médicine Interne, Lausanne, Switzerland

Agathangelos Stavropoulos

4 School of Social and Political Sciences, University of Glasgow, Glasgow, United Kingdom

Eugenia Bezirtzoglou

One of our era's greatest scourges is air pollution, on account not only of its impact on climate change but also its impact on public and individual health due to increasing morbidity and mortality. There are many pollutants that are major factors in disease in humans. Among them, Particulate Matter (PM), particles of variable but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous system dysfunctions, and cancer. Despite the fact that ozone in the stratosphere plays a protective role against ultraviolet irradiation, it is harmful when in high concentration at ground level, also affecting the respiratory and cardiovascular system. Furthermore, nitrogen oxide, sulfur dioxide, Volatile Organic Compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) are all considered air pollutants that are harmful to humans. Carbon monoxide can even provoke direct poisoning when breathed in at high levels. Heavy metals such as lead, when absorbed into the human body, can lead to direct poisoning or chronic intoxication, depending on exposure. Diseases occurring from the aforementioned substances include principally respiratory problems such as Chronic Obstructive Pulmonary Disease (COPD), asthma, bronchiolitis, and also lung cancer, cardiovascular events, central nervous system dysfunctions, and cutaneous diseases. Last but not least, climate change resulting from environmental pollution affects the geographical distribution of many infectious diseases, as do natural disasters. The only way to tackle this problem is through public awareness coupled with a multidisciplinary approach by scientific experts; national and international organizations must address the emergence of this threat and propose sustainable solutions.

Approach to the Problem

The interactions between humans and their physical surroundings have been extensively studied, as multiple human activities influence the environment. The environment is a coupling of the biotic (living organisms and microorganisms) and the abiotic (hydrosphere, lithosphere, and atmosphere).

Pollution is defined as the introduction into the environment of substances harmful to humans and other living organisms. Pollutants are harmful solids, liquids, or gases produced in higher than usual concentrations that reduce the quality of our environment.

Human activities have an adverse effect on the environment by polluting the water we drink, the air we breathe, and the soil in which plants grow. Although the industrial revolution was a great success in terms of technology, society, and the provision of multiple services, it also introduced the production of huge quantities of pollutants emitted into the air that are harmful to human health. Without any doubt, the global environmental pollution is considered an international public health issue with multiple facets. Social, economic, and legislative concerns and lifestyle habits are related to this major problem. Clearly, urbanization and industrialization are reaching unprecedented and upsetting proportions worldwide in our era. Anthropogenic air pollution is one of the biggest public health hazards worldwide, given that it accounts for about 9 million deaths per year ( 1 ).

Without a doubt, all of the aforementioned are closely associated with climate change, and in the event of danger, the consequences can be severe for mankind ( 2 ). Climate changes and the effects of global planetary warming seriously affect multiple ecosystems, causing problems such as food safety issues, ice and iceberg melting, animal extinction, and damage to plants ( 3 , 4 ).

Air pollution has various health effects. The health of susceptible and sensitive individuals can be impacted even on low air pollution days. Short-term exposure to air pollutants is closely related to COPD (Chronic Obstructive Pulmonary Disease), cough, shortness of breath, wheezing, asthma, respiratory disease, and high rates of hospitalization (a measurement of morbidity).

The long-term effects associated with air pollution are chronic asthma, pulmonary insufficiency, cardiovascular diseases, and cardiovascular mortality. According to a Swedish cohort study, diabetes seems to be induced after long-term air pollution exposure ( 5 ). Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders ( 3 ), leading to infant mortality or chronic disease in adult age ( 6 ).

National reports have mentioned the increased risk of morbidity and mortality ( 1 ). These studies were conducted in many places around the world and show a correlation between daily ranges of particulate matter (PM) concentration and daily mortality. Climate shifts and global planetary warming ( 3 ) could aggravate the situation. Besides, increased hospitalization (an index of morbidity) has been registered among the elderly and susceptible individuals for specific reasons. Fine and ultrafine particulate matter seems to be associated with more serious illnesses ( 6 ), as it can invade the deepest parts of the airways and more easily reach the bloodstream.

Air pollution mainly affects those living in large urban areas, where road emissions contribute the most to the degradation of air quality. There is also a danger of industrial accidents, where the spread of a toxic fog can be fatal to the populations of the surrounding areas. The dispersion of pollutants is determined by many parameters, most notably atmospheric stability and wind ( 6 ).

In developing countries ( 7 ), the problem is more serious due to overpopulation and uncontrolled urbanization along with the development of industrialization. This leads to poor air quality, especially in countries with social disparities and a lack of information on sustainable management of the environment. The use of fuels such as wood fuel or solid fuel for domestic needs due to low incomes exposes people to bad-quality, polluted air at home. It is of note that three billion people around the world are using the above sources of energy for their daily heating and cooking needs ( 8 ). In developing countries, the women of the household seem to carry the highest risk for disease development due to their longer duration exposure to the indoor air pollution ( 8 , 9 ). Due to its fast industrial development and overpopulation, China is one of the Asian countries confronting serious air pollution problems ( 10 , 11 ). The lung cancer mortality observed in China is associated with fine particles ( 12 ). As stated already, long-term exposure is associated with deleterious effects on the cardiovascular system ( 3 , 5 ). However, it is interesting to note that cardiovascular diseases have mostly been observed in developed and high-income countries rather than in the developing low-income countries exposed highly to air pollution ( 13 ). Extreme air pollution is recorded in India, where the air quality reaches hazardous levels. New Delhi is one of the more polluted cities in India. Flights in and out of New Delhi International Airport are often canceled due to the reduced visibility associated with air pollution. Pollution is occurring both in urban and rural areas in India due to the fast industrialization, urbanization, and rise in use of motorcycle transportation. Nevertheless, biomass combustion associated with heating and cooking needs and practices is a major source of household air pollution in India and in Nepal ( 14 , 15 ). There is spatial heterogeneity in India, as areas with diverse climatological conditions and population and education levels generate different indoor air qualities, with higher PM 2.5 observed in North Indian states (557–601 μg/m 3 ) compared to the Southern States (183–214 μg/m 3 ) ( 16 , 17 ). The cold climate of the North Indian areas may be the main reason for this, as longer periods at home and more heating are necessary compared to in the tropical climate of Southern India. Household air pollution in India is associated with major health effects, especially in women and young children, who stay indoors for longer periods. Chronic obstructive respiratory disease (CORD) and lung cancer are mostly observed in women, while acute lower respiratory disease is seen in young children under 5 years of age ( 18 ).

Accumulation of air pollution, especially sulfur dioxide and smoke, reaching 1,500 mg/m3, resulted in an increase in the number of deaths (4,000 deaths) in December 1952 in London and in 1963 in New York City (400 deaths) ( 19 ). An association of pollution with mortality was reported on the basis of monitoring of outdoor pollution in six US metropolitan cities ( 20 ). In every case, it seems that mortality was closely related to the levels of fine, inhalable, and sulfate particles more than with the levels of total particulate pollution, aerosol acidity, sulfur dioxide, or nitrogen dioxide ( 20 ).

Furthermore, extremely high levels of pollution are reported in Mexico City and Rio de Janeiro, followed by Milan, Ankara, Melbourne, Tokyo, and Moscow ( 19 ).

Based on the magnitude of the public health impact, it is certain that different kinds of interventions should be taken into account. Success and effectiveness in controlling air pollution, specifically at the local level, have been reported. Adequate technological means are applied considering the source and the nature of the emission as well as its impact on health and the environment. The importance of point sources and non-point sources of air pollution control is reported by Schwela and Köth-Jahr ( 21 ). Without a doubt, a detailed emission inventory must record all sources in a given area. Beyond considering the above sources and their nature, topography and meteorology should also be considered, as stated previously. Assessment of the control policies and methods is often extrapolated from the local to the regional and then to the global scale. Air pollution may be dispersed and transported from one region to another area located far away. Air pollution management means the reduction to acceptable levels or possible elimination of air pollutants whose presence in the air affects our health or the environmental ecosystem. Private and governmental entities and authorities implement actions to ensure the air quality ( 22 ). Air quality standards and guidelines were adopted for the different pollutants by the WHO and EPA as a tool for the management of air quality ( 1 , 23 ). These standards have to be compared to the emissions inventory standards by causal analysis and dispersion modeling in order to reveal the problematic areas ( 24 ). Inventories are generally based on a combination of direct measurements and emissions modeling ( 24 ).

As an example, we state here the control measures at the source through the use of catalytic converters in cars. These are devices that turn the pollutants and toxic gases produced from combustion engines into less-toxic pollutants by catalysis through redox reactions ( 25 ). In Greece, the use of private cars was restricted by tracking their license plates in order to reduce traffic congestion during rush hour ( 25 ).

Concerning industrial emissions, collectors and closed systems can keep the air pollution to the minimal standards imposed by legislation ( 26 ).

Current strategies to improve air quality require an estimation of the economic value of the benefits gained from proposed programs. These proposed programs by public authorities, and directives are issued with guidelines to be respected.

In Europe, air quality limit values AQLVs (Air Quality Limit Values) are issued for setting off planning claims ( 27 ). In the USA, the NAAQS (National Ambient Air Quality Standards) establish the national air quality limit values ( 27 ). While both standards and directives are based on different mechanisms, significant success has been achieved in the reduction of overall emissions and associated health and environmental effects ( 27 ). The European Directive identifies geographical areas of risk exposure as monitoring/assessment zones to record the emission sources and levels of air pollution ( 27 ), whereas the USA establishes global geographical air quality criteria according to the severity of their air quality problem and records all sources of the pollutants and their precursors ( 27 ).

In this vein, funds have been financing, directly or indirectly, projects related to air quality along with the technical infrastructure to maintain good air quality. These plans focus on an inventory of databases from air quality environmental planning awareness campaigns. Moreover, pollution measures of air emissions may be taken for vehicles, machines, and industries in urban areas.

Technological innovation can only be successful if it is able to meet the needs of society. In this sense, technology must reflect the decision-making practices and procedures of those involved in risk assessment and evaluation and act as a facilitator in providing information and assessments to enable decision makers to make the best decisions possible. Summarizing the aforementioned in order to design an effective air quality control strategy, several aspects must be considered: environmental factors and ambient air quality conditions, engineering factors and air pollutant characteristics, and finally, economic operating costs for technological improvement and administrative and legal costs. Considering the economic factor, competitiveness through neoliberal concepts is offering a solution to environmental problems ( 22 ).

The development of environmental governance, along with technological progress, has initiated the deployment of a dialogue. Environmental politics has created objections and points of opposition between different political parties, scientists, media, and governmental and non-governmental organizations ( 22 ). Radical environmental activism actions and movements have been created ( 22 ). The rise of the new information and communication technologies (ICTs) are many times examined as to whether and in which way they have influenced means of communication and social movements such as activism ( 28 ). Since the 1990s, the term “digital activism” has been used increasingly and in many different disciplines ( 29 ). Nowadays, multiple digital technologies can be used to produce a digital activism outcome on environmental issues. More specifically, devices with online capabilities such as computers or mobile phones are being used as a way to pursue change in political and social affairs ( 30 ).

In the present paper, we focus on the sources of environmental pollution in relation to public health and propose some solutions and interventions that may be of interest to environmental legislators and decision makers.

Sources of Exposure

It is known that the majority of environmental pollutants are emitted through large-scale human activities such as the use of industrial machinery, power-producing stations, combustion engines, and cars. Because these activities are performed at such a large scale, they are by far the major contributors to air pollution, with cars estimated to be responsible for approximately 80% of today's pollution ( 31 ). Some other human activities are also influencing our environment to a lesser extent, such as field cultivation techniques, gas stations, fuel tanks heaters, and cleaning procedures ( 32 ), as well as several natural sources, such as volcanic and soil eruptions and forest fires.

The classification of air pollutants is based mainly on the sources producing pollution. Therefore, it is worth mentioning the four main sources, following the classification system: Major sources, Area sources, Mobile sources, and Natural sources.

Major sources include the emission of pollutants from power stations, refineries, and petrochemicals, the chemical and fertilizer industries, metallurgical and other industrial plants, and, finally, municipal incineration.

Indoor area sources include domestic cleaning activities, dry cleaners, printing shops, and petrol stations.

Mobile sources include automobiles, cars, railways, airways, and other types of vehicles.

Finally, natural sources include, as stated previously, physical disasters ( 33 ) such as forest fire, volcanic erosion, dust storms, and agricultural burning.

However, many classification systems have been proposed. Another type of classification is a grouping according to the recipient of the pollution, as follows:

Air pollution is determined as the presence of pollutants in the air in large quantities for long periods. Air pollutants are dispersed particles, hydrocarbons, CO, CO 2 , NO, NO 2 , SO 3 , etc.

Water pollution is organic and inorganic charge and biological charge ( 10 ) at high levels that affect the water quality ( 34 , 35 ).

Soil pollution occurs through the release of chemicals or the disposal of wastes, such as heavy metals, hydrocarbons, and pesticides.

Air pollution can influence the quality of soil and water bodies by polluting precipitation, falling into water and soil environments ( 34 , 36 ). Notably, the chemistry of the soil can be amended due to acid precipitation by affecting plants, cultures, and water quality ( 37 ). Moreover, movement of heavy metals is favored by soil acidity, and metals are so then moving into the watery environment. It is known that heavy metals such as aluminum are noxious to wildlife and fishes. Soil quality seems to be of importance, as soils with low calcium carbonate levels are at increased jeopardy from acid rain. Over and above rain, snow and particulate matter drip into watery ' bodies ( 36 , 38 ).

Lastly, pollution is classified following type of origin:

Radioactive and nuclear pollution , releasing radioactive and nuclear pollutants into water, air, and soil during nuclear explosions and accidents, from nuclear weapons, and through handling or disposal of radioactive sewage.

Radioactive materials can contaminate surface water bodies and, being noxious to the environment, plants, animals, and humans. It is known that several radioactive substances such as radium and uranium concentrate in the bones and can cause cancers ( 38 , 39 ).

Noise pollution is produced by machines, vehicles, traffic noises, and musical installations that are harmful to our hearing.

The World Health Organization introduced the term DALYs. The DALYs for a disease or health condition is defined as the sum of the Years of Life Lost (YLL) due to premature mortality in the population and the Years Lost due to Disability (YLD) for people living with the health condition or its consequences ( 39 ). In Europe, air pollution is the main cause of disability-adjusted life years lost (DALYs), followed by noise pollution. The potential relationships of noise and air pollution with health have been studied ( 40 ). The study found that DALYs related to noise were more important than those related to air pollution, as the effects of environmental noise on cardiovascular disease were independent of air pollution ( 40 ). Environmental noise should be counted as an independent public health risk ( 40 ).

Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, etc.) are produced.

Pollutants harm our environment either by increasing levels above normal or by introducing harmful toxic substances. Primary pollutants are directly produced from the above sources, and secondary pollutants are emitted as by-products of the primary ones. Pollutants can be biodegradable or non-biodegradable and of natural origin or anthropogenic, as stated previously. Moreover, their origin can be a unique source (point-source) or dispersed sources.

Pollutants have differences in physical and chemical properties, explaining the discrepancy in their capacity for producing toxic effects. As an example, we state here that aerosol compounds ( 41 – 43 ) have a greater toxicity than gaseous compounds due to their tiny size (solid or liquid) in the atmosphere; they have a greater penetration capacity. Gaseous compounds are eliminated more easily by our respiratory system ( 41 ). These particles are able to damage lungs and can even enter the bloodstream ( 41 ), leading to the premature deaths of millions of people yearly. Moreover, the aerosol acidity ([H+]) seems to considerably enhance the production of secondary organic aerosols (SOA), but this last aspect is not supported by other scientific teams ( 38 ).

Climate and Pollution

Air pollution and climate change are closely related. Climate is the other side of the same coin that reduces the quality of our Earth ( 44 ). Pollutants such as black carbon, methane, tropospheric ozone, and aerosols affect the amount of incoming sunlight. As a result, the temperature of the Earth is increasing, resulting in the melting of ice, icebergs, and glaciers.

In this vein, climatic changes will affect the incidence and prevalence of both residual and imported infections in Europe. Climate and weather affect the duration, timing, and intensity of outbreaks strongly and change the map of infectious diseases in the globe ( 45 ). Mosquito-transmitted parasitic or viral diseases are extremely climate-sensitive, as warming firstly shortens the pathogen incubation period and secondly shifts the geographic map of the vector. Similarly, water-warming following climate changes leads to a high incidence of waterborne infections. Recently, in Europe, eradicated diseases seem to be emerging due to the migration of population, for example, cholera, poliomyelitis, tick-borne encephalitis, and malaria ( 46 ).

The spread of epidemics is associated with natural climate disasters and storms, which seem to occur more frequently nowadays ( 47 ). Malnutrition and disequilibration of the immune system are also associated with the emerging infections affecting public health ( 48 ).

The Chikungunya virus “took the airplane” from the Indian Ocean to Europe, as outbreaks of the disease were registered in Italy ( 49 ) as well as autochthonous cases in France ( 50 ).

An increase in cryptosporidiosis in the United Kingdom and in the Czech Republic seems to have occurred following flooding ( 36 , 51 ).

As stated previously, aerosols compounds are tiny in size and considerably affect the climate. They are able to dissipate sunlight (the albedo phenomenon) by dispersing a quarter of the sun's rays back to space and have cooled the global temperature over the last 30 years ( 52 ).

Air Pollutants

The World Health Organization (WHO) reports on six major air pollutants, namely particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Air pollution can have a disastrous effect on all components of the environment, including groundwater, soil, and air. Additionally, it poses a serious threat to living organisms. In this vein, our interest is mainly to focus on these pollutants, as they are related to more extensive and severe problems in human health and environmental impact. Acid rain, global warming, the greenhouse effect, and climate changes have an important ecological impact on air pollution ( 53 ).

Particulate Matter (PM) and Health

Studies have shown a relationship between particulate matter (PM) and adverse health effects, focusing on either short-term (acute) or long-term (chronic) PM exposure.

Particulate matter (PM) is usually formed in the atmosphere as a result of chemical reactions between the different pollutants. The penetration of particles is closely dependent on their size ( 53 ). Particulate Matter (PM) was defined as a term for particles by the United States Environmental Protection Agency ( 54 ). Particulate matter (PM) pollution includes particles with diameters of 10 micrometers (μm) or smaller, called PM 10 , and extremely fine particles with diameters that are generally 2.5 micrometers (μm) and smaller.

Particulate matter contains tiny liquid or solid droplets that can be inhaled and cause serious health effects ( 55 ). Particles <10 μm in diameter (PM 10 ) after inhalation can invade the lungs and even reach the bloodstream. Fine particles, PM 2.5 , pose a greater risk to health ( 6 , 56 ) ( Table 1 ).

Penetrability according to particle size.

Multiple epidemiological studies have been performed on the health effects of PM. A positive relation was shown between both short-term and long-term exposures of PM 2.5 and acute nasopharyngitis ( 56 ). In addition, long-term exposure to PM for years was found to be related to cardiovascular diseases and infant mortality.

Those studies depend on PM 2.5 monitors and are restricted in terms of study area or city area due to a lack of spatially resolved daily PM 2.5 concentration data and, in this way, are not representative of the entire population. Following a recent epidemiological study by the Department of Environmental Health at Harvard School of Public Health (Boston, MA) ( 57 ), it was reported that, as PM 2.5 concentrations vary spatially, an exposure error (Berkson error) seems to be produced, and the relative magnitudes of the short- and long-term effects are not yet completely elucidated. The team developed a PM 2.5 exposure model based on remote sensing data for assessing short- and long-term human exposures ( 57 ). This model permits spatial resolution in short-term effects plus the assessment of long-term effects in the whole population.

Moreover, respiratory diseases and affection of the immune system are registered as long-term chronic effects ( 58 ). It is worth noting that people with asthma, pneumonia, diabetes, and respiratory and cardiovascular diseases are especially susceptible and vulnerable to the effects of PM. PM 2.5 , followed by PM 10 , are strongly associated with diverse respiratory system diseases ( 59 ), as their size permits them to pierce interior spaces ( 60 ). The particles produce toxic effects according to their chemical and physical properties. The components of PM 10 and PM 2.5 can be organic (polycyclic aromatic hydrocarbons, dioxins, benzene, 1-3 butadiene) or inorganic (carbon, chlorides, nitrates, sulfates, metals) in nature ( 55 ).

Particulate Matter (PM) is divided into four main categories according to type and size ( 61 ) ( Table 2 ).

Types and sizes of particulate Matter (PM).

Gas contaminants include PM in aerial masses.

Particulate contaminants include contaminants such as smog, soot, tobacco smoke, oil smoke, fly ash, and cement dust.

Biological Contaminants are microorganisms (bacteria, viruses, fungi, mold, and bacterial spores), cat allergens, house dust and allergens, and pollen.

Types of Dust include suspended atmospheric dust, settling dust, and heavy dust.

Finally, another fact is that the half-lives of PM 10 and PM 2.5 particles in the atmosphere is extended due to their tiny dimensions; this permits their long-lasting suspension in the atmosphere and even their transfer and spread to distant destinations where people and the environment may be exposed to the same magnitude of pollution ( 53 ). They are able to change the nutrient balance in watery ecosystems, damage forests and crops, and acidify water bodies.

As stated, PM 2.5 , due to their tiny size, are causing more serious health effects. These aforementioned fine particles are the main cause of the “haze” formation in different metropolitan areas ( 12 , 13 , 61 ).

Ozone Impact in the Atmosphere

Ozone (O 3 ) is a gas formed from oxygen under high voltage electric discharge ( 62 ). It is a strong oxidant, 52% stronger than chlorine. It arises in the stratosphere, but it could also arise following chain reactions of photochemical smog in the troposphere ( 63 ).

Ozone can travel to distant areas from its initial source, moving with air masses ( 64 ). It is surprising that ozone levels over cities are low in contrast to the increased amounts occuring in urban areas, which could become harmful for cultures, forests, and vegetation ( 65 ) as it is reducing carbon assimilation ( 66 ). Ozone reduces growth and yield ( 47 , 48 ) and affects the plant microflora due to its antimicrobial capacity ( 67 , 68 ). In this regard, ozone acts upon other natural ecosystems, with microflora ( 69 , 70 ) and animal species changing their species composition ( 71 ). Ozone increases DNA damage in epidermal keratinocytes and leads to impaired cellular function ( 72 ).

Ground-level ozone (GLO) is generated through a chemical reaction between oxides of nitrogen and VOCs emitted from natural sources and/or following anthropogenic activities.

Ozone uptake usually occurs by inhalation. Ozone affects the upper layers of the skin and the tear ducts ( 73 ). A study of short-term exposure of mice to high levels of ozone showed malondialdehyde formation in the upper skin (epidermis) but also depletion in vitamins C and E. It is likely that ozone levels are not interfering with the skin barrier function and integrity to predispose to skin disease ( 74 ).

Due to the low water-solubility of ozone, inhaled ozone has the capacity to penetrate deeply into the lungs ( 75 ).

Toxic effects induced by ozone are registered in urban areas all over the world, causing biochemical, morphologic, functional, and immunological disorders ( 76 ).

The European project (APHEA2) focuses on the acute effects of ambient ozone concentrations on mortality ( 77 ). Daily ozone concentrations compared to the daily number of deaths were reported from different European cities for a 3-year period. During the warm period of the year, an observed increase in ozone concentration was associated with an increase in the daily number of deaths (0.33%), in the number of respiratory deaths (1.13%), and in the number of cardiovascular deaths (0.45%). No effect was observed during wintertime.

Carbon Monoxide (CO)

Carbon monoxide is produced by fossil fuel when combustion is incomplete. The symptoms of poisoning due to inhaling carbon monoxide include headache, dizziness, weakness, nausea, vomiting, and, finally, loss of consciousness.

The affinity of carbon monoxide to hemoglobin is much greater than that of oxygen. In this vein, serious poisoning may occur in people exposed to high levels of carbon monoxide for a long period of time. Due to the loss of oxygen as a result of the competitive binding of carbon monoxide, hypoxia, ischemia, and cardiovascular disease are observed.

Carbon monoxide affects the greenhouses gases that are tightly connected to global warming and climate. This should lead to an increase in soil and water temperatures, and extreme weather conditions or storms may occur ( 68 ).

However, in laboratory and field experiments, it has been seen to produce increased plant growth ( 78 ).

Nitrogen Oxide (NO 2 )

Nitrogen oxide is a traffic-related pollutant, as it is emitted from automobile motor engines ( 79 , 80 ). It is an irritant of the respiratory system as it penetrates deep in the lung, inducing respiratory diseases, coughing, wheezing, dyspnea, bronchospasm, and even pulmonary edema when inhaled at high levels. It seems that concentrations over 0.2 ppm produce these adverse effects in humans, while concentrations higher than 2.0 ppm affect T-lymphocytes, particularly the CD8+ cells and NK cells that produce our immune response ( 81 ).It is reported that long-term exposure to high levels of nitrogen dioxide can be responsible for chronic lung disease. Long-term exposure to NO 2 can impair the sense of smell ( 81 ).

However, systems other than respiratory ones can be involved, as symptoms such as eye, throat, and nose irritation have been registered ( 81 ).

High levels of nitrogen dioxide are deleterious to crops and vegetation, as they have been observed to reduce crop yield and plant growth efficiency. Moreover, NO 2 can reduce visibility and discolor fabrics ( 81 ).

Sulfur Dioxide (SO 2 )

Sulfur dioxide is a harmful gas that is emitted mainly from fossil fuel consumption or industrial activities. The annual standard for SO 2 is 0.03 ppm ( 82 ). It affects human, animal, and plant life. Susceptible people as those with lung disease, old people, and children, who present a higher risk of damage. The major health problems associated with sulfur dioxide emissions in industrialized areas are respiratory irritation, bronchitis, mucus production, and bronchospasm, as it is a sensory irritant and penetrates deep into the lung converted into bisulfite and interacting with sensory receptors, causing bronchoconstriction. Moreover, skin redness, damage to the eyes (lacrimation and corneal opacity) and mucous membranes, and worsening of pre-existing cardiovascular disease have been observed ( 81 ).

