Science Essay Examples

Caleb S.

Best Science Essay Examples to Learn From

Published on: May 3, 2023

Last updated on: Jan 31, 2024

Science Essay Examples

Share this article

Are you struggling to write a science essay that stands out? 

Are you tired of feeling overwhelmed by scientific jargon and complicated concepts? 

You're not alone. 

Science essays can be a challenge for even the most dedicated students. It's no wonder that so many students struggle to produce top-notch papers.

But fear not! 

In this blog post, we'll provide you with some science essay examples and tips. We will help you write a top-notch paper that impresses your professor and earns you a high grade. 

So buckle up and get ready to tackle science essays like a pro!

On This Page On This Page -->

Science Essay Examples for Students

Writing a science essay can be a daunting task for students. However, with the right guidance and examples, it can also be a rewarding and enlightening experience.

Here, we'll provide you with examples so you can elevate your own writing.

Science Essay Example SPM

Scientific Essay Example Pdf (Insert

Science Paper Example

Science Project Essay Example

Science Essay Examples for Different Subjects

Science is a vast field that encompasses many different subjects, from biology to physics to chemistry. As a student, you may find yourself tasked with writing a science essay on a subject that you're not particularly familiar with. 

We have provided you with science essay examples for different subjects to help you get started.

Social Science Essay Example

Political Science Essay Example

Environmental Science Essay Example

Health Science Essay Example

Computer Science Essay Example

University Science Essay Examples

Science essays are important part of university-level education. However, different universities may have different requirements and expectations when it comes to writing these essays. 

That's why we've compiled some science essay examples for different universities. You can see what works and what doesn't, and tailor your own writing accordingly.

Scientific Essay Example University

Mcmaster Health Science Essay Example

Cornell Arts And Science Essay Example

Order Essay

Tough Essay Due? Hire Tough Writers!

Structure of a Science Essay

Science essays are a crucial part of many subjects, and learning to structure them effectively is essential for achieving academic success. 

Let’s explore scientific essay structure.

Introduction

The introduction of a science essay should introduce the topic and provide some context for the reader. 

You should explain the purpose of the essay and provide a thesis statement that outlines the main argument you will make in the essay. A good introduction should also capture the reader's interest and motivate them to read on.

Check out these how to start a science essay examples for better understanding:

Body Paragraphs

The body paragraphs of a science essay should provide evidence to support the thesis statement. You should use scientific evidence, research, and data to support your argument. 

Each paragraph should focus on one key point, and the points should be organized logically to create a coherent argument. It is essential to provide citations for all sources you use in your essay.

Here is an example for you:

The conclusion of a science essay should summarize the main points of the essay and restate the thesis statement in a compelling manner. 

You should also provide some final thoughts or recommendations based on the evidence presented in the essay. 

The conclusion should be concise and leave a lasting impression on the reader.

Natural Science Essay Topics

There are countless interesting, thought-provoking and problem solving essay topics in science.

Explore some compelling natural science essay topics to inspire your writing.

Science Essay Topics for 5th Graders

  • The importance of recycling for our environment
  • The different types of clouds and how they form
  • How animals hibernate during the winter months
  • The different types of rocks and how they are formed
  • The role of bees in pollination and food production
  • How light travels and how we see objects
  • The properties of magnets and how they work
  • The different stages of stem cell research 
  • The human digestive system and how it works
  • The effects of pollution on our environment and health

Science Essay Topics for 6th Graders

  • The impact of climate change on the planet
  • The different types of energy and how they are produced
  • The importance of water conservation and management
  • The role of artificial intelligence in human life
  • The structure and function of the human respiratory system
  • The properties and uses of acids and bases
  • The effect of light on plant growth and development
  • The differences between renewable and non-renewable energy sources
  • The process of photosynthesis and its importance for life on Earth
  • The impact of technology on the environment and society

Science Essay Topics for 7th Graders

  • The structure and function of the human circulatory system
  • The different types of fossils and how they are formed
  • The impact of natural disasters on the environment and human life
  • The pros and cons of bacteria in our bodies and in the environment
  • The physics of sound and how it travels
  • The effects of air pollution in United States
  • The properties and uses of different types of waves (sound, light, etc.)
  • The process of cell division and its role in growth and repair
  • The structure and function of the human nervous system
  • The different types of ecosystems and their unique characteristics

Paper Due? Why Suffer? That's our Job!

Tips for Writing a Science Essay

Writing a science essay can be challenging, especially if you don't have much experience in writing academic papers. 

However, with the right approach and strategies, you can produce a high-quality science essays. 

Here are some tips to help you write a successful science essay:

Understand the assignment requirements: Before you start writing your essay, make sure you understand the assignment requirements. Read the prompt carefully and make note of any specific guidelines or formatting requirements.

Choose a topic that interests you: Writing about a topic that you find interesting and engaging can make the process enjoyable and rewarding. Consider topics that you have studied in class or that you have a personal interest in.

Conduct thorough research: To write a successful science essay, you need to have a deep understanding of the topic you are writing about. Conduct thorough research using reliable sources such as academic journals, textbooks, and reputable websites.

Develop a clear and concise thesis statement: Your thesis statement should clearly state your argument or position on the topic you are writing about. It should be concise and specific, and should be supported by evidence throughout your essay.

Use evidence to support your claims: When writing a science essay, it's important to use evidence to support your claims and arguments. This can include scientific data, research findings, and expert opinions.

Edit and proofread your essay: Before submitting your essay, make sure to edit and proofread it carefully. Check for spelling and grammatical errors. Ensure that your essay is formatted correctly according to the assignment requirements.

In conclusion, this blog has provided a comprehensive guide to writing a successful science essay. 

By following the tips, students can produce high-quality essays that showcase their understanding of science.

If you're struggling to write a science essay or need additional assistance, CollegeEssay.org is one of the best online essay services to help you out,

Our expert writers have extensive experience in writing science essays for students of all levels. 

So why wait? Contact our science essay writing service today!

Frequently Asked Questions

What are some common mistakes to avoid when writing a science essay.

Some common mistakes to avoid include:

  • Plagiarizing content
  • Using incorrect or unreliable sources
  • Failing to clearly state your thesis
  • Using overly complex language 

How can I make my science essay stand out?

To make your science essay stand out, consider choosing a unique or controversial topic. Using relevant and up-to-date sources, and present your information in a clear and concise manner. You can also consider using visuals such as graphs or charts to enhance your essay.

What should I do if I'm struggling to come up with a topic for my science essay?

If you're struggling to come up with a topic for your science essay, consider discussing potential topics with your instructor or classmates. You can also conduct research online or in academic journals to find inspiration.

How important is research when writing a science essay?

Research is an essential component of writing a science essay. Your essay should be grounded in accurate and reliable scientific information. That is why it's important to conduct thorough research using reputable sources.

Can I use personal anecdotes or experiences in my science essay?

While personal anecdotes or experiences can be engaging, they may not always be relevant to a science essay. It's important to focus on presenting factual information and scientific evidence to support your argument or position.

Caleb S. (Law, Literature)

Caleb S. has extensive experience in writing and holds a Masters from Oxford University. He takes great satisfaction in helping students exceed their academic goals. Caleb always puts the needs of his clients first and is dedicated to providing quality service.

Paper Due? Why Suffer? That’s our Job!

Get Help

Legal & Policies

  • Privacy Policy
  • Cookies Policy
  • Terms of Use
  • Refunds & Cancellations
  • Our Writers
  • Success Stories
  • Our Guarantees
  • Affiliate Program
  • Referral Program
  • AI Essay Writer

Disclaimer: All client orders are completed by our team of highly qualified human writers. The essays and papers provided by us are not to be used for submission but rather as learning models only.

examples of scientific essay

Science Essay

Betty P.

Learn How to Write an A+ Science Essay

11 min read

science essay

People also read

150+ Engaging Science Essay Topics To Hook Your Readers

8 Impressive Science Essay Examples for Students

Science Fiction Essay: Examples & Easy Steps Guide

Essay About Science and Technology| Tips & Examples

Essay About Science in Everyday Life - Samples & Writing Tips

Check Out 5 Impressive Essay About Science Fair Examples

Did you ever imagine that essay writing was just for students in the Humanities? Well, think again! 

For science students, tackling a science essay might seem challenging, as it not only demands a deep understanding of the subject but also strong writing skills. 

However, fret not because we've got your back!

With the right steps and tips, you can write an engaging and informative science essay easily!

This blog will take you through all the important steps of writing a science essay, from choosing a topic to presenting the final work.

So, let's get into it!

Arrow Down

  • 1. What Is a Science Essay?
  • 2. How To Write a Science Essay?
  • 3. How to Structure a Science Essay?
  • 4. Science Essay Examples
  • 5. How to Choose the Right Science Essay Topic
  • 6. Science Essay Topics
  • 7. Science Essay Writing Tips

What Is a Science Essay?

A science essay is an academic paper focusing on a scientific topic from physics, chemistry, biology, or any other scientific field.

Science essays are mostly expository. That is, they require you to explain your chosen topic in detail. However, they can also be descriptive and exploratory.

A descriptive science essay aims to describe a certain scientific phenomenon according to established knowledge.

On the other hand, the exploratory science essay requires you to go beyond the current theories and explore new interpretations.

So before you set out to write your essay, always check out the instructions given by your instructor. Whether a science essay is expository or exploratory must be clear from the start. Or, if you face any difficulty, you can take help from a science essay writer as well. 

Moreover, check out this video to understand scientific writing in detail.

Now that you know what it is, let's look at the steps you need to take to write a science essay. 

Order Essay

Paper Due? Why Suffer? That's our Job!

How To Write a Science Essay?

Writing a science essay is not as complex as it may seem. All you need to do is follow the right steps to create an impressive piece of work that meets the assigned criteria.

Here's what you need to do:

Choose Your Topic

A good topic forms the foundation for an engaging and well-written essay. Therefore, you should ensure that you pick something interesting or relevant to your field of study. 

To choose a good topic, you can brainstorm ideas relating to the subject matter. You may also find inspiration from other science essays or articles about the same topic.

Conduct Research

Once you have chosen your topic, start researching it thoroughly to develop a strong argument or discussion in your essay. 

Make sure you use reliable sources and cite them properly . You should also make notes while conducting your research so that you can reference them easily when writing the essay. Or, you can get expert assistance from an essay writing service to manage your citations. 

Create an Outline

A good essay outline helps to organize the ideas in your paper. It serves as a guide throughout the writing process and ensures you don’t miss out on important points.

An outline makes it easier to write a well-structured paper that flows logically. It should be detailed enough to guide you through the entire writing process.

However, your outline should be flexible, and it's sometimes better to change it along the way to improve your structure.