Environmental adverse effects, such as acidification of soil and acid rain, seem to be associated with sulfur dioxide emissions ( 83 ).

Lead is a heavy metal used in different industrial plants and emitted from some petrol motor engines, batteries, radiators, waste incinerators, and waste waters ( 84 ).

Moreover, major sources of lead pollution in the air are metals, ore, and piston-engine aircraft. Lead poisoning is a threat to public health due to its deleterious effects upon humans, animals, and the environment, especially in the developing countries.

Exposure to lead can occur through inhalation, ingestion, and dermal absorption. Trans- placental transport of lead was also reported, as lead passes through the placenta unencumbered ( 85 ). The younger the fetus is, the more harmful the toxic effects. Lead toxicity affects the fetal nervous system; edema or swelling of the brain is observed ( 86 ). Lead, when inhaled, accumulates in the blood, soft tissue, liver, lung, bones, and cardiovascular, nervous, and reproductive systems. Moreover, loss of concentration and memory, as well as muscle and joint pain, were observed in adults ( 85 , 86 ).

Children and newborns ( 87 ) are extremely susceptible even to minimal doses of lead, as it is a neurotoxicant and causes learning disabilities, impairment of memory, hyperactivity, and even mental retardation.

Elevated amounts of lead in the environment are harmful to plants and crop growth. Neurological effects are observed in vertebrates and animals in association with high lead levels ( 88 ).

Polycyclic Aromatic Hydrocarbons(PAHs)

The distribution of PAHs is ubiquitous in the environment, as the atmosphere is the most important means of their dispersal. They are found in coal and in tar sediments. Moreover, they are generated through incomplete combustion of organic matter as in the cases of forest fires, incineration, and engines ( 89 ). PAH compounds, such as benzopyrene, acenaphthylene, anthracene, and fluoranthene are recognized as toxic, mutagenic, and carcinogenic substances. They are an important risk factor for lung cancer ( 89 ).

Volatile Organic Compounds(VOCs)

Volatile organic compounds (VOCs), such as toluene, benzene, ethylbenzene, and xylene ( 90 ), have been found to be associated with cancer in humans ( 91 ). The use of new products and materials has actually resulted in increased concentrations of VOCs. VOCs pollute indoor air ( 90 ) and may have adverse effects on human health ( 91 ). Short-term and long-term adverse effects on human health are observed. VOCs are responsible for indoor air smells. Short-term exposure is found to cause irritation of eyes, nose, throat, and mucosal membranes, while those of long duration exposure include toxic reactions ( 92 ). Predictable assessment of the toxic effects of complex VOC mixtures is difficult to estimate, as these pollutants can have synergic, antagonistic, or indifferent effects ( 91 , 93 ).

Dioxins originate from industrial processes but also come from natural processes, such as forest fires and volcanic eruptions. They accumulate in foods such as meat and dairy products, fish and shellfish, and especially in the fatty tissue of animals ( 94 ).

Short-period exhibition to high dioxin concentrations may result in dark spots and lesions on the skin ( 94 ). Long-term exposure to dioxins can cause developmental problems, impairment of the immune, endocrine and nervous systems, reproductive infertility, and cancer ( 94 ).

Without any doubt, fossil fuel consumption is responsible for a sizeable part of air contamination. This contamination may be anthropogenic, as in agricultural and industrial processes or transportation, while contamination from natural sources is also possible. Interestingly, it is of note that the air quality standards established through the European Air Quality Directive are somewhat looser than the WHO guidelines, which are stricter ( 95 ).

Effect of Air Pollution on Health

The most common air pollutants are ground-level ozone and Particulates Matter (PM). Air pollution is distinguished into two main types:

Outdoor pollution is the ambient air pollution.

Indoor pollution is the pollution generated by household combustion of fuels.

People exposed to high concentrations of air pollutants experience disease symptoms and states of greater and lesser seriousness. These effects are grouped into short- and long-term effects affecting health.

Susceptible populations that need to be aware of health protection measures include old people, children, and people with diabetes and predisposing heart or lung disease, especially asthma.

As extensively stated previously, according to a recent epidemiological study from Harvard School of Public Health, the relative magnitudes of the short- and long-term effects have not been completely clarified ( 57 ) due to the different epidemiological methodologies and to the exposure errors. New models are proposed for assessing short- and long-term human exposure data more successfully ( 57 ). Thus, in the present section, we report the more common short- and long-term health effects but also general concerns for both types of effects, as these effects are often dependent on environmental conditions, dose, and individual susceptibility.

Short-term effects are temporary and range from simple discomfort, such as irritation of the eyes, nose, skin, throat, wheezing, coughing and chest tightness, and breathing difficulties, to more serious states, such as asthma, pneumonia, bronchitis, and lung and heart problems. Short-term exposure to air pollution can also cause headaches, nausea, and dizziness.

These problems can be aggravated by extended long-term exposure to the pollutants, which is harmful to the neurological, reproductive, and respiratory systems and causes cancer and even, rarely, deaths.

The long-term effects are chronic, lasting for years or the whole life and can even lead to death. Furthermore, the toxicity of several air pollutants may also induce a variety of cancers in the long term ( 96 ).

As stated already, respiratory disorders are closely associated with the inhalation of air pollutants. These pollutants will invade through the airways and will accumulate at the cells. Damage to target cells should be related to the pollutant component involved and its source and dose. Health effects are also closely dependent on country, area, season, and time. An extended exposure duration to the pollutant should incline to long-term health effects in relation also to the above factors.

Particulate Matter (PMs), dust, benzene, and O 3 cause serious damage to the respiratory system ( 97 ). Moreover, there is a supplementary risk in case of existing respiratory disease such as asthma ( 98 ). Long-term effects are more frequent in people with a predisposing disease state. When the trachea is contaminated by pollutants, voice alterations may be remarked after acute exposure. Chronic obstructive pulmonary disease (COPD) may be induced following air pollution, increasing morbidity and mortality ( 99 ). Long-term effects from traffic, industrial air pollution, and combustion of fuels are the major factors for COPD risk ( 99 ).

Multiple cardiovascular effects have been observed after exposure to air pollutants ( 100 ). Changes occurred in blood cells after long-term exposure may affect cardiac functionality. Coronary arteriosclerosis was reported following long-term exposure to traffic emissions ( 101 ), while short-term exposure is related to hypertension, stroke, myocardial infracts, and heart insufficiency. Ventricle hypertrophy is reported to occur in humans after long-time exposure to nitrogen oxide (NO 2 ) ( 102 , 103 ).

Neurological effects have been observed in adults and children after extended-term exposure to air pollutants.

Psychological complications, autism, retinopathy, fetal growth, and low birth weight seem to be related to long-term air pollution ( 83 ). The etiologic agent of the neurodegenerative diseases (Alzheimer's and Parkinson's) is not yet known, although it is believed that extended exposure to air pollution seems to be a factor. Specifically, pesticides and metals are cited as etiological factors, together with diet. The mechanisms in the development of neurodegenerative disease include oxidative stress, protein aggregation, inflammation, and mitochondrial impairment in neurons ( 104 ) ( Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is fpubh-08-00014-g0001.jpg

Impact of air pollutants on the brain.

Brain inflammation was observed in dogs living in a highly polluted area in Mexico for a long period ( 105 ). In human adults, markers of systemic inflammation (IL-6 and fibrinogen) were found to be increased as an immediate response to PNC on the IL-6 level, possibly leading to the production of acute-phase proteins ( 106 ). The progression of atherosclerosis and oxidative stress seem to be the mechanisms involved in the neurological disturbances caused by long-term air pollution. Inflammation comes secondary to the oxidative stress and seems to be involved in the impairment of developmental maturation, affecting multiple organs ( 105 , 107 ). Similarly, other factors seem to be involved in the developmental maturation, which define the vulnerability to long-term air pollution. These include birthweight, maternal smoking, genetic background and socioeconomic environment, as well as education level.

However, diet, starting from breast-feeding, is another determinant factor. Diet is the main source of antioxidants, which play a key role in our protection against air pollutants ( 108 ). Antioxidants are free radical scavengers and limit the interaction of free radicals in the brain ( 108 ). Similarly, genetic background may result in a differential susceptibility toward the oxidative stress pathway ( 60 ). For example, antioxidant supplementation with vitamins C and E appears to modulate the effect of ozone in asthmatic children homozygous for the GSTM1 null allele ( 61 ). Inflammatory cytokines released in the periphery (e.g., respiratory epithelia) upregulate the innate immune Toll-like receptor 2. Such activation and the subsequent events leading to neurodegeneration have recently been observed in lung lavage in mice exposed to ambient Los Angeles (CA, USA) particulate matter ( 61 ). In children, neurodevelopmental morbidities were observed after lead exposure. These children developed aggressive and delinquent behavior, reduced intelligence, learning difficulties, and hyperactivity ( 109 ). No level of lead exposure seems to be “safe,” and the scientific community has asked the Centers for Disease Control and Prevention (CDC) to reduce the current screening guideline of 10 μg/dl ( 109 ).

It is important to state that impact on the immune system, causing dysfunction and neuroinflammation ( 104 ), is related to poor air quality. Yet, increases in serum levels of immunoglobulins (IgA, IgM) and the complement component C3 are observed ( 106 ). Another issue is that antigen presentation is affected by air pollutants, as there is an upregulation of costimulatory molecules such as CD80 and CD86 on macrophages ( 110 ).

As is known, skin is our shield against ultraviolet radiation (UVR) and other pollutants, as it is the most exterior layer of our body. Traffic-related pollutants, such as PAHs, VOCs, oxides, and PM, may cause pigmented spots on our skin ( 111 ). On the one hand, as already stated, when pollutants penetrate through the skin or are inhaled, damage to the organs is observed, as some of these pollutants are mutagenic and carcinogenic, and, specifically, they affect the liver and lung. On the other hand, air pollutants (and those in the troposphere) reduce the adverse effects of ultraviolet radiation UVR in polluted urban areas ( 111 ). Air pollutants absorbed by the human skin may contribute to skin aging, psoriasis, acne, urticaria, eczema, and atopic dermatitis ( 111 ), usually caused by exposure to oxides and photochemical smoke ( 111 ). Exposure to PM and cigarette smoking act as skin-aging agents, causing spots, dyschromia, and wrinkles. Lastly, pollutants have been associated with skin cancer ( 111 ).

Higher morbidity is reported to fetuses and children when exposed to the above dangers. Impairment in fetal growth, low birth weight, and autism have been reported ( 112 ).

Another exterior organ that may be affected is the eye. Contamination usually comes from suspended pollutants and may result in asymptomatic eye outcomes, irritation ( 112 ), retinopathy, or dry eye syndrome ( 113 , 114 ).

Environmental Impact of Air Pollution

Air pollution is harming not only human health but also the environment ( 115 ) in which we live. The most important environmental effects are as follows.

Acid rain is wet (rain, fog, snow) or dry (particulates and gas) precipitation containing toxic amounts of nitric and sulfuric acids. They are able to acidify the water and soil environments, damage trees and plantations, and even damage buildings and outdoor sculptures, constructions, and statues.

Haze is produced when fine particles are dispersed in the air and reduce the transparency of the atmosphere. It is caused by gas emissions in the air coming from industrial facilities, power plants, automobiles, and trucks.

Ozone , as discussed previously, occurs both at ground level and in the upper level (stratosphere) of the Earth's atmosphere. Stratospheric ozone is protecting us from the Sun's harmful ultraviolet (UV) rays. In contrast, ground-level ozone is harmful to human health and is a pollutant. Unfortunately, stratospheric ozone is gradually damaged by ozone-depleting substances (i.e., chemicals, pesticides, and aerosols). If this protecting stratospheric ozone layer is thinned, then UV radiation can reach our Earth, with harmful effects for human life (skin cancer) ( 116 ) and crops ( 117 ). In plants, ozone penetrates through the stomata, inducing them to close, which blocks CO 2 transfer and induces a reduction in photosynthesis ( 118 ).

Global climate change is an important issue that concerns mankind. As is known, the “greenhouse effect” keeps the Earth's temperature stable. Unhappily, anthropogenic activities have destroyed this protecting temperature effect by producing large amounts of greenhouse gases, and global warming is mounting, with harmful effects on human health, animals, forests, wildlife, agriculture, and the water environment. A report states that global warming is adding to the health risks of poor people ( 119 ).

People living in poorly constructed buildings in warm-climate countries are at high risk for heat-related health problems as temperatures mount ( 119 ).

Wildlife is burdened by toxic pollutants coming from the air, soil, or the water ecosystem and, in this way, animals can develop health problems when exposed to high levels of pollutants. Reproductive failure and birth effects have been reported.

Eutrophication is occurring when elevated concentrations of nutrients (especially nitrogen) stimulate the blooming of aquatic algae, which can cause a disequilibration in the diversity of fish and their deaths.

Without a doubt, there is a critical concentration of pollution that an ecosystem can tolerate without being destroyed, which is associated with the ecosystem's capacity to neutralize acidity. The Canada Acid Rain Program established this load at 20 kg/ha/yr ( 120 ).

Hence, air pollution has deleterious effects on both soil and water ( 121 ). Concerning PM as an air pollutant, its impact on crop yield and food productivity has been reported. Its impact on watery bodies is associated with the survival of living organisms and fishes and their productivity potential ( 121 ).

An impairment in photosynthetic rhythm and metabolism is observed in plants exposed to the effects of ozone ( 121 ).

Sulfur and nitrogen oxides are involved in the formation of acid rain and are harmful to plants and marine organisms.

Last but not least, as mentioned above, the toxicity associated with lead and other metals is the main threat to our ecosystems (air, water, and soil) and living creatures ( 121 ).

In 2018, during the first WHO Global Conference on Air Pollution and Health, the WHO's General Director, Dr. Tedros Adhanom Ghebreyesus, called air pollution a “silent public health emergency” and “the new tobacco” ( 122 ).

Undoubtedly, children are particularly vulnerable to air pollution, especially during their development. Air pollution has adverse effects on our lives in many different respects.

Diseases associated with air pollution have not only an important economic impact but also a societal impact due to absences from productive work and school.

Despite the difficulty of eradicating the problem of anthropogenic environmental pollution, a successful solution could be envisaged as a tight collaboration of authorities, bodies, and doctors to regularize the situation. Governments should spread sufficient information and educate people and should involve professionals in these issues so as to control the emergence of the problem successfully.

Technologies to reduce air pollution at the source must be established and should be used in all industries and power plants. The Kyoto Protocol of 1997 set as a major target the reduction of GHG emissions to below 5% by 2012 ( 123 ). This was followed by the Copenhagen summit, 2009 ( 124 ), and then the Durban summit of 2011 ( 125 ), where it was decided to keep to the same line of action. The Kyoto protocol and the subsequent ones were ratified by many countries. Among the pioneers who adopted this important protocol for the world's environmental and climate “health” was China ( 3 ). As is known, China is a fast-developing economy and its GDP (Gross Domestic Product) is expected to be very high by 2050, which is defined as the year of dissolution of the protocol for the decrease in gas emissions.

A more recent international agreement of crucial importance for climate change is the Paris Agreement of 2015, issued by the UNFCCC (United Nations Climate Change Committee). This latest agreement was ratified by a plethora of UN (United Nations) countries as well as the countries of the European Union ( 126 ). In this vein, parties should promote actions and measures to enhance numerous aspects around the subject. Boosting education, training, public awareness, and public participation are some of the relevant actions for maximizing the opportunities to achieve the targets and goals on the crucial matter of climate change and environmental pollution ( 126 ). Without any doubt, technological improvements makes our world easier and it seems difficult to reduce the harmful impact caused by gas emissions, we could limit its use by seeking reliable approaches.

Synopsizing, a global prevention policy should be designed in order to combat anthropogenic air pollution as a complement to the correct handling of the adverse health effects associated with air pollution. Sustainable development practices should be applied, together with information coming from research in order to handle the problem effectively.

At this point, international cooperation in terms of research, development, administration policy, monitoring, and politics is vital for effective pollution control. Legislation concerning air pollution must be aligned and updated, and policy makers should propose the design of a powerful tool of environmental and health protection. As a result, the main proposal of this essay is that we should focus on fostering local structures to promote experience and practice and extrapolate these to the international level through developing effective policies for sustainable management of ecosystems.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

IM is employed by the company Delphis S.A. The remaining authors declare that the present review paper was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Oxford Martin School logo

Air Pollution

Our overview of indoor and outdoor air pollution.

By Hannah Ritchie and Max Roser

This article was first published in October 2017 and last revised in February 2024.

Air pollution is one of the world's largest health and environmental problems. It develops in two contexts: indoor (household) air pollution and outdoor air pollution.

In this topic page, we look at the aggregate picture of air pollution – both indoor and outdoor. We also have dedicated topic pages that look in more depth at these subjects:

Indoor Air Pollution

Look in detail at the data and research on the health impacts of Indoor Air Pollution, attributed deaths, and its causes across the world

Outdoor Air Pollution

Look in detail at the data and research on exposure to Outdoor Air Pollution, its health impacts, and attributed deaths across the world

Look in detail at the data and research on energy consumption, its impacts around the world today, and how this has changed over time

See all interactive charts on Air Pollution ↓

Other research and writing on air pollution on Our World in Data:

  • Air pollution: does it get worse before it gets better?
  • Data Review: How many people die from air pollution?
  • Energy poverty and indoor air pollution: a problem as old as humanity that we can end within our lifetime
  • How many people do not have access to clean fuels for cooking?
  • What are the safest and cleanest sources of energy?
  • What the history of London’s air pollution can tell us about the future of today’s growing megacities
  • When will countries phase out coal power?

Air pollution is one of the world's leading risk factors for death

Air pollution is responsible for millions of deaths each year.

Air pollution – the combination of outdoor and indoor particulate matter and ozone – is a risk factor for many of the leading causes of death, including heart disease, stroke, lower respiratory infections, lung cancer, diabetes, and chronic obstructive pulmonary disease (COPD).

The Institute for Health Metrics and Evaluation (IHME), in its Global Burden of Disease study, provides estimates of the number of deaths attributed to the range of risk factors for disease. 1

In the visualization, we see the number of deaths per year attributed to each risk factor. This chart shows the global total but can be explored for any country or region using the "change country" toggle.

Air pollution is one of the leading risk factors for death. In low-income countries, it is often very near the top of the list (or is the leading risk factor).

Air pollution contributes to one in ten deaths globally

In recent years, air pollution has contributed to one in ten deaths globally. 2

In the map shown here, we see the share of deaths attributed to air pollution across the world.

Air pollution is one of the leading risk factors for disease burden

Air pollution is one of the leading risk factors for death. But its impacts go even further; it is also one of the main contributors to the global disease burden.

Global disease burden takes into account not only years of life lost to early death but also the number of years lived in poor health.

In the visualization, we see risk factors ranked in order of DALYs – disability-adjusted life years – the metric used to assess disease burden. Again, air pollution is near the top of the list, making it one of the leading risk factors for poor health across the world.

Air pollution not only takes years from people's lives but also has a large effect on the quality of life while they're still living.

Who is most affected by air pollution?

Death rates from air pollution are highest in low-to-middle-income countries.

Air pollution is a health and environmental issue across all countries of the world but with large differences in severity.

In the interactive map, we show death rates from air pollution across the world, measured as the number of deaths per 100,000 people in a given country or region.

The burden of air pollution tends to be greater across both low and middle-income countries for two reasons: indoor pollution rates tend to be high in low-income countries due to a reliance on solid fuels for cooking, and outdoor air pollution tends to increase as countries industrialize and shift from low to middle incomes.

A map of the number of deaths from air pollution by country can be found here .

How are death rates from air pollution changing?

Death rates from air pollution are falling – mainly due to improvements in indoor pollution.

In the visualization, we show global death rates from air pollution over time – shown as the total air pollution – in addition to the individual contributions from outdoor and indoor pollution.

Globally, we see that in recent decades, the death rates from total air pollution have declined: since 1990, death rates have nearly halved. But, as we see from the breakdown, this decline has been primarily driven by improvements in indoor air pollution.

Death rates from indoor air pollution have seen an impressive decline, while improvements in outdoor pollution have been much more modest.

You can explore this data for any country or region using the "change country" toggle on the interactive chart.

Interactive charts on air pollution

Murray, C. J., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., ... & Borzouei, S. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 .  The Lancet ,  396 (10258), 1223-1249.

Here, we use the term 'contributes,' meaning it was one of the attributed risk factors for a given disease or cause of death. There can be multiple risk factors for a given disease that can amplify one another. This means that in some cases, air pollution was not the only risk factor but one of several.

Cite this work

Our articles and data visualizations rely on work from many different people and organizations. When citing this topic page, please also cite the underlying data sources. This topic page can be cited as:

BibTeX citation

Reuse this work freely

All visualizations, data, and code produced by Our World in Data are completely open access under the Creative Commons BY license . You have the permission to use, distribute, and reproduce these in any medium, provided the source and authors are credited.

The data produced by third parties and made available by Our World in Data is subject to the license terms from the original third-party authors. We will always indicate the original source of the data in our documentation, so you should always check the license of any such third-party data before use and redistribution.

All of our charts can be embedded in any site.

Our World in Data is free and accessible for everyone.

Help us do this work by making a donation.

ENCYCLOPEDIC ENTRY

Air pollution.

Air pollution consists of chemicals or particles in the air that can harm the health of humans, animals, and plants. It also damages buildings.

Biology, Ecology, Earth Science, Geography

Loading ...

Morgan Stanley

Air pollution consists of chemicals or particles in the air that can harm the health of humans, animals, and plants. It also damages buildings. Pollutants in the air take many forms. They can be gases , solid particles, or liquid droplets. Sources of Air Pollution Pollution enters the Earth's atmosphere in many different ways. Most air pollution is created by people, taking the form of emissions from factories, cars, planes, or aerosol cans . Second-hand cigarette smoke is also considered air pollution. These man-made sources of pollution are called anthropogenic sources . Some types of air pollution, such as smoke from wildfires or ash from volcanoes , occur naturally. These are called natural sources . Air pollution is most common in large cities where emissions from many different sources are concentrated . Sometimes, mountains or tall buildings prevent air pollution from spreading out. This air pollution often appears as a cloud making the air murky. It is called smog . The word "smog" comes from combining the words "smoke" and " fog ." Large cities in poor and developing nations tend to have more air pollution than cities in developed nations. According to the World Health Organization (WHO) , some of the worlds most polluted cities are Karachi, Pakistan; New Delhi, India; Beijing, China; Lima, Peru; and Cairo, Egypt. However, many developed nations also have air pollution problems. Los Angeles, California, is nicknamed Smog City. Indoor Air Pollution Air pollution is usually thought of as smoke from large factories or exhaust from vehicles. But there are many types of indoor air pollution as well. Heating a house by burning substances such as kerosene , wood, and coal can contaminate the air inside the house. Ash and smoke make breathing difficult, and they can stick to walls, food, and clothing. Naturally-occurring radon gas, a cancer -causing material, can also build up in homes. Radon is released through the surface of the Earth. Inexpensive systems installed by professionals can reduce radon levels. Some construction materials, including insulation , are also dangerous to people's health. In addition, ventilation , or air movement, in homes and rooms can lead to the spread of toxic mold . A single colony of mold may exist in a damp, cool place in a house, such as between walls. The mold's spores enter the air and spread throughout the house. People can become sick from breathing in the spores. Effects On Humans People experience a wide range of health effects from being exposed to air pollution. Effects can be broken down into short-term effects and long-term effects . Short-term effects, which are temporary , include illnesses such as pneumonia or bronchitis . They also include discomfort such as irritation to the nose, throat, eyes, or skin. Air pollution can also cause headaches, dizziness, and nausea . Bad smells made by factories, garbage , or sewer systems are considered air pollution, too. These odors are less serious but still unpleasant . Long-term effects of air pollution can last for years or for an entire lifetime. They can even lead to a person's death. Long-term health effects from air pollution include heart disease , lung cancer, and respiratory diseases such as emphysema . Air pollution can also cause long-term damage to people's nerves , brain, kidneys , liver , and other organs. Some scientists suspect air pollutants cause birth defects . Nearly 2.5 million people die worldwide each year from the effects of outdoor or indoor air pollution. People react differently to different types of air pollution. Young children and older adults, whose immune systems tend to be weaker, are often more sensitive to pollution. Conditions such as asthma , heart disease, and lung disease can be made worse by exposure to air pollution. The length of exposure and amount and type of pollutants are also factors. Effects On The Environment Like people, animals, and plants, entire ecosystems can suffer effects from air pollution. Haze , like smog, is a visible type of air pollution that obscures shapes and colors. Hazy air pollution can even muffle sounds. Air pollution particles eventually fall back to Earth. Air pollution can directly contaminate the surface of bodies of water and soil . This can kill crops or reduce their yield . It can kill young trees and other plants. Sulfur dioxide and nitrogen oxide particles in the air, can create acid rain when they mix with water and oxygen in the atmosphere. These air pollutants come mostly from coal-fired power plants and motor vehicles . When acid rain falls to Earth, it damages plants by changing soil composition ; degrades water quality in rivers, lakes and streams; damages crops; and can cause buildings and monuments to decay . Like humans, animals can suffer health effects from exposure to air pollution. Birth defects, diseases, and lower reproductive rates have all been attributed to air pollution. Global Warming Global warming is an environmental phenomenon caused by natural and anthropogenic air pollution. It refers to rising air and ocean temperatures around the world. This temperature rise is at least partially caused by an increase in the amount of greenhouse gases in the atmosphere. Greenhouse gases trap heat energy in the Earths atmosphere. (Usually, more of Earths heat escapes into space.) Carbon dioxide is a greenhouse gas that has had the biggest effect on global warming. Carbon dioxide is emitted into the atmosphere by burning fossil fuels (coal, gasoline , and natural gas ). Humans have come to rely on fossil fuels to power cars and planes, heat homes, and run factories. Doing these things pollutes the air with carbon dioxide. Other greenhouse gases emitted by natural and artificial sources also include methane , nitrous oxide , and fluorinated gases. Methane is a major emission from coal plants and agricultural processes. Nitrous oxide is a common emission from industrial factories, agriculture, and the burning of fossil fuels in cars. Fluorinated gases, such as hydrofluorocarbons , are emitted by industry. Fluorinated gases are often used instead of gases such as chlorofluorocarbons (CFCs). CFCs have been outlawed in many places because they deplete the ozone layer . Worldwide, many countries have taken steps to reduce or limit greenhouse gas emissions to combat global warming. The Kyoto Protocol , first adopted in Kyoto, Japan, in 1997, is an agreement between 183 countries that they will work to reduce their carbon dioxide emissions. The United States has not signed that treaty . Regulation In addition to the international Kyoto Protocol, most developed nations have adopted laws to regulate emissions and reduce air pollution. In the United States, debate is under way about a system called cap and trade to limit emissions. This system would cap, or place a limit, on the amount of pollution a company is allowed. Companies that exceeded their cap would have to pay. Companies that polluted less than their cap could trade or sell their remaining pollution allowance to other companies. Cap and trade would essentially pay companies to limit pollution. In 2006 the World Health Organization issued new Air Quality Guidelines. The WHOs guidelines are tougher than most individual countries existing guidelines. The WHO guidelines aim to reduce air pollution-related deaths by 15 percent a year. Reduction Anybody can take steps to reduce air pollution. Millions of people every day make simple changes in their lives to do this. Taking public transportation instead of driving a car, or riding a bike instead of traveling in carbon dioxide-emitting vehicles are a couple of ways to reduce air pollution. Avoiding aerosol cans, recycling yard trimmings instead of burning them, and not smoking cigarettes are others.