Start Writing

Once you have a good outline, start writing the essay by following your plan.

The first step in writing any essay is to draft it. This means putting your thoughts down on paper in a rough form without worrying about grammar or spelling mistakes.

So begin your essay by introducing the topic, then carefully explain it using evidence and examples to support your argument.

Don't worry if your first draft isn't perfect - it's just the starting point!

Proofread & Edit

After finishing your first draft, take time to proofread and edit it for grammar and spelling mistakes.

Proofreading is the process of checking for grammatical mistakes. It should be done after you have finished writing your essay.

Editing, on the other hand, involves reviewing the structure and organization of your essay and its content. It should be done before you submit your final work.

Both proofreading and editing are essential for producing a high-quality essay. Make sure to give yourself enough time to do them properly!

After revising the essay, you should format it according to the guidelines given by your instructor. This could involve using a specific font size, page margins, or citation style.

Most science essays are written in Times New Roman font with 12-point size and double spacing. The margins should be 1 inch on all sides, and the text should be justified.

In addition, you must cite your sources properly using a recognized citation style such as APA , Chicago , or Harvard . Make sure to follow the guidelines closely so that your essay looks professional.

Following these steps will help you create an informative and well-structured science essay that meets the given criteria.

Tough Essay Due? Hire Tough Writers!

How to Structure a Science Essay?

A basic science essay structure includes an introduction, body, and conclusion. 

Let's look at each of these briefly.

  • Introduction

Your essay introduction should introduce your topic and provide a brief overview of what you will discuss in the essay. It should also state your thesis or main argument.

For instance, a thesis statement for a science essay could be, 

"The human body is capable of incredible feats, as evidenced by the many athletes who have competed in the Olympic games."

The body of your essay will contain the bulk of your argument or discussion. It should be divided into paragraphs, each discussing a different point.

For instance, imagine you were writing about sports and the human body. 

Your first paragraph can discuss the physical capabilities of the human body. 

The second paragraph may be about the physical benefits of competing in sports. 

Similarly, in the third paragraph, you can present one or two case studies of specific athletes to support your point. 

Once you have explained all your points in the body, it’s time to conclude the essay.

Your essay conclusion should summarize the main points of your essay and leave the reader with a sense of closure.

In the conclusion, you reiterate your thesis and sum up your arguments. You can also suggest implications or potential applications of the ideas discussed in the essay. 

By following this structure, you will create a well-organized essay.

Check out a few example essays to see this structure in practice.

Science Essay Examples

A great way to get inspired when writing a science essay is to look at other examples of successful essays written by others. 

Here are some examples that will give you an idea of how to write your essay.

Science Essay About Genetics - Science Essay Example

Environmental Science Essay Example | PDF Sample

The Science of Nanotechnology

Science, Non-Science, and Pseudo-Science

The Science Of Science Education

Science in our Daily Lives

Short Science Essay Example

Let’s take a look at a short science essay: 

Want to read more essay examples? Here, you can find more science essay examples to learn from.

How to Choose the Right Science Essay Topic

Choosing the right science essay topic is a critical first step in crafting a compelling and engaging essay. Here's a concise guide on how to make this decision wisely:

  • Consider Your Interests: Start by reflecting on your personal interests within the realm of science. Selecting a topic that genuinely fascinates you will make the research and writing process more enjoyable and motivated.
  • Relevance to the Course: Ensure that your chosen topic aligns with your course or assignment requirements. Read the assignment guidelines carefully to understand the scope and focus expected by your instructor.
  • Current Trends and Issues: Stay updated with the latest scientific developments and trends. Opting for a topic that addresses contemporary issues not only makes your essay relevant but also demonstrates your awareness of current events in the field.
  • Narrow Down the Scope: Science is vast, so narrow your topic to a manageable scope. Instead of a broad subject like "Climate Change," consider a more specific angle like "The Impact of Melting Arctic Ice on Global Sea Levels."
  • Available Resources: Ensure that there are sufficient credible sources and research materials available for your chosen topic. A lack of resources can hinder your research efforts.
  • Discuss with Your Instructor: If you're uncertain about your topic choice, don't hesitate to consult your instructor or professor. They can provide valuable guidance and may even suggest specific topics based on your academic goals.

Science Essay Topics

Choosing an appropriate topic for a science essay is one of the first steps in writing a successful paper.

Here are a few science essay topics to get you started:

  • How space exploration affects our daily lives?
  • How has technology changed our understanding of medicine?
  • Are there ethical considerations to consider when conducting scientific research?
  • How does climate change affect the biodiversity of different parts of the world?
  • How can artificial intelligence be used in medicine?
  • What impact have vaccines had on global health?
  • What is the future of renewable energy?
  • How do we ensure that genetically modified organisms are safe for humans and the environment?
  • The influence of social media on human behavior: A social science perspective
  • What are the potential risks and benefits of stem cell therapy?

Important science topics can cover anything from space exploration to chemistry and biology. So you can choose any topic according to your interests!

Need more topics? We have gathered 100+ science essay topics to help you find a great topic!

Continue reading to find some tips to help you write a successful science essay. 

Science Essay Writing Tips

Once you have chosen a topic and looked at examples, it's time to start writing the science essay.

Here are some key tips for a successful essay:

  • Research thoroughly

Make sure you do extensive research before you begin writing your paper. This will ensure that the facts and figures you include are accurate and supported by reliable sources.

  • Use clear language

Avoid using jargon or overly technical language when writing your essay. Plain language is easier to understand and more engaging for readers.

  • Referencing

Always provide references for any information you include in your essay. This will demonstrate that you acknowledge other people's work and show that the evidence you use is credible.

Make sure to follow the basic structure of an essay and organize your thoughts into clear sections. This will improve the flow and make your essay easier to read.

  • Ask someone to proofread

It’s also a good idea to get someone else to proofread your work as they may spot mistakes that you have missed.

These few tips will help ensure that your science essay is well-written and informative!

You've learned the steps to writing a successful science essay and looked at some examples and topics to get you started. 

Make sure you thoroughly research, use clear language, structure your thoughts, and proofread your essay. With these tips, you’re sure to write a great science essay! 

Do you still need expert help writing a science essay? Our science essay writing service is here to help. With our team of professional writers, you can rest assured that your essay will be written to the highest standards.

Contact our essay service now to get started!

Also, do not forget to try our essay typer tool for quick and cost-free aid with your essays!

AI Essay Bot

Write Essay Within 60 Seconds!

Betty P.

Betty is a freelance writer and researcher. She has a Masters in literature and enjoys providing writing services to her clients. Betty is an avid reader and loves learning new things. She has provided writing services to clients from all academic levels and related academic fields.

Get Help

Paper Due? Why Suffer? That’s our Job!

Keep reading

science essay topics

How to Write a Scientific Essay

How to write a scientific essay

When writing any essay it’s important to always keep the end goal in mind. You want to produce a document that is detailed, factual, about the subject matter and most importantly to the point.

Writing scientific essays will always be slightly different to when you write an essay for say English Literature . You need to be more analytical and precise when answering your questions. To help achieve this, you need to keep three golden rules in mind.

  • Analysing the question, so that you know exactly what you have to do

Planning your answer

  • Writing the essay

Now, let’s look at these steps in more detail to help you fully understand how to apply the three golden rules.

Analysing the question

  • Start by looking at the instruction. Essays need to be written out in continuous prose. You shouldn’t be using bullet points or writing in note form.
  • If it helps to make a particular point, however, you can use a diagram providing it is relevant and adequately explained.
  • Look at the topic you are required to write about. The wording of the essay title tells you what you should confine your answer to – there is no place for interesting facts about other areas.

The next step is to plan your answer. What we are going to try to do is show you how to produce an effective plan in a very short time. You need a framework to show your knowledge otherwise it is too easy to concentrate on only a few aspects.

For example, when writing an essay on biology we can divide the topic up in a number of different ways. So, if you have to answer a question like ‘Outline the main properties of life and system reproduction’

The steps for planning are simple. Firstly, define the main terms within the question that need to be addressed. Then list the properties asked for and lastly, roughly assess how many words of your word count you are going to allocate to each term.

Writing the Essay

The final step (you’re almost there), now you have your plan in place for the essay, it’s time to get it all down in black and white. Follow your plan for answering the question, making sure you stick to the word count, check your spelling and grammar and give credit where credit’s (always reference your sources).

How Tutors Breakdown Essays

An exceptional essay

  • reflects the detail that could be expected from a comprehensive knowledge and understanding of relevant parts of the specification
  • is free from fundamental errors
  • maintains appropriate depth and accuracy throughout
  • includes two or more paragraphs of material that indicates greater depth or breadth of study

A good essay

An average essay

  • contains a significant amount of material that reflects the detail that could be expected from a knowledge and understanding of relevant parts of the specification.

In practice this will amount to about half the essay.

  • is likely to reflect limited knowledge of some areas and to be patchy in quality
  • demonstrates a good understanding of basic principles with some errors and evidence of misunderstanding

A poor essay

  • contains much material which is below the level expected of a candidate who has completed the course
  • Contains fundamental errors reflecting a poor grasp of basic principles and concepts

examples of scientific essay

Privacy Overview

examples of scientific essay

Writing the Scientific Paper

When you write about scientific topics to specialists in a particular scientific field, we call that scientific writing. (When you write to non-specialists about scientific topics, we call that science writing.)

The scientific paper has developed over the past three centuries into a tool to communicate the results of scientific inquiry. The main audience for scientific papers is extremely specialized. The purpose of these papers is twofold: to present information so that it is easy to retrieve, and to present enough information that the reader can duplicate the scientific study. A standard format with six main part helps readers to find expected information and analysis:

  • Title--subject and what aspect of the subject was studied.
  • Abstract--summary of paper: The main reason for the study, the primary results, the main conclusions
  • Introduction-- why the study was undertaken
  • Methods and Materials-- how the study was undertaken
  • Results-- what was found
  • Discussion-- why these results could be significant (what the reasons might be for the patterns found or not found)

There are many ways to approach the writing of a scientific paper, and no one way is right. Many people, however, find that drafting chunks in this order works best: Results, Discussion, Introduction, Materials & Methods, Abstract, and, finally, Title.

The title should be very limited and specific. Really, it should be a pithy summary of the article's main focus.