Downwinders The United States conducted tests of nuclear weapons at the Nevada Test Site in southern Nevada in the 1950s. These tests sent invisible radioactive particles into the atmosphere. These air pollution particles traveled with wind currents, eventually falling to Earth, sometimes hundreds of miles away in states including Idaho, Utah, Arizona, and Washington. These areas were considered to be "downwind" from the Nevada Test Site. Decades later, people living in those downwind areascalled "downwinders"began developing cancer at above-normal rates. In 1990, the U.S. government passed the Radiation Exposure Compensation Act. This law entitles some downwinders to payments of $50,000.

Greenhouse Gases There are five major greenhouse gases in Earth's atmosphere.

  • water vapor
  • carbon dioxide
  • nitrous oxide

London Smog What has come to be known as the London Smog of 1952, or the Great Smog of 1952, was a four-day incident that sickened 100,000 people and caused as many as 12,000 deaths. Very cold weather in December 1952 led residents of London, England, to burn more coal to keep warm. Smoke and other pollutants became trapped by a thick fog that settled over the city. The polluted fog became so thick that people could only see a few meters in front of them.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

March 6, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Talk to our experts

1800-120-456-456

  • Air Pollution Essay

ffImage

Essay on Air Pollution

Environmental changes are caused by the natural or artificial content of harmful pollutants and can cause instability, disturbance, or adverse effects on the ecosystem. Earth and its environment pose a more serious threat due to the increasing pollution of air, water, and soil. Environmental damage is caused by improper resource management or careless human activities. Therefore, any activity that violates the original nature of the environment and leads to degradation is called pollution. We need to understand the origin of these pollutants and find ways to control pollution. This can also be done by raising awareness of the effects of pollutants.

Air pollution is any physical, chemical, or biological change in the air. A certain percentage of the gas is present in the atmosphere. Increasing or decreasing the composition of these gasses is detrimental to survival. This imbalance in gas composition causes an increase in global temperature which is called global warming.

Introduction to air pollution 

The Earth and its environment are facing a serious threat by the increasing pollution of the air, water, and soil—the vital life support systems of the Earth. The damage to the environment is caused by improper management of resources or by careless human activity. Hence any activity that violates the original character of nature and leads to its degradation is called pollution. We need to understand the sources of these pollutants and find ways to control pollution. This can be also done by making people aware of the effects of pollutants. 

Air with 78% Nitrogen, 21% Oxygen, and 1% of all other gasses support life on Earth. Various processes take place to sustain the regular percentage of gasses and their composition in general. 

Atmospheric pollution can have natural sources, for example, volcanic eruptions. The gaseous by-products of man-made processes such as energy production, waste incineration, transport, deforestation and agriculture, are the major air pollutants.

Although air is made up of mostly Oxygen and Nitrogen, mankind, through pollution, has increased the levels of many trace gasses, and in some cases, released completely new gasses to the atmosphere. 

Air pollution can result in poor air quality, both in cities and in the countryside. Some air pollutants make people sick, causing breathing problems and increasing the likelihood of cancer. 

Some air pollutants are harmful to plants, animals, and the ecosystems in which they live. Statues, monuments, and buildings are being corroded by the air pollutants in the form of acid rain. It also damages crops and forests, and makes lakes and streams unsuitable for fish and other plant and animal life. 

Air pollution created by man-made resources is also changing the Earth’s atmosphere. It is causing the depletion of the ozone layer and letting in more harmful radiation from the Sun. The greenhouse gasses released into the atmosphere prevents heat from escaping back into space and leads to a rise in global average temperatures. Global warming affects the average sea-level and increases the spread of tropical diseases.

Air pollution occurs when large amounts of gas and tiny particles are released into the air and the ecological balance is disturbed. Each year millions of tons of gasses and particulate matter are emitted into the air. 

Primary air pollutants are pollutants, which are directly released into the air. They are called SPM, i.e., Suspended Particulate Matter. For example, smoke, dust, ash, sulfur oxide, nitrogen oxide, and radioactive compounds, etc.

Secondary Pollutants are pollutants, which are formed due to chemical interactions between the atmospheric components and primary pollutants. For example, Smog (i.e. Smoke and fog), ozone, etc.

Major gaseous air pollutants include Carbon Dioxide, Hydrogen Sulfide, Sulfur Dioxide and Nitrogen Oxide, etc.

Natural sources are volcanic eruptions, forest fires, dust storms, etc. 

Man-made sources include gasses released from the automobiles, industries, burning of garbage and bricks kilns, etc.

Effects of Air Pollution on Human Health

Air pollution has adverse effects on human health. 

Breathing polluted air puts you at higher risk of asthma.

When exposed to ground ozone for 6 to 7 hours, people suffer from respiratory inflammation.

Damages the immune system, endocrine, and reproductive systems.

A high level of air pollution has been associated with higher incidents of heart problems.

The toxic chemicals released into the air are affecting the flora and fauna immensely.

Preventive Measures to Reduce Air Pollution

We can prevent pollution by utilizing raw materials, water energy, and other resources more efficiently. When less harmful substances are substituted for hazardous ones, and when toxic substances are eliminated from the production process, human health can be protected and economic wellbeing can be strengthened. 

There are several measures that can be adopted by people to reduce pollution and to save the environment.

Carpooling.

Promotion of public transport.

No smoking zone.

Restricted use of fossil fuels.

Saving energy.

Encouraging organic farming.

The government has put restrictions on the amount of fossil fuels that can be used as well as restrictions on how much carbon dioxide and other pollutants can be emitted. Although the government is attempting to save our environment from these harmful gasses, it is not sufficient. We as a society need to keep the environment clean by controlling the pollution of air.

arrow-right

FAQs on Air Pollution Essay

1. State the Causes of Air Pollution ?

The following are the causes of air pollution.

Vehicular pollution consisting of Carbon Monoxide causes pollution.

Emission of Nitrogen oxide by a large number of supersonic transport airplanes causes deterioration of the Ozone layer and also causes serious damage to the flora and fauna.

The release of Chlorofluorocarbons into the Stratosphere causes depletion of Ozone, which is a serious concern to animals, microscopic, and aquatic organisms.

Burning garbage causes smoke, which pollutes the atmosphere. This smoke contains harmful gases such as Carbon dioxide and Nitrogen oxides.

In India, brick kilns are used for many purposes and coal is used to burn the bricks. They give out huge quantities of Carbon dioxide and particulate matter such as smoke, dust that are very harmful to people working there and the areas surrounding it. 

Many cleansing agents release poisonous gases such as Ammonia and Chlorine into the atmosphere. 

Radioactive elements emit harmful rays into the air.

Decomposed animals and plants emit Methane and Ammonia gas into the air.

2. What Does Global Warming Mean?

Global warming is the gradual rising average temperature of the Earth's atmosphere due to the concentration of methane in certain toxic gasses such as carbon dioxide. This has a major impact on the world climate. The world is warming. The land and the sea are now warmer than they were at the beginning and temperatures are still rising. This rise in temperature is, in short, global warming. This temperature rise is man-made. The burning of fossil fuels releases greenhouse gasses into the atmosphere which capture solar heat and raise surface and air temperatures.

3. Name the Alternative Modes of Transport. In What Way Does it Help to Reduce Air Pollution?

Public transport could be an alternative mode of transport. Public transport like trains, buses and trams, can relieve traffic congestion and reduce air pollution from road transport. The use of public transport must be encouraged in order to develop a sustainable transport policy.

4. Mention other means of transportation! How can I help reduce air pollution?

Public transportation can be another mode of transportation. Public transport such as trains, buses and trams can reduce traffic congestion and reduce air pollution from road transport. The use of public transport and to develop sustainable transport policies should be encouraged. While one passenger vehicle has the convenience factor, other modes of transportation reduce travel costs, spend less time, reduce stress, improve health, and reduce energy consumption and parking. Other trips for work include walking/cycling, public transport, hybrid travel and transport.

5. What are the effects of pollution?

Excessive air pollution can increase the risk of heart attack, wheezing, coughing and difficulty breathing, as well as irritation of the eyes, nose and throat. Air pollution can also cause heart problems, asthma, and other lung problems. Due to the emission of greenhouse gases, the composition of the air in the air is disturbed. This causes an increase in global temperature. The damaging ozone layer due to air pollution does not prevent harmful ultraviolet rays from the sun, which cause skin and eye problems in individuals. Air pollution has caused a number of respiratory and heart diseases among people. The incidence of lung cancer has increased in recent decades. Children living in contaminated areas are more likely to develop pneumonia and asthma. Many people die every year due to the direct or indirect effects of air pollution. When burning fossil fuels, harmful gases such as nitrogen oxides and sulfur oxides are released into the air. Water droplets combine with these pollutants and become acidic and fall as acid rain, which harms human, animal and plant life.

6. What is the solution to air pollution?

Production of renewable fuels and clean energy. The basic solution to air pollution is to get away from fossil fuels and replace them with other energies such as solar, wind and geothermal. The government limits the amount of fossil fuel that can be used and how much carbon dioxide and other pollutants it can emit. While the government is trying to save our environment from this harmful gas, it is not enough. We as a society need to keep the environment clean by controlling air pollution. To more in detail about air pollution and its causes. To learn more about air pollution and its impact on the environment, visit the Vedantu website.

Premium Content

Picture of man town street at winter night with heavy smog over city on background.

Air pollution kills millions every year, like a ‘pandemic in slow motion’

Dirty air is a plague on our health, causing 7 million deaths and many more preventable illnesses worldwide each year. But the solutions are clear.

This story appears in the April 2021 issue of National Geographic magazine.

When COVID-19 began tearing around the globe, Francesca Dominici suspected air pollution was increasing the death toll. It was the logical conclusion of everything scientists knew about dirty air and everything they were learning about the novel coronavirus. People in polluted places are more likely to have chronic illnesses, and such patients are the most vulnerable to COVID-19. What’s more, air pollution can weaken the immune system and inflame the airways, leaving the body less able to fight off a respiratory virus.

Many experts saw the possible connection, but Dominici, a biostatistics professor at the Harvard T.H. Chan School of Public Health, was especially well equipped to test it. She and her colleagues have spent years creating an extraordinary data platform, one that aligns information on the health of tens of millions of Americans with a day-by-day summary of the air they’ve been breathing since 2000. Dominici explained it to me last summer on a video call from her home in Cambridge, Massachusetts. Her pandemic puppy, a black Lab, squirmed on her lap. In London, where I sat in my home office, the brief respite in traffic provided by the initial lockdown had ended, and diesel fumes once again clouded the air.

Every year, Dominici told me, she purchases granular (but anonymized) information on each of the roughly 60 million older Americans enrolled in Medicare—age, gender, race, zip code, and the dates and diagnostic codes for all deaths and hospitalizations. That’s half the data platform. The other half is an achievement in itself. Led by Dominici and Harvard epidemiologist Joel Schwartz, dozens of scientists first divided the United States into a grid of one-kilometer-wide (.62-mile) squares. Then they trained a machine learning program to calculate daily pollutant levels, over 17 years, in each square—even if it didn’t have a pollution monitor in it.

With those twin troves of data, Dominici and her colleagues could for the first time study the effects of air pollution in every corner of the U.S. It led them to some troubling conclusions. In a 2017 study they found that even in places where the air met national standards, pollution was linked to higher death rates. That means “the standard is not safe,” Dominici explained.

Picture of little girl on hospital bed with sensors attached to her body.

Two years later the team reported that hospitalizations for a host of ailments—including conditions such as kidney failure and septicemia, whose link to pollution had been little examined—went up whenever pollution rose. Those findings added to a mountain of evidence demonstrating the dangers of PM2.5, or particulate matter smaller than 2.5 micrometers, about a 30th the width of a human hair. Some of those particles—of soot, for example—can cross into the bloodstream. Scientists have found them, including even tinier “ultrafine” particles, in the heart, brain, and placenta.

When the pandemic hit, Dominici and her team quickly decided to cross-reference nationwide air quality data against Johns Hopkins University’s county-by-county tally of COVID-19 deaths. Sure enough, viral death rates were higher in places with more PM2.5—the places where decades of exposure to bad air had primed people’s bodies to be susceptible to the coronavirus. Worldwide, the team reported in December, particle pollution accounted for 15 percent of COVID-19 deaths. In badly polluted countries in East Asia, it was 27 percent.

Many outside the scientific world were shocked. The finding made headlines. “To me, it was not surprising at all,” Dominici said. “It made perfect sense.” She already knew what much of the public doesn’t—that dirty air ends far more lives, and with far greater regularity, than the novel coronavirus.

Globally, air pollution accounts for about seven million premature deaths a year, according to the World Health Organization (WHO)—more than twice as many as alcohol consumption and more than five times as many as traffic accidents. (Some recent research puts pollution’s toll far higher than the WHO estimate.) A majority of those deaths are caused by outdoor air pollution; the rest are attributable primarily to smoke from indoor cookstoves. Most of the deaths occur in developing countries—China and India alone account for about half—but air pollution remains a significant killer in developed ones too. The World Bank puts the global economic cost at more than five trillion dollars annually.

In the United States, 50 years after Congress passed the Clean Air Act, more than 45 percent of Americans still breathe unhealthy air, according to the American Lung Association. It still causes more than 60,000 premature deaths annually—not counting the many thousands who have died because it made them more vulnerable to COVID-19. Pollution is a hidden killer; it doesn’t get listed on death certificates. Perhaps this year, Dominici said when we spoke, its intersection with frightening new threats—a raging virus and wildfires—would help us recognize the damage it has been doing all along.

But in December, when the U.S. Environmental Protection Agency formally decided not to tighten the national air quality standards for PM2.5, maintaining them at their current levels, it ignored Dominici’s research and that of its own scientists. They had calculated that lowering the annual standard by 25 percent would save 12,000 lives a year.

( An urgent question hangs over catastrophic wildfires: What’s in that toxic smoke? )

Picture of man sweeping floor with broom.

Air pollution's brutal bottom line—the more there is, the shorter the lives of those who breathe it—was established most definitively by a landmark 1993 project known as the “Six Cities” study. People in the most polluted of six small American cities analyzed by Harvard researchers were 26 percent more likely to die prematurely than those in the cleanest of the six. Pollution was taking about two years off their life spans.

“It was very, very surprising. And in fact it was such a big effect, we didn’t believe it,” lead author Douglas Dockery, now retired, told me. But another long-term data set from the American Cancer Society soon confirmed it.

Since then, further research has revealed two more essential truths about air pollution: It’s harmful at much lower levels than once thought, and in many more ways. The sheer variety stunned Dean Schraufnagel, a pulmonary medicine professor at the University of Illinois at Chicago, when he led a panel in 2018 that reviewed and summarized decades of research.

( See how pollution affects the human body )

Dirty air, his committee reported, affects nearly all the body’s essential systems. It may cause about 20 percent of all deaths from strokes and coronary artery disease, triggering heart attacks and arrhythmias, congestive heart failure and high blood pressure. It’s linked to lung, bladder, colon, kidney, and stomach cancers and to childhood leukemia. It harms kids’ cognitive development and raises older people’s risk of contracting dementia or dying of Parkinson’s disease. It’s been credibly tied to diabetes, obesity, osteoporosis, decreased fertility, miscarriage, mood disorders, sleep apnea—the list goes on.

“The breadth of it was the most surprising,” Schraufnagel said.

There’s a more hopeful flip side: Cleaner air brings better health. Since the Clean Air Act of 1970, a 77 percent drop in pollution has lengthened millions of Americans’ lives. The 1990 amendments to the law prevented 230,000 deaths in 2020 alone, according to an EPA estimate.

Elsewhere in the world, the air is far worse. Photographer Matthieu Paley and I visited Ulaanbaatar, Mongolia, one of the most polluted capitals on Earth—especially in the punishing winter, when coal becomes a survival tool. It’s burned by the ton in the city’s power plants and by the bagful in the gers   (Mongolian yurts) that house poor migrants from the countryside.  

“I no longer know what a healthy lung sounds like,” said Ganjargal Demberel, a doctor who makes house calls in one such neighborhood. “Everybody has bronchitis or some other problem, especially during winter.”

Even environmentally progressive Europeans live with pollution significantly worse than what Americans endure. In eastern and central Europe, health- and climate-wrecking coal smoke still pours from home chimneys and power plants. In London, where I’ve lived for 20 years, coal smoke once blanketed the city in deadly pea soup fogs, but mercifully, those days ended long before I arrived. Instead, the country and its continental neighbors now suffer the effects of another toxic fuel: diesel.

Picture of sman with face covered with black dust.

Dirtier than gasoline, diesel’s long been popular in Europe because it offers vehicles slightly better mileage. Paris and Barcelona, Rome and Frankfurt—their busy thoroughfares are clouded with fumes like London’s, air so thick it covers your teeth with a layer of grit. I feel the difference every time I return to New York and gulp air noticeably cleaner than London’s. Back in Britain, I worry what the fumes may be doing to my teenage daughter, whose lungs are still growing and vulnerable.

The root of Europe’s air quality problem is not just a particular fuel but also the political and regulatory failures that let auto manufacturers get away with selling cars whose emissions shattered legal limits. In 2015 the public learned that Volkswagen had programmed 11 million diesel cars with “defeat devices”—software that activated pollution controls during tests but turned them off the rest of the time. U.S. authorities forced the company to spend billions compensating customers and fixing or buying back vehicles. Europe, however, has allowed 51 million cars and vans (from a variety of manufacturers) to stay on the road with nitrogen dioxide emissions three or more times the limit, according to the advocacy group Transport & Environment. That excess pollution causes nearly 7,000 premature deaths annually, one study found.

Instead of forcing manufacturers to bring cars into compliance, Europe is mostly leaving cities to tackle the problem. Across the continent, local governments are banning the dirtiest vehicles or penalizing their owners. It’s one step toward cleaner air—and there are signs that such measures are pushing drivers away from diesel—but the patchwork efforts aren’t nearly as effective as higher-level action could be.

Diesel and coal aren’t the only things fouling the air, of course, in Europe or elsewhere. Woodsmoke from fireplaces or stoves, thick with PM2.5, is a growing problem. Last year’s lockdowns gave scientists an unexpected chance to see what happens when some sources of pollution temporarily cease. As the virus ravaged northern Italy in the spring, Valentina Bosetti and Massimo Tavoni, married economists at the RFF-CMCC European Institute on Economics and the Environment in Milan, were stuck at home with their three sons.

“Instead of killing each other and killing the kids, at some point we thought, OK, there is this data,” Bosetti told me.

Despite transportation and industry being all but halted, the couple found that air quality hadn’t improved as much as many locals thought. “Newspapers were saying, Blue sky, everything is perfect,” Bosetti said. “Not really.” At monitors away from roads or factories, PM2.5 levels fell only 16 percent, nitrogen dioxide only 33 percent. One big sector, it turned out, was still polluting while people stayed home: agriculture.

Modern industrial farming is a major polluter. One study ranked agriculture as the biggest single PM2.5 source in Europe, the eastern U.S., Russia, and East Asia. Huge amounts of manure, as well as chemical fertilizers, give off ammonia, which reacts with other pollutants in the air to create the tiny particles. Scientists have long understood that, but Bosetti hopes the vivid real-world demonstration may help generate political will to take action.

Picture of two men walking winter country road with smokes on background.

China still leads the world in air pollution deaths, but it has made great strides lately in cleaning its skies—whereas India’s response has been mostly ineffectual. Indian cities hold nine of the top 10 spots in the WHO database of PM2.5 levels. The human cost is horrific: nearly 1.7 million premature deaths a year.

India’s pollution floats from a dizzying variety of sources. Trash fires smolder in streets where garbage goes uncollected. Frequent power outages mean diesel generators are common. Villagers and the urban homeless burn wood, dung, and even plastic to cook and keep warm. Every autumn, clouds of smoke drift over Delhi from Punjab and Haryana, where farmers set fields alight to clear them after harvest.

“It’s like living in a gas chamber,” Delhi writer and activist Jyoti Pande Lavakare told me. In the worst months, whenever she goes outside, “I get a dull pollution headache. My daughter gets a headache too; she feels a little nauseous sometimes. Your eyes will water.” Americans got a brief taste of Delhi’s typical pollution last fall, when parts of the West were engulfed by wildfire smoke.

Lavakare used to live in California, but in 2009 she and her husband moved their family home to be near their parents. She was surprised by how much worse India’s pollution had gotten. Her parents shrugged off her suggestion to install air purifiers but felt better after she bought some. Then, in 2017, her mother was diagnosed with lung cancer.

You May Also Like

air pollution nowadays essay

Another weapon to fight climate change? Put carbon back where we found it

air pollution nowadays essay

This African lake may literally explode—and millions are at risk

air pollution nowadays essay

How wildfire smoke infiltrates your home—and how to get rid of it

“It moved so fast,” Lavakare recalled. The doctors “were like, Yeah, see where she lives? She’s lived in north India all her life. This is the pollution capital of the world.” She died in 2018.

By then Lavakare had co-founded an advocacy group that fought successfully for parliament to debate the issue—and even filed a human rights petition with the United Nations. She wrote a book, Breathing Here Is Injurious to Your Health, about her mother’s death. “There’s nothing we haven’t tried,” she told me. “Sadly, I don’t think we’re making much progress.”

For a time in the 1990s and early 2000s, things looked hopeful in Delhi. Pushed by the Supreme Court, the city demanded that buses and its ubiquitous auto-rickshaws switch to running on compressed natural gas. But economic growth quickly outpaced all antipollution measures. The number of cars on India’s roads, for example, more than quadrupled from 2001 to 2017. Brickmaking intensified to feed the construction boom—and the bricks were made in kilns that burned coal without filtering the smoke.

There has been one bright spot: A push to give rural Indians alternatives to smoky cooking fuels has cut indoor pollution and saved hundreds of thousands of lives a year. But there’s been no significant improvement in outdoor pollution for a decade, said Sarath Guttikunda, director of Urban Emissions, a research group. “We have not seen a decline of any sort in any of the cities,” he told me.

Lavakare now regrets giving up her American green card. She knows her position is privileged: India’s urban poor, who work or even live on the streets, breathe far worse air. It’s a dynamic seen all over the world. Like the coronavirus, pollution maps onto the existing fractures in our societies. But with COVID-19, deaths “happen right away. With air pollution, it just adds on over time,” Lavakare said. “It’s a pandemic in slow motion.”

Picture of photograph or a girl on mobile phone.

In the U.S., pollution adds one more dimension to the nation’s stark racial inequality. Black Americans, one study found, are exposed to about 1.5 times more PM2.5 than the overall population—and the disparity is more racial than economic.

“Rich Black Americans breathe more pollution than poor white Americans, consistently,” Dominici told me. The divide is growing. “As we’ve been cleaning up the air in this country, we’re cleaning the air mostly where whites live.”

Resistance from those who suffer under that disparity is growing. In 2013, when Shashawnda Campbell was still in high school in south Baltimore, she heard that Maryland had approved plans for a new incinerator less than a mile from her school. Her reaction was immediate: “No. We don’t need that. It already stinks here; it’s already polluted enough.”

Two women tend to a young baby, a brain scan is on a computer screen in the foreground

The Brooklyn and Curtis Bay neighborhoods, where Campbell and her classmates lived, are poor, with sizable Black and Latino populations. The area was already burdened with a medical waste incinerator, a chemical plant, a landfill, and an enormous open coal pile. “It’s not by accident that all these things are in this community. This is on purpose,” Campbell said. A dirty facility gets put in Brooklyn or Curtis Bay “because no one else wants it. But they don’t ask us if we want it.”

People of color are often consigned to industrial neighborhoods by a legacy of racist mortgage restrictions. And companies build new polluting facilities in such areas because land is cheaper and residents tend to have little political sway, said George Thurston, an environmental medicine professor at New York University. “They avoid the wealthier neighborhoods where people have that power,” he said. “They want to locate in places where there’s less resistance.”

Picture of woman in face mask affixing a small devise on her shoulder.

Campbell wasn’t ready to let that happen again. Calling themselves Free Your Voice, she and a group of classmates started knocking on doors and gathering signatures. “We knew we had to fight back,” she recalled. It took three years, but they won. The incinerator plans were halted. “It was just so amazing to see that wow, we really did something. We made a change.”

These days, Campbell goes into schools to teach kids how to combat environmental racism. At her old high school, a coach told her he couldn’t field a basketball team, “because all of them have asthma. They can’t run long enough.” Last summer, at Black Lives Matter marches, fellow protesters told her it had never occurred to them to connect pollution and police violence. “They’re all racism in different forms,” she said.

( See maps showing how areas of the world burn each year )

On the other side of the continent, Anthony Victoria’s opponent isn’t a single incinerator but the consumer economy—at least in its current form. Victoria, a young man with a goatee and round glasses, lives in California’s Inland Empire, a region once known for its citrus groves. Sixty miles inland from the container ports of Los Angeles and Long Beach, it’s now a warehouse hub—for Amazon, Target, Walmart—distributing products imported from China and elsewhere. “You just see row after row after row, warehouse after warehouse after warehouse,” Victoria said. “You have a residential neighborhood, and you have a huge mega warehouse across the street.”

The real problem is the relentless stream of trucks that rumble through neighborhoods filled with working-class people of color and immigrants. “It’s the slow violence of the supply chain that really sucks the energy and the health and the livelihoods” of the communities, Victoria told me. The Center for Community Action and Environmental Justice, an advocacy group he then worked for, gave residents handheld counters to log truck traffic. Along State Route 60, an east-west freeway, they counted 1,161 in an hour.

“You can imagine the negative effects that’s going to have on someone’s life,” Victoria went on. “Our communities are known as diesel death zones.” Recently, COVID-19 has torn through some of the warehouses. “You have people that are just completely, completely in fear,” Victoria said—warehouse workers “already immunocompromised because of the pollution,” and now terrified they’ll bring the virus home to children and parents with asthma or cancer.

Five young people stand and sit on tires

Here too, there are hints of change. Victoria’s group shared its truck counts with the California Air Resources Board, whose rules often lead the nation. Last year, the agency issued a new one: Manufacturers must begin phasing in zero-emissions trucks in the state by 2024, with the share of new trucks that are pollution free increasing steadily until 2035. The agency also is expanding a requirement that ships shut off their engines and plug into onshore power while docked, or else use pollution-capturing technology. Together, the truck and ship rules “are going to make a huge difference,” said Joe Lyou, president of the California-based Coalition for Clean Air.

Like many measures that reduce unhealthy air pollution, the new rules also cut climate-warming carbon emissions. Both share the same cause: our dependence on fossil fuels. And that means a shift toward cleaner energy, away from oil, gas, and coal, is urgent not only for heading off a frightening future of droughts, floods, wildfires, and storms. It also will make us healthier now—with the most affected communities likely to reap the biggest gains. Just switching to electric vehicles could save thousands of lives and $72 billion in health damage annually in the U.S., according to the American Lung Association.

Victoria sees hope in that. He believes industries like electric truck manufacturing can bring his community new economic opportunities along with cleaner air. “We don’t necessarily have to sacrifice our quality of health or our air quality for a job,” he said. “We can have both.”

( What the Clean Air Act did for Los Angeles—and the country )

Climate change   and air pollution have the same cause and the same solution, but they play out on different time scales. One of the most striking things about air pollution is how quickly health improves when it clears. The economic shutdowns triggered by COVID-19 last year temporarily slowed the world’s carbon emissions, but the total amount of carbon in the atmosphere continued to rise, and the long-term threat from climate change got that much worse. In contrast, every incremental and local decline in pollutants such as PM2.5 or nitrogen dioxide translates immediately into fewer asthma attacks, heart attacks, and deaths.

In China, researchers drew a stunning conclusion: Improved air quality during the lockdown in early 2020 saved upwards of 9,000 lives, according to one study, and roughly 24,000, according to another—more lives than the virus took, in any case, at least according to China’s official statistics, which put the COVID-19 toll below 5,000. Scientists have long understood that better air saves lives, said Yale epidemiologist Kai Chen, lead author of the first study. But “it’s just so dramatic” to see it happen.

While the pandemic’s deadly impact has been impossible to ignore, pollution gets far less attention, though it kills far more people. One reason, Dominici suggested, is that it’s so hard to link pollution to individual deaths—to attach names and faces to the victims. One person who has managed to change that is Rosamund Adoo Kissi-Debrah, Britain’s best known clean-air activist. Living in London, I’ve gotten to know her a bit. We met again on a sunny day last summer for a socially distanced chat, in a park bursting with wildflowers.

Kissi-Debrah’s eldest daughter, Ella, died from asthma at age nine in 2013. The family lives less than a hundred feet from one of London’s busiest roads, the South Circular, and Kissi-Debrah now believes its exhaust fumes were what sickened Ella. She’s spent years waging a legal battle to prove it. A teacher before grief upended her life, she has turned tragedy into a teachable moment by getting pollution officially added to Ella’s death certificate as a contributing factor.

Men working on a dam in haze

After Ella’s death, Stephen Holgate, a University of Southampton asthma specialist, found that many of the child’s dozens of hospitalizations, including the final one, had coincided with pollution spikes. With cleaner air, he concluded, Ella might well be alive. As a parent, “that’s quite hard to take,” Kissi-Debrah told me. Three silver hearts hung from a chain around her neck, engraved with the fingerprints of Ella and two younger children.

Ella was active and energetic before she got sick, and even between bouts of asthma, Kissi-Debrah recalled. “Everything came easily to her”—reading, music, swimming. Ella’s attacks were so bad they sometimes triggered seizures. But as soon as she felt better, “she wanted to get on her skateboard. She was a real tomboy.”

At the first inquest in 2014, the coroner decided Ella had died of acute respiratory failure and asthma, without considering any external cause. Kissi-Debrah pressed on, and her fight drew wide media coverage. Getting pollution written onto Ella’s death certificate, she believed—a British and perhaps a world first—might be cold comfort for her, but it would have moral and political power. A legal judgment that Britain’s air helped end the life of one child would unmistakably imply that it endangers others—and that something should be done.

Kissi-Debrah knows the answers aren’t complicated. Tough, science-based regulations work, if governments enforce them. “My daughter wasn’t the only one,” she said. For the rest of London’s kids, “I want real change.” I thought of my own daughter, growing up in the fumes.

Last December, with the second inquest finally under way, Holgate compared Ella to “a canary in a coal mine.” He testified that she had been through more than two years of regular “near-death experiences” before succumbing. In the end, the coroner ruled that air pollution—which was beyond British legal limits near Ella’s home—had indeed contributed to her death. For once, the seven million lives lost each year to dirty air were represented by a face. It belonged to a beautiful young girl.

Beth Gardiner is the author of Choked: Life and Breath in the Age of Air Pollution. Photographer Matthieu Paley has shot multiple stories for the magazine in India and Central Asia.

Related Topics

  • AIR POLLUTION

air pollution nowadays essay

Scented candles may be cozy—but are they polluting your home’s air?

air pollution nowadays essay

Some U.S. national parks are trying to go carbon-free. What does that mean for visitors?

air pollution nowadays essay

Wildfire season is getting longer—and more intense. Here's how to prepare.

air pollution nowadays essay

How wildfire smoke affects your body—and how you can protect yourself

air pollution nowadays essay

Orange skies are the future. Prepare yourself.

  • History & Culture
  • Photography
  • Environment
  • Paid Content

History & Culture

  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

REVIEW article

Environmental and health impacts of air pollution: a review.

\nIoannis Manisalidis,
&#x;

  • 1 Delphis S.A., Kifisia, Greece
  • 2 Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
  • 3 Centre Hospitalier Universitaire Vaudois (CHUV), Service de Médicine Interne, Lausanne, Switzerland
  • 4 School of Social and Political Sciences, University of Glasgow, Glasgow, United Kingdom

One of our era's greatest scourges is air pollution, on account not only of its impact on climate change but also its impact on public and individual health due to increasing morbidity and mortality. There are many pollutants that are major factors in disease in humans. Among them, Particulate Matter (PM), particles of variable but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous system dysfunctions, and cancer. Despite the fact that ozone in the stratosphere plays a protective role against ultraviolet irradiation, it is harmful when in high concentration at ground level, also affecting the respiratory and cardiovascular system. Furthermore, nitrogen oxide, sulfur dioxide, Volatile Organic Compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) are all considered air pollutants that are harmful to humans. Carbon monoxide can even provoke direct poisoning when breathed in at high levels. Heavy metals such as lead, when absorbed into the human body, can lead to direct poisoning or chronic intoxication, depending on exposure. Diseases occurring from the aforementioned substances include principally respiratory problems such as Chronic Obstructive Pulmonary Disease (COPD), asthma, bronchiolitis, and also lung cancer, cardiovascular events, central nervous system dysfunctions, and cutaneous diseases. Last but not least, climate change resulting from environmental pollution affects the geographical distribution of many infectious diseases, as do natural disasters. The only way to tackle this problem is through public awareness coupled with a multidisciplinary approach by scientific experts; national and international organizations must address the emergence of this threat and propose sustainable solutions.

Approach to the Problem

The interactions between humans and their physical surroundings have been extensively studied, as multiple human activities influence the environment. The environment is a coupling of the biotic (living organisms and microorganisms) and the abiotic (hydrosphere, lithosphere, and atmosphere).

Pollution is defined as the introduction into the environment of substances harmful to humans and other living organisms. Pollutants are harmful solids, liquids, or gases produced in higher than usual concentrations that reduce the quality of our environment.

Human activities have an adverse effect on the environment by polluting the water we drink, the air we breathe, and the soil in which plants grow. Although the industrial revolution was a great success in terms of technology, society, and the provision of multiple services, it also introduced the production of huge quantities of pollutants emitted into the air that are harmful to human health. Without any doubt, the global environmental pollution is considered an international public health issue with multiple facets. Social, economic, and legislative concerns and lifestyle habits are related to this major problem. Clearly, urbanization and industrialization are reaching unprecedented and upsetting proportions worldwide in our era. Anthropogenic air pollution is one of the biggest public health hazards worldwide, given that it accounts for about 9 million deaths per year ( 1 ).

Without a doubt, all of the aforementioned are closely associated with climate change, and in the event of danger, the consequences can be severe for mankind ( 2 ). Climate changes and the effects of global planetary warming seriously affect multiple ecosystems, causing problems such as food safety issues, ice and iceberg melting, animal extinction, and damage to plants ( 3 , 4 ).

Air pollution has various health effects. The health of susceptible and sensitive individuals can be impacted even on low air pollution days. Short-term exposure to air pollutants is closely related to COPD (Chronic Obstructive Pulmonary Disease), cough, shortness of breath, wheezing, asthma, respiratory disease, and high rates of hospitalization (a measurement of morbidity).

The long-term effects associated with air pollution are chronic asthma, pulmonary insufficiency, cardiovascular diseases, and cardiovascular mortality. According to a Swedish cohort study, diabetes seems to be induced after long-term air pollution exposure ( 5 ). Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders ( 3 ), leading to infant mortality or chronic disease in adult age ( 6 ).

National reports have mentioned the increased risk of morbidity and mortality ( 1 ). These studies were conducted in many places around the world and show a correlation between daily ranges of particulate matter (PM) concentration and daily mortality. Climate shifts and global planetary warming ( 3 ) could aggravate the situation. Besides, increased hospitalization (an index of morbidity) has been registered among the elderly and susceptible individuals for specific reasons. Fine and ultrafine particulate matter seems to be associated with more serious illnesses ( 6 ), as it can invade the deepest parts of the airways and more easily reach the bloodstream.

Air pollution mainly affects those living in large urban areas, where road emissions contribute the most to the degradation of air quality. There is also a danger of industrial accidents, where the spread of a toxic fog can be fatal to the populations of the surrounding areas. The dispersion of pollutants is determined by many parameters, most notably atmospheric stability and wind ( 6 ).

In developing countries ( 7 ), the problem is more serious due to overpopulation and uncontrolled urbanization along with the development of industrialization. This leads to poor air quality, especially in countries with social disparities and a lack of information on sustainable management of the environment. The use of fuels such as wood fuel or solid fuel for domestic needs due to low incomes exposes people to bad-quality, polluted air at home. It is of note that three billion people around the world are using the above sources of energy for their daily heating and cooking needs ( 8 ). In developing countries, the women of the household seem to carry the highest risk for disease development due to their longer duration exposure to the indoor air pollution ( 8 , 9 ). Due to its fast industrial development and overpopulation, China is one of the Asian countries confronting serious air pollution problems ( 10 , 11 ). The lung cancer mortality observed in China is associated with fine particles ( 12 ). As stated already, long-term exposure is associated with deleterious effects on the cardiovascular system ( 3 , 5 ). However, it is interesting to note that cardiovascular diseases have mostly been observed in developed and high-income countries rather than in the developing low-income countries exposed highly to air pollution ( 13 ). Extreme air pollution is recorded in India, where the air quality reaches hazardous levels. New Delhi is one of the more polluted cities in India. Flights in and out of New Delhi International Airport are often canceled due to the reduced visibility associated with air pollution. Pollution is occurring both in urban and rural areas in India due to the fast industrialization, urbanization, and rise in use of motorcycle transportation. Nevertheless, biomass combustion associated with heating and cooking needs and practices is a major source of household air pollution in India and in Nepal ( 14 , 15 ). There is spatial heterogeneity in India, as areas with diverse climatological conditions and population and education levels generate different indoor air qualities, with higher PM 2.5 observed in North Indian states (557–601 μg/m 3 ) compared to the Southern States (183–214 μg/m 3 ) ( 16 , 17 ). The cold climate of the North Indian areas may be the main reason for this, as longer periods at home and more heating are necessary compared to in the tropical climate of Southern India. Household air pollution in India is associated with major health effects, especially in women and young children, who stay indoors for longer periods. Chronic obstructive respiratory disease (CORD) and lung cancer are mostly observed in women, while acute lower respiratory disease is seen in young children under 5 years of age ( 18 ).

Accumulation of air pollution, especially sulfur dioxide and smoke, reaching 1,500 mg/m3, resulted in an increase in the number of deaths (4,000 deaths) in December 1952 in London and in 1963 in New York City (400 deaths) ( 19 ). An association of pollution with mortality was reported on the basis of monitoring of outdoor pollution in six US metropolitan cities ( 20 ). In every case, it seems that mortality was closely related to the levels of fine, inhalable, and sulfate particles more than with the levels of total particulate pollution, aerosol acidity, sulfur dioxide, or nitrogen dioxide ( 20 ).

Furthermore, extremely high levels of pollution are reported in Mexico City and Rio de Janeiro, followed by Milan, Ankara, Melbourne, Tokyo, and Moscow ( 19 ).

Based on the magnitude of the public health impact, it is certain that different kinds of interventions should be taken into account. Success and effectiveness in controlling air pollution, specifically at the local level, have been reported. Adequate technological means are applied considering the source and the nature of the emission as well as its impact on health and the environment. The importance of point sources and non-point sources of air pollution control is reported by Schwela and Köth-Jahr ( 21 ). Without a doubt, a detailed emission inventory must record all sources in a given area. Beyond considering the above sources and their nature, topography and meteorology should also be considered, as stated previously. Assessment of the control policies and methods is often extrapolated from the local to the regional and then to the global scale. Air pollution may be dispersed and transported from one region to another area located far away. Air pollution management means the reduction to acceptable levels or possible elimination of air pollutants whose presence in the air affects our health or the environmental ecosystem. Private and governmental entities and authorities implement actions to ensure the air quality ( 22 ). Air quality standards and guidelines were adopted for the different pollutants by the WHO and EPA as a tool for the management of air quality ( 1 , 23 ). These standards have to be compared to the emissions inventory standards by causal analysis and dispersion modeling in order to reveal the problematic areas ( 24 ). Inventories are generally based on a combination of direct measurements and emissions modeling ( 24 ).

As an example, we state here the control measures at the source through the use of catalytic converters in cars. These are devices that turn the pollutants and toxic gases produced from combustion engines into less-toxic pollutants by catalysis through redox reactions ( 25 ). In Greece, the use of private cars was restricted by tracking their license plates in order to reduce traffic congestion during rush hour ( 25 ).

Concerning industrial emissions, collectors and closed systems can keep the air pollution to the minimal standards imposed by legislation ( 26 ).

Current strategies to improve air quality require an estimation of the economic value of the benefits gained from proposed programs. These proposed programs by public authorities, and directives are issued with guidelines to be respected.

In Europe, air quality limit values AQLVs (Air Quality Limit Values) are issued for setting off planning claims ( 27 ). In the USA, the NAAQS (National Ambient Air Quality Standards) establish the national air quality limit values ( 27 ). While both standards and directives are based on different mechanisms, significant success has been achieved in the reduction of overall emissions and associated health and environmental effects ( 27 ). The European Directive identifies geographical areas of risk exposure as monitoring/assessment zones to record the emission sources and levels of air pollution ( 27 ), whereas the USA establishes global geographical air quality criteria according to the severity of their air quality problem and records all sources of the pollutants and their precursors ( 27 ).

In this vein, funds have been financing, directly or indirectly, projects related to air quality along with the technical infrastructure to maintain good air quality. These plans focus on an inventory of databases from air quality environmental planning awareness campaigns. Moreover, pollution measures of air emissions may be taken for vehicles, machines, and industries in urban areas.

Technological innovation can only be successful if it is able to meet the needs of society. In this sense, technology must reflect the decision-making practices and procedures of those involved in risk assessment and evaluation and act as a facilitator in providing information and assessments to enable decision makers to make the best decisions possible. Summarizing the aforementioned in order to design an effective air quality control strategy, several aspects must be considered: environmental factors and ambient air quality conditions, engineering factors and air pollutant characteristics, and finally, economic operating costs for technological improvement and administrative and legal costs. Considering the economic factor, competitiveness through neoliberal concepts is offering a solution to environmental problems ( 22 ).

The development of environmental governance, along with technological progress, has initiated the deployment of a dialogue. Environmental politics has created objections and points of opposition between different political parties, scientists, media, and governmental and non-governmental organizations ( 22 ). Radical environmental activism actions and movements have been created ( 22 ). The rise of the new information and communication technologies (ICTs) are many times examined as to whether and in which way they have influenced means of communication and social movements such as activism ( 28 ). Since the 1990s, the term “digital activism” has been used increasingly and in many different disciplines ( 29 ). Nowadays, multiple digital technologies can be used to produce a digital activism outcome on environmental issues. More specifically, devices with online capabilities such as computers or mobile phones are being used as a way to pursue change in political and social affairs ( 30 ).

In the present paper, we focus on the sources of environmental pollution in relation to public health and propose some solutions and interventions that may be of interest to environmental legislators and decision makers.

Sources of Exposure

It is known that the majority of environmental pollutants are emitted through large-scale human activities such as the use of industrial machinery, power-producing stations, combustion engines, and cars. Because these activities are performed at such a large scale, they are by far the major contributors to air pollution, with cars estimated to be responsible for approximately 80% of today's pollution ( 31 ). Some other human activities are also influencing our environment to a lesser extent, such as field cultivation techniques, gas stations, fuel tanks heaters, and cleaning procedures ( 32 ), as well as several natural sources, such as volcanic and soil eruptions and forest fires.

The classification of air pollutants is based mainly on the sources producing pollution. Therefore, it is worth mentioning the four main sources, following the classification system: Major sources, Area sources, Mobile sources, and Natural sources.

Major sources include the emission of pollutants from power stations, refineries, and petrochemicals, the chemical and fertilizer industries, metallurgical and other industrial plants, and, finally, municipal incineration.

Indoor area sources include domestic cleaning activities, dry cleaners, printing shops, and petrol stations.

Mobile sources include automobiles, cars, railways, airways, and other types of vehicles.

Finally, natural sources include, as stated previously, physical disasters ( 33 ) such as forest fire, volcanic erosion, dust storms, and agricultural burning.

However, many classification systems have been proposed. Another type of classification is a grouping according to the recipient of the pollution, as follows:

Air pollution is determined as the presence of pollutants in the air in large quantities for long periods. Air pollutants are dispersed particles, hydrocarbons, CO, CO 2 , NO, NO 2 , SO 3 , etc.

Water pollution is organic and inorganic charge and biological charge ( 10 ) at high levels that affect the water quality ( 34 , 35 ).

Soil pollution occurs through the release of chemicals or the disposal of wastes, such as heavy metals, hydrocarbons, and pesticides.

Air pollution can influence the quality of soil and water bodies by polluting precipitation, falling into water and soil environments ( 34 , 36 ). Notably, the chemistry of the soil can be amended due to acid precipitation by affecting plants, cultures, and water quality ( 37 ). Moreover, movement of heavy metals is favored by soil acidity, and metals are so then moving into the watery environment. It is known that heavy metals such as aluminum are noxious to wildlife and fishes. Soil quality seems to be of importance, as soils with low calcium carbonate levels are at increased jeopardy from acid rain. Over and above rain, snow and particulate matter drip into watery ' bodies ( 36 , 38 ).

Lastly, pollution is classified following type of origin:

Radioactive and nuclear pollution , releasing radioactive and nuclear pollutants into water, air, and soil during nuclear explosions and accidents, from nuclear weapons, and through handling or disposal of radioactive sewage.

Radioactive materials can contaminate surface water bodies and, being noxious to the environment, plants, animals, and humans. It is known that several radioactive substances such as radium and uranium concentrate in the bones and can cause cancers ( 38 , 39 ).

Noise pollution is produced by machines, vehicles, traffic noises, and musical installations that are harmful to our hearing.

The World Health Organization introduced the term DALYs. The DALYs for a disease or health condition is defined as the sum of the Years of Life Lost (YLL) due to premature mortality in the population and the Years Lost due to Disability (YLD) for people living with the health condition or its consequences ( 39 ). In Europe, air pollution is the main cause of disability-adjusted life years lost (DALYs), followed by noise pollution. The potential relationships of noise and air pollution with health have been studied ( 40 ). The study found that DALYs related to noise were more important than those related to air pollution, as the effects of environmental noise on cardiovascular disease were independent of air pollution ( 40 ). Environmental noise should be counted as an independent public health risk ( 40 ).

Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, etc.) are produced.

Pollutants harm our environment either by increasing levels above normal or by introducing harmful toxic substances. Primary pollutants are directly produced from the above sources, and secondary pollutants are emitted as by-products of the primary ones. Pollutants can be biodegradable or non-biodegradable and of natural origin or anthropogenic, as stated previously. Moreover, their origin can be a unique source (point-source) or dispersed sources.

Pollutants have differences in physical and chemical properties, explaining the discrepancy in their capacity for producing toxic effects. As an example, we state here that aerosol compounds ( 41 – 43 ) have a greater toxicity than gaseous compounds due to their tiny size (solid or liquid) in the atmosphere; they have a greater penetration capacity. Gaseous compounds are eliminated more easily by our respiratory system ( 41 ). These particles are able to damage lungs and can even enter the bloodstream ( 41 ), leading to the premature deaths of millions of people yearly. Moreover, the aerosol acidity ([H+]) seems to considerably enhance the production of secondary organic aerosols (SOA), but this last aspect is not supported by other scientific teams ( 38 ).

Climate and Pollution

Air pollution and climate change are closely related. Climate is the other side of the same coin that reduces the quality of our Earth ( 44 ). Pollutants such as black carbon, methane, tropospheric ozone, and aerosols affect the amount of incoming sunlight. As a result, the temperature of the Earth is increasing, resulting in the melting of ice, icebergs, and glaciers.

In this vein, climatic changes will affect the incidence and prevalence of both residual and imported infections in Europe. Climate and weather affect the duration, timing, and intensity of outbreaks strongly and change the map of infectious diseases in the globe ( 45 ). Mosquito-transmitted parasitic or viral diseases are extremely climate-sensitive, as warming firstly shortens the pathogen incubation period and secondly shifts the geographic map of the vector. Similarly, water-warming following climate changes leads to a high incidence of waterborne infections. Recently, in Europe, eradicated diseases seem to be emerging due to the migration of population, for example, cholera, poliomyelitis, tick-borne encephalitis, and malaria ( 46 ).

The spread of epidemics is associated with natural climate disasters and storms, which seem to occur more frequently nowadays ( 47 ). Malnutrition and disequilibration of the immune system are also associated with the emerging infections affecting public health ( 48 ).

The Chikungunya virus “took the airplane” from the Indian Ocean to Europe, as outbreaks of the disease were registered in Italy ( 49 ) as well as autochthonous cases in France ( 50 ).

An increase in cryptosporidiosis in the United Kingdom and in the Czech Republic seems to have occurred following flooding ( 36 , 51 ).

As stated previously, aerosols compounds are tiny in size and considerably affect the climate. They are able to dissipate sunlight (the albedo phenomenon) by dispersing a quarter of the sun's rays back to space and have cooled the global temperature over the last 30 years ( 52 ).

Air Pollutants

The World Health Organization (WHO) reports on six major air pollutants, namely particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Air pollution can have a disastrous effect on all components of the environment, including groundwater, soil, and air. Additionally, it poses a serious threat to living organisms. In this vein, our interest is mainly to focus on these pollutants, as they are related to more extensive and severe problems in human health and environmental impact. Acid rain, global warming, the greenhouse effect, and climate changes have an important ecological impact on air pollution ( 53 ).

Particulate Matter (PM) and Health

Studies have shown a relationship between particulate matter (PM) and adverse health effects, focusing on either short-term (acute) or long-term (chronic) PM exposure.

Particulate matter (PM) is usually formed in the atmosphere as a result of chemical reactions between the different pollutants. The penetration of particles is closely dependent on their size ( 53 ). Particulate Matter (PM) was defined as a term for particles by the United States Environmental Protection Agency ( 54 ). Particulate matter (PM) pollution includes particles with diameters of 10 micrometers (μm) or smaller, called PM 10 , and extremely fine particles with diameters that are generally 2.5 micrometers (μm) and smaller.

Particulate matter contains tiny liquid or solid droplets that can be inhaled and cause serious health effects ( 55 ). Particles <10 μm in diameter (PM 10 ) after inhalation can invade the lungs and even reach the bloodstream. Fine particles, PM 2.5 , pose a greater risk to health ( 6 , 56 ) ( Table 1 ).

www.frontiersin.org

Table 1 . Penetrability according to particle size.

Multiple epidemiological studies have been performed on the health effects of PM. A positive relation was shown between both short-term and long-term exposures of PM 2.5 and acute nasopharyngitis ( 56 ). In addition, long-term exposure to PM for years was found to be related to cardiovascular diseases and infant mortality.