  • "Renal disease susceptibility and hypertension are under independent genetic control in the fawn hooded rat"
  • "Territory size in Lincoln's Sparrows ( Melospiza lincolnii )"
  • "Replacement of deciduous first premolars and dental eruption in archaeocete whales"
  • "The Radio-Frequency Single-Electron Transistor (RF-SET): A Fast and Ultrasensitive Electrometer"

This is a summary of your article. Generally between 50-100 words, it should state the goals, results, and the main conclusions of your study. You should list the parameters of your study (when and where was it conducted, if applicable; your sample size; the specific species, proteins, genes, etc., studied). Think of the process of writing the abstract as taking one or two sentences from each of your sections (an introductory sentence, a sentence stating the specific question addressed, a sentence listing your main techniques or procedures, two or three sentences describing your results, and one sentence describing your main conclusion).

Example One

Hypertension, diabetes and hyperlipidemia are risk factors for life-threatening complications such as end-stage renal disease, coronary artery disease and stroke. Why some patients develop complications is unclear, but only susceptibility genes may be involved. To test this notion, we studied crosses involving the fawn-hooded rat, an animal model of hypertension that develops chronic renal failure. Here, we report the localization of two genes, Rf-1 and Rf-2 , responsible for about half of the genetic variation in key indices of renal impairment. In addition, we localize a gene, Bpfh-1 , responsible for about 26% of the genetic variation in blood pressure. Rf-1 strongly affects the risk of renal impairment, but has no significant effect on blood pressure. Our results show that susceptibility to a complication of hypertension is under at least partially independent genetic control from susceptibility to hypertension itself.

Brown, Donna M, A.P. Provoost, M.J. Daly, E.S. Lander, & H.J. Jacob. 1996. "Renal disease susceptibility and hypertension are under indpendent genetic control in the faun-hooded rat." Nature Genetics , 12(1):44-51.

Example Two

We studied survival of 220 calves of radiocollared moose ( Alces alces ) from parturition to the end of July in southcentral Alaska from 1994 to 1997. Prior studies established that predation by brown bears ( Ursus arctos ) was the primary cause of mortality of moose calves in the region. Our objectives were to characterize vulnerability of moose calves to predation as influenced by age, date, snow depths, and previous reproductive success of the mother. We also tested the hypothesis that survival of twin moose calves was independent and identical to that of single calves. Survival of moose calves from parturition through July was 0.27 ± 0.03 SE, and their daily rate of mortality declined at a near constant rate with age in that period. Mean annual survival was 0.22 ± 0.03 SE. Previous winter's snow depths or survival of the mother's previous calf was not related to neonatal survival. Selection for early parturition was evidenced in the 4 years of study by a 6.3% increase in the hazard of death with each daily increase in parturition date. Although there was no significant difference in survival of twin and single moose calves, most twins that died disappeared together during the first 15 days after birth and independently thereafter, suggesting that predators usually killed both when encountered up to that age.

Key words: Alaska, Alces alces , calf survival, moose, Nelchina, parturition synchrony, predation

Testa, J.W., E.F. Becker, & G.R. Lee. 2000. "Temporal patterns in the survival of twin and single moose ( alces alces ) calves in southcentral Alaska." Journal of Mammalogy , 81(1):162-168.

Example Three

We monitored breeding phenology and population levels of Rana yavapaiensis by use of repeated egg mass censuses and visual encounter surveys at Agua Caliente Canyon near Tucson, Arizona, from 1994 to 1996. Adult counts fluctuated erratically within each year of the study but annual means remained similar. Juvenile counts peaked during the fall recruitment season and fell to near zero by early spring. Rana yavapaiensis deposited eggs in two distinct annual episodes, one in spring (March-May) and a much smaller one in fall (September-October). Larvae from the spring deposition period completed metamorphosis in earlv summer. Over the two years of study, 96.6% of egg masses successfully produced larvae. Egg masses were deposited during periods of predictable, moderate stream flow, but not during seasonal periods when flash flooding or drought were likely to affect eggs or larvae. Breeding phenology of Rana yavapaiensis is particularly well suited for life in desert streams with natural flow regimes which include frequent flash flooding and drought at predictable times. The exotic predators of R. yavapaiensis are less able to cope with fluctuating conditions. Unaltered stream flow regimes that allow natural fluctuations in stream discharge may provide refugia for this declining ranid frog from exotic predators by excluding those exotic species that are unable to cope with brief flash flooding and habitat drying.

Sartorius, Shawn S., and Philip C. Rosen. 2000. "Breeding phenology of the lowland leopard frog ( Rana yavepaiensis )." Southwestern Naturalist , 45(3): 267-273.

Introduction

The introduction is where you sketch out the background of your study, including why you have investigated the question that you have and how it relates to earlier research that has been done in the field. It may help to think of an introduction as a telescoping focus, where you begin with the broader context and gradually narrow to the specific problem addressed by the report. A typical (and very useful) construction of an introduction proceeds as follows:

"Echimyid rodents of the genus Proechimys (spiny rats) often are the most abundant and widespread lowland forest rodents throughout much of their range in the Neotropics (Eisenberg 1989). Recent studies suggested that these rodents play an important role in forest dynamics through their activities as seed predators and dispersers of seeds (Adler and Kestrell 1998; Asquith et al 1997; Forget 1991; Hoch and Adler 1997)." (Lambert and Adler, p. 70)

"Our laboratory has been involved in the analysis of the HLA class II genes and their association with autoimmune disorders such as insulin-dependent diabetes mellitus. As part of this work, the laboratory handles a large number of blood samples. In an effort to minimize the expense and urgency of transportation of frozen or liquid blood samples, we have designed a protocol that will preserve the integrity of lymphocyte DNA and enable the transport and storage of samples at ambient temperatures." (Torrance, MacLeod & Hache, p. 64)

"Despite the ubiquity and abundance of P. semispinosus , only two previous studies have assessed habitat use, with both showing a generalized habitat use. [brief summary of these studies]." (Lambert and Adler, p. 70)

"Although very good results have been obtained using polymerase chain reaction (PCR) amplification of DNA extracted from dried blood spots on filter paper (1,4,5,8,9), this preservation method yields limited amounts of DNA and is susceptible to contamination." (Torrance, MacLeod & Hache, p. 64)

"No attempt has been made to quantitatively describe microhabitat characteristics with which this species may be associated. Thus, specific structural features of secondary forests that may promote abundance of spiny rats remains unknown. Such information is essential to understand the role of spiny rats in Neotropical forests, particularly with regard to forest regeneration via interactions with seeds." (Lambert and Adler, p. 71)

"As an alternative, we have been investigating the use of lyophilization ("freeze-drying") of whole blood as a method to preserve sufficient amounts of genomic DNA to perform PCR and Southern Blot analysis." (Torrance, MacLeod & Hache, p. 64)

"We present an analysis of microhabitat use by P. semispinosus in tropical moist forests in central Panama." (Lambert and Adler, p. 71)

"In this report, we summarize our analysis of genomic DNA extracted from lyophilized whole blood." (Torrance, MacLeod & Hache, p. 64)

Methods and Materials

In this section you describe how you performed your study. You need to provide enough information here for the reader to duplicate your experiment. However, be reasonable about who the reader is. Assume that he or she is someone familiar with the basic practices of your field.

It's helpful to both writer and reader to organize this section chronologically: that is, describe each procedure in the order it was performed. For example, DNA-extraction, purification, amplification, assay, detection. Or, study area, study population, sampling technique, variables studied, analysis method.

Include in this section:

  • study design: procedures should be listed and described, or the reader should be referred to papers that have already described the used procedure
  • particular techniques used and why, if relevant
  • modifications of any techniques; be sure to describe the modification
  • specialized equipment, including brand-names
  • temporal, spatial, and historical description of study area and studied population
  • assumptions underlying the study
  • statistical methods, including software programs

Example description of activity

Chromosomal DNA was denatured for the first cycle by incubating the slides in 70% deionized formamide; 2x standard saline citrate (SSC) at 70ºC for 2 min, followed by 70% ethanol at -20ºC and then 90% and 100% ethanol at room temperature, followed by air drying. (Rouwendal et al ., p. 79)

Example description of assumptions

We considered seeds left in the petri dish to be unharvested and those scattered singly on the surface of a tile to be scattered and also unharvested. We considered seeds in cheek pouches to be harvested but not cached, those stored in the nestbox to be larderhoarded, and those buried in caching sites within the arena to be scatterhoarded. (Krupa and Geluso, p. 99)

Examples of use of specialized equipment

  • Oligonucleotide primers were prepared using the Applied Biosystems Model 318A (Foster City, CA) DNA Synthesizer according to the manufacturers' instructions. (Rouwendal et al ., p.78)
  • We first visually reviewed the complete song sample of an individual using spectrograms produced on a Princeton Applied Research Real Time Spectrum Analyzer (model 4512). (Peters et al ., p. 937)

Example of use of a certain technique

Frogs were monitored using visual encounter transects (Crump and Scott, 1994). (Sartorius and Rosen, p. 269)

Example description of statistical analysis

We used Wilcox rank-sum tests for all comparisons of pre-experimental scores and for all comparisons of hue, saturation, and brightness scores between various groups of birds ... All P -values are two-tailed unless otherwise noted. (Brawner et al ., p. 955)

This section presents the facts--what was found in the course of this investigation. Detailed data--measurements, counts, percentages, patterns--usually appear in tables, figures, and graphs, and the text of the section draws attention to the key data and relationships among data. Three rules of thumb will help you with this section:

  • present results clearly and logically
  • avoid excess verbiage
  • consider providing a one-sentence summary at the beginning of each paragraph if you think it will help your reader understand your data

Remember to use table and figures effectively. But don't expect these to stand alone.

Some examples of well-organized and easy-to-follow results:

  • Size of the aquatic habitat at Agua Caliente Canyon varied dramatically throughout the year. The site contained three rockbound tinajas (bedrock pools) that did not dry during this study. During periods of high stream discharge seven more seasonal pools and intermittent stretches of riffle became available. Perennial and seasonal pool levels remained stable from late February through early May. Between mid-May and mid-July seasonal pools dried until they disappeared. Perennial pools shrank in surface area from a range of 30-60 m² to 3-5- M². (Sartorius and Rosen, Sept. 2000: 269)

Notice how the second sample points out what is important in the accompanying figure. It makes us aware of relationships that we may not have noticed quickly otherwise and that will be important to the discussion.

A similar test result is obtained with a primer derived from the human ß-satellite... This primer (AGTGCAGAGATATGTCACAATG-CCCC: Oligo 435) labels 6 sites in the PRINS reaction: the chromosomes 1, one pair of acrocentrics and, more weakly, the chromosomes 9 (Fig. 2a). After 10 cycles of PCR-IS, the number of sites labeled has doubled (Fig. 2b); after 20 cycles, the number of sites labeled is the same but the signals are stronger (Fig. 2c) (Rouwendal et al ., July 93:80).

Related Information: Use Tables and Figures Effectively

Do not repeat all of the information in the text that appears in a table, but do summarize it. For example, if you present a table of temperature measurements taken at various times, describe the general pattern of temperature change and refer to the table.

"The temperature of the solution increased rapidly at first, going from 50º to 80º in the first three minutes (Table 1)."

You don't want to list every single measurement in the text ("After one minute, the temperature had risen to 55º. After two minutes, it had risen to 58º," etc.). There is no hard and fast rule about when to report all measurements in the text and when to put the measurements in a table and refer to them, but use your common sense. Remember that readers have all that data in the accompanying tables and figures, so your task in this section is to highlight key data, changes, or relationships.

In this section you discuss your results. What aspect you choose to focus on depends on your results and on the main questions addressed by them. For example, if you were testing a new technique, you will want to discuss how useful this technique is: how well did it work, what are the benefits and drawbacks, etc. If you are presenting data that appear to refute or support earlier research, you will want to analyze both your own data and the earlier data--what conditions are different? how much difference is due to a change in the study design, and how much to a new property in the study subject? You may discuss the implication of your research--particularly if it has a direct bearing on a practical issue, such as conservation or public health.

This section centers on speculation . However, this does not free you to present wild and haphazard guesses. Focus your discussion around a particular question or hypothesis. Use subheadings to organize your thoughts, if necessary.

This section depends on a logical organization so readers can see the connection between your study question and your results. One typical approach is to make a list of all the ideas that you will discuss and to work out the logical relationships between them--what idea is most important? or, what point is most clearly made by your data? what ideas are subordinate to the main idea? what are the connections between ideas?

Achieving the Scientific Voice

Eight tips will help you match your style for most scientific publications.

  • Develop a precise vocabulary: read the literature to become fluent, or at least familiar with, the sort of language that is standard to describe what you're trying to describe.
  • Once you've labeled an activity, a condition, or a period of time, use that label consistently throughout the paper. Consistency is more important than creativity.
  • Define your terms and your assumptions.
  • Include all the information the reader needs to interpret your data.
  • Remember, the key to all scientific discourse is that it be reproducible . Have you presented enough information clearly enough that the reader could reproduce your experiment, your research, or your investigation?
  • When describing an activity, break it down into elements that can be described and labeled, and then present them in the order they occurred.
  • When you use numbers, use them effectively. Don't present them so that they cause more work for the reader.
  • Include details before conclusions, but only include those details you have been able to observe by the methods you have described. Do not include your feelings, attitudes, impressions, or opinions.
  • Research your format and citations: do these match what have been used in current relevant journals?
  • Run a spellcheck and proofread carefully. Read your paper out loud, and/ or have a friend look over it for misspelled words, missing words, etc.

Applying the Principles, Example 1

The following example needs more precise information. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: Each male sang a definite number of songs while singing. They start with a whistle and then go from there. Each new song is always different, but made up an overall repertoire that was completed before starting over again. In 16 cases (84%), no new songs were sung after the first 20, even though we counted about 44 songs for each bird.
After: Each male used a discrete number of song types in his singing. Each song began with an introductory whistle, followed by a distinctive, complex series of fluty warbles (Fig. 1). Successive songs were always different, and five of the 19 males presented their entire song repertoire before repeating any of their song types (i.e., the first IO recorded songs revealed the entire repertoire of 10 song types). Each song type recurred in long sequences of singing, so that we could be confident that we had recorded the entire repertoire of commonly used songs by each male. For 16 of the 19 males, no new song types were encountered after the first 20 songs, even though we analyzed and average of 44 songs/male (range 30-59).

Applying the Principles, Example 2

In this set of examples, even a few changes in wording result in a more precise second version. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: The study area was on Mt. Cain and Maquilla Peak in British Columbia, Canada. The study area is about 12,000 ha of coastal montane forest. The area is both managed and unmanaged and ranges from 600-1650m. The most common trees present are mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).
After: The study took place on Mt. Cain and Maquilla Peak (50'1 3'N, 126'1 8'W), Vancouver Island, British Columbia. The study area encompassed 11,800 ha of coastal montane forest. The landscape consisted of managed and unmanaged stands of coastal montane forest, 600-1650 m in elevation. The dominant tree species included mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).

Two Tips for Sentence Clarity

Although you will want to consider more detailed stylistic revisions as you become more comfortable with scientific writing, two tips can get you started:

First, the verb should follow the subject as soon as possible.

Really Hard to Read : "The smallest of the URF's (URFA6L), a 207-nucleotide (nt) reading frame overlapping out of phase the NH2- terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit gene."

Less Hard to Read : "The smallest of the UR-F's is URFA6L, a 207-nucleotide (nt) reading frame overlapping out of phase the NH2-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene; it has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene."

Second, place familiar information first in a clause, a sentence, or a paragraph, and put the new and unfamiliar information later.

More confusing : The epidermis, the dermis, and the subcutaneous layer are the three layers of the skin. A layer of dead skin cells makes up the epidermis, which forms the body's shield against the world. Blood vessels, carrying nourishment, and nerve endings, which relay information about the outside world, are found in the dermis. Sweat glands and fat cells make up the third layer, the subcutaneous layer.

Less confusing : The skin consists of three layers: the epidermis, the dermis, and the subcutaneous layer. The epidermis is made up of dead skin cells, and forms a protective shield between the body and the world. The dermis contains the blood vessels and nerve endings that nourish the skin and make it receptive to outside stimuli. The subcutaneous layer contains the sweat glands and fat cells which perform other functions of the skin.

Bibliography

  • Scientific Writing for Graduate Students . F. P. Woodford. Bethesda, MD: Council of Biology Editors, 1968. [A manual on the teaching of writing to graduate students--very clear and direct.]
  • Scientific Style and Format . Council of Biology Editors. Cambridge: Cambridge University Press, 1994.
  • "The science of scientific writing." George Gopen and Judith Swann. The American Scientist , Vol. 78, Nov.-Dec. 1990. Pp 550-558.
  • "What's right about scientific writing." Alan Gross and Joseph Harmon. The Scientist , Dec. 6 1999. Pp. 20-21.
  • "A Quick Fix for Figure Legends and Table Headings." Donald Kroodsma. The Auk , 117 (4): 1081-1083, 2000.

Wortman-Wunder, Emily, & Kate Kiefer. (1998). Writing the Scientific Paper. Writing@CSU . Colorado State University. https://writing.colostate.edu/resources/writing/guides/.

  • For Authors
  • Collaboration
  • Privacy Policy

Atlas of Science

  • Conferences & Symposiums

Tools & Methods

How to successfully write a scientific essay.

Posted by Cody Rhodes

If you are undertaking a course which relates to science, you are more or less apt to write an essay on science. You need to know how to write a science essay irrespective of whether your professor gives you a topic or you come up with one. Additionally, you need to have an end objective in mind. Writing a science essay necessitates that you produce an article which has all the details and facts about the subject matter and it ought to be to the point. Also, you need to know and understand that science essays are more or less different from other types of essays. They require you to be analytical and precise when answering questions. Hence, this can be quite challenging and tiresome. However, that should not deter you from learning how to write your paper. You can always inquire for pre-written research papers for sale from writing services like EssayZoo.

Also, you can read other people’s articles and find out how they produce and develop unique and high-quality papers. Moreover, this will help you understand how to approach your essays in different ways. Nonetheless, if you want to learn how to write a scientific paper in a successful manner, consider the following tips.

How to successfully write a scientific essay

Select a topic for your article Like any other type of essay, you need to have a topic before you start the actual writing process. Your professor or instructor may give you a science essay topic to write about or ask you to come up with yours. When selecting a topic for your paper, ensure that you choose one you can write about. Do not pick a complex topic which can make the writing process boring and infuriating for you. Instead, choose one that you are familiar with. Select a topic you will not struggle gathering information about. Also, you need to have an interest in it. If you are unable to come up with a good topic, trying reading other people’s articles. This will help you develop a topic with ease.

Draft a plan After selecting a topic, the next step is drafting a plan or an outline. An outline is fundamental in writing a scientific essay as it is the foundation on which your paper is built. Additionally, it acts as a road map for your article. Hence, you need to incorporate all the thoughts and ideas you will include in your essay in the outline. You need to know what you will include in the introduction, the body, and the conclusion. Drafting a plan helps you save a lot of time when writing your paper. Also, it helps you to keep track of the primary objective of your article.

Start writing the article After drafting a plan, you can begin the writing process. Writing your paper will be smooth and easier as you have an outline which helps simplify the writing process. When writing your article, begin with a strong hook for your introduction. Dictate the direction your paper will take. Provide some background information and state the issue you will discuss as well as the solutions you have come up with. Arrange the body of your article according to the essay structure you will use to guide you. Also, ensure that you use transitory sentences to show the relationship between the paragraphs of your article. Conclude your essay by summarizing all the key points. Also, highlight the practical potential of our findings and their impacts.

Proofread and check for errors in the paper Before submitting or forwarding your article, it is fundamental that you proofread and correct all the errors that you come across. Delivering a paper that is full of mistakes can affect your overall performance in a negative manner. Thus, it is essential you revise your paper and check for errors. Correct all of them. Ask a friend to proofread your paper. He or she may spot some of the mistakes you did not come across.

In conclusion, writing a scientific essay differs from writing other types of papers. A scientific essay requires you to produce an article which has all the information and facts about the subject matter and it ought to be to the point. Nonetheless, the scientific essay formats similar to the format of any other essay: introduction, body, and conclusion. You need to use your outline to guide you through the writing process. To learn how to write a scientific essay in a successful manner, consider the tips above.

Download PDF

Related Articles:

2 responses to how to successfully write a scientific essay.

' src=

Hai…you have posted great article, it really helpful to us.. I will refer this page to my friends; I hope you will like to read – scientific research paper writing service

' src=

Nice concentration on education blogs. Such a great work regarding education and online study to gain knowledge and time.

Leave a Reply Cancel reply

You must be logged in to post a comment.

Top Keywords

Diabetes | Alzheimer’s disease Cancer | Breast cancer | Tumor Blood pressure | Heart Brain | Kidney | Liver | Lung Stress | Pain | Therapy Infection | Inflammation | Injury DNA | RNA | Receptor | Nanoparticles Bacteria | Virus | Plant

See more …

examples of scientific essay

Proofread or Perish: Editing your scientific writing for successful publication

examples of scientific essay

Lab Leader makes software applications for experiment design in life science

examples of scientific essay

Cyagen Biosciences – Helping you choose the right animal model for your research

Labcollector lims and eln for improving productivity in the lab.

examples of scientific essay

Image Cytometer – NucleoCounter® NC-3000™

Recent posts.