Those studies depend on PM 2.5 monitors and are restricted in terms of study area or city area due to a lack of spatially resolved daily PM 2.5 concentration data and, in this way, are not representative of the entire population. Following a recent epidemiological study by the Department of Environmental Health at Harvard School of Public Health (Boston, MA) ( 57 ), it was reported that, as PM 2.5 concentrations vary spatially, an exposure error (Berkson error) seems to be produced, and the relative magnitudes of the short- and long-term effects are not yet completely elucidated. The team developed a PM 2.5 exposure model based on remote sensing data for assessing short- and long-term human exposures ( 57 ). This model permits spatial resolution in short-term effects plus the assessment of long-term effects in the whole population.

Moreover, respiratory diseases and affection of the immune system are registered as long-term chronic effects ( 58 ). It is worth noting that people with asthma, pneumonia, diabetes, and respiratory and cardiovascular diseases are especially susceptible and vulnerable to the effects of PM. PM 2.5 , followed by PM 10 , are strongly associated with diverse respiratory system diseases ( 59 ), as their size permits them to pierce interior spaces ( 60 ). The particles produce toxic effects according to their chemical and physical properties. The components of PM 10 and PM 2.5 can be organic (polycyclic aromatic hydrocarbons, dioxins, benzene, 1-3 butadiene) or inorganic (carbon, chlorides, nitrates, sulfates, metals) in nature ( 55 ).

Particulate Matter (PM) is divided into four main categories according to type and size ( 61 ) ( Table 2 ).

www.frontiersin.org

Table 2 . Types and sizes of particulate Matter (PM).

Gas contaminants include PM in aerial masses.

Particulate contaminants include contaminants such as smog, soot, tobacco smoke, oil smoke, fly ash, and cement dust.

Biological Contaminants are microorganisms (bacteria, viruses, fungi, mold, and bacterial spores), cat allergens, house dust and allergens, and pollen.

Types of Dust include suspended atmospheric dust, settling dust, and heavy dust.

Finally, another fact is that the half-lives of PM 10 and PM 2.5 particles in the atmosphere is extended due to their tiny dimensions; this permits their long-lasting suspension in the atmosphere and even their transfer and spread to distant destinations where people and the environment may be exposed to the same magnitude of pollution ( 53 ). They are able to change the nutrient balance in watery ecosystems, damage forests and crops, and acidify water bodies.

As stated, PM 2.5 , due to their tiny size, are causing more serious health effects. These aforementioned fine particles are the main cause of the “haze” formation in different metropolitan areas ( 12 , 13 , 61 ).

Ozone Impact in the Atmosphere

Ozone (O 3 ) is a gas formed from oxygen under high voltage electric discharge ( 62 ). It is a strong oxidant, 52% stronger than chlorine. It arises in the stratosphere, but it could also arise following chain reactions of photochemical smog in the troposphere ( 63 ).

Ozone can travel to distant areas from its initial source, moving with air masses ( 64 ). It is surprising that ozone levels over cities are low in contrast to the increased amounts occuring in urban areas, which could become harmful for cultures, forests, and vegetation ( 65 ) as it is reducing carbon assimilation ( 66 ). Ozone reduces growth and yield ( 47 , 48 ) and affects the plant microflora due to its antimicrobial capacity ( 67 , 68 ). In this regard, ozone acts upon other natural ecosystems, with microflora ( 69 , 70 ) and animal species changing their species composition ( 71 ). Ozone increases DNA damage in epidermal keratinocytes and leads to impaired cellular function ( 72 ).

Ground-level ozone (GLO) is generated through a chemical reaction between oxides of nitrogen and VOCs emitted from natural sources and/or following anthropogenic activities.

Ozone uptake usually occurs by inhalation. Ozone affects the upper layers of the skin and the tear ducts ( 73 ). A study of short-term exposure of mice to high levels of ozone showed malondialdehyde formation in the upper skin (epidermis) but also depletion in vitamins C and E. It is likely that ozone levels are not interfering with the skin barrier function and integrity to predispose to skin disease ( 74 ).

Due to the low water-solubility of ozone, inhaled ozone has the capacity to penetrate deeply into the lungs ( 75 ).

Toxic effects induced by ozone are registered in urban areas all over the world, causing biochemical, morphologic, functional, and immunological disorders ( 76 ).

The European project (APHEA2) focuses on the acute effects of ambient ozone concentrations on mortality ( 77 ). Daily ozone concentrations compared to the daily number of deaths were reported from different European cities for a 3-year period. During the warm period of the year, an observed increase in ozone concentration was associated with an increase in the daily number of deaths (0.33%), in the number of respiratory deaths (1.13%), and in the number of cardiovascular deaths (0.45%). No effect was observed during wintertime.

Carbon Monoxide (CO)

Carbon monoxide is produced by fossil fuel when combustion is incomplete. The symptoms of poisoning due to inhaling carbon monoxide include headache, dizziness, weakness, nausea, vomiting, and, finally, loss of consciousness.

The affinity of carbon monoxide to hemoglobin is much greater than that of oxygen. In this vein, serious poisoning may occur in people exposed to high levels of carbon monoxide for a long period of time. Due to the loss of oxygen as a result of the competitive binding of carbon monoxide, hypoxia, ischemia, and cardiovascular disease are observed.

Carbon monoxide affects the greenhouses gases that are tightly connected to global warming and climate. This should lead to an increase in soil and water temperatures, and extreme weather conditions or storms may occur ( 68 ).

However, in laboratory and field experiments, it has been seen to produce increased plant growth ( 78 ).

Nitrogen Oxide (NO 2 )

Nitrogen oxide is a traffic-related pollutant, as it is emitted from automobile motor engines ( 79 , 80 ). It is an irritant of the respiratory system as it penetrates deep in the lung, inducing respiratory diseases, coughing, wheezing, dyspnea, bronchospasm, and even pulmonary edema when inhaled at high levels. It seems that concentrations over 0.2 ppm produce these adverse effects in humans, while concentrations higher than 2.0 ppm affect T-lymphocytes, particularly the CD8+ cells and NK cells that produce our immune response ( 81 ).It is reported that long-term exposure to high levels of nitrogen dioxide can be responsible for chronic lung disease. Long-term exposure to NO 2 can impair the sense of smell ( 81 ).

However, systems other than respiratory ones can be involved, as symptoms such as eye, throat, and nose irritation have been registered ( 81 ).

High levels of nitrogen dioxide are deleterious to crops and vegetation, as they have been observed to reduce crop yield and plant growth efficiency. Moreover, NO 2 can reduce visibility and discolor fabrics ( 81 ).

Sulfur Dioxide (SO 2 )

Sulfur dioxide is a harmful gas that is emitted mainly from fossil fuel consumption or industrial activities. The annual standard for SO 2 is 0.03 ppm ( 82 ). It affects human, animal, and plant life. Susceptible people as those with lung disease, old people, and children, who present a higher risk of damage. The major health problems associated with sulfur dioxide emissions in industrialized areas are respiratory irritation, bronchitis, mucus production, and bronchospasm, as it is a sensory irritant and penetrates deep into the lung converted into bisulfite and interacting with sensory receptors, causing bronchoconstriction. Moreover, skin redness, damage to the eyes (lacrimation and corneal opacity) and mucous membranes, and worsening of pre-existing cardiovascular disease have been observed ( 81 ).

Environmental adverse effects, such as acidification of soil and acid rain, seem to be associated with sulfur dioxide emissions ( 83 ).

Lead is a heavy metal used in different industrial plants and emitted from some petrol motor engines, batteries, radiators, waste incinerators, and waste waters ( 84 ).

Moreover, major sources of lead pollution in the air are metals, ore, and piston-engine aircraft. Lead poisoning is a threat to public health due to its deleterious effects upon humans, animals, and the environment, especially in the developing countries.

Exposure to lead can occur through inhalation, ingestion, and dermal absorption. Trans- placental transport of lead was also reported, as lead passes through the placenta unencumbered ( 85 ). The younger the fetus is, the more harmful the toxic effects. Lead toxicity affects the fetal nervous system; edema or swelling of the brain is observed ( 86 ). Lead, when inhaled, accumulates in the blood, soft tissue, liver, lung, bones, and cardiovascular, nervous, and reproductive systems. Moreover, loss of concentration and memory, as well as muscle and joint pain, were observed in adults ( 85 , 86 ).

Children and newborns ( 87 ) are extremely susceptible even to minimal doses of lead, as it is a neurotoxicant and causes learning disabilities, impairment of memory, hyperactivity, and even mental retardation.

Elevated amounts of lead in the environment are harmful to plants and crop growth. Neurological effects are observed in vertebrates and animals in association with high lead levels ( 88 ).

Polycyclic Aromatic Hydrocarbons(PAHs)

The distribution of PAHs is ubiquitous in the environment, as the atmosphere is the most important means of their dispersal. They are found in coal and in tar sediments. Moreover, they are generated through incomplete combustion of organic matter as in the cases of forest fires, incineration, and engines ( 89 ). PAH compounds, such as benzopyrene, acenaphthylene, anthracene, and fluoranthene are recognized as toxic, mutagenic, and carcinogenic substances. They are an important risk factor for lung cancer ( 89 ).

Volatile Organic Compounds(VOCs)

Volatile organic compounds (VOCs), such as toluene, benzene, ethylbenzene, and xylene ( 90 ), have been found to be associated with cancer in humans ( 91 ). The use of new products and materials has actually resulted in increased concentrations of VOCs. VOCs pollute indoor air ( 90 ) and may have adverse effects on human health ( 91 ). Short-term and long-term adverse effects on human health are observed. VOCs are responsible for indoor air smells. Short-term exposure is found to cause irritation of eyes, nose, throat, and mucosal membranes, while those of long duration exposure include toxic reactions ( 92 ). Predictable assessment of the toxic effects of complex VOC mixtures is difficult to estimate, as these pollutants can have synergic, antagonistic, or indifferent effects ( 91 , 93 ).

Dioxins originate from industrial processes but also come from natural processes, such as forest fires and volcanic eruptions. They accumulate in foods such as meat and dairy products, fish and shellfish, and especially in the fatty tissue of animals ( 94 ).

Short-period exhibition to high dioxin concentrations may result in dark spots and lesions on the skin ( 94 ). Long-term exposure to dioxins can cause developmental problems, impairment of the immune, endocrine and nervous systems, reproductive infertility, and cancer ( 94 ).

Without any doubt, fossil fuel consumption is responsible for a sizeable part of air contamination. This contamination may be anthropogenic, as in agricultural and industrial processes or transportation, while contamination from natural sources is also possible. Interestingly, it is of note that the air quality standards established through the European Air Quality Directive are somewhat looser than the WHO guidelines, which are stricter ( 95 ).

Effect of Air Pollution on Health

The most common air pollutants are ground-level ozone and Particulates Matter (PM). Air pollution is distinguished into two main types:

Outdoor pollution is the ambient air pollution.

Indoor pollution is the pollution generated by household combustion of fuels.

People exposed to high concentrations of air pollutants experience disease symptoms and states of greater and lesser seriousness. These effects are grouped into short- and long-term effects affecting health.

Susceptible populations that need to be aware of health protection measures include old people, children, and people with diabetes and predisposing heart or lung disease, especially asthma.

As extensively stated previously, according to a recent epidemiological study from Harvard School of Public Health, the relative magnitudes of the short- and long-term effects have not been completely clarified ( 57 ) due to the different epidemiological methodologies and to the exposure errors. New models are proposed for assessing short- and long-term human exposure data more successfully ( 57 ). Thus, in the present section, we report the more common short- and long-term health effects but also general concerns for both types of effects, as these effects are often dependent on environmental conditions, dose, and individual susceptibility.

Short-term effects are temporary and range from simple discomfort, such as irritation of the eyes, nose, skin, throat, wheezing, coughing and chest tightness, and breathing difficulties, to more serious states, such as asthma, pneumonia, bronchitis, and lung and heart problems. Short-term exposure to air pollution can also cause headaches, nausea, and dizziness.

These problems can be aggravated by extended long-term exposure to the pollutants, which is harmful to the neurological, reproductive, and respiratory systems and causes cancer and even, rarely, deaths.

The long-term effects are chronic, lasting for years or the whole life and can even lead to death. Furthermore, the toxicity of several air pollutants may also induce a variety of cancers in the long term ( 96 ).

As stated already, respiratory disorders are closely associated with the inhalation of air pollutants. These pollutants will invade through the airways and will accumulate at the cells. Damage to target cells should be related to the pollutant component involved and its source and dose. Health effects are also closely dependent on country, area, season, and time. An extended exposure duration to the pollutant should incline to long-term health effects in relation also to the above factors.

Particulate Matter (PMs), dust, benzene, and O 3 cause serious damage to the respiratory system ( 97 ). Moreover, there is a supplementary risk in case of existing respiratory disease such as asthma ( 98 ). Long-term effects are more frequent in people with a predisposing disease state. When the trachea is contaminated by pollutants, voice alterations may be remarked after acute exposure. Chronic obstructive pulmonary disease (COPD) may be induced following air pollution, increasing morbidity and mortality ( 99 ). Long-term effects from traffic, industrial air pollution, and combustion of fuels are the major factors for COPD risk ( 99 ).

Multiple cardiovascular effects have been observed after exposure to air pollutants ( 100 ). Changes occurred in blood cells after long-term exposure may affect cardiac functionality. Coronary arteriosclerosis was reported following long-term exposure to traffic emissions ( 101 ), while short-term exposure is related to hypertension, stroke, myocardial infracts, and heart insufficiency. Ventricle hypertrophy is reported to occur in humans after long-time exposure to nitrogen oxide (NO 2 ) ( 102 , 103 ).

Neurological effects have been observed in adults and children after extended-term exposure to air pollutants.

Psychological complications, autism, retinopathy, fetal growth, and low birth weight seem to be related to long-term air pollution ( 83 ). The etiologic agent of the neurodegenerative diseases (Alzheimer's and Parkinson's) is not yet known, although it is believed that extended exposure to air pollution seems to be a factor. Specifically, pesticides and metals are cited as etiological factors, together with diet. The mechanisms in the development of neurodegenerative disease include oxidative stress, protein aggregation, inflammation, and mitochondrial impairment in neurons ( 104 ) ( Figure 1 ).

www.frontiersin.org

Figure 1 . Impact of air pollutants on the brain.

Brain inflammation was observed in dogs living in a highly polluted area in Mexico for a long period ( 105 ). In human adults, markers of systemic inflammation (IL-6 and fibrinogen) were found to be increased as an immediate response to PNC on the IL-6 level, possibly leading to the production of acute-phase proteins ( 106 ). The progression of atherosclerosis and oxidative stress seem to be the mechanisms involved in the neurological disturbances caused by long-term air pollution. Inflammation comes secondary to the oxidative stress and seems to be involved in the impairment of developmental maturation, affecting multiple organs ( 105 , 107 ). Similarly, other factors seem to be involved in the developmental maturation, which define the vulnerability to long-term air pollution. These include birthweight, maternal smoking, genetic background and socioeconomic environment, as well as education level.

However, diet, starting from breast-feeding, is another determinant factor. Diet is the main source of antioxidants, which play a key role in our protection against air pollutants ( 108 ). Antioxidants are free radical scavengers and limit the interaction of free radicals in the brain ( 108 ). Similarly, genetic background may result in a differential susceptibility toward the oxidative stress pathway ( 60 ). For example, antioxidant supplementation with vitamins C and E appears to modulate the effect of ozone in asthmatic children homozygous for the GSTM1 null allele ( 61 ). Inflammatory cytokines released in the periphery (e.g., respiratory epithelia) upregulate the innate immune Toll-like receptor 2. Such activation and the subsequent events leading to neurodegeneration have recently been observed in lung lavage in mice exposed to ambient Los Angeles (CA, USA) particulate matter ( 61 ). In children, neurodevelopmental morbidities were observed after lead exposure. These children developed aggressive and delinquent behavior, reduced intelligence, learning difficulties, and hyperactivity ( 109 ). No level of lead exposure seems to be “safe,” and the scientific community has asked the Centers for Disease Control and Prevention (CDC) to reduce the current screening guideline of 10 μg/dl ( 109 ).

It is important to state that impact on the immune system, causing dysfunction and neuroinflammation ( 104 ), is related to poor air quality. Yet, increases in serum levels of immunoglobulins (IgA, IgM) and the complement component C3 are observed ( 106 ). Another issue is that antigen presentation is affected by air pollutants, as there is an upregulation of costimulatory molecules such as CD80 and CD86 on macrophages ( 110 ).

As is known, skin is our shield against ultraviolet radiation (UVR) and other pollutants, as it is the most exterior layer of our body. Traffic-related pollutants, such as PAHs, VOCs, oxides, and PM, may cause pigmented spots on our skin ( 111 ). On the one hand, as already stated, when pollutants penetrate through the skin or are inhaled, damage to the organs is observed, as some of these pollutants are mutagenic and carcinogenic, and, specifically, they affect the liver and lung. On the other hand, air pollutants (and those in the troposphere) reduce the adverse effects of ultraviolet radiation UVR in polluted urban areas ( 111 ). Air pollutants absorbed by the human skin may contribute to skin aging, psoriasis, acne, urticaria, eczema, and atopic dermatitis ( 111 ), usually caused by exposure to oxides and photochemical smoke ( 111 ). Exposure to PM and cigarette smoking act as skin-aging agents, causing spots, dyschromia, and wrinkles. Lastly, pollutants have been associated with skin cancer ( 111 ).

Higher morbidity is reported to fetuses and children when exposed to the above dangers. Impairment in fetal growth, low birth weight, and autism have been reported ( 112 ).

Another exterior organ that may be affected is the eye. Contamination usually comes from suspended pollutants and may result in asymptomatic eye outcomes, irritation ( 112 ), retinopathy, or dry eye syndrome ( 113 , 114 ).

Environmental Impact of Air Pollution

Air pollution is harming not only human health but also the environment ( 115 ) in which we live. The most important environmental effects are as follows.

Acid rain is wet (rain, fog, snow) or dry (particulates and gas) precipitation containing toxic amounts of nitric and sulfuric acids. They are able to acidify the water and soil environments, damage trees and plantations, and even damage buildings and outdoor sculptures, constructions, and statues.

Haze is produced when fine particles are dispersed in the air and reduce the transparency of the atmosphere. It is caused by gas emissions in the air coming from industrial facilities, power plants, automobiles, and trucks.

Ozone , as discussed previously, occurs both at ground level and in the upper level (stratosphere) of the Earth's atmosphere. Stratospheric ozone is protecting us from the Sun's harmful ultraviolet (UV) rays. In contrast, ground-level ozone is harmful to human health and is a pollutant. Unfortunately, stratospheric ozone is gradually damaged by ozone-depleting substances (i.e., chemicals, pesticides, and aerosols). If this protecting stratospheric ozone layer is thinned, then UV radiation can reach our Earth, with harmful effects for human life (skin cancer) ( 116 ) and crops ( 117 ). In plants, ozone penetrates through the stomata, inducing them to close, which blocks CO 2 transfer and induces a reduction in photosynthesis ( 118 ).

Global climate change is an important issue that concerns mankind. As is known, the “greenhouse effect” keeps the Earth's temperature stable. Unhappily, anthropogenic activities have destroyed this protecting temperature effect by producing large amounts of greenhouse gases, and global warming is mounting, with harmful effects on human health, animals, forests, wildlife, agriculture, and the water environment. A report states that global warming is adding to the health risks of poor people ( 119 ).

People living in poorly constructed buildings in warm-climate countries are at high risk for heat-related health problems as temperatures mount ( 119 ).

Wildlife is burdened by toxic pollutants coming from the air, soil, or the water ecosystem and, in this way, animals can develop health problems when exposed to high levels of pollutants. Reproductive failure and birth effects have been reported.

Eutrophication is occurring when elevated concentrations of nutrients (especially nitrogen) stimulate the blooming of aquatic algae, which can cause a disequilibration in the diversity of fish and their deaths.

Without a doubt, there is a critical concentration of pollution that an ecosystem can tolerate without being destroyed, which is associated with the ecosystem's capacity to neutralize acidity. The Canada Acid Rain Program established this load at 20 kg/ha/yr ( 120 ).

Hence, air pollution has deleterious effects on both soil and water ( 121 ). Concerning PM as an air pollutant, its impact on crop yield and food productivity has been reported. Its impact on watery bodies is associated with the survival of living organisms and fishes and their productivity potential ( 121 ).

An impairment in photosynthetic rhythm and metabolism is observed in plants exposed to the effects of ozone ( 121 ).

Sulfur and nitrogen oxides are involved in the formation of acid rain and are harmful to plants and marine organisms.

Last but not least, as mentioned above, the toxicity associated with lead and other metals is the main threat to our ecosystems (air, water, and soil) and living creatures ( 121 ).

In 2018, during the first WHO Global Conference on Air Pollution and Health, the WHO's General Director, Dr. Tedros Adhanom Ghebreyesus, called air pollution a “silent public health emergency” and “the new tobacco” ( 122 ).

Undoubtedly, children are particularly vulnerable to air pollution, especially during their development. Air pollution has adverse effects on our lives in many different respects.

Diseases associated with air pollution have not only an important economic impact but also a societal impact due to absences from productive work and school.

Despite the difficulty of eradicating the problem of anthropogenic environmental pollution, a successful solution could be envisaged as a tight collaboration of authorities, bodies, and doctors to regularize the situation. Governments should spread sufficient information and educate people and should involve professionals in these issues so as to control the emergence of the problem successfully.

Technologies to reduce air pollution at the source must be established and should be used in all industries and power plants. The Kyoto Protocol of 1997 set as a major target the reduction of GHG emissions to below 5% by 2012 ( 123 ). This was followed by the Copenhagen summit, 2009 ( 124 ), and then the Durban summit of 2011 ( 125 ), where it was decided to keep to the same line of action. The Kyoto protocol and the subsequent ones were ratified by many countries. Among the pioneers who adopted this important protocol for the world's environmental and climate “health” was China ( 3 ). As is known, China is a fast-developing economy and its GDP (Gross Domestic Product) is expected to be very high by 2050, which is defined as the year of dissolution of the protocol for the decrease in gas emissions.

A more recent international agreement of crucial importance for climate change is the Paris Agreement of 2015, issued by the UNFCCC (United Nations Climate Change Committee). This latest agreement was ratified by a plethora of UN (United Nations) countries as well as the countries of the European Union ( 126 ). In this vein, parties should promote actions and measures to enhance numerous aspects around the subject. Boosting education, training, public awareness, and public participation are some of the relevant actions for maximizing the opportunities to achieve the targets and goals on the crucial matter of climate change and environmental pollution ( 126 ). Without any doubt, technological improvements makes our world easier and it seems difficult to reduce the harmful impact caused by gas emissions, we could limit its use by seeking reliable approaches.

Synopsizing, a global prevention policy should be designed in order to combat anthropogenic air pollution as a complement to the correct handling of the adverse health effects associated with air pollution. Sustainable development practices should be applied, together with information coming from research in order to handle the problem effectively.

At this point, international cooperation in terms of research, development, administration policy, monitoring, and politics is vital for effective pollution control. Legislation concerning air pollution must be aligned and updated, and policy makers should propose the design of a powerful tool of environmental and health protection. As a result, the main proposal of this essay is that we should focus on fostering local structures to promote experience and practice and extrapolate these to the international level through developing effective policies for sustainable management of ecosystems.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

IM is employed by the company Delphis S.A.

The remaining authors declare that the present review paper was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

1. WHO. Air Pollution . WHO. Available online at: http://www.who.int/airpollution/en/ (accessed October 5, 2019).

Google Scholar

2. Moores FC. Climate change and air pollution: exploring the synergies and potential for mitigation in industrializing countries. Sustainability . (2009) 1:43–54. doi: 10.3390/su1010043

CrossRef Full Text | Google Scholar

3. USGCRP (2009). Global Climate Change Impacts in the United States. In: Karl TR, Melillo JM, Peterson TC, editors. Climate Change Impacts by Sectors: Ecosystems . New York, NY: United States Global Change Research Program. Cambridge University Press.

4. Marlon JR, Bloodhart B, Ballew MT, Rolfe-Redding J, Roser-Renouf C, Leiserowitz A, et al. (2019). How hope and doubt affect climate change mobilization. Front. Commun. 4:20. doi: 10.3389/fcomm.2019.00020

5. Eze IC, Schaffner E, Fischer E, Schikowski T, Adam M, Imboden M, et al. Long- term air pollution exposure and diabetes in a population-based Swiss cohort. Environ Int . (2014) 70:95–105. doi: 10.1016/j.envint.2014.05.014

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Kelishadi R, Poursafa P. Air pollution and non-respiratory health hazards for children. Arch Med Sci . (2010) 6:483–95. doi: 10.5114/aoms.2010.14458

7. Manucci PM, Franchini M. Health effects of ambient air pollution in developing countries. Int J Environ Res Public Health . (2017) 14:1048. doi: 10.3390/ijerph14091048

8. Burden of Disease from Ambient and Household Air Pollution . Available online: http://who.int/phe/health_topics/outdoorair/databases/en/ (accessed August 15, 2017).