  • Does UV-B radiation modify gene expression?
  • Ferrate technology: an innovative solution for sustainable sewer and wastewater management
  • Sleep abnormalities in different clinical stages of psychosis
  • A compact high yield isotope enrichment system
  • Late second trimester miscarriages

Facebook

  • Entertainment
  • Environment
  • Information Science and Technology
  • Social Issues

Home Essay Samples

Essay Samples on Science

Some college students like to attend STEM workshops, research innovations, or develop something unique as they learn, yet working with science essays often appears overly challenging. An actual problem often relates to unclear grading rubrics or being unable to narrow things down. Seeking the most efficient solutions, one should take an interdisciplinary approach to writing, which means that you must explore more than one discipline. For example, see how the science can be explained by various specialists and talk about why it becomes easier for most people when approached differently. You should also see science essay examples that we have collected for you because things instantly become clearer if you have a set of actual samples. Focus on more than one example and compare how each author has addressed the same problem based on a particular scientific concept. We have intentionally provided examples that deal with similar topics to provide you with more variety. When you are structuring your science assignment, work with your facts first and state your objectives in the very first paragraph. It will help to keep your writing structured and offer a healthy balance of the data you have collected, reliable quotes, and your personal opinion.

Exploring Why Geography is Important

Why is geography important? This question beckons us to recognize the pivotal role that geography plays in shaping our understanding of the world around us. Geography extends beyond mere maps and coordinates—it encompasses a diverse range of concepts that impact our lives, societies, and the...

Exploring the Dimensions of "What is Geography"

What is geography? This seemingly simple question opens the door to a world of complexity, discovery, and understanding. Geography is not merely about memorizing maps or reciting the names of countries—it is a multidimensional field that delves into the interactions between people, places, and the...

Physical Geography: Exploring Earth's Natural Marvels

Physical geography is a captivating field that delves into the natural processes and features that shape our planet's surface. It investigates the forces that have sculpted mountains, carved valleys, shaped coastlines, and molded landscapes over millions of years. In this essay, we embark on a...

Computer Engineering Career Goals: Navigating the Digital Frontier

Computer engineering career goals shape the trajectory of individuals seeking to harness the power of technology to drive innovation, solve complex problems, and shape the digital landscape. In an era defined by rapid technological advancements, computer engineers play a pivotal role in designing, developing, and...

  • Career Goals
  • Engineering

Achieving Mechanical Engineering Career Goals

Mechanical engineering career goals embody the aspirations of individuals who are drawn to the dynamic world of innovation, design, and problem-solving. In a field where precision meets creativity, pursuing a career in mechanical engineering opens doors to a plethora of opportunities across industries. This essay...

  • Mechanical Engineering

Stressed out with your paper?

Consider using writing assistance:

  • 100% unique papers
  • 3 hrs deadline option

Career Motivation: Illuminating the Path to Fulfillment and Success

Behind every successful individual's journey lies a driving force that propels them forward—their career motivation. In this essay, we delve into the depths of what ignites the flames of ambition, determination, and resilience in the pursuit of professional goals. By uncovering the sources of career...

Exploring the 5 Themes of Geography: Understanding the Earth's Complexities

The 5 themes of geography provide a comprehensive framework for studying and interpreting the diverse landscapes, cultures, and interactions that shape our planet. Developed by geographer Jean-Pierre De Bar in 1986, these themes serve as a guide for exploring the complexities of our world. In...

What Does Creativity Mean to You

Creativity, an intricate tapestry of imagination and innovation, holds a unique significance for each individual. It is a concept that transcends the boundaries of convention, sparking curiosity and igniting the flames of inspiration. In this essay, we embark on a journey to unearth the meaning...

Exploring Language and Identity in "Mother Tongue" by Amy Tan

Language is not merely a tool for communication; it is also a reflection of one's cultural background, experiences, and identity. In her essay "Mother Tongue," Amy Tan delves into the complexities of language and the profound impact it has on shaping an individual's sense of...

  • Language and Linguistics
  • Mother Tongue

Why I Want to Study Architecture: the Power of Design

The world around us is a tapestry of structures, spaces, and designs that shape our lives and experiences. From towering skyscrapers to quaint houses, every architectural marvel carries a story and a vision. The allure of architecture, with its blend of artistic expression, technical precision,...

  • Architecture

Why English Is Important for Students

English language proficiency has emerged as a universal skill that transcends borders, cultures, and industries. For students, mastering the English language holds a multitude of benefits that extend beyond the classroom. English serves as a key that unlocks doors to global communication, academic excellence, professional...

  • English Language

Unraveling the Cosmos: About the Origin of the Universe

The question of how the universe came into existence has intrigued humanity for centuries. This essay delves into the fascinating journey of understanding the origin of the universe, from ancient creation myths to modern cosmological theories. As scientists and philosophers grapple with this profound question,...

  • Space Exploration

The Probability of Life on Other Planets: Unveiling the Cosmic Enigma

The question of whether life exists beyond Earth has intrigued humanity for centuries, inspiring scientific exploration, philosophical contemplation, and popular culture. As our understanding of the cosmos deepens, the search for extraterrestrial life gains momentum. This essay delves into the factors that influence the probability...

The Importance of Statistics in Daily Life: Quantifying Reality

Statistics may seem like an abstract field reserved for researchers and analysts, but its influence extends far beyond academic settings. In fact, statistics play a vital role in shaping our daily lives, informing decision-making, guiding policies, and helping us make sense of complex information. From...

The Importance of Learning a Foreign Language

The world we live in today is more interconnected than ever before, and as borders blur and cultures mingle, the ability to communicate in foreign languages becomes increasingly valuable. Learning a foreign language is not merely a linguistic pursuit; it is a gateway to understanding...

  • Second Language

The Effects of GMOs on the Environment: Unraveling Complex Impact

Genetically Modified Organisms (GMOs) have revolutionized modern agriculture, promising increased crop yields, enhanced nutritional content, and improved resistance to pests and diseases. However, as GMOs become increasingly prevalent in the food production system, concerns about their effects on the environment have garnered significant attention. This...

  • Genetic Engineering

Should English Be the Official Language of a Country

The question of whether English should be established as the official language of a country is a contentious issue that intertwines cultural diversity, national identity, and practical communication. Advocates argue that an official language can foster unity and streamline government processes, while opponents emphasize the...

Preserving Biodiversity: Why Should We Protect Endangered Animals

Endangered animals play a crucial role in maintaining the delicate balance of our planet's ecosystems. As human activities continue to pose threats to various species, understanding why we should protect endangered animals is vital. This essay explores the significance of conserving these species to ensure...

  • Biodiversity
  • Endangered Species

How Electricity Has Changed Our Lives

Electricity stands as one of the most transformative inventions in human history, revolutionizing every facet of our lives and propelling us into the modern age. From lighting up our homes to powering industries and enabling communication, the impact of electricity is immeasurable. This essay delves...

  • Electricity

Exploring the Difference Between Qualitative and Quantitative Research

Research is a dynamic process that encompasses a diverse range of methodologies tailored to different research questions and objectives. Qualitative and quantitative research are two fundamental approaches that guide researchers in their pursuit of knowledge. This essay delves into the core difference between qualitative and...

  • Qualitative Research
  • Quantitative Research

Ethical Concerns: Disadvantages of Keeping Animals in Zoos

Zoos have long been a source of fascination and entertainment for people of all ages. However, behind the veneer of entertainment and education lies a complex ethical dilemma. While zoos play a role in conservation and education, they also raise significant concerns regarding animal welfare,...

  • Animal Welfare

Embarking on Linguistic Expeditions: My Journey of Learning a New Language

The allure of learning a new language is akin to embarking on an adventurous expedition into uncharted territories. The process of acquiring a foreign tongue opens doors to new cultures, broadens horizons, and transforms the way we perceive the world. In this essay, I delve...

Advantages of Keeping Animals in Zoos: Conservation and Education

Zoos have long been a source of fascination and learning for people of all ages. While the ethical considerations of keeping animals in captivity are widely debated, there are significant advantages to maintaining animals in zoos. These institutions play a vital role in conservation efforts,...

  • Wildlife Conservation

Designer Babies: Exploring Ethical and Technological Frontiers

The concept of designer babies has long captured the imagination of both scientists and the general public. The ability to genetically modify and customize the traits of unborn children is a topic that resides at the intersection of science, ethics, and human aspirations. This essay...

  • Genetic Modification

Human Dependence on Technology: A Double-Edged Sword in 400 Words

Introduction In today's world, human dependence on technology is ubiquitous. From smartphones that manage our daily schedules to medical equipment that sustains life, technology has woven itself into nearly every aspect of our daily existence. While it has brought unprecedented convenience and progress, this dependence...

  • Dependence on Technology

Connecting Through Screens: Advantages of Technology in Communication

Introduction The advancement of technology has reshaped the way individuals and organizations communicate. From instant messaging and video conferencing to social media and collaborative software, technology has broken down geographical barriers and made communication more efficient and accessible. This essay aims to explore various advantages...

  • Advantages of Technology

The Impact of Technology on Agriculture: A Transformative Force

Introduction The world of agriculture has seen a significant transformation in recent decades, largely due to advancements in technology. From the way farmers plant and nurture crops to the methods used to harvest and distribute products, technology has drastically altered the agricultural landscape. This essay...

  • Agriculture
  • Impact of Technology

Why I Choose Biotechnology: A Personal and Professional Journey

This essay outlines various factors—both personal and professional—that have led to the decision to pursue a career in biotechnology. It elaborates on the intellectual curiosity, desire for positive impact, personal connections, and the dynamic nature of the field as key reasons for this choice. Introduction...

  • Biotechnology
  • Personal Experience

Biotechnology Reflection: A Look into the Promises and Perils of Biotech

Introduction In an era of rapid technological advancements, biotechnology stands out as one of the most transformative and controversial fields. This biotechnology reflection aims to delve into the multi-faceted world of biotechnology, considering its profound impacts on medicine, agriculture, environment, and society at large. The...

The Ethics of Biotechnology: Navigating a Complex Landscape

This essay provides a comprehensive exploration of the various ethical dimensions of biotechnology, touching on numerous aspects including medical applications, agricultural innovations, environmental implications. Introduction The ethics of biotechnology are as complex as the science itself. As biotechnological advancements continue to soar, so do the...

Advantages and Disadvantages of Technology in the Workplace

Increased Efficiency In today's fast-paced business environment, efficiency is paramount. Technology has provided us with tools that can dramatically expedite tasks. For instance, consider how automated inventory management systems can streamline restocking processes in retail. According to a study by McKinsey, businesses that adopted such...

Technology in Education: An Argumentative Perspective

Introduction This essay has engaged in an argumentative discussion about the role of technology in education, examining its potential benefits such as enhanced engagement, personalized learning, and skill development, while also addressing the risks of overreliance and inequity. By understanding both sides of the argument,...

  • Technology in Education

How Twitter's Rebranding to X Signals a Shift in Strategy

Twitter's recent rebranding to X by new owner Elon Musk signals a significant shift in strategy for the social media platform. Musk has long envisioned transforming Twitter into an "everything app" similar to China's WeChat, offering a wide range of services beyond social networking. The...

Elon Musk's Twitter Takeover and Reforms: an Overview

Elon Musk's Acquisition of Twitter In October 2022, billionaire Elon Musk completed his acquisition of social media platform Twitter for $44 billion. Musk took over as CEO with ambitious plans to reform Twitter's products, features, algorithms, content policies, and workforce. His tenure has proven controversial...

Importance of Photosynthesis: Unveiling the Foundation of Life on Earth

Photosynthesis, the remarkable process that occurs in plants and some microorganisms, holds immense significance for life on Earth. It is the driving force behind the production of oxygen, the conversion of sunlight into energy, and the foundation of Earth's intricate food webs. This essay delves...

  • Photosynthesis

Photosynthesis and Cellular Respiration: Learning Theories and Applications

I am going to teach my students about the cellular processes of photosynthesis and cellular respiration. In thiss essay I will explain how I am planning to teach my students. In order for meaningful learning to occur, I will need to engage my students through...

  • Cellular Respiration

Albert Einstein: Biography of the Most Renowned Scientist

I chose to write about Albert Einstein biography in this essay because he was the mastermind behind the Manhattan Project. Another reason is that his work altered the outcome of World War Two, aiding in America's victory over the Axis Powers. Despite being perceived as...

  • Albert Einstein

Significance of Black Inventions That Changed the World

Introduction Many people have heard about famous inventions, such as the lightbulb, the steam engine, and the iPhone. The list is, in fact, endless and impressive. However, although we use many products and inventions in our lives, we don't give thought to who made it...

  • African American History

Essential Insights: Research, Presentation, and Literature Analysis

Introduction Recently I partook in a series of lectures that were intended to discuss a variety of tasks and obstacles that will be faced by those planning to undertake a PhD or MA. The information presented during these lectures covered a variety of topics, ranging...

  • Academic Challenges
  • Literature Analysis
  • Research Methods

Hidden Figures in Space Race: Black Women in STEM

Introduction It was Malcolm X who was most famously credited with saying that “The most disrespected person in America is the black woman. The most unprotected person in America is the black woman. The most neglected person in America is the black woman.” Since the...

  • Hidden Figures
  • Katherine Johnson

Henry Ford: The Man and His Automotive Legacy

Henry Ford: The Man Behind the Cars Henry Ford was an American industrialist, the owner of plants for the production of cars around the world, an inventor, and an author of 161 US patents. He was born in Springwells Township, Wayne County, Michigan. Henry made...

  • Ford Motor Company

Examination of Carnap's Elimination of Metaphysics With Logical Analysis

Rudolf Carnap claims to be able to eliminate, once and for all, from a seemingly impartial, unprejudiced point of view, all metaphysics by logical analysis. In this paper, there would be a critical examination on the one hand, that as far as Carnap's analysis is...

  • Branches of philosophy
  • Metaphysics

Organic Chemistry and Its Societal Issues: Animal Care Products

Animal care develops and provides pharmacological animal health services and products to assist veterinary profession. Under animal welfare is animal care. Animals have welfare needs and pet owners must supply the needs of their pets most especially when it comes to their health, which is...

Evolutionary Biology Through the Lens of Medicine

When thinking of the word evolutionary I often think of species developing or changing yet I rarely think of practical ideas like medicine or healthcare progressing. Although having species evolve is important in its own unique ways, having medicine evolve is something that I think...

  • Human Evolution

Ruth Benedict: Shaping Anthropology through Cultural Relativism

The essay will assess Ruth Benedict’s contribution to anthropology, including how important her exploration into culture and personality was because it led to her most important work in abnormalities. It will explore criticism about the incommensurability of cultures and “the savage slot”, which is captured...

  • Anthropology
  • Cultural Relativism
  • Social Studies

Biology and Bioethics: Balancing Science and Morality

Introduction Biology, the study of life and living organisms, has witnessed remarkable advancements over the years. As our understanding of the intricate workings of biological systems deepens, ethical questions arise concerning the responsible use of this knowledge. The field of bioethics explores the ethical implications...

The Need for Geography Study in the Context of Today’s World

Geography entails the study of the earth and it’s atmosphere, as well as the human activities that it affects and is affected by – a great portion of this has to do with the distribution of populations and resources and political and economic activities. It...

  • Globalization

Discovering Problematic Issues During the History of Geography

Geography as a discipline has progressed dramatically since its colonial roots (pre-1700s) and has proceeded to become one of the most important studies in world history, being utilized in wars and everyday politics. Geography, however, has also been one of the most divided studies, in...

  • Social Problems

Early Biological and Physical Anthropology Role in Anthropology

Early biological and physical anthropology are both a branch of Anthropology, it is the study of human evolution and development to environmental stressors. In this essay both early biological and physical anthropology will be discussed to achieve a better understanding of these concepts. This essay...

In-Depth Explanation of the Main Concepts of Political Geography

During this essay, political geography will be explained, with the different types of politics outlined, as well as how politics have altered the history of Belfast. This essay will also provide an in-depth explanation of the key geographical concepts that are place, territory and identity,...

  • Human Population

How Shemistry Influenced the History and Presentation of Art

Chemistry is everywhere in our life. Of course, chemistry is also closely related to art. There are many forms of art, such as oil painting, gouache, watercolor and so on. These painting forms are inseparable from products such as pigments and watercolors, which are based...

  • Art History

The Importance of Cell Biology in the 21st Century

Cell biology is the study of cell structure and how it fundamentally gives organisms their function, there are approximately 25,000 protein-coding genes in the human genome, within this only about 60% of the human genes have an identifiable sequence homology within the protein database. Human...

Significance of Biotechnology as a Tool for Improving Life on Earth

Biotechnology is the use of biology specifically utilizing biological systems or living organisms to solve and analyzed scientific knowledge in which its processes is to develop technologies and products that help improve the society and the health of our planet. Biotechnology belongs to the interdisciplinary...

  • Applied Sciences

History and Implications of Educational Anthropology in India

Anthropology is the study of humans, their cultures and societies. It is the study of the others or the unfamiliar, the unfamiliar is made familiar and brought to the forefront by anthropologist. Anthropology is subdivided into four main categories: archaeological; biological; linguistics; cultural. Anthropology in...

Analytical Chemistry: Three Methods of Compound Determination

Analytical chemistry is the science of determining what matter is and how it exists through instruments and techniques which separate, identify and quantify matter, overall determining the structure of the compound. There are three techniques that can be used to determine a compound. These techniques...

  • Chemical Reaction

Agritech: Transforming Farming Practices for a Sustainable Future

Agricultural biotechnology, otherwise called agritech, is an area of agricultural science including the utilization of logical apparatuses and methods, including hereditary designing, atomic markers, sub-atomic diagnostics, immunizations, and tissue culture, to adjust living life forms: plants, creatures, and microorganisms. Crop biotechnology is one part of...

The Fragile Beauty of Marine Ecosystems: A Look into the Wonders

A Marine Ecosystem is a subset of all aquatic ecosystems. Since 70% of Earth’s surface in filled with water, and around 95% of that water in salt, Marine Ecosystems are defined as the largest and most biodiverse ecosystem in the world. An Ocean/Marine Ecosystem can...

  • Marine Life

Robotic Surgery: Medical Treatment Through Precision and Innovation

“Meet your next surgeon:DR. Robot” said by famous writer Ryan Bradley. Robotic surgery is one of the new medical treatments across the world that has enabled robots to perform surgeries, and allow patients to recover faster. The technology has enabled surgeons to become more accurate...

The Truth About Genetically Modified Food: Pros and Cons

The proposition team claimed that genetically modified food or for short GM Foods are safe for humans. This is not true since for example GM crops have not been proven to be safe for human consumption and scientists don’t know what the long-term effects of...

  • Genetically Modified Food

Astronomy vs. Astrology: Defining the Differences and Similarities

Introduction There has been interpretation and belief from groups of people that the varying characteristics of the celestial objects filling the space of the universe all have different meanings and effects on one's life and purpose. This language—being used to allow communication between life on...

DNA as the Carrier of Genetic Information About Us

Without genetics no one would be able to know the possible diseases they could get from their family. Genetics, inherited from our ancestors, prove that the past can shape our present. They can show what is inherited from parents, grandparents, and so forth. Genetics are...

Technology: A Blessing or a Curse for the Younger Generations

When it comes to social media everyone has heard of it. We are the technology age. We, over the years have been becoming more and more magnetized with the usage of our phones. Social media provides us the ability to globally interact with whoever and...

  • Effects of Technology
  • Millennial Generation

Understanding the Seven Steps of the Scientific Method

What is the scientific method? A procedural method that has been characterized by natural sciences since the seventeenth century, including systematic observation, measurement, and experimentation, as well as the formulation, testing, and modification of hypotheses. 'Criticism is the backbone of the scientific method' The scientific...

  • Scientific Method

What It Is Like to Be a Biomedical Scientist: Job Description

What is like to be a Biomedical Scientist? It is undeniable that Biomedical science plays a crucial role in our world today. A broad-spectrum is covered within this career path, giving a varied choice of jobs to choose from once successfully qualified as a Biomedical...

The Effects of Stress on Brain Development: Analysis of Results

This study aims to explore the effects of stressors on the development of the human brain. The effects of stress are very important to consider as it impacts individuals’ lives everyday and can affect their physical health too. Stress is commonly known as one of...

  • Human Brain

Engineering and Thermodynamics: Paired Work For Better Surrounding

Thermodynamics coupled with fluid mechanics has had a profound effect on how we function as a species. The understanding and insight gained through scientific study of these fields has enabled us to effectively manipulate our surrounding. Engineers have applied this knowledge to create mechanical machines,...

  • Thermodynamics

Examining the Influence of the Thermodynamic on the Balloon

Thermodynamic means the study of labor, heat, temperature and energy relations. Thermodynamic is a branch of physics, it explores how the energy in the system varies. Thermal energy is the energy which is due to the temperature of the material. Thermodynamic means the calculation of...

Who is Considered a Scientist in the Modern World

There are many important professions in the world. Science playing a massive role in society. Humans need research to analyze every part of existence. To be able to mimic creation so that human life can be comfortable, that alone needs scientific variables. When identifying a...