9. Hashim D, Boffetta P. Occupational and environmental exposures and cancers in developing countries. Ann Glob Health . (2014) 80:393–411. doi: 10.1016/j.aogh.2014.10.002

10. Guo Y, Zeng H, Zheng R, Li S, Pereira G, Liu Q, et al. The burden of lung cancer mortality attributable to fine particles in China. Total Environ Sci . (2017) 579:1460–6. doi: 10.1016/j.scitotenv.2016.11.147

11. Hou Q, An XQ, Wang Y, Guo JP. An evaluation of resident exposure to respirable particulate matter and health economic loss in Beijing during Beijing 2008 Olympic Games. Sci Total Environ . (2010) 408:4026–32. doi: 10.1016/j.scitotenv.2009.12.030

12. Kan H, Chen R, Tong S. Ambient air pollution, climate change, and population health in China. Environ Int . (2012) 42:10–9. doi: 10.1016/j.envint.2011.03.003

13. Burroughs Peña MS, Rollins A. Environmental exposures and cardiovascular disease: a challenge for health and development in low- and middle-income countries. Cardiol Clin . (2017) 35:71–86. doi: 10.1016/j.ccl.2016.09.001

14. Kankaria A, Nongkynrih B, Gupta S. Indoor air pollution in india: implications on health and its control. Indian J Comm Med . 39:203–7. doi: 10.4103/0970-0218.143019

15. Parajuli I, Lee H, Shrestha KR. Indoor air quality and ventilation assessment of rural mountainous households of Nepal. Int J Sust Built Env . (2016) 5:301–11. doi: 10.1016/j.ijsbe.2016.08.003

16. Saud T, Gautam R, Mandal TK, Gadi R, Singh DP, Sharma SK. Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmos Environ . (2012) 61:212–20. doi: 10.1016/j.atmosenv.2012.07.030

17. Singh DP, Gadi R, Mandal TK, Saud T, Saxena M, Sharma SK. Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmos Environ . (2013) 68:120–6. doi: 10.1016/j.atmosenv.2012.11.042

18. Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M BN. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ . (2008) 86:390–4. doi: 10.2471/BLT.07.044529

19. Kassomenos P, Kelessis A, Petrakakis M, Zoumakis N, Christides T, Paschalidou AK. Air Quality assessment in a heavily-polluted urban Mediterranean environment through Air Quality indices. Ecol Indic . (2012) 18:259–68. doi: 10.1016/j.ecolind.2011.11.021

20. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med . (1993) 329:1753–9. doi: 10.1056/NEJM199312093292401

21. Schwela DH, Köth-Jahr I. Leitfaden für die Aufstellung von Luftreinhalteplänen [Guidelines for the Implementation of Clean Air Implementation Plans]. Landesumweltamt des Landes Nordrhein Westfalen. State Environmental Service of the State of North Rhine-Westphalia (1994).

22. Newlands M. Environmental Activism, Environmental Politics, and Representation: The Framing of the British Environmental Activist Movement . Ph.D. thesis. University of East London, United Kingdom (2015).

23. NEPIS (National Service Center for Environmental Publications) US EPA (Environmental Protection Agency) (2017). Available online at: https://www.epa.gov/clean-air-act-overview/air-pollution-current-and-future-challenges (accessed August 15, 2017).

24. NRC (National Research Council). Available online at: https://www.nap.edu/read/10728/chapter/1,2014 (accessed September 17, 2019).

25. Bull A. Traffic Congestion: The Problem and How to Deal With It . Santiago: Nationes Unidas, Cepal (2003).

26. Spiegel J, Maystre LY. Environmental Pollution Control, Part VII - The Environment, Chapter 55, Encyclopedia of Occupational Health and Safety . Available online at: http://www.ilocis.org/documents/chpt55e.htm (accessed September 17, 2019).

27. European Community Reports. Assessment of the Effectiveness of European Air Quality Policies and Measures: Case Study 2; Comparison of the EU and US Air Quality Standards and Planning Requirements. (2004). Available online at: https://ec.europa.eu/environment/archives/cafe/activities/pdf/case_study2.pdf (accessed September 22, 2019).

28. Gibson R, Ward S. Parties in the digital age; a review. J Represent Democracy . (2009) 45:87–100. doi: 10.1080/00344890802710888

29. Kaun A, Uldam J. Digital activism: after the hype. New Media Soc. (2017) 20:2099–106. doi: 10.1177/14614448177319

30. Sivitanides M, Shah V. The era of digital activism. In: 2011 Conference for Information Systems Applied Research(CONISAR) Proceedings Wilmington North Carolina, USA . Available online at: https://www.arifyildirim.com/ilt510/marcos.sivitanides.vivek.shah.pdf (accessed September 22, 2019).

31. Möller L, Schuetzle D, Autrup H. Future research needs associated with the assessment of potential human health risks from exposure to toxic ambient air pollutants. Environ Health Perspect . (1994) 102(Suppl. 4):193–210. doi: 10.1289/ehp.94102s4193

32. Jacobson MZ, Jacobson PMZ. Atmospheric Pollution: History, Science, and Regulation. Cambridge University Press (2002). p. 206. doi: 10.1256/wea.243.02

33. Stover RH. Flooding of soil for disease control. In: Mulder D, editor. Chapter 3. Developments in Agricultural and Managed Forest Ecology . Elsevier (1979). p. 19–28. Available online at: http://www.sciencedirect.com/science/article/pii/B9780444416926500094 doi: 10.1016/B978-0-444-41692-6.50009-4 (accessed July 1, 2019).

34. Maipa V, Alamanos Y, Bezirtzoglou E. Seasonal fluctuation of bacterial indicators in coastal waters. Microb Ecol Health Dis . (2001) 13:143–6. doi: 10.1080/089106001750462687

35. Bezirtzoglou E, Dimitriou D, Panagiou A. Occurrence of Clostridium perfringens in river water by using a new procedure. Anaerobe . (1996) 2:169–73. doi: 10.1006/anae.1996.0022

36. Kjellstrom T, Lodh M, McMichael T, Ranmuthugala G, Shrestha R, Kingsland S. Air and Water Pollution: Burden and Strategies for Control. DCP, Chapter 43. 817–32 p. Available online at: https://www.dcp-3.org/sites/default/files/dcp2/DCP43.pdf (accessed September 17, 2017).

37. Pathak RK, Wang T, Ho KF, Lee SC. Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: implications of high acidity for water- soluble organic carbon (WSOC). Atmos Environ . (2011) 45:318–25. doi: 10.1016/j.atmosenv.2010.10.021

38. Bonavigo L, Zucchetti M, Mankolli H. Water radioactive pollution and related environmental aspects. J Int Env Appl Sci . (2009) 4:357–63

39. World Health Organization (WHO). Preventing Disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease . 1106 p. Available online at: https://www.who.int/quantifying_ehimpacts/publications/preventingdisease.pdf (accessed September 22, 2019).

40. Stansfeld SA. Noise effects on health in the context of air pollution exposure. Int J Environ Res Public Health . (2015) 12:12735–60. doi: 10.3390/ijerph121012735

41. Ethical Unicorn. Everything You Need To Know About Aerosols & Air Pollution. (2019). Available online at: https://ethicalunicorn.com/2019/04/29/everything-you-need-to-know-about-aerosols-air-pollution/ (accessed October 4, 2019).

42. Colbeck I, Lazaridis M. Aerosols and environmental pollution. Sci Nat . (2009) 97:117–31. doi: 10.1007/s00114-009-0594-x

43. Incecik S, Gertler A, Kassomenos P. Aerosols and air quality. Sci Total Env . (2014) 355, 488–9. doi: 10.1016/j.scitotenv.2014.04.012

44. D'Amato G, Pawankar R, Vitale C, Maurizia L. Climate change and air pollution: effects on respiratory allergy. Allergy Asthma Immunol Res . (2016) 8:391–5. doi: 10.4168/aair.2016.8.5.391

45. Bezirtzoglou C, Dekas K, Charvalos E. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. Anaerobe . (2011) 17:337–40. doi: 10.1016/j.anaerobe.2011.05.016

46. Castelli F, Sulis G. Migration and infectious diseases. Clin Microbiol Infect . (2017) 23:283–9. doi: 10.1016/j.cmi.2017.03.012

47. Watson JT, Gayer M, Connolly MA. Epidemics after natural disasters. Emerg Infect Dis . (2007) 13:1–5. doi: 10.3201/eid1301.060779

48. Fenn B. Malnutrition in Humanitarian Emergencies . Available online at: https://www.who.int/diseasecontrol_emergencies/publications/idhe_2009_london_malnutrition_fenn.pdf . (accessed August 15, 2017).

49. Lindh E, Argentini C, Remoli ME, Fortuna C, Faggioni G, Benedetti E, et al. The Italian 2017 outbreak Chikungunya virus belongs to an emerging Aedes albopictus –adapted virus cluster introduced from the Indian subcontinent. Open Forum Infect Dis. (2019) 6:ofy321. doi: 10.1093/ofid/ofy321

50. Calba C, Guerbois-Galla M, Franke F, Jeannin C, Auzet-Caillaud M, Grard G, Pigaglio L, Decoppet A, et al. Preliminary report of an autochthonous chikungunya outbreak in France, July to September 2017. Eur Surveill . (2017) 22:17-00647. doi: 10.2807/1560-7917.ES.2017.22.39.17-00647

51. Menne B, Murray V. Floods in the WHO European Region: Health Effects and Their Prevention . Copenhagen: WHO; Weltgesundheits organisation, Regionalbüro für Europa (2013). Available online at: http://www.euro.who.int/data/assets/pdf_file/0020/189020/e96853.pdf (accessed 15 August 2017).

52. Schneider SH. The greenhouse effect: science and policy. Science . (1989) 243:771–81. doi: 10.1126/science.243.4892.771

53. Wilson WE, Suh HH. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc . (1997) 47:1238–49. doi: 10.1080/10473289.1997.10464074

54. US EPA (US Environmental Protection Agency) (2018). Available online at: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed September 22, 2018).

55. Cheung K, Daher N, Kam W, Shafer MM, Ning Z, Schauer JJ, et al. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmos Environ . (2011) 45:2651–62. doi: 10.1016/j.atmosenv.2011.02.066

56. Zhang L, Yang Y, Li Y, Qian ZM, Xiao W, Wang X, et al. Short-term and long-term effects of PM2.5 on acute nasopharyngitis in 10 communities of Guangdong, China. Sci Total Env. (2019) 688:136–42. doi: 10.1016/j.scitotenv.2019.05.470.

57. Kloog I, Ridgway B, Koutrakis P, Coull BA, Schwartz JD. Long- and short-term exposure to PM2.5 and mortality using novel exposure models, Epidemiology . (2013) 24:555–61. doi: 10.1097/EDE.0b013e318294beaa

58. New Hampshire Department of Environmental Services. Current and Forecasted Air Quality in New Hampshire . Environmental Fact Sheet (2019). Available online at: https://www.des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-16.pdf (accessed September 22, 2019).

59. Kappos AD, Bruckmann P, Eikmann T, Englert N, Heinrich U, Höppe P, et al. Health effects of particles in ambient air. Int J Hyg Environ Health . (2004) 207:399–407. doi: 10.1078/1438-4639-00306

60. Boschi N (Ed.). Defining an educational framework for indoor air sciences education. In: Education and Training in Indoor Air Sciences . Luxembourg: Springer Science & Business Media (2012). 245 p.

61. Heal MR, Kumar P, Harrison RM. Particles, air quality, policy and health. Chem Soc Rev . (2012) 41:6606–30. doi: 10.1039/c2cs35076a

62. Bezirtzoglou E, Alexopoulos A. Ozone history and ecosystems: a goliath from impacts to advance industrial benefits and interests, to environmental and therapeutical strategies. In: Ozone Depletion, Chemistry and Impacts. (2009). p. 135–45.

63. Villányi V, Turk B, Franc B, Csintalan Z. Ozone Pollution and its Bioindication. In: Villányi V, editor. Air Pollution . London: Intech Open (2010). doi: 10.5772/10047

64. Massachusetts Department of Public Health. Massachusetts State Health Assessment . Boston, MA (2017). Available online at: https://www.mass.gov/files/documents/2017/11/03/2017%20MA%20SHA%20final%20compressed.pdf (accessed October 30, 2017).

65. Lorenzini G, Saitanis C. Ozone: A Novel Plant “Pathogen.” In: Sanitá di Toppi L, Pawlik-Skowrońska B, editors. Abiotic Stresses in Plant Springer Link (2003). p. 205–29. doi: 10.1007/978-94-017-0255-3_8

66. Fares S, Vargas R, Detto M, Goldstein AH, Karlik J, Paoletti E, et al. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Glob Change Biol . (2013) 19:2427–43. doi: 10.1111/gcb.12222

67. Harmens H, Mills G, Hayes F, Jones L, Norris D, Fuhrer J. Air Pollution and Vegetation . ICP Vegetation Annual Report 2006/2007. (2012)

68. Emberson LD, Pleijel H, Ainsworth EA, den Berg M, Ren W, Osborne S, et al. Ozone effects on crops and consideration in crop models. Eur J Agron . (2018) 100:19–34. doi: 10.1016/j.eja.2018.06.002

69. Alexopoulos A, Plessas S, Ceciu S, Lazar V, Mantzourani I, Voidarou C, et al. Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce ( Lactuca sativa ) and green bell pepper ( Capsicum annuum ). Food Control . (2013) 30:491–6. doi: 10.1016/j.foodcont.2012.09.018

70. Alexopoulos A, Plessas S, Kourkoutas Y, Stefanis C, Vavias S, Voidarou C, et al. Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products. Int J Food Microbiol . (2017) 246:5–11. doi: 10.1016/j.ijfoodmicro.2017.01.018

71. Maggio A, Fagnano M. Ozone damages to mediterranean crops: physiological responses. Ital J Agron . (2008) 13–20. doi: 10.4081/ija.2008.13

72. McCarthy JT, Pelle E, Dong K, Brahmbhatt K, Yarosh D, Pernodet N. Effects of ozone in normal human epidermal keratinocytes. Exp Dermatol . (2013) 22:360–1. doi: 10.1111/exd.12125

73. WHO. Health Risks of Ozone From Long-Range Transboundary Air Pollution . Available online at: http://www.euro.who.int/data/assets/pdf_file/0005/78647/E91843.pdf (accessed August 15, 2019).

74. Thiele JJ, Traber MG, Tsang K, Cross CE, Packer L. In vivo exposure to ozone depletes vitamins C and E and induces lipid peroxidation in epidermal layers of murine skin. Free Radic Biol Med. (1997) 23:365–91. doi: 10.1016/S0891-5849(96)00617-X

75. Hatch GE, Slade R, Harris LP, McDonnell WF, Devlin RB, Koren HS, et al. Ozone dose and effect in humans and rats. A comparison using oxygen- 18 labeling and bronchoalveolar lavage. Am J Respir Crit Care Med . (1994) 150:676–83. doi: 10.1164/ajrccm.150.3.8087337

76. Lippmann M. Health effects of ozone. A critical review. JAPCA . (1989) 39:672–95. doi: 10.1080/08940630.1989.10466554

77. Gryparis A, Forsberg B, Katsouyanni K, Analitis A, Touloumi G, Schwartz J, et al. Acute effects of ozone on mortality from the “air pollution and health: a European approach” project. Am J Respir Crit Care Med . (2004) 170:1080–7. doi: 10.1164/rccm.200403-333OC

78. Soon W, Baliunas SL, Robinson AB, Robinson ZW. Environmental effects of increased atmospheric carbon dioxide. Climate Res . (1999) 13:149–64 doi: 10.1260/0958305991499694

79. Richmont-Bryant J, Owen RC, Graham S, Snyder M, McDow S, Oakes M, et al. Estimation of on-road NO2 concentrations, NO2/NOX ratios, and related roadway gradients from near-road monitoring data. Air Qual Atm Health . (2017) 10:611–25. doi: 10.1007/s11869-016-0455-7

80. Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA. Critical review of the human data on short-term nitrogen dioxide (NO 2 ) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol . (2009) 39:743–81. doi: 10.3109/10408440903294945

81. Chen T-M, Gokhale J, Shofer S, Kuschner WG. Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci . (2007) 333:249–56. doi: 10.1097/MAJ.0b013e31803b900f

82. US EPA. Table of Historical SO 2 NAAQS, Sulfur US EPA . Available online at: https://www3.epa.gov/ttn/naaqs/standards/so2/s_so2_history.html (accessed October 5, 2019).

83. WHO Regional Office of Europe (2000). Available online at: https://euro.who.int/_data/assets/pdf_file/0020/123086/AQG2ndEd_7_4Sulfuroxide.pdf

84. Pruss-Ustun A, Fewrell L, Landrigan PJ, Ayuso-Mateos JL. Lead exposure. Comparative Quantification of Health Risks . World Health Organization. p. 1495–1542. Available online at: https://www.who.int/publications/cra/chapters/volume2/1495-1542.pdf?ua=1

PubMed Abstract | Google Scholar

85. Goyer RA. Transplacental transport of lead. Environ Health Perspect . (1990) 89:101–5. doi: 10.1289/ehp.9089101

86. National Institute of Environmental Health Sciences (NIH). Lead and Your Health . (2013). 1–4 p. Available online at: https://www.niehs.nih.gov/health/materials/lead_and_your_health_508.pdf (accessed September 17, 2019).

87. Farhat A, Mohammadzadeh A, Balali-Mood M, Aghajanpoor-Pasha M, Ravanshad Y. Correlation of blood lead level in mothers and exclusively breastfed infants: a study on infants aged less than six months. Asia Pac J Med Toxicol . (2013) 2:150–2.

88. Assi MA, Hezmee MNM, Haron AW, Sabri MYM, Rajion MA. The detrimental effects of lead on human and animal health. Vet World . (2016) 9:660–71. doi: 10.14202/vetworld.2016.660-671

89. Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet . (2016) 25:107–23. doi: 10.1016/j.ejpe.2015.03.011

90. Kumar A, Singh BP, Punia M, Singh D, Kumar K, Jain VK. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ Sci Pollut Res Int . (2014) 21:2240–8. doi: 10.1007/s11356-013-2150-7

91. Molhave L, Clausen G, Berglund B, Ceaurriz J, Kettrup A, Lindvall T, et al. Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations. Indoor Air . 7:225–240. doi: 10.1111/j.1600-0668.1997.00002.x

92. Gibb T. Indoor Air Quality May be Hazardous to Your Health . MSU Extension. Available online at: https://www.canr.msu.edu/news/indoor_air_quality_may_be_hazardous_to_your_health (accessed October 5, 2019).

93. Ebersviller S, Lichtveld K, Sexton KG, Zavala J, Lin Y-H, Jaspers I, et al. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: simple VOCs and model PM. Atmos Chem Phys Discuss . (2012) 12:5065–105. doi: 10.5194/acpd-12-5065-2012

94. WHO (World Health Organization). Dioxins and Their Effects on Human Health. Available online at: https://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health (accessed October 5, 2019).

95. EEA (European Environmental Agency). Air Quality Standards to the European Union and WHO . Available online at: https://www.eea.europa.eu/themes/data-and-maps/figures/air-quality-standards-under-the

96. Nakano T, Otsuki T. [Environmental air pollutants and the risk of cancer]. (Japanese). Gan To Kagaku Ryoho . (2013) 40:1441–5.

97. Kurt OK, Zhang J, Pinkerton KE. Pulmonary health effects of air pollution. Curr Opin Pulm Med . (2016) 22:138–43. doi: 10.1097/MCP.0000000000000248

98. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet . (2014) 383:1581–92. doi: 10.1016/S0140-6736(14)60617-6

99. Jiang X-Q, Mei X-D, Feng D. Air pollution and chronic airway diseases: what should people know and do? J Thorac Dis . (2016) 8:E31–40.

100. Bourdrel T, Bind M-A, Béjot Y, Morel O, Argacha J-F. Cardiovascular effects of air pollution. Arch Cardiovasc Dis . (2017) 110:634–42. doi: 10.1016/j.acvd.2017.05.003

101. Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Lehmann N, Dragano N, et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation . (2007) 116:489–496. doi: 10.1161/CIRCULATIONAHA.107.693622

102. Katholi RE, Couri DM. Left ventricular hypertrophy: major risk factor in patients with hypertension: update and practical clinical applications. Int J Hypertens . (2011) 2011:495349. doi: 10.4061/2011/495349

103. Leary PJ, Kaufman JD, Barr RG, Bluemke DA, Curl CL, Hough CL, et al. Traffic- related air pollution and the right ventricle. the multi-ethnic study of atherosclerosis. Am J Respir Crit Care Med . (2014) 189:1093–100. doi: 10.1164/rccm.201312-2298OC

104. Genc S, Zadeoglulari Z, Fuss SH, Genc K. The adverse effects of air pollution on the nervous system. J Toxicol . (2012) 2012:782462. doi: 10.1155/2012/782462

105. Calderon-Garciduenas L, Azzarelli B, Acuna H, et al. Air pollution and brain damage. Toxicol Pathol. (2002) 30:373–89. doi: 10.1080/01926230252929954

106. Rückerl R, Greven S, Ljungman P, Aalto P, Antoniades C, Bellander T, et al. Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors. Environ Health Perspect . (2007) 115:1072–80. doi: 10.1289/ehp.10021

107. Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol . (2006) 3:13–8. doi: 10.1186/1743-8977-3-13

108. Kelly FJ. Dietary antioxidants and environmental stress. Proc Nutr Soc . (2004) 63:579–85. doi: 10.1079/PNS2004388

109. Bellinger DC. Very low lead exposures and children's neurodevelopment. Curr Opin Pediatr . (2008) 20:172–7. doi: 10.1097/MOP.0b013e3282f4f97b

110. Balbo P, Silvestri M, Rossi GA, Crimi E, Burastero SE. Differential role of CD80 and CD86 on alveolar macrophages in the presentation of allergen to T lymphocytes in asthma. Clin Exp Allergy J Br Soc Allergy Clin Immunol . (2001) 31:625–36. doi: 10.1046/j.1365-2222.2001.01068.x

111. Drakaki E, Dessinioti C, Antoniou C. Air pollution and the skin. Front Environ Sci Eng China . (2014) 15:2–8. doi: 10.3389/fenvs.2014.00011

112. Weisskopf MG, Kioumourtzoglou M-A, Roberts AL. Air pollution and autism spectrum disorders: causal or confounded? Curr Environ Health Rep . (2015) 2:430–9. doi: 10.1007/s40572-015-0073-9

113. Mo Z, Fu Q, Lyu D, Zhang L, Qin Z, Tang Q, et al. Impacts of air pollution on dry eye disease among residents in Hangzhou, China: a case-crossover study. Environ Pollut . (2019) 246:183–9. doi: 10.1016/j.envpol.2018.11.109

114. Klopfer J. Effects of environmental air pollution on the eye. J Am Optom Assoc . (1989) 60:773–8.

115. Ashfaq A, Sharma P. Environmental effects of air pollution and application of engineered methods to combat the problem. J Indust Pollut Control . (2012) 29.

116. Madronich S, de Gruijl F. Skin cancer and UV radiation. Nature . (1993) 366:23–9. doi: 10.1038/366023a0

117. Teramura A. Effects of UV-B radiation on the growth and yield of crop plants. Physiol Plant . (2006) 58:415–27. doi: 10.1111/j.1399-3054.1983.tb04203.x

118. Singh E, Tiwari S, Agrawal M. Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change. Plant Biol Stuttg Ger . (2009) 11(Suppl. 1):101–8. doi: 10.1111/j.1438-8677.2009.00263.x

119. Manderson L. How global Warming is Adding to the Health Risks of Poor People . The Conversation. University of the Witwatersrand. Available online at: http://theconversation.com/how-global-warming-is-adding-to-the-health-risks-of-poor-people-109520 (accessed October 5, 2019).

120. Ministers of Energy and Environment. Federal/Provincial/Territorial Ministers of Energy and Environment (Canada), editor. The Canada-Wide Acid Rain Strategy for Post-2000 . Halifax: The Ministers (1999). 11 p.

121. Zuhara S, Isaifan R. The impact of criteria air pollutants on soil and water: a review. (2018) 278–84. doi: 10.30799/jespr.133.18040205

122. WHO. First WHO Global Conference on Air Pollution and Health. (2018). Available online at: https://www.who.int/airpollution/events/conference/en/ (accessed October 6, 2019).

123. What is the Kyoto Protocol? UNFCCC . Available online at: https://unfccc.int/kyoto__protocol (accessed October 6, 2019).

124. CopenhagenClimate Change Conference (UNFCCC) . Available online at: https://unfccc.int/process-and-meetings/conferences/past-conferences/copenhagen-climate-change-conference-december-2009/copenhagen-climate-change-conference-december-2009 (accessed October 6, 2019).

125. Durban Climate Change Conference,. UNFCCC (2011). Available online at: https://unfccc.int/process-and-meetings/conferences/past-conferences/copenhagen-climate-change-conference-december-2009/copenhagen-climate-change-conference-december-2009 (accessed October 6, 2019).

126. Paris Climate Change Agreement,. (2016). Available online at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

Keywords: air pollution, environment, health, public health, gas emission, policy

Citation: Manisalidis I, Stavropoulou E, Stavropoulos A and Bezirtzoglou E (2020) Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 8:14. doi: 10.3389/fpubh.2020.00014

Received: 17 October 2019; Accepted: 17 January 2020; Published: 20 February 2020.

Reviewed by:

Copyright © 2020 Manisalidis, Stavropoulou, Stavropoulos and Bezirtzoglou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Ioannis Manisalidis, giannismanisal@gmail.com ; Elisavet Stavropoulou, elisabeth.stavropoulou@gmail.com

† These authors have contributed equally to this work

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

What You Need to Know About Climate Change and Air Pollution

Climate Explainer Series banner - with WBG COP27 branding

#ShowYourStripes graphic by Professor Ed Hawkins (University of Reading) https://showyourstripes.info/

How big a problem is air pollution globally?

Air pollution is the world’s leading environmental cause of illness and premature death. Fine air pollution particles or aerosols, also known as fine particulate matter or PM 2.5 , are responsible for 6.4 million deaths every year, caused by diseases such as ischemic heart disease, stroke, lung cancer, chronic obstructive pulmonary disease, pneumonia, type 2 diabetes, and neonatal disorders. About 95% of these deaths occur in developing countries, where billions of people are exposed to outdoor and indoor concentrations of PM 2.5 that are multiple times higher than guidelines established by the World Health Organization. A World Bank report estimated that the cost of the health damage caused by air pollution amounts to $8.1 trillion a year, equivalent to 6.1% of global GDP.

Poor people, elderly people, and young children who come from poor families are the most affected and the least likely to be able to cope with the health impacts that come with air pollution. Global health crises such as the COVID-19 pandemic weaken the resilience of societies. Compounding this, exposure to air pollution is linked to increased incidence of COVID-19-related hospital admissions and mortality. In addition to health, air pollution is also linked to biodiversity and ecosystem loss , and has adverse impacts on human capital . Reducing air pollution, on the other hand, not only improves health but strengthens economies. A recent World Bank study found that a 20% decrease in PM 2.5 concentration is associated with a 16% increase in employment growth rate and a 33% increase in labor productivity growth rate .

A World Bank report estimated that the cost of the health damage caused by air pollution amounts to $8.1 trillion a year, equivalent to 6.1% of global GDP.

How is air pollution related to climate change?

Air pollution and climate change are two sides of the same coin, but they are typically addressed separately. They should be tackled jointly, with a focus on protecting peoples’ health – particularly in low- and middle-income countries – to strengthen human capital and reduce poverty.

Air pollutants and greenhouse gases often come from the same sources, such as coal-fired power plants and diesel-fueled vehicles. Some air pollutants do not last long in the environment, notably black carbon – a part of fine particulate matter (PM 2.5 ). Other short-lived climate pollutants (SLCPs) include methane, hydrofluorocarbons, and ground-level or tropospheric ozone. SLCPs are far more potent climate warmers than carbon dioxide. Methane is a precursor of ground-level ozone, which according to the Climate and Clean air Coalition and Stockholm Environment Institute, kills about a million people each year, and is 80 times more potent at warming the planet than carbon dioxide over a 20-year period. Their relatively short lifespans, coupled with their strong warming potential, means that interventions to reduce SLCP emissions can deliver climate benefits in a relatively short time. If we address short-lived climate pollutants, we gain dual benefits: better air quality and improved health where we live, and the global benefit of mitigating climate change.

A World Bank study found that PM 2.5 from the burning of fossil fuels such as coal combustion or diesel-fueled vehicle emissions is among the most toxic types of PM 2.5 . Particles from these sources are more damaging to health than particles from most other air pollution sources. Addressing these sources of PM 2.5 -- like coal combustion and traffic – would address the most toxic air pollution. Given that these sources are also key contributors to climate warming, tackling air pollution from these sources also mitigates climate change.  

What are some requirements for effectively addressing air pollution?

Measure it and monitor it . Many developing countries do not have even rudimentary infrastructure for measuring air pollution. A World Bank study found that there was only one PM 2.5 ground-level monitor per 65 million people in low-income countries , and one per 28 million people in Sub-Saharan Africa;  in contrast, there is one monitor per 370,000 people in high-income countries. This is a serious issue, because you cannot properly manage what you do not measure. If you don't know how bad your problem is, you won’t know whether anything you do to fix it is effective. Countries need to establish ground-level monitoring networks and operate and maintain them properly so they yield reliable air quality data.

Know the main sources of air pollution and their contributions to poor air quality. For example, in City A, transport may be the biggest contributor, but in City B, it could be something completely different, such as emissions from dirty cooking fuels seeping from homes into the outside environment. With this information you can target interventions appropriately to abate air pollution. There are certainly intuitive, no-regret steps cities and countries can take to tackle air pollution, such as shifting to clean buses or renewable energy. But if you want to address air pollution comprehensively, you need to understand what your own sources are.

Disseminate air quality data to the public . People have a right to know the quality of the air they're breathing. Disseminating this information exerts pressure on those who can make the needed changes. Air quality data should be easily accessible in formats that are widely understood so people can reduce their exposure to air pollution and protect vulnerable groups such as young children, the elderly, and people with health conditions that can be exacerbated by poor air quality.

What are some interventions that countries can implement to reduce air pollution?

Reducing air pollution may require physical investments or it may require policy reforms or both. Not every intervention fits every context. Interventions whose benefits (notably improved health) outweigh the costs should be selected. Part of our work at the World Bank is to incorporate climate change considerations into analysis so that the climate benefits of improving air quality can be taken into account in the decision-making process. A few examples of interventions to improve air quality in different sectors:

  • Energy : Change the energy mix to include cleaner, renewable energy sources and phase out subsidies that promote use of polluting fuels.
  • Industry: Use renewable fuels, adopt cleaner production measures, and install scrubbers and electrostatic precipitators in industrial facilities to filter particulates from emissions before they are released into the air.
  • Transport : Change from diesel to electric vehicles, install catalytic converters in vehicles to reduce toxicity of emissions, establish vehicle inspection and maintenance programs.
  • Agriculture : Discourage use of nitrogen-based fertilizers; improve nitrogen-use efficiency of agricultural soils; and improve fertilizer and manure management. Nitrogen-based fertilizers release ammonia, a precursor of secondary PM 2.5 formation. Nitrogen-based fertilizers can also be oxidized and emitted to the air as nitrous oxide, a long-lived greenhouse gas.
  • Cooking and heating : Promote clean cooking and heating solutions including clean stoves and boilers.
Part of our work at the World Bank is to incorporate climate change considerations into analysis so that the climate benefits of improving air quality can be taken into account in the decision-making process.

What is the World Bank doing to help?

The World Bank has invested about $52 billion in addressing pollution in the past two decades. However, we need to scale this up. Some successful projects that address air pollution include:

In China , we supported a program in the Hebei region , the largest contributor to air pollution in the country. The overall result was a reduction in the concentration of PM 2.5 in the atmosphere by almost 40% between 2013 and the end of 2017. The program linked loan disbursements to tangible results. Hebei issued the most stringent industrial emission standards in the country, replaced diesel buses with electric buses, coal stoves with gas stoves, and improved the efficiency of fertilizer use in agriculture. The program also supported effective use of a continuous emission monitoring system to track and enforce compliance by all major industrial enterprises in the province. The project delivered about 5 million tons of CO2 equivalent emissions reductions per year through interventions such as the installation of new stoves in municipalities, and addition of a new clean energy bus fleet. The emissions reductions generated from the installation of 1,221,500 new stoves alone were equivalent to taking more than 860,000 passenger cars off the road each year.

In Peru , the World Bank is supporting a project to develop environmental information systems that includes expanding the country's air quality monitoring network to six new cities. The project is also developing new systems to disseminate information on environmental quality to the public.

In Egypt, we assessed the health impacts from environmental pollution, including the effects of ambient air pollution in Greater Cairo. We found that 19,200 people died prematurely and over 3 billion days were lived with illness in Egypt in 2017 as a result of PM 2.5 air pollution in Greater Cairo and inadequate water, sanitation, and hygiene in all of Egypt. This analytical work has led to a project to reduce vehicle emissions, improve the management of solid waste, and strengthen the air and climate decision-making system in Greater Cairo .

In Vietnam , we are working with the rapidly growing city of Hanoi to simultaneously combat the issues of climate change and air pollution. We are supporting the Ministry of Environment and Natural Resources to improve the Air Quality Monitoring Network and develop an understanding of emissions sources, as well as an Air Quality Management Plan for the city.

In Lao PDR , the World Bank program supported the government in establishing stringent ambient air quality standards, including a standard for annual average concentrations of PM 2. in line with the World Health Organization’s air quality guideline value at the time. The program also supported the adoption of regulated procedures for sampling and analyzing PM 2.5 and PM 10 in air, and other pollutants in water.

We need to tackle air pollution and climate change challenges jointly rather than separately with a focus on protecting peoples’ health today, particularly in developing countries.

Can we expect better air quality in the future as countries decarbonize their economies?

First, we must continue to reduce poverty and meet the needs of poor people, whether through lower energy costs, ensuring cleaner air, or other means. With these goals in mind, we need to tackle air pollution and climate change challenges jointly rather than separately with a focus on protecting peoples’ health today, particularly in developing countries. The health benefits of reducing emissions from the burning of fossil fuels can occur in the near term. However, the reduction of carbon dioxide in the atmosphere would occur over a longer timeframe. If decarbonization efforts pay attention to non-CO 2 pollutants as well, notably PM 2.5 , we cannot only expect better air quality, but also health benefits in the short term.

Blog: Supporting a Breath of Fresh Air for Lagos

Website:  Climate Explainer Series

Website:  Climate Stories: How Countries and Communities Are Shaping A Sustainable Future

Website:  World Bank - Climate Change

Website: World Bank - Environment

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here .

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 04 October 2021

Clean air for a sustainable world

Nature Communications volume  12 , Article number:  5824 ( 2021 ) Cite this article

20k Accesses

6 Citations

17 Altmetric

Metrics details

Air pollution is a cause of disease for millions around the world and now more than ever urgent action is required to tackle the burden of its impacts. Doing so will not only improve both life expectancy and quality of life, but will also lead to a more just and sustainable world.

Recently, we announced that we will publish a new series of collections focused on issues related to the Sustainable Development Goals (SDGs). We start this series with a multidisciplinary collection on air pollution. As tackling air pollution is not one of the core SDGs, this may seem like an unusual choice. It is, however, a pressing environmental hazard affecting an ever increasing part of the world’s population. Currently, 91% of the world’s population live in locations where pollution levels exceed WHO guidelines, and in a recent announcement the WHO have further cut the recommended limits. Air pollution kills around 6.7 million people per year mainly through respiratory and cardiovascular diseases 1 , and has significant impacts on mental health. The main pollutants are sourced from fossil fuel combustion for transport, industry, agriculture and cooking stoves and, therefore, air pollution is linked directly with fulfilling many of our basic needs. As the SDGs aim to tackle the issue of how humanity can live sustainably, it is thus no surprise that addressing air pollution is related to the SDGs in many different ways. Promoting specific SDGs will lead to improved air quality as a side-effect, while reducing emissions will also progress a number of SDGs directly.

The high air pollution levels that we live with today is another demonstration of how our unsustainable lifestyles are one of the key challenges that needs to be overcome to create a more just and liveable world, which is the ultimate goal of the SDGs.

air pollution nowadays essay

Although air pollution is a global issue, exposure is often not distributed equally. Industrial processes related to the production, trade and consumption of goods is a key source of air pollution. Much of this pollution is released in low- and middle-income countries while they manufacture goods that are traded abroad, allowing rich countries to outsource the air pollution and health effects of their consumption. Hence, global implementation of responsible consumption and sustainable production practices—the focus of SDG9 (“Industry, Innovation and Infrastructure”) and SDG12 (“Responsible Consumption and Production”)—will be key to reduce this unequal responsibility and exposure to dangerous environmental conditions.

Inequality in exposure does not only occur at an international level, but also within countries. Systematic and historical forms of discrimination often translate into higher exposure levels and, hence, enhanced health burdens to marginalized groups around the world. This is probably best studied in the US, where people of colour are shown to live under poorer air quality, independent of other factors like income 2 . In a commentary for our collection Viniece Jennings highlights that whilst green infrastructure has the potential to reduce air pollution, unequal access can limit improvements for marginalised communities 3 . While we often think of air pollution as an outdoor issue, much of the exposure to harmful particles actually happens inside houses. Household air pollution is mainly related to cooking, heating or lighting, often through the combustion of solid fuels. This exposure affects women and children disproportionately, especially in the developing world 4 . Consequently, targeting SDG10 (“Reduce inequality within and among countries”) and SDG 7 (“Ensure access to affordable, reliable, sustainable and modern energy for all.”) will be of vital importance to tackle embedded inequalities within and among countries to reduce air pollution exposure.

Air pollution and climate change are closely intertwined as they share the same root cause of human emissions. Even though ambitious climate mitigation policies do not come for free, they will in many cases also lead to improved air quality and lower health costs. The societal costs of air pollution avoided through reduced exposure levels as a result of climate mitigation measures alone are thought to outweigh the initial costs of these policies 5 . Air pollution also physically interacts with the climate system; particles in the atmosphere affect surface temperatures as well as clouds and precipitation. Climate change thus has the potential to “worsen air pollution, even in areas where it has been improving”, as pointed out by Denise Mauzarell in a Q&A for our Clean Air collection 6 . An example of this are the dangerous pollutants released by wildfires that are expected to become ever more frequent and intense in many parts of the world.

Similarly, to climate mitigation, improving air quality depends on strict and ambitious regulatory policies and controls, which must be implemented equitably. In this regard, there are reasons to be optimistic, as strict air quality policies like the Clean Air Act in the US and similar policies in Europe have resulted in reductions in pollution since the 1970s even though levels are still too high and continued efforts are crucial. These efforts show that ambitious policy supported by technological advances like improved filtering and modernization can be successful. These efforts should not only be done at national levels, but also need international collaboration, technology and knowledge transfer in order to acknowledge the shared responsibilities of air pollution. As part of the Clean Air collection we highlight papers Nature Communications has published that look at how policy and technology can be part of the solution to air pollution.

The high air pollution levels that we live with today is another demonstration of how our unsustainable lifestyles are one of the key challenges that needs to be overcome to create a more just and liveable world, which is the ultimate goal of the SDGs. Of course, reducing air pollution on its own will not meet the aims of all the other SDGs. Still, it is an illustrative example of how an interdisciplinary focus on a measurable and technologically approachable issue can help to also achieve other goals. It is in this spirit that our collection brings together research from different disciplines, such as applied scientists, economists, political scientists, health scientists and climate scientists as it is this interdisciplinary collaboration that Nature Communications wants to support will be vital in informing policy and decision makers. We envision that our collection on Clean Air will continue to grow and we welcome submissions across disciplines in this area.

GBD Global Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396 , 1223–1249 (2020).

Tessum, C. W. et al. PM 2.5 polluters disproportionately and systemically affect people of color in the United States. Sci. Adv. 7 , 18 (2021).

Jennings, V., Reid C. E., & Fuller C. H. Green infrastructure can limit but not solve air pollution injustice. Nat. Commun. 12 , 4681 (2021).

Gordon, S. B., et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir. Med. 2 , 823–860 (2014).

Vandyck, T. et al. Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges. Nat. Commun. 9 , 4939 (2018).

Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-25491-w .

Download references

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Clean air for a sustainable world. Nat Commun 12 , 5824 (2021). https://doi.org/10.1038/s41467-021-25885-w

Download citation

Published : 04 October 2021

DOI : https://doi.org/10.1038/s41467-021-25885-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Processing nomex nanofibers by ionic solution blow-spinning for efficient high-temperature exhausts treatment.

  • Zekun Cheng
  • Haiyang Wang

Advanced Fiber Materials (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

air pollution nowadays essay

Air Pollution Essay

In this Air Pollution Essay , we had described the air pollution causes, its components & how to control air pollution in details.

Air pollution is the mixing of any harmful substances with the atmosphere, which affects the fresh air, human health, quality of life, etc. on a large scale.

In this article  Essay on Air Pollution , we had provided the various essays in different word limits, which you can use as per your need:

Air Pollution Essay 200 words:

Air pollution is increasing day by day as industries grow, such polluted air, although spreads throughout the atmosphere and affects the lives of people all over the world.

Polluted air is a factor in lungs disorders and even lungs cancer, thus affecting health as well as other body parts.

Air pollution has reached its peak by continuously destroying the entire ecosystem and affecting the life of trees, animals and also affecting the entire environment by allowing harmful hot radiation of the sun on the earth.

The re-polluted air prevents heat from going back into space as a better insulator.

Nowadays, air pollution is one of the major environmental issues; most of the air pollution is due to automobiles & various means of transport, industrialization, growing cities, etc. Also, read the Essay on Air Pollution 350 words.

The leakage of many harmful gases or hazardous elements from such sources is polluting the entire atmosphere.

The ozone layer is also being greatly affected due to air pollution, which is causing serious disruption in the environment.

Due to the over the increase in the population of human beings, their need is also increasing, which is the main cause of pollution.

Man’s daily activities cause many dangerous chemicals, polluting the environment, which forces negative changes in the climate.

In the process of industrialization, the aggressive handling of many harmful gases, particles, paints and batteries, cigarettes, etc. release carbon monoxide, carbon dioxide and other toxic gases into the atmosphere.

All types of pollution are associated with the environment, which invites the harmful rays of the sun to the earth by damaging the ozone layer.

To reduce the level of air pollution, we have to bring about big changes in our activities daily.

We should not cut the trees to reduce the effects of air pollution, use public transport, use prohibit sprinkler and do such activities that help prevent pollution in the environment.

At present, air pollution is the biggest problem in big cities all over the world especially due to industrialization.

Fog, smoke, particulates, solids, etc. leakage into the environment which causes poor environmental conditions in the city due to which people get dangerous health-related diseases.

People spread a lot of dirty waste daily, especially in big cities which contribute to pollution in the city environment on a very large scale.

Smoke and polluted gases from a motorcycle (bike), industrial process, waste burning etc. contribute to the air pollution.

Some natural pollutants like dust, soil particles, natural gases etc. are also sources of air pollution.

Essay on Air Pollution 350 words:

When pure fresh air is polluted due to dust, smoke, toxic gases, motor vehicles, mills and factories, etc., it is called air pollution.

Some natural and some human resources are factors of air pollution, however, most of the air pollution is caused by human activities such as burning of fossils, coal and oil, releasing harmful gases and substances from factories and motor vehicles.

Such harmful chemical elements like carbon oxide, nitrogen oxide, carbon mono oxide, sulfur oxide, solids etc. are getting mixed in the fresh air.

The level of air pollution has increased to a very large scale, due to the increasing the need for motor vehicles in the last century, which has increased air pollution by 69%.

Other sources of air pollution are the decomposition of waste in the landfill and the removal of methane gas (which is very harmful to health) from the process of neutralization of solids.

Rapidly increasing population, industrialization, increase in use of automated vehicles, aeroplanes, etc. have made a genuine natural issue.

The air we breathe every moment is completely polluted which goes through the blood circulation in our lungs and throughout the body and causes countless health problems.

Polluted air destroys trees, plants, animals and humans either directly or indirectly. Also, read Air Pollution Essay Conclusion.

If the policies that protect the environment are not seriously and strictly followed leads to the rising level of air pollution could increase on an annual basis of 1 million tons in the coming decades.

As we all know, fresh air is a very important factor for a healthy life, we need to think, what will happen when the air of the whole environment becomes dirty.

First of all, air pollution is a matter of great regret for the entire human race.

Some of the major big factors of air pollution are the use of toxic fertilizers, pesticides etc. by inexperienced farmers to increase their crop yield.

Chemical and hazardous gases (ammonia) are released from these fertilizers and combined into air pollution.

Burning of fossil fuels such as coal, petroleum including firewood from other factories, etc. are the main issues of air pollution.

Various types of smoke originating from motor vehicles and automatic vehicles such as cars, buses, bikes, trucks, jeeps, trains, aeroplanes, etc. are also the cause of air pollution.

Toxic industrial fumes and harmful gases (such as carbon mono oxide, organic compounds, hydrocarbons, chemicals, etc.) are released into the environment from factories and mills due to the increasing number of industries.

Some domestic activities like using unaware cleaning producers for cleaning, washing powder, paint etc. also releases the several toxic chemicals into the air.

The ever-increasing pollution levels have also worsened the negative and harmful effects on the health of its living. Also, read Air Pollution Essay Conclusion.

Air pollution is also the reason for the increase in global warming because the temperature of the atmosphere is increasing due to the increase in the level of greenhouse gases.

These greenhouse gases increase the greenhouse effect and rising sea level, melting of glaciers, changing of seasons, changing of climate, etc.

Increasing air pollution is causing many fatal diseases (cancer, heart attack, asthma, bronchitis, renal diseases etc.) and death.

Many important animal and plant species have been destroyed on this planet. The increase of harmful gases in the environment is causing acid rain and erosion of the ozone layer.

The constant increase of harmful and toxic substances in the fresh air of the atmosphere is the cause of air pollution.

Pollution caused by various external substances, toxic gases and other human actions affects fresh air which then adversely affects human life, plants and animals.

The level of air pollution depends on all the pollution that comes from different sources. The topography and weather conditions are increasing the endurance of pollution.

In industries, the amount of emissions of harmful gases from various types of raw materials used in the manufacturing process is increasing.

Increasing population density is demanding more industrialization, which ultimately causes air pollution.

Types of Air Pollution:

There are two types of air pollution, which are natural and man-made sources.

Some natural sources of air pollution such as volcanic eruptions, volcanoes (ash, carbon dioxide, smoke, dust and other gases), contraction, dust, sea and ocean salinity, soil particles, storms, forest fires, cosmic particles, Rays, bombardment of asteroid materials, comet sprays, pollen grains, fungal spores, viruses, bacteria, etc.

Man-made means of air pollution are industry, agriculture, energy plants, automated vehicles, domestic sources etc.

Man-made means include some air pollution such as smoke, dust, smoke, particulate matter, gas from the kitchen, household heat, smoke from various vehicles, use of pesticides, toxic gases used to kill weeds, the heat coming out of the plants is from fly ash etc.

As the number of air pollution increases, it is divided into two types, primary pollution and secondary pollution.

Primary Pollution:

Primary pollution directly affects fresh air and smoke, ash, dust, smoke, mist, spray, inorganic gases, carbon dioxide, carbon monoxide, sulfur dioxide, hydrogen sulfide, ammonia, is emitted from the nitric oxide and radioactive compounds.

Secondary Pollution:

Secondary pollutants which affect the air indirectly by chemically reacting with primary factors such as sulfur trioxide, ozone, hydrocarbons, nitrogen dioxide, etc.

The collective efforts of people all over the world can help in controlling air pollution.

Air Pollution Essay 1000 words:

Air pollution is pollution due to which human health is getting worse every day and it is also having a very bad effect on the environment.

This pollution is playing a major role in thinning the layer of ozone, due to which you will feel as if the air has been polluted as soon as you step outside the house.

One can see the clouds of smoke coming out of the chimneys of buses, scooters, cars, factories like fly ash (particles of ash scattered in the air) from the thermal power plants is polluting the air, cars is increasing the pollution on the road, cigarette smoke is also second in polluting the air.

Effects of Air Pollution:

  • Where more pollutants are polluting the air, burning sensation in the eyes, chest tightness and coughing are common.
  • Air pollution is also a sign of angina (a heart disease) or asthma (a lung disease), or sudden health deterioration.
  • Some people are very fragile, on whom the effect of air pollution becomes very fast and quick and on some people are effected after some days.
  • Children are more fragile than adults, so air pollution has a greater effect on them, because of which diseases such as varum and bronchitis occur in children.
  • Children should be kept indoors during times of high air pollution so that they can be protected from air pollution. Also, read Air Pollution Essay Conclusion.

Major Components of Air Pollution:

Carbon Mono Oxide:

It is a semi carbon produced from petrol, diesel fuel and wood burning, it is also produced from cigarettes. This creates a decrease in oxygen, also causes trouble in our sleep.

Carbon dioxide:

It is a greenhouse gas. When humans burn coal oil and natural gas, burning of these produces carbon dioxide gas.

Chloro-fluoro carbon:

It is a chemical that destroys ozone.

When it is used for air conditioning and refrigeration, its particles reach the stratosphere of our atmosphere, by mixing with air and damaging the ozone layer consisting of other gases.

This ozone layer protects animals and flora on the ground from ultraviolet rays damaging the sun. This is why chloro-fluoro carbon is a big threat to humans and another biological world.

Lead is especially found in diesel, petrol, batteries, paint and hair dyes etc. and it affects the children. This worsens the functioning of the brain and stomach and also cause cancer.

The ozone layer is the uppermost layer of the stratosphere in the atmosphere and it is a characteristic and important gas.

Its function is to prevent the harmful ultraviolet rays coming from the sun on the earth surface.

Yet it is highly contaminated on the ground surface and also poisonous. Ozone emanates in large numbers from clusters. Ozone causes watery eyes and irritation.

Nitrogen Oxide:

This causes fog and acid rain. This gas is produced by the burning of petrol, diesel and coal. This causes many types of diseases in children which are common in winter.

Suspended Particulate Matter (SPM): These are solids, fumes and dust particles in the air which remain in the air for a particular time. Due to which the lungs are damaged and have trouble breathing.

Sulphur dioxide:

When coal is burnt in a thermal power plant, the gas released from it is ‘sulfur dioxide’ gas. Sulfur dioxide is also present in gases used to melt metal and prepare the paper. This gas is very helpful in producing haze and in acid rain. Sulfur dioxide causes lung diseases.

How to Control of Air Pollution:

  • The government should make such policies that employees work from home.
  • Use more and more bicycles.
  • Use public transport.
  • Encourage students to use school transport.
  • Ask the family members to use cabs, so that they can sit in the same car and go to the office. This will save fuel and also reduce pollution.
  • Take care of trees and plants around your houses properly.
  • Do not use electricity, when not required.
  • Only switched on the cooler, fan or air conditioning in the room where it is necessary.
  • If you have dry leaves in your garden, do not burn them, but make it compost.
  • Get your car’s pollution checked at an interval of every three months.
  • Use only lead-free petrol.
  • Industrial areas should be set up away from residential areas.
  • Encouraged to use long chimneys (with filters and electrostatic precipitators).
  • Also, encourage high-temperature indicators in place of small temperature indicators.
  • Use flammable sources of energy.

Also, read 1. Water Pollution Essay 2. Water Conservation Essay 3. Environment Essay

Conclusion for Air Pollution Essay:

Air pollution is one of the major environmental problems that need to be solved simultaneously.

Urbanization has led to the exploitation of natural resources, which has led to constant pollution in the atmosphere.

Effect of all pollution is harmful and to protect the environment, we have to plant more and more trees.

• Section Under Essays

Gupshups is the place to find the most inspirational & motivation quotes, essay, speechs & lot more.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

  • Share full article

Advertisement

Supported by

One Thing Most Countries Have in Common: Unsafe Air

New research found that fewer than 10 percent of countries and territories met World Health Organization guidelines for particulate matter pollution last year.

A man covered his mouth and nose as he walks on a road with people in the background obscured by smoke and dust.

By Delger Erdenesanaa

Only 10 countries and territories out of 134 achieved the World Health Organization’s standards for a pervasive form of air pollution last year, according to air quality data compiled by IQAir , a Swiss company.

The pollution studied is called fine particulate matter, or PM2.5, because it refers to solid particles less than 2.5 micrometers in size: small enough to enter the bloodstream. PM2.5 is the deadliest form of air pollution, leading to millions of premature deaths each year .

“Air pollution and climate change both have the same culprit, which is fossil fuels,” said Glory Dolphin Hammes, the CEO of IQAir’s North American division.