The Importance of the Scientific Method in Psychology Experiments

The scientific method is “ the tactic of a process that has characterized physical discipline since the seventeenth century, consisting in systematic observation, measurement, and experiment, and therefore the formulation, testing, and altar of hypothesis”. The scientific method is used throughout the world that provides...

The Use of Microbial Genetics in the Treatment of Infectious Diseases

The discovery that microorganisms can indeed produce sexually (important for gene mixing from different organisms) by Joshua Lederberg in 1947 who demonstrated the exchange of genetic factors in Escherichia coli (a process of DNA transfer called conjugation) was a major turning point in microbial genetics...

Empirical Studies of the Concept of Human Race and Genetics

The concept of the human race has been a widely known topic of debate in human genetics as there is a divided conversation on whether race is a biological attribute or a social construct. Throughout different studies, researchers have been trying to decode what the...

  • Cultural Diversity

Quantum Information and the Third Law of Thermodynamics

The claim “scientists will soon be able to cool substances to absolute zero” has had research conducted by scientists over 100 years that can be used in order to show that it is a false claim. Initial research supported that cooling a substance down to...

The Dystopian Reality: How Technology is Turning Us into 1984

Technology has greatly impacted our lives and it has become a great resource for us. It is beneficial to our society, even though there are some effects we are not aware on how it's affecting us. George Orwell’s novel, 1984, describes the totalitarian government of...

  • Disadvantages of Technology
  • Internet Privacy

Learning to Think Scientifically: A Look at the Scientific Method

Students, and now and again even teachers, commonly anticipate scientists solely use the scientific approach to reply to science-related questions. In fact, you can comply with the scientific technique to nearly any problem. The key is to use the factors (steps) to restrict bias and...

Scientific Method: Its Role in Advancing Science and Technology

Since the human been appear, use the logic and arise different questions, begins the scientific method, after years this practice evolve to what we know this age. Even when we were kids, we use this method not for scientific reasons, just to know something like...

Technology and Connection: How Electronics Bring People Together

Since the beginning of time, mankind has invented many things by implementing scientific knowledge for practical purposes, thus entailing an easier way of life. This is known as Technology, which has evolved immensely over the years. From the prehistoric cavemen with stone tools to Blacksmiths...

Literature Review About How Plants Respond to Touch Stimuli

Similar to all other organisms' plants will have the ability to detect and respond to different kinds of stimuli present within their environment, as plants are rooted within the soil its main response to this will be too then change the way in which it...

Plant Viruses as Serious Issue for the Agriculture Industry

Protecting plants from viral pathogens is a major challenge faced by the agricultural industry. Pathogenic infections can potentially threaten global food security by severely affecting crop yields. In order to combat prevalent plant diseases, versatile genome editing technologies such as CRISPRCas9 (clustered regularly interspaced short...

Experimentation & Innovation: The Importance of the Scientific Method

Our life without the scientific method would be unrecognizable. Most individuals don’t realize how our daily life and routine has been improved because of experimentation. Without the scientific method, we would not be so technologically advanced. We would not have all the latest cell phones,...

Medicinal Chemistry: The Importance of Building Blocks

Organic building blocks are organic molecules which are well-furnished, the basic components for organic synthesis. They are used for bottom-up modular assembly of molecular architectures such as supra-molecular complexes, metal-organic frameworks, organic molecular constructs, and nanoparticles. In medicinal chemistry, they are selected for the use...

Changing the Perspective: Whether Mary Somerville Was a Scientist

Mary Somerville’s status as a scientist is almost universally accepted by the broader public of the present, her work being recognised as equal value as that of her contemporaries. However, Somerville’s status as a scientist falls under scrutiny when considered in her own historical context,...

  • Famous Person
  • Influential Person

Exploring the Purpose of an Earth and Environmental Scientist

In our universe its estimated to have trillions of planets and yet so few that have been discovered are barely able to host life. Our planet is the only one we know so far that can sustain life. Earth and environmental sciences are aimed at...

  • Earth Science

The Thermodynamic Properties of Glassy Metals Material

Glassy metals are also referred to as an amorphous metal or a metallic glass. The formation of glass results due to rapid cooling of a metal from its molten state. In some instances, the liquid has a high viscosity and is no longer able to...

Unleashing the Power of Digital Communication: New Era of Connectivity

From 2000 until the present day, digital technology has developed so that it alters the way society communicates. The transition from old types of technology to new and improved forms of digital technology such as the transition from paperwork health records to electronic files in...

  • Digital Era

How Important is the Role of Genetics in Common Obesity

Frequently characterised by a body mass index greater than 30kg/m^2, obesity is rapidly becoming a serious problem for not just high-income countries, but also middle-income countries, with trends predicting that by 2025, 21% of women and 18% of men will be obese. Even in lower-income...

Emotion: Circumstances, Mood or Relationships With Others

Feelings are natural states related with the anxious system welcomed on by neurophysiological changes differently connected with considerations, emotions, social reactions, and a level of delight or displeasure. There is presently no logical accord on a definition.The feeling is frequently interlaced with state of mind,...

Genetic Factors as a Decisive Predisposition to Allergies

Families are always unique. In some ways it can be not for the better because of genetics. There are multiple factors that come into play. Could the cause of a family member receiving allergies be the cause of genetics? There may be an explanation for...

The Four Laws of Thermodynamics: Explaining Heat and Energy

Different scientific principles exist to give humans a better understanding of why different things within the universe exist in the manner that they do. The principles give a better understanding of the several ways that particles and molecules react to certain conditions, while also determining...

The Current State-of-the-Arts of Redox Chemistry

Introduction to electrochemistry and photochemistry Nowadays, redox chemistry is becoming more and more prevalent in our daily society. From OLED technology to medicinal treatment advances, the science behind these breakthroughs is becoming fundamental in how we view our world, and how we innovate for the...

  • Periodic Table

Drawing for Architecture: A Key to Understanding Complex Designs

Architecture the word from Latin is called “architectura” originally from the Greek “arkhitekton”. Architectural drawing has never been taken for granted. All things we design and sketch are from our thinking to our hands. Therefore, drawings are the main development to architectural projects. When designing,...

Architecture: Bridging Vision into Reality

Architecture can be defined in various ways, but if I were to define it, I would simply use these following words, ‘Architecture is an abstract language that bridges a vision into reality.’ I think everyone would agree that architecture is best paired with great effort...

  • Interior Design

Philosopher and Scientist: Biography of Abu Rayhan Muhammad Al-Biruni

Al-Biruni is a great scientist from Khorezm, the author of numerous capital works on history, geography, philology, astronomy, mathematics, geodesy, mineralogy, pharmacology, geology, etc. For the first time in the Middle East, Biruni expressed the view that the Earth could move around the Sun, determined...

The Biological Clock Theory: A Key to Understanding the Aging Process

Aging is the natural process where humans are grown and becomes older by different changes in cells, like decreasing metabolic processes, endurance, resistant forces, and so on. To know about that kinds of natural processes, scientists have investigated many illnesses, life processes like aging, and...

Being a Scientist: a Life Ambition Worth Striving For

A life without ambition is like living a life without a purpose. Every person has their own ambition in life. Some want to be a doctor, a nurse, chef, police, flight attendant, engineer and such. Growing up watching science documentaries made me decide and dreamt...

  • Personal Goals

Description of Genetics Career: a Genetics Counsellor

A genetic counsellor’s main role is to provide patients information on concerns involving inherited diseases and/or conditions that run in the family or could run in an individual’s future family. These diseases include sickle cell anemia, Down syndrome, breast and ovarian cancer that is heredable,...

  • Job Description

The Role of Reasoning in Science: Inductive and Deductive Approaches

Introduction This essay will focus on the principles of the scientific method, considering Francis Bacon’s method of induction contrasted with Karl Poppers’ Hypothetico-Deductive approach as a means of defining what is scientifically accurate. Both approaches are used in modern-day science, where experiment and observation are...

The Common Themes and Diverse Practices of Scientific Methods

Introduction Science in some form or another has been practiced for millennia, to varying degrees of success, and throughout this time, people have argued about which is the way to practice science. The study of the scientific method can be described as the attempt to...

Technology's Paradox: Increased Profitability & Economic Inequality

Introduction Humans are always looking to find new ways to ease their ways of life, hence coming up with progressive tools to achieve these goals. Society has been through an ever-changing industrial revolution starting with the usage of tools for food production, using electric power...

  • Intelligent Machines

The Development of Nationalism & Regionalism in Australian Architecture

Introduction From the 1880s, “nationalism” and “regionalism” had been started to be two of the keywords on the Australian development of architecture. These two words point toward the nation’s sake of rejecting foreign architectural approaches and seeking of the local architectural characteristics in Australia. During...

  • Modern Architecture

Exploring the Unknown: The World of Astronauts and Astronomy

Introduction Drifting in an infinite void, weightless, unravelling the enigmatic mysteries of the cosmos, uncovering uncharted realms—such is the ethereal experience of being an astronaut. Yet, this vocation brims with peril and promise; its impact on the world depends on circumstances. The study of astronomy,...

Best topics on Science

1. Exploring Why Geography is Important

2. Exploring the Dimensions of “What is Geography”

3. Physical Geography: Exploring Earth’s Natural Marvels

4. Computer Engineering Career Goals: Navigating the Digital Frontier

5. Achieving Mechanical Engineering Career Goals

6. Career Motivation: Illuminating the Path to Fulfillment and Success

7. Exploring the 5 Themes of Geography: Understanding the Earth’s Complexities

8. What Does Creativity Mean to You

9. Exploring Language and Identity in “Mother Tongue” by Amy Tan

10. Why I Want to Study Architecture: the Power of Design

11. Why English Is Important for Students

12. Unraveling the Cosmos: About the Origin of the Universe

13. The Probability of Life on Other Planets: Unveiling the Cosmic Enigma

14. The Importance of Statistics in Daily Life: Quantifying Reality

15. The Importance of Learning a Foreign Language

Need writing help?

You can always rely on us no matter what type of paper you need

*No hidden charges

100% Unique Essays

Absolutely Confidential

Money Back Guarantee

By clicking “Send Essay”, you agree to our Terms of service and Privacy statement. We will occasionally send you account related emails

You can also get a UNIQUE essay on this or any other topic

Thank you! We’ll contact you as soon as possible.

Become a Writer Today

Essays About Science: Top 12 Examples and Prompts

Science can explain almost every aspect of our lives; if you want to write essays about science, start by reading our guide.

The word “science” comes from the Latin word Scientia or “knowledge,” It does indeed leave us with no shortage of knowledge as it advances to extraordinary levels. It is present in almost every aspect of our lives, allowing us to live the way we do today and helping us improve society. 