The World Health Organization sets a guideline that people shouldn’t breathe more than 5 micrograms of fine particulate matter per cubic meter of air, on average, throughout a year. The U.S. Environmental Protection Agency recently proposed tightening its standard from 12 to 9 micrograms per cubic meter.

The few oases of clean air that meet World Health Organization guidelines are mostly islands, as well as Australia and the northern European countries of Finland and Estonia. Of the non-achievers, where the vast majority of the human population lives, the countries with the worst air quality were mostly in Asia and Africa.

Where some of the dirtiest air is found

The four most polluted countries in IQAir’s ranking for 2023 — Bangladesh, Pakistan, India and Tajikistan — are in South and Central Asia.

Air quality sensors in almost a third of the region’s cities reported concentrations of fine particulate matter that were more than 10 times the WHO guideline. This was a proportion “vastly exceeding any other region,” the report’s authors wrote.

The researchers pointed to vehicle traffic, coal and industrial emissions, particularly from brick kilns, as major sources of the region’s pollution. Farmers seasonally burning their crop waste contribute to the problem, as do households burning wood and dung for heat and cooking.

China reversed recent gains

One notable change in 2023 was a 6.3 percent increase in China’s air pollution compared with 2022, after at least five years of improvement. Beijing experienced a 14 percent increase in PM2.5 pollution last year.

The national government announced a “war against pollution” in 2014 and had been making progress ever since. But the sharpest decline in China’s PM2.5 pollution happened in 2020, when the coronavirus pandemic forced much of the country’s economic activity to slow or shut down. Ms. Dolphin Hammes attributed last year’s uptick to a reopening economy.

And challenges remain: Eleven cities in China reported air pollution levels last year that exceeded the WHO guidelines by 10 times or more. The worst was Hotan, Xinjiang.

Significant gaps in the data

IQAir researchers analyze data from more than 30,000 air quality monitoring stations and sensors across 134 countries, territories and disputed regions. Some of these monitoring stations are run by government agencies, while others are overseen by nonprofit organizations, schools, private companies and citizen scientists.

There are large gaps in ground-level air quality monitoring in Africa and the Middle East, including in regions where satellite data show some of the highest levels of air pollution on Earth.

As IQAir works to add data from more cities and countries in future years, “the worst might be yet to come in terms of what we’re measuring,” Ms. Dolphin Hammes said.

Wildfire smoke: a growing problem

Although North America is one of the cleaner regions in the world, in 2023 wildfires burned 4 percent of Canada’s forests, an area about half the size of Germany, and significantly impaired air quality.

Usually, North America’s list of most polluted cities is dominated by the United States. But last year, the top 13 spots all went to Canadian cities, many of them in Alberta.

In the United States, cities in the Upper Midwest and the Mid-Atlantic states also got significant amounts of PM2.5 pollution from wildfire smoke that drifted across the border.

Risks of short-term exposure

It’s not just chronic exposure to air pollution that harms people’s health.

For vulnerable people like the very young and old, or those with underlying illnesses, breathing in large amounts of fine particulate pollution for just a few hours or days can sometimes be deadly. About 1 million premature deaths per year can be attributed to short-term PM2.5 exposure, according to a recent global study published in The Lancet Planetary Health.

The problem is worst in East and South Asia, as well as in West Africa.

Without accounting for short-term exposures, “we might be underestimating the mortality burden from air pollution,” said Yuming Guo, a professor at Monash University in Melbourne, Australia, and one of the study’s authors.

U.S. disparities widen

Within individual countries, air pollution and its health effects aren’t evenly distributed.

Air quality in the United States has generally been improving since the Clean Air Act of the 1970s. Last decade, premature deaths from PM2.5 exposure declined to about 49,400 in 2019, down from about 69,000 in 2010.

But progress has happened faster in some communities than in others. Racial and ethnic disparities in air pollution deaths have grown in recent years, according to a national study published this month .

The census tracts in the United States with the fewest white residents have about 32 percent higher rates of PM2.5-related deaths, compared with those with the most white residents. This disparity in deaths per capita has increased by 16 percent between 2010 and 2019.

The study examined race and ethnicity separately, and found the disparity between the census tracts with the most and least Hispanic residents grew even more, by 40 percent.

In IQAir’s rankings, the United States is doing much better than most other countries. But studies that dig deeper show air quality is still an issue, said Gaige Kerr, a research scientist at George Washington University and the lead author of the disparities paper published in the journal Environmental Health Perspectives. “There’s still a lot of work to do,” he said.

Dr. Kerr’s research showed that mortality rates were highest on the Gulf Coast and in the Ohio River Valley, in areas dominated by petrochemical and manufacturing industries. He also noted that researchers have seen a slight uptick in rates of PM2.5-related deaths starting around 2016, particularly in the Western states, likely because of increasing wildfires.

Delger Erdenesanaa is a reporter covering climate and the environment and a member of the 2023-24 Times Fellowship class, a program for journalists early in their careers. More about Delger Erdenesanaa

Learn More About Climate Change

Have questions about climate change? Our F.A.Q. will tackle your climate questions, big and small .

Decades of buried trash in landfills is releasing methane , a powerful greenhouse gas, at higher rates than previously estimated, a study says.

Ocean Conservation Namibia is disentangling a record number of seals, while broadcasting the perils of marine debris in a largely feel-good way. Here’s how .

To decarbonize the electrical grid, companies are finding creative ways to store energy during periods of low demand in carbon dioxide storage balloons .

New satellite-based research reveals how land along the East Coast is slumping into the ocean, compounding the danger from global sea level rise . A major culprit: overpumping of groundwater.

Did you know the ♻ symbol doesn’t mean something is actually recyclable ? Read on about how we got here, and what can be done.

air pollution nowadays essay

25,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

air pollution nowadays essay

Verification Code

An OTP has been sent to your registered mobile no. Please verify

air pollution nowadays essay

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Environmental Pollution: 100 Words, 200 Words

' src=

  • Updated on  
  • Aug 31, 2023

essay on environmental pollution

One of the biggest risks to life as we know it is environmental degradation. The water we drink, the air we breathe, and the ecosystems on which we depend are all impacted by pollution. People, animals, and plants will decline if pollution levels continue to rise since they won’t be able to adapt to a significantly altered environment. Are you struggling to write an essay on environmental pollution? If the answer is yes, then this blog will help you get some ideas to write an effective essay. Keep reading further to know more!

This Blog Includes:

Essay on environmental pollution – 100 words , essay on environmental pollution – 250 words , essay on environmental pollution – 500 words .

The presence of contaminants in the environment is referred to as pollution. Gases like Carbon Dioxide (CO2) and Carbon Monoxide (CO), among others; solid pollutants like plastic, sewage, etc.; and chemicals like fertilisers, as well as those produced as byproducts in manufacturing, transportation, etc., are a few examples of polluting substances.

The immediate result of pollution is that it makes the world’s natural resources useless or toxic to use, as well as leads to the extinction of species and ecological imbalance. To stop more harm from occurring to the earth and its inhabitants due to environmental pollution, it is imperative to take proactive precautions.

Also Read: Essay on Pollution in Hindi 

When undesired elements, or pollutants, are present in the environment, it is said to be polluted. The environment is severely harmed by pollution, which poses a direct threat to it. Although the world has begun to understand the importance of addressing pollution if the planet and its biodiversity are to be conserved there is still a long way to go.

Everything that makes up the environment, including the air, water bodies, flora, and wildlife, is impacted by pollution in one way or another. There are four main types of pollution – Air Pollution, Water Pollution, Noise Pollution and Soil or Land Pollution . Additionally, pollution contributes to global issues including acid rain, global warming, and greenhouse gas consequences. A rise in the planet’s average surface temperature is referred to as global warming, and it causes starvation, floods, and droughts.

Environmental pollution has a wide-ranging impact. In addition to the current effects of pollution, a lack of effective pollution prevention measures also imperils the future of various species. The pollution is causing harm at a far faster rate than it can be healed. Reversing the environmental harm we have caused could take generations, and even then, it won’t be simple. It will require tight discipline and commitment to stop pollution.

The best ways feasible are being used by various nations to respond to these catastrophes. More efforts are being launched to raise public awareness about the dangers of pollution and the importance of preserving our ecosystem. Greener lifestyles are gaining popularity; examples include using wind and solar energy, new climate-friendly cars, and energy-efficient lighting. 

Also Read: Environmental Conservation

Pollution is the term used to describe the entry of pollutants into the environment. Noise, water, and air pollution are only a few of the several types of pollution. There is a direct relationship between the rise of pollution levels and illnesses among people. Therefore, it is important for everyone to be knowledgeable about pollution, its impacts, and effective ways to eliminate it. Our environment needs a balanced combination of all components, just like our body requires a balanced diet. The environment is polluted by any substance that is present above that limit for example rise in the levels of nitrogen oxides and carbon dioxide in the atmosphere causes harm to human health due to poor air quality. 

All forms of pollution, whether in the air, water, soil, or noise, have a negative impact on living things. Deadly diseases that are brought on by the contamination of soil, water, air, or sound affect organisms.

Among the most common disorders brought on by air pollution are acute lower respiratory infections in children, ischemic heart disease, stroke, lung cancer, chronic obstructive pulmonary disease (COPD), and lung cancer. Air pollution is a major contributor to a number of ailments in India, including strokes, bronchitis, heart attacks, lung diseases, cancer, and early mortality from heart disorders. The most pressing issue in the world now is global warming, which is caused by air pollution.

Around the world, poor drinking water quality is the reason behind 50% of child deaths and 80% of illnesses, including more than 50 different diseases. Water pollution causes diarrhoea, skin diseases, malnutrition, and even cancer, as well as other issues that are related to it.

 Every day, noise pollution has an effect on millions of people. The most frequent result of this is noise-induced hearing loss (NIHL). Loud noises have the potential to cause stress, high blood pressure, heart disease, and sleep difficulties. Children in particular are prone to these health issues across the board in terms of age groups. Noise pollution is extremely harmful, and it’s especially deadlier for people with heart issues. 

Use of the 3Rs, or reduce, reuse, and recycle, is the first step in reducing pollution. People should use air conditioners less since they generate noxious gases, such as ozone-depleting chlorofluorocarbons, which will minimise air pollution.

Reducing the number of vehicles on the road will also help to clean up the planet’s air. The more often cars are used, the more dangerous chemicals like sulphur dioxide, nitrogen oxides, carbon monoxide, and hydrocarbons that contribute to major air pollution are released into the atmosphere.

Increasing public awareness is a further means of reducing pollution on Earth. Through programmes like the “Go Green” campaign, which urges people to plant more trees and use recyclable materials in their daily lives, awareness can be raised about the significance of eliminating pollution on Earth. The “Earth Hour” is another globally recognised event that calls for everyone to turn off all lights for one hour in order to raise awareness of the significance of reducing electricity usage in order to minimise pollution on Earth.

The government’s obligation to maintain national laws is one way to reduce pollution on Earth. Offenders should be subject to harsh penalties, such as increased fines and longer prison terms, which will force them to reconsider their influence on the environment and serve as a message to those who are not currently involved but who might be in the future.

Must Read: Essay on Pollution: Elements, Type, Format & Samples

Light Pollution  Radioactive Pollution  Soil Pollution  Water Pollution  Air Pollution  Thermal Pollution  Noise Pollution 

Mentioned below are some of the ways to control environmental pollution:  Walk or ride a bicycle to work instead of driving. While replacing a car go for a fuel-efficient vehicle.  When leaving the room turn off the lights and television to save energy.  Buy energy-efficient appliances. 

There are many things that cause pollution such as by-products of coal-fueled power plants, vehicle emissions, fumes from chemical production, etc.  

We hope you got some ideas to write an effective essay on environmental pollution. To read more informative articles like this one, keep following Leverage Edu . 

' src=

Prachi Gupta

Prachi has 1.5 yrs of experience in Content & Copywriting. Her skills entail SEO, researching, brainstorming marketing campaigns, suggesting content ideas, graphic designing, Keyword research, understanding user intent etc. She thrives on a work culture that helps her unlearn redundant ways of thinking. Besides this, she always has her binoculars on looking for good books and music recommendations, cocktails and world history.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

air pollution nowadays essay

Connect With Us

air pollution nowadays essay

25,000+ students realised their study abroad dream with us. Take the first step today.

air pollution nowadays essay

Resend OTP in

air pollution nowadays essay

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

air pollution nowadays essay

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

air pollution nowadays essay

Make your study abroad dream a reality in January 2022 with

air pollution nowadays essay

India's Biggest Virtual University Fair

air pollution nowadays essay

Essex Direct Admission Day

Why attend .

air pollution nowadays essay

Don't Miss Out

Home — Essay Samples — Environment — Human Impact — Air Pollution

one px

Essays on Air Pollution

Hook examples for air pollution essays, statistical hook.

Did you know that each year, air pollution causes over 4.2 million premature deaths worldwide? These startling statistics underscore the urgent need to address this global crisis.

Anecdotal Hook

Picture this: A bustling cityscape obscured by a thick haze of smog, where children play wearing masks. This is the stark reality faced by many urban areas grappling with air pollution.

Question Hook

How can we breathe easy when the air we inhale is increasingly toxic? Explore the consequences of air pollution and discover potential solutions to this pressing environmental issue.

Rhetorical Question Hook

Can we afford to ignore the invisible threat that hangs in the air we breathe? Delve into the hidden dangers of air pollution and its far-reaching impact on public health.

Quotation Hook

"The earth does not belong to us: we belong to the earth." — Marlee Matlin. Reflect on this thought-provoking quote as we delve into the environmental implications of air pollution.

Historical Hook

Travel back to the mid-20th century when air quality in major cities like London and Los Angeles was notoriously poor. Explore the historical context of air pollution regulation and its impact.

Definition Hook

What exactly is air pollution, and how does it differ from other environmental issues? Gain a clear understanding of this concept and its multifaceted nature.

Contrast Hook

Contrast the serene beauty of pristine landscapes with images of smog-choked cities. This stark juxtaposition highlights the importance of combating air pollution.

Narrative Hook

Step into the shoes of individuals living in heavily polluted areas and experience their daily struggles. Their stories shed light on the human side of the air pollution crisis.

Shocking Statement Hook

Prepare to be shocked by the surprising sources of indoor air pollution lurking within our homes. The danger may be closer than you think.

Taming The Traffic Beast: a Solution to Traffic Jams

Air pollution: causes, effects, and proposed solutions, made-to-order essay as fast as you need it.

Each essay is customized to cater to your unique preferences

+ experts online

Multidimensional Perspectives on Air Pollution

Air pollution: causes and effects, how does air pollution effect on our health, problem of the air pollution, let us write you an essay from scratch.

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

The Move to Reduce Air Pollution to Preserve The Human Population

Air pollution: causes, effects, and solutions, air pollution its causes and damaging effects, air pollution in china, get a personalized essay in under 3 hours.

Expert-written essays crafted with your exact needs in mind

Human Impacts on The Environment

Cases of air pollution in malaysia, the urgent problem of pollution in modern world, negative impacts of air pollution and steps that the usa is taking to curb this problem, environmental pollution in the transport sector and the benefits of electric cars to our environment, ways you can reduce air pollution from your business , environmental factors and climate influences in california, environmental probelms in pakistan: issues in the big cities, evaluation of the health impact of air pollution in america and china, assessment of the ecological problem arising from air pollutants, analysis of the bronx air pollutants problem and the responsibility of the government, trees against world pollution, informative pollutions, their types, causes, impacts, and solutions, understanding the problem of air pollutants and its impact on temperature, the difficulties in mitigating the effects of climate change in the current world, analysis of the approach to better air quality and reduction of air pollution in the us, review of the documentary "under the dome" and the risks associated with air pollution in china, air filter in thailand, a study on the correlation between changes in air pollution and water sources, the serious problem of air pollution in saudi arabia and the solutions to the environmental issue.

Air pollution is contamination of the indoor or outdoor environment by any chemical, physical or biological agent that modifies the natural characteristics of the atmosphere.

Household combustion devices, motor vehicles, industrial facilities and forest fires are common sources of air pollution. Pollutants of major public health concern include particulate matter, carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide.

Respiratory and heart problems, child health problems, mortality, global warming, acid rain, eutrophication, depletion of the ozone layer, negative effect on wildlife.

Policies and investments that support sustainable land use, cleaner household energy and transport, energy-efficient housing, power generation, industry, and better municipal waste management can effectively reduce key sources of ambient air pollution.

A child born today might not breathe clean air until they are 8. Inhaling air pollution takes away at least 1-2 years of a typical human life. Pollutants that are released into the air, as opposed to land and water pollutants, are the most harmful. Rising levels of air pollution in Beijing has brought a new disease – Beijing cough.

Relevant topics

  • Fast Fashion
  • Water Pollution
  • Ocean Pollution
  • Deforestation
  • Climate Change
  • Natural Disasters
  • Global Warming

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

air pollution nowadays essay

Nowadays air pollution is becoming more serious. What are the causes of air pollution?

Unauthorized use and/or duplication of this material without express and written permission from this site’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Writing9 with appropriate and specific direction to the original content.

Use a variety of complex and simple sentences

You should use complex sentences in your writing, but it does not mean that you should try to make all of our sentences complex.

‘Complex’ sentences are not actually very complex; they are just two or more simple sentences put together. Putting them together makes the essay more coherent and cohesive.

I really want to study but I’m too tired.

I wore a warm coat because the weather was cold.

If action is not taken soon on climate change , global warming will get worse.

Discover more tips in The Ultimate Guide to Get a Target Band Score of 7+ » — a book that's free for 🚀 Premium users.

  • Check your IELTS essay »
  • Find essays with the same topic
  • View collections of IELTS Writing Samples
  • Show IELTS Writing Task 2 Topics

One of the prime times for advertising on TV is when children get back from school. Some people think that advertisements aimed at children should not be allowed. What is your opinion?

In many countries, there is an increase in the proportion of ageing population. some people think that old people over the age of sixty-five cannot contribute to our society any more. to what extent do you agree or disagree, it has been believed that people reading for pleasure have developed better imagination and language skills than people who prefer to watch tv. do you agree or disagree, in some countries, a few people earn extremely high salaries. some people think that this is good for a country , while others believe that the government should control salaries and limit the amount people can earn. discuss both views and give your opinion., many people work long hours, leaving very little time for leisure activities. does this situation have more advantages or more disadvantages give reasons for your answer and include any relevant examples from our own knowledge or experience..

IMAGES

  1. Write A Brief Paragraph On Air Pollution in 2021

    air pollution nowadays essay

  2. The Devastating Effects In Comprehensive: Air Pollution Essay

    air pollution nowadays essay

  3. SOLUTION: write Essay on pollution

    air pollution nowadays essay

  4. Air pollution essay in English

    air pollution nowadays essay

  5. Essay on Pollution in 150 Words

    air pollution nowadays essay

  6. Essay on Air Pollution for Students in English (2022)

    air pollution nowadays essay

VIDEO

  1. Air pollution essay English,english readingparagraph/Englishreadingpractice@Englishreadingpractice

  2. essay air pollution #short video , youtube channel subscribe kar do

  3. Air Pollution Essay in English || 10 Lines on Air Pollution

  4. Air Pollution Essay in English || Essay on Air Pollution in English

  5. 10 Lines on Pollution in English || Essay on Pollution 10 Lines || Pollution Essay in English

  6. Different Forms of Pollution

COMMENTS

  1. How air pollution is destroying our health

    As the world gets hotter and more crowded, our engines continue to pump out dirty emissions, and half the world has no access to clean fuels or technologies (e.g. stoves, lamps), the very air we breathe is growing dangerously polluted: nine out of ten people now breathe polluted air, which kills 7 million people every year. The health effects of air pollution are serious - one third of ...

  2. Essay on Air Pollution for Students and Children

    Effects Of Air Pollution On Health. The air pollution has many bad effects on the health of people. It is the cause of many skins and respiratory disorder in human beings. Also, it causes heart disease too. Air pollution causes asthma, bronchitis, and many other diseases. Moreover, it increases the rate of aging of lungs, decreases lungs ...

  3. Environmental and Health Impacts of Air Pollution: A Review

    Nowadays, multiple digital technologies can be used to produce a digital activism outcome on environmental issues. ... Air pollution is determined as the presence of pollutants in the air in large quantities for long ... the main proposal of this essay is that we should focus on fostering local structures to promote experience and practice and ...

  4. Air Pollution

    Air pollution is a health and environmental issue across all countries of the world but with large differences in severity. In the interactive map, we show death rates from air pollution across the world, measured as the number of deaths per 100,000 people in a given country or region.

  5. Air Pollution

    Air pollution consists of chemicals or particles in the air that can harm the health of humans, animals, and plants. It also damages buildings. Pollutants in the air take many forms. They can be gases, solid particles, or liquid droplets. Sources of Air Pollution Pollution enters the Earth's atmosphere in many different ways. Most air pollution is created by people, taking the form of ...

  6. Essay on Air Pollution for Students: Check Samples 100 Words to 250

    The consequences of air pollution are severe, impacting both human health and the environment. Prolonged exposure to polluted air can lead to respiratory diseases, cardiovascular issues, and even premature death. Additionally, air pollution harms ecosystems, leading to reduced crop yields and biodiversity loss.

  7. Air Pollution Essay for Students in English

    Effects of Air Pollution on Human Health. Air pollution has adverse effects on human health. Breathing polluted air puts you at higher risk of asthma. When exposed to ground ozone for 6 to 7 hours, people suffer from respiratory inflammation. Damages the immune system, endocrine, and reproductive systems.

  8. Air pollution kills millions every year, like a 'pandemic in slow motion'

    Air pollution's brutal bottom line—the more there is, the shorter the lives of those who breathe it—was established most definitively by a landmark 1993 project known as the "Six Cities ...

  9. Environmental and Health Impacts of Air Pollution: A Review

    Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders ( 3 ), leading to infant mortality or chronic disease in adult age ( 6 ). National reports have mentioned the increased risk of morbidity and mortality ( 1 ).

  10. Half the world's population are exposed to increasing air pollution

    Air pollution is high on the global agenda and is widely recognised as a threat to both public health and economic progress. The World Health Organization (WHO) estimates that 4.2 million deaths ...

  11. Climate Explainer: Climate Change and Air Pollution

    Air pollution is the world's leading environmental cause of illness and premature death. Fine air pollution particles or aerosols, also known as fine particulate matter or PM 2.5, are responsible for 6.4 million deaths every year, caused by diseases such as ischemic heart disease, stroke, lung cancer, chronic obstructive pulmonary disease ...

  12. Air Pollution: Current and Future Challenges

    Outdoor air pollution challenges facing the United States today include: Meeting health-based standards for common air pollutants. Limiting climate change. Reducing risks from toxic air pollutants. Protecting the stratospheric ozone layer against degradation. Indoor air pollution, which arises from a variety of causes, also can cause health ...

  13. Air pollution

    The combined effects of ambient air pollution and household air pollution is associated with 7 million premature deaths annually. Sources of air pollution are multiple and context specific. The major outdoor pollution sources include residential energy for cooking and heating, vehicles, power generation, agriculture/waste incineration, and ...

  14. ScienceAdviser: Air pollution's rising toll and other science stories

    Cause of death: air pollution According to a study released on the eve of this year's COP28 conference on climate change, more than eight million people die each year as a result of air pollution. The death toll is rising, experts say, and is expected to continue its disproportionate effects on low-income communities.

  15. Clean air for a sustainable world

    Air pollution is a cause of disease for millions around the world and now more than ever urgent action is required to tackle the burden of its impacts. Doing so will not only improve both life ...

  16. Air Pollution Essay

    Air Pollution Essay 200 words: Air pollution is increasing day by day as industries grow, such polluted air, although spreads throughout the atmosphere and affects the lives of people all over the world. Polluted air is a factor in lungs disorders and even lungs cancer, thus affecting health as well as other body parts.

  17. All but 7 Countries on Earth Have Air Pollution Above WHO Standard

    One Thing Most Countries Have in Common: Unsafe Air. New research found that fewer than 10 percent of countries and territories met World Health Organization guidelines for particulate matter ...

  18. Essay on Environmental Pollution: 100 Words, 200 Words

    Essay on Environmental Pollution - 100 Words . The presence of contaminants in the environment is referred to as pollution. Gases like Carbon Dioxide (CO2) and Carbon Monoxide (CO), among others; solid pollutants like plastic, sewage, etc.; and chemicals like fertilisers, as well as those produced as byproducts in manufacturing, transportation, etc., are a few examples of polluting substances.

  19. Free Air Pollution Essay Examples & Topic Ideas

    Air Pollution in China. 1 page / 300 words. Air pollution refers to a position of the Earth's atmosphere when harmful or excessive quantities of substances including biological molecules, particulates, and gases are released. As the Chinese economy gained pace, it had a parallel growth for energy consumption as well.

  20. Air pollution is the most important concern of many countries

    So, it results in an ecological imbalance in the atmosphere. The second point to consider is the depletion of flora and fauna. Air. pollution. has a detrimental impact on the lives of both animals and plants. In other words. , it increases the risk of extinction because of poor life conditions. Therefore. , the.

  21. Essay on Air Pollution

    Air Pollution. The whole world has been suffering from lots of problems since its existence, and the problems are getting bigger and bigger day by days.. One of the biggest problems that the entire planet faces is the amount of pollution on the planet. Pollution is of several kinds, but the pollution that affects the most to our nature and environment is Air pollution.

  22. Nowadays , air pollution is becoming a global problem over ...

    Crime is considering as worldwide issue and on the past decade, the percentage of crime is increased significantly. This essay will discase the reasons of the crime and how to limit the increase of the crime rate. In contemporary society, one of the main problems of the world is air pollution, which became a vast topic, and it's increasingly ...

  23. Nowadays air pollution is becoming more serious

    Nowadays air pollution is becoming more serious. What are the causes of air pollution? #air #pollution. Air. ... Putting them together makes the essay more coherent and cohesive. Examples: I really want to study but I'm too tired. I wore a warm coat because the weather was cold.