In the 21st century, we see science everywhere. It has given us the technology we deem “essential” today, from our mobile phones to air conditioning units to lightbulbs and refrigerators. Yet, it has also allowed us to learn so much about the unknown, such as the endless vacuum of space and the ocean’s mysterious depths. It is, without a doubt, a vehicle for humanity to obtain knowledge and use this knowledge to flourish. 

To start writing essays about science, look at some of our featured essay examples below. 

1. The challenging environment for science in the 21st century by Nithaya Chetty 

2. disadvantages of science by ella gray, 3. reflections from a nobel winner: scientists need time to make discoveries by donna strickland.

  • 4.  ​​The fact of cloning by Cesar Hill

5. T. Rex Like You Haven’t Seen Him: With Feathers by Jason Farago

6. common, cheap ingredients can break down some ‘forever chemicals’ by jude coleman, 1. what is science, 2. a noteworthy scientist, 3. why is it important to study science, 4. are robots a net positive for society, 5. types of sciences, 6. science’s role in warfare.

“Open-ended, unfettered science in its purest form has, over the centuries, been pursued in the interests of understanding nature in a fundamental way, and long may that continue. Scientific ideas and discoveries have often been very successfully exploited for commercial gain and societal improvements, and much of the science system today the world over is designed to push scientists in the direction of more relevance.”

For South Africa to prosper, Chetty encourages cooperation and innovation among scientists. He discusses several problems the country faces, including the politicization of research, a weak economy, and misuse of scientific discoveries. These challenges, he believes, can be overcome if the nation works as one and with the international community and if the education system is improved. 

“Technology can make people lazy. Many people are already dependent and embrace this technology. Like students playing computer games instead of going to school or study. Technology also brings us privacy issues. From cell phone signal interceptions to email hacking, people are now worried about their once private information becoming public knowledge and making profit out of video scandals.”

Gray discusses the adverse effects technology, a science product, has had on human life and society. These include pollution, the inability to communicate properly, and laziness. 

She also acknowledges that technology has made life easier for almost everyone but believes that technology, as it is used now, is detrimental; more responsible use of technology is ideal.

“We must give scientists the opportunity through funding and time to pursue curiosity-based, long-term, basic-science research. Work that does not have direct ramifications for industry or our economy is also worthy. There’s no telling what can come from supporting a curious mind trying to discover something new.”

Strickland, a Nobel Prize winner, explains that a great scientific discovery can only come with ample time for scientists to research, using her work as an example. She describes her work on chirped pulse amplification and its possible applications, including removing brain tumors. Her Nobel-awarded work was done over a long time, and scientists must be afforded ample time and funding to make breakthroughs like hers. 

4.  ​​ The fact of cloning by Cesar Hill

“Any research into human cloning would eventually need to be tested on humans. Cloning might be used to create a “perfect human”. Cloning might have a detrimental effect family relationship. However the debate over cloning has more pros out weighting the cons, giving us a over site of the many advantages cloning has and the effects of it as well. Cloning has many ups and downs nevertheless there are many different ways in which it can be used to adapt and analyse new ways of medicine.”

Hill details both the pros and cons of cloning. It can be used for medical purposes and help us understand genetics more, perhaps even allowing us to prevent genetic diseases in children. However, it is expensive, and many oppose it on religious grounds. Regardless, Hill believes that the process has more advantages than disadvantages and is a net good. 

“For the kids who will throng this new exhibition, and who will adore this show’s colorful animations and fossilized dino poop, T. rex may still appear to be a thrilling monster. But staring in the eyes of the feather-flecked annihilators here, adults may have a more uncanny feeling of identification with the beasts at the pinnacle of the food chain. You can be a killer of unprecedented savagery, but the climate always takes the coup de grâce.”

In his essay, Farago reviews an exhibition on the Tyrannosaurus Rex involving an important scientific discovery: it was a feathered dinosaur. He details the different displays in the exhibition, including models of other dinosaurs that helped scientists realize that the T-Rex had feathers. 

“Understanding this mechanism is just one step in undoing forever chemicals, Dichtel’s team said. And more research is needed: There are other classes of PFAS that require their own solutions. This process wouldn’t work to tackle PFAS out in the environment, because it requires a concentrated amount of the chemicals. But it could one day be used in wastewater treatment plants, where the pollutants could be filtered out of the water, concentrated and then broken down.”

Coleman explains a discovery by which scientists were able to break down a perfluoroalkyl and polyfluoroalkyl substance, a “forever chemical” dangerous to the environment. He explains how they could break the chemical bond and turn the “forever chemical” into something harmless. This is important because pollution can be reduced significantly, particularly in the water. 

Writing Prompts on Essays about Science

“Science” is quite a broad term and encompasses many concepts and definitions. Define science, explain what it involves and how we can use it, and give examples of how it is present in the world. If you want, you can also briefly discuss what science means to you personally. 

Many individuals have made remarkable scientific discoveries, contributing to the wealth of knowledge we have acquired through science. For your essay, choose one scientist you feel has made a noteworthy contribution to their field. Then, give a brief background on the scientists and explain the discovery or invention that makes them essential. 

Consider what it means to study science: how is it relevant now? What lessons can we learn from science? Then, examine the presence of science in today’s world and write about the importance of science in our day-to-day lives- be sure to give examples to support your points. Finally, in your essay, be sure to keep in mind the times we are living in today.

Essays about science: Are robots a net positive for society

When we think of science, robots are often one of the first things that come to mind. However, there is much to discuss regarding safety, especially artificial intelligence. Discuss the pros and cons of robots and AI, then conclude whether or not the benefits outweigh the disadvantages. Finally, provide adequate evidence to reinforce your argument and explain it in detail. 

From biology to chemistry to physics, science has many branches, each dealing with different aspects of the world and universe. Choose one branch of science and then explain what it is, define basic concepts under this science, and give examples of how it is applied: Are any inventions requiring it? How about something we know today thanks to scientific discovery? Answer these questions in your own words for a compelling essay.

Undoubtedly, technology developed using science has had devastating effects, from nuclear weapons to self-flying fighter jets to deadly new guns and tanks. Examine scientific developments’ role in the war: Do they make it more brutal? Or do they reduce the casualties? Make sure to conduct ample research before writing your essay; this topic is debatable. 

For help with your essays, check out our round-up of the best essay checkers .

If you’re looking for inspiration, check out our round-up of essay topics about nature .

examples of scientific essay

Martin is an avid writer specializing in editing and proofreading. He also enjoys literary analysis and writing about food and travel.

View all posts

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

Home / Essay Samples / Science

Scientific Essay Examples

Science is the systematic investigation of the surrounding world through observation and experiments and the process of formulating judgments and hypotheses based on obtained evidence. Given that science can be directed at virtually any question that humans find relevant, so can be an essay on science – starting from questions in natural sciences and ending with social sciences.

Science is always relevant because it is the practice through which virtually any new knowledge is gained and any innovation is achieved. Another reason for its relevance is because nowadays, the scientific consensus is often ignored by many people and even national authorities. Below you can find several scientific essay examples to review – note the topics, structure, information delivery style, language.

Gmo: Balancing Benefits and Drawbacks

Genetically Modified Organisms (GMOs) have been a topic of intense debate and scrutiny for decades. This argumentative essay aims to shed light on the benefits of GMOs, arguing that their positive impact on agriculture, food security, and sustainability outweigh the drawbacks. While concerns about safety...

Spanish Slang and Its Role in Contemporary Communication

Language is a living, evolving entity, and slang is one of its most dynamic facets. In the Spanish-speaking world, slang, or "jerga" as it's known, adds vibrancy, humor, and cultural context to communication. Spanish slang is a rich tapestry of expressions that reflect the diversity...

Lost Cities and Lost Treasure

The allure of lost cities and lost treasure has captured human imagination for centuries. These mysteries from the past, hidden beneath layers of time and nature, evoke a sense of adventure, curiosity, and the possibility of uncovering untold stories and riches. From the legendary city...

The Rocking-horse Winner: Unveiling Hidden Desires

D.H. Lawrence's short story "The Rocking-Horse Winner" delves into the complexities of human desires and the destructive power of materialism. This essay analyzes the themes of luck, greed, and the pursuit of wealth, while also examining the characters' emotional turmoil and the haunting consequences of...

The Practical Role of Math in Everyday Life

Understanding how math is used in everyday life unveils the hidden threads that intricately connect mathematics to our daily experiences. This essay delves into the practical applications of math in various facets of our lives, shedding light on how this fundamental discipline influences our decisions,...

Conserving Energy: a Path to Sustainability

Energy conservation is not merely a concept—it's a responsibility that each individual and society bears to ensure the sustainable future of our planet. With growing concerns about climate change and resource depletion, conserving energy has become a crucial step toward minimizing our ecological footprint. In...

Energy Crisis: Illuminating Perspectives

"Energy is the golden thread that connects economic growth, social equity, and environmental sustainability." This quote by Ban Ki-moon underscores the pivotal role of energy in shaping the modern world. However, as global demands increase and resources dwindle, an energy crisis looms on the horizon....

Exploring "My Side of the Mountain": a Journey into Wilderness and Self-discovery

"My Side of the Mountain," written by Jean Craighead George, is a captivating novel that takes readers on a unique journey of self-discovery through the eyes of a young protagonist. In this essay, we will delve into the world of "My Side of the Mountain,"...

Earthquakes: Causes, Effects, and Implications

Earthquakes, natural phenomena that shake the very ground we stand on, have captured human fascination and fear for centuries. These sudden and often devastating events are the result of intricate geological processes that have both immediate and far-reaching effects. In this essay, we will delve...

A World Without Mathematics: Imagining the Unthinkable

Mathematics is the language of logic, order, and structure that underpins our world. It is a fundamental tool for understanding the universe, solving problems, and advancing technology. Imagine, for a moment, a world without mathematics — a world devoid of equations, calculations, and mathematical concepts....

Trying to find an excellent essay sample but no results?

Don’t waste your time and get a professional writer to help!

  • Agriculture
  • Anthropology
  • Political Science
  • Scientific Method
  • Genetic Engineering
  • Solar Eclipse
  • Space Exploration
  • Photosynthesis
  • Microbiology
  • Bilingualism
  • Albert Einstein
  • Renewable Energy
  • Isaac Newton
  • Thomas Edison
  • Engineering
  • Intelligent Machines
  • Biotechnology
  • Hermit Crab
  • Wildlife Conservation
  • Earth Science
  • Archaeology
  • Criminology
  • Criminology Theories
  • Ethnography
  • Kinesiology
  • Research Methods
  • Science and Culture
  • Science Vs. Religion
  • Social Studies

samplius.com uses cookies to offer you the best service possible.By continuing we’ll assume you board with our cookie policy .--> -->